freebsd-nq/sys/dev/mrsas/mrsas.h

2465 lines
88 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014, LSI Corp.
* All rights reserved.
* Authors: Marian Choy
* Support: freebsdraid@lsi.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of the <ORGANIZATION> nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies,either expressed or implied, of the FreeBSD Project.
*
* Send feedback to: <megaraidfbsd@lsi.com>
* Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
* ATTN: MegaRaid FreeBSD
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifndef MRSAS_H
#define MRSAS_H
#include <sys/param.h> /* defines used in kernel.h */
#include <sys/module.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/kernel.h> /* types used in module initialization */
#include <sys/conf.h> /* cdevsw struct */
#include <sys/uio.h> /* uio struct */
#include <sys/malloc.h>
#include <sys/bus.h> /* structs, prototypes for pci bus stuff */
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/atomic.h>
#include <dev/pci/pcivar.h> /* For pci_get macros! */
#include <dev/pci/pcireg.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/stat.h>
#include <sys/taskqueue.h>
#include <sys/poll.h>
#include <sys/selinfo.h>
/*
* Device IDs and PCI
*/
#define MRSAS_TBOLT 0x005b
#define MRSAS_INVADER 0x005d
#define MRSAS_FURY 0x005f
#define MRSAS_PCI_BAR0 0x10
#define MRSAS_PCI_BAR1 0x14
#define MRSAS_PCI_BAR2 0x1C
/*
* Firmware State Defines
*/
#define MRSAS_FWSTATE_MAXCMD_MASK 0x0000FFFF
#define MRSAS_FWSTATE_SGE_MASK 0x00FF0000
#define MRSAS_FW_STATE_CHNG_INTERRUPT 1
/*
* Message Frame Defines
*/
#define MRSAS_SENSE_LEN 96
#define MRSAS_FUSION_MAX_RESET_TRIES 3
/*
* Miscellaneous Defines
*/
#define BYTE_ALIGNMENT 1
#define MRSAS_MAX_NAME_LENGTH 32
#define MRSAS_VERSION "06.704.01.01-fbsd"
#define MRSAS_ULONG_MAX 0xFFFFFFFFFFFFFFFF
#define MRSAS_DEFAULT_TIMEOUT 0x14 //temp
#define DONE 0
#define MRSAS_PAGE_SIZE 4096
#define MRSAS_RESET_NOTICE_INTERVAL 5
#define MRSAS_IO_TIMEOUT 180000 /* 180 second timeout */
#define MRSAS_LDIO_QUEUE_DEPTH 70 /* 70 percent as default */
#define THRESHOLD_REPLY_COUNT 50
/*
Boolean types
*/
#if (__FreeBSD_version < 901000)
typedef enum _boolean { false, true } boolean;
#endif
enum err { SUCCESS, FAIL };
MALLOC_DECLARE(M_MRSAS);
SYSCTL_DECL(_hw_mrsas);
#define MRSAS_INFO (1 << 0)
#define MRSAS_TRACE (1 << 1)
#define MRSAS_FAULT (1 << 2)
#define MRSAS_OCR (1 << 3)
#define MRSAS_TOUT MRSAS_OCR
#define MRSAS_AEN (1 << 4)
#define MRSAS_PRL11 (1 << 5)
#define mrsas_dprint(sc, level, msg, args...) \
do { \
if (sc->mrsas_debug & level) \
device_printf(sc->mrsas_dev, msg, ##args); \
} while (0)
/****************************************************************************
* Raid Context structure which describes MegaRAID specific IO Paramenters
* This resides at offset 0x60 where the SGL normally starts in MPT IO Frames
****************************************************************************/
typedef struct _RAID_CONTEXT {
u_int8_t Type:4; // 0x00
u_int8_t nseg:4; // 0x00
u_int8_t resvd0; // 0x01
u_int16_t timeoutValue; // 0x02 -0x03
u_int8_t regLockFlags; // 0x04
u_int8_t resvd1; // 0x05
u_int16_t VirtualDiskTgtId; // 0x06 -0x07
u_int64_t regLockRowLBA; // 0x08 - 0x0F
u_int32_t regLockLength; // 0x10 - 0x13
u_int16_t nextLMId; // 0x14 - 0x15
u_int8_t exStatus; // 0x16
u_int8_t status; // 0x17 status
u_int8_t RAIDFlags; // 0x18 resvd[7:6],ioSubType[5:4],resvd[3:1],preferredCpu[0]
u_int8_t numSGE; // 0x19 numSge; not including chain entries
u_int16_t configSeqNum; // 0x1A -0x1B
u_int8_t spanArm; // 0x1C span[7:5], arm[4:0]
u_int8_t resvd2[3]; // 0x1D-0x1f
} RAID_CONTEXT;
/*************************************************************************
* MPI2 Defines
************************************************************************/
#define MPI2_FUNCTION_IOC_INIT (0x02) /* IOC Init */
#define MPI2_WHOINIT_HOST_DRIVER (0x04)
#define MPI2_VERSION_MAJOR (0x02)
#define MPI2_VERSION_MINOR (0x00)
#define MPI2_VERSION_MAJOR_MASK (0xFF00)
#define MPI2_VERSION_MAJOR_SHIFT (8)
#define MPI2_VERSION_MINOR_MASK (0x00FF)
#define MPI2_VERSION_MINOR_SHIFT (0)
#define MPI2_VERSION ((MPI2_VERSION_MAJOR << MPI2_VERSION_MAJOR_SHIFT) | \
MPI2_VERSION_MINOR)
#define MPI2_HEADER_VERSION_UNIT (0x10)
#define MPI2_HEADER_VERSION_DEV (0x00)
#define MPI2_HEADER_VERSION_UNIT_MASK (0xFF00)
#define MPI2_HEADER_VERSION_UNIT_SHIFT (8)
#define MPI2_HEADER_VERSION_DEV_MASK (0x00FF)
#define MPI2_HEADER_VERSION_DEV_SHIFT (0)
#define MPI2_HEADER_VERSION ((MPI2_HEADER_VERSION_UNIT << 8) | MPI2_HEADER_VERSION_DEV)
#define MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03)
#define MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG (0x8000)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG (0x0400)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP (0x0003)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG (0x0200)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD (0x0100)
#define MPI2_SCSIIO_EEDPFLAGS_INSERT_OP (0x0004)
#define MPI2_FUNCTION_SCSI_IO_REQUEST (0x00) /* SCSI IO */
#define MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY (0x06)
#define MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO (0x00)
#define MPI2_SGE_FLAGS_64_BIT_ADDRESSING (0x02)
#define MPI2_SCSIIO_CONTROL_WRITE (0x01000000)
#define MPI2_SCSIIO_CONTROL_READ (0x02000000)
#define MPI2_REQ_DESCRIPT_FLAGS_TYPE_MASK (0x0E)
#define MPI2_RPY_DESCRIPT_FLAGS_UNUSED (0x0F)
#define MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS (0x00)
#define MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK (0x0F)
#define MPI2_WRSEQ_FLUSH_KEY_VALUE (0x0)
#define MPI2_WRITE_SEQUENCE_OFFSET (0x00000004)
#define MPI2_WRSEQ_1ST_KEY_VALUE (0xF)
#define MPI2_WRSEQ_2ND_KEY_VALUE (0x4)
#define MPI2_WRSEQ_3RD_KEY_VALUE (0xB)
#define MPI2_WRSEQ_4TH_KEY_VALUE (0x2)
#define MPI2_WRSEQ_5TH_KEY_VALUE (0x7)
#define MPI2_WRSEQ_6TH_KEY_VALUE (0xD)
#ifndef MPI2_POINTER
#define MPI2_POINTER *
#endif
/***************************************
* MPI2 Structures
***************************************/
typedef struct _MPI25_IEEE_SGE_CHAIN64
{
u_int64_t Address;
u_int32_t Length;
u_int16_t Reserved1;
u_int8_t NextChainOffset;
u_int8_t Flags;
} MPI25_IEEE_SGE_CHAIN64, MPI2_POINTER PTR_MPI25_IEEE_SGE_CHAIN64,
Mpi25IeeeSgeChain64_t, MPI2_POINTER pMpi25IeeeSgeChain64_t;
typedef struct _MPI2_SGE_SIMPLE_UNION
{
u_int32_t FlagsLength;
union
{
u_int32_t Address32;
u_int64_t Address64;
} u;
} MPI2_SGE_SIMPLE_UNION, MPI2_POINTER PTR_MPI2_SGE_SIMPLE_UNION,
Mpi2SGESimpleUnion_t, MPI2_POINTER pMpi2SGESimpleUnion_t;
typedef struct
{
u_int8_t CDB[20]; /* 0x00 */
u_int32_t PrimaryReferenceTag; /* 0x14 */
u_int16_t PrimaryApplicationTag; /* 0x18 */
u_int16_t PrimaryApplicationTagMask; /* 0x1A */
u_int32_t TransferLength; /* 0x1C */
} MPI2_SCSI_IO_CDB_EEDP32, MPI2_POINTER PTR_MPI2_SCSI_IO_CDB_EEDP32,
Mpi2ScsiIoCdbEedp32_t, MPI2_POINTER pMpi2ScsiIoCdbEedp32_t;
typedef struct _MPI2_SGE_CHAIN_UNION
{
u_int16_t Length;
u_int8_t NextChainOffset;
u_int8_t Flags;
union
{
u_int32_t Address32;
u_int64_t Address64;
} u;
} MPI2_SGE_CHAIN_UNION, MPI2_POINTER PTR_MPI2_SGE_CHAIN_UNION,
Mpi2SGEChainUnion_t, MPI2_POINTER pMpi2SGEChainUnion_t;
typedef struct _MPI2_IEEE_SGE_SIMPLE32
{
u_int32_t Address;
u_int32_t FlagsLength;
} MPI2_IEEE_SGE_SIMPLE32, MPI2_POINTER PTR_MPI2_IEEE_SGE_SIMPLE32,
Mpi2IeeeSgeSimple32_t, MPI2_POINTER pMpi2IeeeSgeSimple32_t;
typedef struct _MPI2_IEEE_SGE_SIMPLE64
{
u_int64_t Address;
u_int32_t Length;
u_int16_t Reserved1;
u_int8_t Reserved2;
u_int8_t Flags;
} MPI2_IEEE_SGE_SIMPLE64, MPI2_POINTER PTR_MPI2_IEEE_SGE_SIMPLE64,
Mpi2IeeeSgeSimple64_t, MPI2_POINTER pMpi2IeeeSgeSimple64_t;
typedef union _MPI2_IEEE_SGE_SIMPLE_UNION
{
MPI2_IEEE_SGE_SIMPLE32 Simple32;
MPI2_IEEE_SGE_SIMPLE64 Simple64;
} MPI2_IEEE_SGE_SIMPLE_UNION, MPI2_POINTER PTR_MPI2_IEEE_SGE_SIMPLE_UNION,
Mpi2IeeeSgeSimpleUnion_t, MPI2_POINTER pMpi2IeeeSgeSimpleUnion_t;
typedef MPI2_IEEE_SGE_SIMPLE32 MPI2_IEEE_SGE_CHAIN32;
typedef MPI2_IEEE_SGE_SIMPLE64 MPI2_IEEE_SGE_CHAIN64;
typedef union _MPI2_IEEE_SGE_CHAIN_UNION
{
MPI2_IEEE_SGE_CHAIN32 Chain32;
MPI2_IEEE_SGE_CHAIN64 Chain64;
} MPI2_IEEE_SGE_CHAIN_UNION, MPI2_POINTER PTR_MPI2_IEEE_SGE_CHAIN_UNION,
Mpi2IeeeSgeChainUnion_t, MPI2_POINTER pMpi2IeeeSgeChainUnion_t;
typedef union _MPI2_SGE_IO_UNION
{
MPI2_SGE_SIMPLE_UNION MpiSimple;
MPI2_SGE_CHAIN_UNION MpiChain;
MPI2_IEEE_SGE_SIMPLE_UNION IeeeSimple;
MPI2_IEEE_SGE_CHAIN_UNION IeeeChain;
} MPI2_SGE_IO_UNION, MPI2_POINTER PTR_MPI2_SGE_IO_UNION,
Mpi2SGEIOUnion_t, MPI2_POINTER pMpi2SGEIOUnion_t;
typedef union
{
u_int8_t CDB32[32];
MPI2_SCSI_IO_CDB_EEDP32 EEDP32;
MPI2_SGE_SIMPLE_UNION SGE;
} MPI2_SCSI_IO_CDB_UNION, MPI2_POINTER PTR_MPI2_SCSI_IO_CDB_UNION,
Mpi2ScsiIoCdb_t, MPI2_POINTER pMpi2ScsiIoCdb_t;
/*
* RAID SCSI IO Request Message
* Total SGE count will be one less than _MPI2_SCSI_IO_REQUEST
*/
typedef struct _MPI2_RAID_SCSI_IO_REQUEST
{
u_int16_t DevHandle; /* 0x00 */
u_int8_t ChainOffset; /* 0x02 */
u_int8_t Function; /* 0x03 */
u_int16_t Reserved1; /* 0x04 */
u_int8_t Reserved2; /* 0x06 */
u_int8_t MsgFlags; /* 0x07 */
u_int8_t VP_ID; /* 0x08 */
u_int8_t VF_ID; /* 0x09 */
u_int16_t Reserved3; /* 0x0A */
u_int32_t SenseBufferLowAddress; /* 0x0C */
u_int16_t SGLFlags; /* 0x10 */
u_int8_t SenseBufferLength; /* 0x12 */
u_int8_t Reserved4; /* 0x13 */
u_int8_t SGLOffset0; /* 0x14 */
u_int8_t SGLOffset1; /* 0x15 */
u_int8_t SGLOffset2; /* 0x16 */
u_int8_t SGLOffset3; /* 0x17 */
u_int32_t SkipCount; /* 0x18 */
u_int32_t DataLength; /* 0x1C */
u_int32_t BidirectionalDataLength; /* 0x20 */
u_int16_t IoFlags; /* 0x24 */
u_int16_t EEDPFlags; /* 0x26 */
u_int32_t EEDPBlockSize; /* 0x28 */
u_int32_t SecondaryReferenceTag; /* 0x2C */
u_int16_t SecondaryApplicationTag; /* 0x30 */
u_int16_t ApplicationTagTranslationMask; /* 0x32 */
u_int8_t LUN[8]; /* 0x34 */
u_int32_t Control; /* 0x3C */
MPI2_SCSI_IO_CDB_UNION CDB; /* 0x40 */
RAID_CONTEXT RaidContext; /* 0x60 */
MPI2_SGE_IO_UNION SGL; /* 0x80 */
} MRSAS_RAID_SCSI_IO_REQUEST, MPI2_POINTER PTR_MRSAS_RAID_SCSI_IO_REQUEST,
MRSASRaidSCSIIORequest_t, MPI2_POINTER pMRSASRaidSCSIIORequest_t;
/*
* MPT RAID MFA IO Descriptor.
*/
typedef struct _MRSAS_RAID_MFA_IO_DESCRIPTOR {
u_int32_t RequestFlags : 8;
u_int32_t MessageAddress1 : 24; /* bits 31:8*/
u_int32_t MessageAddress2; /* bits 61:32 */
} MRSAS_RAID_MFA_IO_REQUEST_DESCRIPTOR,*PMRSAS_RAID_MFA_IO_REQUEST_DESCRIPTOR;
/* Default Request Descriptor */
typedef struct _MPI2_DEFAULT_REQUEST_DESCRIPTOR
{
u_int8_t RequestFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int16_t LMID; /* 0x04 */
u_int16_t DescriptorTypeDependent; /* 0x06 */
} MPI2_DEFAULT_REQUEST_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_DEFAULT_REQUEST_DESCRIPTOR,
Mpi2DefaultRequestDescriptor_t, MPI2_POINTER pMpi2DefaultRequestDescriptor_t;
/* High Priority Request Descriptor */
typedef struct _MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR
{
u_int8_t RequestFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int16_t LMID; /* 0x04 */
u_int16_t Reserved1; /* 0x06 */
} MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR,
Mpi2HighPriorityRequestDescriptor_t,
MPI2_POINTER pMpi2HighPriorityRequestDescriptor_t;
/* SCSI IO Request Descriptor */
typedef struct _MPI2_SCSI_IO_REQUEST_DESCRIPTOR
{
u_int8_t RequestFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int16_t LMID; /* 0x04 */
u_int16_t DevHandle; /* 0x06 */
} MPI2_SCSI_IO_REQUEST_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_SCSI_IO_REQUEST_DESCRIPTOR,
Mpi2SCSIIORequestDescriptor_t, MPI2_POINTER pMpi2SCSIIORequestDescriptor_t;
/* SCSI Target Request Descriptor */
typedef struct _MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR
{
u_int8_t RequestFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int16_t LMID; /* 0x04 */
u_int16_t IoIndex; /* 0x06 */
} MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR,
Mpi2SCSITargetRequestDescriptor_t,
MPI2_POINTER pMpi2SCSITargetRequestDescriptor_t;
/* RAID Accelerator Request Descriptor */
typedef struct _MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR
{
u_int8_t RequestFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int16_t LMID; /* 0x04 */
u_int16_t Reserved; /* 0x06 */
} MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR,
Mpi2RAIDAcceleratorRequestDescriptor_t,
MPI2_POINTER pMpi2RAIDAcceleratorRequestDescriptor_t;
/* union of Request Descriptors */
typedef union _MRSAS_REQUEST_DESCRIPTOR_UNION
{
MPI2_DEFAULT_REQUEST_DESCRIPTOR Default;
MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR HighPriority;
MPI2_SCSI_IO_REQUEST_DESCRIPTOR SCSIIO;
MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR SCSITarget;
MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR RAIDAccelerator;
MRSAS_RAID_MFA_IO_REQUEST_DESCRIPTOR MFAIo;
union {
struct {
u_int32_t low;
u_int32_t high;
} u;
u_int64_t Words;
} addr;
} MRSAS_REQUEST_DESCRIPTOR_UNION;
/* Default Reply Descriptor */
typedef struct _MPI2_DEFAULT_REPLY_DESCRIPTOR
{
u_int8_t ReplyFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t DescriptorTypeDependent1; /* 0x02 */
u_int32_t DescriptorTypeDependent2; /* 0x04 */
} MPI2_DEFAULT_REPLY_DESCRIPTOR, MPI2_POINTER PTR_MPI2_DEFAULT_REPLY_DESCRIPTOR,
Mpi2DefaultReplyDescriptor_t, MPI2_POINTER pMpi2DefaultReplyDescriptor_t;
/* Address Reply Descriptor */
typedef struct _MPI2_ADDRESS_REPLY_DESCRIPTOR
{
u_int8_t ReplyFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int32_t ReplyFrameAddress; /* 0x04 */
} MPI2_ADDRESS_REPLY_DESCRIPTOR, MPI2_POINTER PTR_MPI2_ADDRESS_REPLY_DESCRIPTOR,
Mpi2AddressReplyDescriptor_t, MPI2_POINTER pMpi2AddressReplyDescriptor_t;
/* SCSI IO Success Reply Descriptor */
typedef struct _MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR
{
u_int8_t ReplyFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int16_t TaskTag; /* 0x04 */
u_int16_t Reserved1; /* 0x06 */
} MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR,
Mpi2SCSIIOSuccessReplyDescriptor_t,
MPI2_POINTER pMpi2SCSIIOSuccessReplyDescriptor_t;
/* TargetAssist Success Reply Descriptor */
typedef struct _MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR
{
u_int8_t ReplyFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int8_t SequenceNumber; /* 0x04 */
u_int8_t Reserved1; /* 0x05 */
u_int16_t IoIndex; /* 0x06 */
} MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR,
Mpi2TargetAssistSuccessReplyDescriptor_t,
MPI2_POINTER pMpi2TargetAssistSuccessReplyDescriptor_t;
/* Target Command Buffer Reply Descriptor */
typedef struct _MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR
{
u_int8_t ReplyFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int8_t VP_ID; /* 0x02 */
u_int8_t Flags; /* 0x03 */
u_int16_t InitiatorDevHandle; /* 0x04 */
u_int16_t IoIndex; /* 0x06 */
} MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR,
Mpi2TargetCommandBufferReplyDescriptor_t,
MPI2_POINTER pMpi2TargetCommandBufferReplyDescriptor_t;
/* RAID Accelerator Success Reply Descriptor */
typedef struct _MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR
{
u_int8_t ReplyFlags; /* 0x00 */
u_int8_t MSIxIndex; /* 0x01 */
u_int16_t SMID; /* 0x02 */
u_int32_t Reserved; /* 0x04 */
} MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR,
MPI2_POINTER PTR_MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR,
Mpi2RAIDAcceleratorSuccessReplyDescriptor_t,
MPI2_POINTER pMpi2RAIDAcceleratorSuccessReplyDescriptor_t;
/* union of Reply Descriptors */
typedef union _MPI2_REPLY_DESCRIPTORS_UNION
{
MPI2_DEFAULT_REPLY_DESCRIPTOR Default;
MPI2_ADDRESS_REPLY_DESCRIPTOR AddressReply;
MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR SCSIIOSuccess;
MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR TargetAssistSuccess;
MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR TargetCommandBuffer;
MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR RAIDAcceleratorSuccess;
u_int64_t Words;
} MPI2_REPLY_DESCRIPTORS_UNION, MPI2_POINTER PTR_MPI2_REPLY_DESCRIPTORS_UNION,
Mpi2ReplyDescriptorsUnion_t, MPI2_POINTER pMpi2ReplyDescriptorsUnion_t;
typedef struct {
volatile unsigned int val;
} atomic_t;
#define atomic_read(v) atomic_load_acq_int(&(v)->val)
#define atomic_set(v,i) atomic_store_rel_int(&(v)->val, i)
#define atomic_dec(v) atomic_fetchadd_int(&(v)->val, -1)
#define atomic_inc(v) atomic_fetchadd_int(&(v)->val, 1)
/* IOCInit Request message */
typedef struct _MPI2_IOC_INIT_REQUEST
{
u_int8_t WhoInit; /* 0x00 */
u_int8_t Reserved1; /* 0x01 */
u_int8_t ChainOffset; /* 0x02 */
u_int8_t Function; /* 0x03 */
u_int16_t Reserved2; /* 0x04 */
u_int8_t Reserved3; /* 0x06 */
u_int8_t MsgFlags; /* 0x07 */
u_int8_t VP_ID; /* 0x08 */
u_int8_t VF_ID; /* 0x09 */
u_int16_t Reserved4; /* 0x0A */
u_int16_t MsgVersion; /* 0x0C */
u_int16_t HeaderVersion; /* 0x0E */
u_int32_t Reserved5; /* 0x10 */
u_int16_t Reserved6; /* 0x14 */
u_int8_t Reserved7; /* 0x16 */
u_int8_t HostMSIxVectors; /* 0x17 */
u_int16_t Reserved8; /* 0x18 */
u_int16_t SystemRequestFrameSize; /* 0x1A */
u_int16_t ReplyDescriptorPostQueueDepth; /* 0x1C */
u_int16_t ReplyFreeQueueDepth; /* 0x1E */
u_int32_t SenseBufferAddressHigh; /* 0x20 */
u_int32_t SystemReplyAddressHigh; /* 0x24 */
u_int64_t SystemRequestFrameBaseAddress; /* 0x28 */
u_int64_t ReplyDescriptorPostQueueAddress;/* 0x30 */
u_int64_t ReplyFreeQueueAddress; /* 0x38 */
u_int64_t TimeStamp; /* 0x40 */
} MPI2_IOC_INIT_REQUEST, MPI2_POINTER PTR_MPI2_IOC_INIT_REQUEST,
Mpi2IOCInitRequest_t, MPI2_POINTER pMpi2IOCInitRequest_t;
/*
* MR private defines
*/
#define MR_PD_INVALID 0xFFFF
#define MAX_SPAN_DEPTH 8
#define MAX_QUAD_DEPTH MAX_SPAN_DEPTH
#define MAX_RAIDMAP_SPAN_DEPTH (MAX_SPAN_DEPTH)
#define MAX_ROW_SIZE 32
#define MAX_RAIDMAP_ROW_SIZE (MAX_ROW_SIZE)
#define MAX_LOGICAL_DRIVES 64
#define MAX_RAIDMAP_LOGICAL_DRIVES (MAX_LOGICAL_DRIVES)
#define MAX_RAIDMAP_VIEWS (MAX_LOGICAL_DRIVES)
#define MAX_ARRAYS 128
#define MAX_RAIDMAP_ARRAYS (MAX_ARRAYS)
#define MAX_PHYSICAL_DEVICES 256
#define MAX_RAIDMAP_PHYSICAL_DEVICES (MAX_PHYSICAL_DEVICES)
#define MR_DCMD_LD_MAP_GET_INFO 0x0300e101 // get the mapping information of this LD
/*******************************************************************
* RAID map related structures
********************************************************************/
typedef struct _MR_DEV_HANDLE_INFO {
u_int16_t curDevHdl; // the device handle currently used by fw to issue the command.
u_int8_t validHandles; // bitmap of valid device handles.
u_int8_t reserved;
u_int16_t devHandle[2]; // 0x04 dev handles for all the paths.
} MR_DEV_HANDLE_INFO;
typedef struct _MR_ARRAY_INFO {
u_int16_t pd[MAX_RAIDMAP_ROW_SIZE];
} MR_ARRAY_INFO; // 0x40, Total Size
typedef struct _MR_QUAD_ELEMENT {
u_int64_t logStart; // 0x00
u_int64_t logEnd; // 0x08
u_int64_t offsetInSpan; // 0x10
u_int32_t diff; // 0x18
u_int32_t reserved1; // 0x1C
} MR_QUAD_ELEMENT; // 0x20, Total size
typedef struct _MR_SPAN_INFO {
u_int32_t noElements; // 0x00
u_int32_t reserved1; // 0x04
MR_QUAD_ELEMENT quad[MAX_RAIDMAP_SPAN_DEPTH]; // 0x08
} MR_SPAN_INFO; // 0x108, Total size
typedef struct _MR_LD_SPAN_ { // SPAN structure
u_int64_t startBlk; // 0x00, starting block number in array
u_int64_t numBlks; // 0x08, number of blocks
u_int16_t arrayRef; // 0x10, array reference
u_int8_t spanRowSize; // 0x11, span row size
u_int8_t spanRowDataSize; // 0x12, span row data size
u_int8_t reserved[4]; // 0x13, reserved
} MR_LD_SPAN; // 0x18, Total Size
typedef struct _MR_SPAN_BLOCK_INFO {
u_int64_t num_rows; // number of rows/span
MR_LD_SPAN span; // 0x08
MR_SPAN_INFO block_span_info; // 0x20
} MR_SPAN_BLOCK_INFO;
typedef struct _MR_LD_RAID {
struct {
u_int32_t fpCapable :1;
u_int32_t reserved5 :3;
u_int32_t ldPiMode :4;
u_int32_t pdPiMode :4; // Every Pd has to be same.
u_int32_t encryptionType :8; // FDE or ctlr encryption (MR_LD_ENCRYPTION_TYPE)
u_int32_t fpWriteCapable :1;
u_int32_t fpReadCapable :1;
u_int32_t fpWriteAcrossStripe :1;
u_int32_t fpReadAcrossStripe :1;
u_int32_t fpNonRWCapable :1; // TRUE if supporting Non RW IO
u_int32_t reserved4 :7;
} capability; // 0x00
u_int32_t reserved6;
u_int64_t size; // 0x08, LD size in blocks
u_int8_t spanDepth; // 0x10, Total Number of Spans
u_int8_t level; // 0x11, RAID level
u_int8_t stripeShift; // 0x12, shift-count to get stripe size (0=512, 1=1K, 7=64K, etc.)
u_int8_t rowSize; // 0x13, number of disks in a row
u_int8_t rowDataSize; // 0x14, number of data disks in a row
u_int8_t writeMode; // 0x15, WRITE_THROUGH or WRITE_BACK
u_int8_t PRL; // 0x16, To differentiate between RAID1 and RAID1E
u_int8_t SRL; // 0x17
u_int16_t targetId; // 0x18, ld Target Id.
u_int8_t ldState; // 0x1a, state of ld, state corresponds to MR_LD_STATE
u_int8_t regTypeReqOnWrite;// 0x1b, Pre calculate region type requests based on MFC etc..
u_int8_t modFactor; // 0x1c, same as rowSize,
u_int8_t regTypeReqOnRead; // 0x1d, region lock type used for read, valid only if regTypeOnReadIsValid=1
u_int16_t seqNum; // 0x1e, LD sequence number
struct {
u_int32_t ldSyncRequired:1; // This LD requires sync command before completing
u_int32_t regTypeReqOnReadLsValid:1; // Qualifier for regTypeOnRead
u_int32_t reserved:30;
} flags; // 0x20
u_int8_t LUN[8]; // 0x24, 8 byte LUN field used for SCSI
u_int8_t fpIoTimeoutForLd; // 0x2C, timeout value for FP IOs
u_int8_t reserved2[3]; // 0x2D
u_int32_t logicalBlockLength; // 0x30 Logical block size for the LD
struct {
u_int32_t LdPiExp:4; // 0x34, P_I_EXPONENT for ReadCap 16
u_int32_t LdLogicalBlockExp:4; // 0x34, LOGICAL BLOCKS PER PHYS BLOCK
u_int32_t reserved1:24; // 0x34
} exponent;
u_int8_t reserved3[0x80-0x38]; // 0x38
} MR_LD_RAID; // 0x80, Total Size
typedef struct _MR_LD_SPAN_MAP {
MR_LD_RAID ldRaid; // 0x00
u_int8_t dataArmMap[MAX_RAIDMAP_ROW_SIZE]; // 0x80, needed for GET_ARM() - R0/1/5 only.
MR_SPAN_BLOCK_INFO spanBlock[MAX_RAIDMAP_SPAN_DEPTH]; // 0xA0
} MR_LD_SPAN_MAP; // 0x9E0
typedef struct _MR_FW_RAID_MAP {
u_int32_t totalSize; // total size of this structure, including this field.
union {
struct { // Simple method of version checking variables
u_int32_t maxLd;
u_int32_t maxSpanDepth;
u_int32_t maxRowSize;
u_int32_t maxPdCount;
u_int32_t maxArrays;
} validationInfo;
u_int32_t version[5];
u_int32_t reserved1[5];
} raid_desc;
u_int32_t ldCount; // count of lds.
u_int32_t Reserved1;
u_int8_t ldTgtIdToLd[MAX_RAIDMAP_LOGICAL_DRIVES+MAX_RAIDMAP_VIEWS]; // 0x20
// This doesn't correspond to
// FW Ld Tgt Id to LD, but will purge. For example: if tgt Id is 4
// and FW LD is 2, and there is only one LD, FW will populate the
// array like this. [0xFF, 0xFF, 0xFF, 0xFF, 0x0,.....]. This is to
// help reduce the entire strcture size if there are few LDs or
// driver is looking info for 1 LD only.
u_int8_t fpPdIoTimeoutSec; // timeout value used by driver in FP IOs
u_int8_t reserved2[7];
MR_ARRAY_INFO arMapInfo[MAX_RAIDMAP_ARRAYS]; // 0x00a8
MR_DEV_HANDLE_INFO devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES]; // 0x20a8
MR_LD_SPAN_MAP ldSpanMap[1]; // 0x28a8-[0-MAX_RAIDMAP_LOGICAL_DRIVES+MAX_RAIDMAP_VIEWS+1];
} MR_FW_RAID_MAP; // 0x3288, Total Size
typedef struct _LD_LOAD_BALANCE_INFO
{
u_int8_t loadBalanceFlag;
u_int8_t reserved1;
u_int16_t raid1DevHandle[2];
atomic_t scsi_pending_cmds[2];
u_int64_t last_accessed_block[2];
} LD_LOAD_BALANCE_INFO, *PLD_LOAD_BALANCE_INFO;
/* SPAN_SET is info caclulated from span info from Raid map per ld */
typedef struct _LD_SPAN_SET {
u_int64_t log_start_lba;
u_int64_t log_end_lba;
u_int64_t span_row_start;
u_int64_t span_row_end;
u_int64_t data_strip_start;
u_int64_t data_strip_end;
u_int64_t data_row_start;
u_int64_t data_row_end;
u_int8_t strip_offset[MAX_SPAN_DEPTH];
u_int32_t span_row_data_width;
u_int32_t diff;
u_int32_t reserved[2];
}LD_SPAN_SET, *PLD_SPAN_SET;
typedef struct LOG_BLOCK_SPAN_INFO {
LD_SPAN_SET span_set[MAX_SPAN_DEPTH];
}LD_SPAN_INFO, *PLD_SPAN_INFO;
#pragma pack(1)
typedef struct _MR_FW_RAID_MAP_ALL {
MR_FW_RAID_MAP raidMap;
MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES - 1];
} MR_FW_RAID_MAP_ALL;
#pragma pack()
struct IO_REQUEST_INFO {
u_int64_t ldStartBlock;
u_int32_t numBlocks;
u_int16_t ldTgtId;
u_int8_t isRead;
u_int16_t devHandle;
u_int64_t pdBlock;
u_int8_t fpOkForIo;
u_int8_t IoforUnevenSpan;
u_int8_t start_span;
u_int8_t reserved;
u_int64_t start_row;
};
typedef struct _MR_LD_TARGET_SYNC {
u_int8_t targetId;
u_int8_t reserved;
u_int16_t seqNum;
} MR_LD_TARGET_SYNC;
#define IEEE_SGE_FLAGS_ADDR_MASK (0x03)
#define IEEE_SGE_FLAGS_SYSTEM_ADDR (0x00)
#define IEEE_SGE_FLAGS_IOCDDR_ADDR (0x01)
#define IEEE_SGE_FLAGS_IOCPLB_ADDR (0x02)
#define IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03)
#define IEEE_SGE_FLAGS_CHAIN_ELEMENT (0x80)
#define IEEE_SGE_FLAGS_END_OF_LIST (0x40)
union desc_value {
u_int64_t word;
struct {
u_int32_t low;
u_int32_t high;
} u;
};
/*******************************************************************
* Temporary command
********************************************************************/
struct mrsas_tmp_dcmd {
bus_dma_tag_t tmp_dcmd_tag; // tag for tmp DMCD cmd
bus_dmamap_t tmp_dcmd_dmamap; // dmamap for tmp DCMD cmd
void *tmp_dcmd_mem; // virtual addr of tmp DCMD cmd
bus_addr_t tmp_dcmd_phys_addr; //physical addr of tmp DCMD
};
/*******************************************************************
* Register set, included legacy controllers 1068 and 1078,
* structure extended for 1078 registers
********************************************************************/
#pragma pack(1)
typedef struct _mrsas_register_set {
u_int32_t doorbell; /*0000h*/
u_int32_t fusion_seq_offset; /*0004h*/
u_int32_t fusion_host_diag; /*0008h*/
u_int32_t reserved_01; /*000Ch*/
u_int32_t inbound_msg_0; /*0010h*/
u_int32_t inbound_msg_1; /*0014h*/
u_int32_t outbound_msg_0; /*0018h*/
u_int32_t outbound_msg_1; /*001Ch*/
u_int32_t inbound_doorbell; /*0020h*/
u_int32_t inbound_intr_status; /*0024h*/
u_int32_t inbound_intr_mask; /*0028h*/
u_int32_t outbound_doorbell; /*002Ch*/
u_int32_t outbound_intr_status; /*0030h*/
u_int32_t outbound_intr_mask; /*0034h*/
u_int32_t reserved_1[2]; /*0038h*/
u_int32_t inbound_queue_port; /*0040h*/
u_int32_t outbound_queue_port; /*0044h*/
u_int32_t reserved_2[9]; /*0048h*/
u_int32_t reply_post_host_index; /*006Ch*/
u_int32_t reserved_2_2[12]; /*0070h*/
u_int32_t outbound_doorbell_clear; /*00A0h*/
u_int32_t reserved_3[3]; /*00A4h*/
u_int32_t outbound_scratch_pad ; /*00B0h*/
u_int32_t outbound_scratch_pad_2; /*00B4h*/
u_int32_t reserved_4[2]; /*00B8h*/
u_int32_t inbound_low_queue_port ; /*00C0h*/
u_int32_t inbound_high_queue_port ; /*00C4h*/
u_int32_t reserved_5; /*00C8h*/
u_int32_t res_6[11]; /*CCh*/
u_int32_t host_diag;
u_int32_t seq_offset;
u_int32_t index_registers[807]; /*00CCh*/
} mrsas_reg_set;
#pragma pack()
/*******************************************************************
* Firmware Interface Defines
*******************************************************************
* MFI stands for MegaRAID SAS FW Interface. This is just a moniker
* for protocol between the software and firmware. Commands are
* issued using "message frames".
******************************************************************/
/*
* FW posts its state in upper 4 bits of outbound_msg_0 register
*/
#define MFI_STATE_MASK 0xF0000000
#define MFI_STATE_UNDEFINED 0x00000000
#define MFI_STATE_BB_INIT 0x10000000
#define MFI_STATE_FW_INIT 0x40000000
#define MFI_STATE_WAIT_HANDSHAKE 0x60000000
#define MFI_STATE_FW_INIT_2 0x70000000
#define MFI_STATE_DEVICE_SCAN 0x80000000
#define MFI_STATE_BOOT_MESSAGE_PENDING 0x90000000
#define MFI_STATE_FLUSH_CACHE 0xA0000000
#define MFI_STATE_READY 0xB0000000
#define MFI_STATE_OPERATIONAL 0xC0000000
#define MFI_STATE_FAULT 0xF0000000
#define MFI_RESET_REQUIRED 0x00000001
#define MFI_RESET_ADAPTER 0x00000002
#define MEGAMFI_FRAME_SIZE 64
#define MRSAS_MFI_FRAME_SIZE 1024
#define MRSAS_MFI_SENSE_SIZE 128
/*
* During FW init, clear pending cmds & reset state using inbound_msg_0
*
* ABORT : Abort all pending cmds
* READY : Move from OPERATIONAL to READY state; discard queue info
* MFIMODE : Discard (possible) low MFA posted in 64-bit mode (??)
* CLR_HANDSHAKE: FW is waiting for HANDSHAKE from BIOS or Driver
* HOTPLUG : Resume from Hotplug
* MFI_STOP_ADP : Send signal to FW to stop processing
*/
#define WRITE_SEQUENCE_OFFSET (0x0000000FC) // I20
#define HOST_DIAGNOSTIC_OFFSET (0x000000F8) // I20
#define DIAG_WRITE_ENABLE (0x00000080)
#define DIAG_RESET_ADAPTER (0x00000004)
#define MFI_ADP_RESET 0x00000040
#define MFI_INIT_ABORT 0x00000001
#define MFI_INIT_READY 0x00000002
#define MFI_INIT_MFIMODE 0x00000004
#define MFI_INIT_CLEAR_HANDSHAKE 0x00000008
#define MFI_INIT_HOTPLUG 0x00000010
#define MFI_STOP_ADP 0x00000020
#define MFI_RESET_FLAGS MFI_INIT_READY| \
MFI_INIT_MFIMODE| \
MFI_INIT_ABORT
/*
* MFI frame flags
*/
#define MFI_FRAME_POST_IN_REPLY_QUEUE 0x0000
#define MFI_FRAME_DONT_POST_IN_REPLY_QUEUE 0x0001
#define MFI_FRAME_SGL32 0x0000
#define MFI_FRAME_SGL64 0x0002
#define MFI_FRAME_SENSE32 0x0000
#define MFI_FRAME_SENSE64 0x0004
#define MFI_FRAME_DIR_NONE 0x0000
#define MFI_FRAME_DIR_WRITE 0x0008
#define MFI_FRAME_DIR_READ 0x0010
#define MFI_FRAME_DIR_BOTH 0x0018
#define MFI_FRAME_IEEE 0x0020
/*
* Definition for cmd_status
*/
#define MFI_CMD_STATUS_POLL_MODE 0xFF
/*
* MFI command opcodes
*/
#define MFI_CMD_INIT 0x00
#define MFI_CMD_LD_READ 0x01
#define MFI_CMD_LD_WRITE 0x02
#define MFI_CMD_LD_SCSI_IO 0x03
#define MFI_CMD_PD_SCSI_IO 0x04
#define MFI_CMD_DCMD 0x05
#define MFI_CMD_ABORT 0x06
#define MFI_CMD_SMP 0x07
#define MFI_CMD_STP 0x08
#define MFI_CMD_INVALID 0xff
#define MR_DCMD_CTRL_GET_INFO 0x01010000
#define MR_DCMD_LD_GET_LIST 0x03010000
#define MR_DCMD_CTRL_CACHE_FLUSH 0x01101000
#define MR_FLUSH_CTRL_CACHE 0x01
#define MR_FLUSH_DISK_CACHE 0x02
#define MR_DCMD_CTRL_SHUTDOWN 0x01050000
#define MR_DCMD_HIBERNATE_SHUTDOWN 0x01060000
#define MR_ENABLE_DRIVE_SPINDOWN 0x01
#define MR_DCMD_CTRL_EVENT_GET_INFO 0x01040100
#define MR_DCMD_CTRL_EVENT_GET 0x01040300
#define MR_DCMD_CTRL_EVENT_WAIT 0x01040500
#define MR_DCMD_LD_GET_PROPERTIES 0x03030000
#define MR_DCMD_CLUSTER 0x08000000
#define MR_DCMD_CLUSTER_RESET_ALL 0x08010100
#define MR_DCMD_CLUSTER_RESET_LD 0x08010200
#define MR_DCMD_PD_LIST_QUERY 0x02010100
#define MR_DCMD_CTRL_MISC_CPX 0x0100e200
#define MR_DCMD_CTRL_MISC_CPX_INIT_DATA_GET 0x0100e201
#define MR_DCMD_CTRL_MISC_CPX_QUEUE_DATA 0x0100e202
#define MR_DCMD_CTRL_MISC_CPX_UNREGISTER 0x0100e203
#define MAX_MR_ROW_SIZE 32
#define MR_CPX_DIR_WRITE 1
#define MR_CPX_DIR_READ 0
#define MR_CPX_VERSION 1
#define MR_DCMD_CTRL_IO_METRICS_GET 0x01170200 // get IO metrics
#define MR_EVT_CFG_CLEARED 0x0004
#define MR_EVT_LD_STATE_CHANGE 0x0051
#define MR_EVT_PD_INSERTED 0x005b
#define MR_EVT_PD_REMOVED 0x0070
#define MR_EVT_LD_CREATED 0x008a
#define MR_EVT_LD_DELETED 0x008b
#define MR_EVT_FOREIGN_CFG_IMPORTED 0x00db
#define MR_EVT_LD_OFFLINE 0x00fc
#define MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED 0x0152
#define MR_EVT_CTRL_PERF_COLLECTION 0x017e
/*
* MFI command completion codes
*/
enum MFI_STAT {
MFI_STAT_OK = 0x00,
MFI_STAT_INVALID_CMD = 0x01,
MFI_STAT_INVALID_DCMD = 0x02,
MFI_STAT_INVALID_PARAMETER = 0x03,
MFI_STAT_INVALID_SEQUENCE_NUMBER = 0x04,
MFI_STAT_ABORT_NOT_POSSIBLE = 0x05,
MFI_STAT_APP_HOST_CODE_NOT_FOUND = 0x06,
MFI_STAT_APP_IN_USE = 0x07,
MFI_STAT_APP_NOT_INITIALIZED = 0x08,
MFI_STAT_ARRAY_INDEX_INVALID = 0x09,
MFI_STAT_ARRAY_ROW_NOT_EMPTY = 0x0a,
MFI_STAT_CONFIG_RESOURCE_CONFLICT = 0x0b,
MFI_STAT_DEVICE_NOT_FOUND = 0x0c,
MFI_STAT_DRIVE_TOO_SMALL = 0x0d,
MFI_STAT_FLASH_ALLOC_FAIL = 0x0e,
MFI_STAT_FLASH_BUSY = 0x0f,
MFI_STAT_FLASH_ERROR = 0x10,
MFI_STAT_FLASH_IMAGE_BAD = 0x11,
MFI_STAT_FLASH_IMAGE_INCOMPLETE = 0x12,
MFI_STAT_FLASH_NOT_OPEN = 0x13,
MFI_STAT_FLASH_NOT_STARTED = 0x14,
MFI_STAT_FLUSH_FAILED = 0x15,
MFI_STAT_HOST_CODE_NOT_FOUNT = 0x16,
MFI_STAT_LD_CC_IN_PROGRESS = 0x17,
MFI_STAT_LD_INIT_IN_PROGRESS = 0x18,
MFI_STAT_LD_LBA_OUT_OF_RANGE = 0x19,
MFI_STAT_LD_MAX_CONFIGURED = 0x1a,
MFI_STAT_LD_NOT_OPTIMAL = 0x1b,
MFI_STAT_LD_RBLD_IN_PROGRESS = 0x1c,
MFI_STAT_LD_RECON_IN_PROGRESS = 0x1d,
MFI_STAT_LD_WRONG_RAID_LEVEL = 0x1e,
MFI_STAT_MAX_SPARES_EXCEEDED = 0x1f,
MFI_STAT_MEMORY_NOT_AVAILABLE = 0x20,
MFI_STAT_MFC_HW_ERROR = 0x21,
MFI_STAT_NO_HW_PRESENT = 0x22,
MFI_STAT_NOT_FOUND = 0x23,
MFI_STAT_NOT_IN_ENCL = 0x24,
MFI_STAT_PD_CLEAR_IN_PROGRESS = 0x25,
MFI_STAT_PD_TYPE_WRONG = 0x26,
MFI_STAT_PR_DISABLED = 0x27,
MFI_STAT_ROW_INDEX_INVALID = 0x28,
MFI_STAT_SAS_CONFIG_INVALID_ACTION = 0x29,
MFI_STAT_SAS_CONFIG_INVALID_DATA = 0x2a,
MFI_STAT_SAS_CONFIG_INVALID_PAGE = 0x2b,
MFI_STAT_SAS_CONFIG_INVALID_TYPE = 0x2c,
MFI_STAT_SCSI_DONE_WITH_ERROR = 0x2d,
MFI_STAT_SCSI_IO_FAILED = 0x2e,
MFI_STAT_SCSI_RESERVATION_CONFLICT = 0x2f,
MFI_STAT_SHUTDOWN_FAILED = 0x30,
MFI_STAT_TIME_NOT_SET = 0x31,
MFI_STAT_WRONG_STATE = 0x32,
MFI_STAT_LD_OFFLINE = 0x33,
MFI_STAT_PEER_NOTIFICATION_REJECTED = 0x34,
MFI_STAT_PEER_NOTIFICATION_FAILED = 0x35,
MFI_STAT_RESERVATION_IN_PROGRESS = 0x36,
MFI_STAT_I2C_ERRORS_DETECTED = 0x37,
MFI_STAT_PCI_ERRORS_DETECTED = 0x38,
MFI_STAT_CONFIG_SEQ_MISMATCH = 0x67,
MFI_STAT_INVALID_STATUS = 0xFF
};
/*
* Number of mailbox bytes in DCMD message frame
*/
#define MFI_MBOX_SIZE 12
enum MR_EVT_CLASS {
MR_EVT_CLASS_DEBUG = -2,
MR_EVT_CLASS_PROGRESS = -1,
MR_EVT_CLASS_INFO = 0,
MR_EVT_CLASS_WARNING = 1,
MR_EVT_CLASS_CRITICAL = 2,
MR_EVT_CLASS_FATAL = 3,
MR_EVT_CLASS_DEAD = 4,
};
enum MR_EVT_LOCALE {
MR_EVT_LOCALE_LD = 0x0001,
MR_EVT_LOCALE_PD = 0x0002,
MR_EVT_LOCALE_ENCL = 0x0004,
MR_EVT_LOCALE_BBU = 0x0008,
MR_EVT_LOCALE_SAS = 0x0010,
MR_EVT_LOCALE_CTRL = 0x0020,
MR_EVT_LOCALE_CONFIG = 0x0040,
MR_EVT_LOCALE_CLUSTER = 0x0080,
MR_EVT_LOCALE_ALL = 0xffff,
};
enum MR_EVT_ARGS {
MR_EVT_ARGS_NONE,
MR_EVT_ARGS_CDB_SENSE,
MR_EVT_ARGS_LD,
MR_EVT_ARGS_LD_COUNT,
MR_EVT_ARGS_LD_LBA,
MR_EVT_ARGS_LD_OWNER,
MR_EVT_ARGS_LD_LBA_PD_LBA,
MR_EVT_ARGS_LD_PROG,
MR_EVT_ARGS_LD_STATE,
MR_EVT_ARGS_LD_STRIP,
MR_EVT_ARGS_PD,
MR_EVT_ARGS_PD_ERR,
MR_EVT_ARGS_PD_LBA,
MR_EVT_ARGS_PD_LBA_LD,
MR_EVT_ARGS_PD_PROG,
MR_EVT_ARGS_PD_STATE,
MR_EVT_ARGS_PCI,
MR_EVT_ARGS_RATE,
MR_EVT_ARGS_STR,
MR_EVT_ARGS_TIME,
MR_EVT_ARGS_ECC,
MR_EVT_ARGS_LD_PROP,
MR_EVT_ARGS_PD_SPARE,
MR_EVT_ARGS_PD_INDEX,
MR_EVT_ARGS_DIAG_PASS,
MR_EVT_ARGS_DIAG_FAIL,
MR_EVT_ARGS_PD_LBA_LBA,
MR_EVT_ARGS_PORT_PHY,
MR_EVT_ARGS_PD_MISSING,
MR_EVT_ARGS_PD_ADDRESS,
MR_EVT_ARGS_BITMAP,
MR_EVT_ARGS_CONNECTOR,
MR_EVT_ARGS_PD_PD,
MR_EVT_ARGS_PD_FRU,
MR_EVT_ARGS_PD_PATHINFO,
MR_EVT_ARGS_PD_POWER_STATE,
MR_EVT_ARGS_GENERIC,
};
/*
* Thunderbolt (and later) Defines
*/
#define MRSAS_MAX_SZ_CHAIN_FRAME 1024
#define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000009)
#define MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE 256
#define MRSAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST 0xF0
#define MRSAS_MPI2_FUNCTION_LD_IO_REQUEST 0xF1
#define MRSAS_LOAD_BALANCE_FLAG 0x1
#define MRSAS_DCMD_MBOX_PEND_FLAG 0x1
#define HOST_DIAG_WRITE_ENABLE 0x80
#define HOST_DIAG_RESET_ADAPTER 0x4
#define MRSAS_TBOLT_MAX_RESET_TRIES 3
#define MRSAS_MAX_MFI_CMDS 32
/*
* Invader Defines
*/
#define MPI2_TYPE_CUDA 0x2
#define MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH 0x4000
#define MR_RL_FLAGS_GRANT_DESTINATION_CPU0 0x00
#define MR_RL_FLAGS_GRANT_DESTINATION_CPU1 0x10
#define MR_RL_FLAGS_GRANT_DESTINATION_CUDA 0x80
#define MR_RL_FLAGS_SEQ_NUM_ENABLE 0x8
/*
* T10 PI defines
*/
#define MR_PROT_INFO_TYPE_CONTROLLER 0x8
#define MRSAS_SCSI_VARIABLE_LENGTH_CMD 0x7f
#define MRSAS_SCSI_SERVICE_ACTION_READ32 0x9
#define MRSAS_SCSI_SERVICE_ACTION_WRITE32 0xB
#define MRSAS_SCSI_ADDL_CDB_LEN 0x18
#define MRSAS_RD_WR_PROTECT_CHECK_ALL 0x20
#define MRSAS_RD_WR_PROTECT_CHECK_NONE 0x60
#define MRSAS_SCSIBLOCKSIZE 512
/*
* Raid context flags
*/
#define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT 0x4
#define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_MASK 0x30
typedef enum MR_RAID_FLAGS_IO_SUB_TYPE {
MR_RAID_FLAGS_IO_SUB_TYPE_NONE = 0,
MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD = 1,
} MR_RAID_FLAGS_IO_SUB_TYPE;
/*
* Request descriptor types
*/
#define MRSAS_REQ_DESCRIPT_FLAGS_LD_IO 0x7
#define MRSAS_REQ_DESCRIPT_FLAGS_MFA 0x1
#define MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK 0x2
#define MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT 1
#define MRSAS_FP_CMD_LEN 16
#define MRSAS_FUSION_IN_RESET 0
#define RAID_CTX_SPANARM_ARM_SHIFT (0)
#define RAID_CTX_SPANARM_ARM_MASK (0x1f)
#define RAID_CTX_SPANARM_SPAN_SHIFT (5)
#define RAID_CTX_SPANARM_SPAN_MASK (0xE0)
/*
* Define region lock types
*/
typedef enum _REGION_TYPE {
REGION_TYPE_UNUSED = 0, // lock is currently not active
REGION_TYPE_SHARED_READ = 1, // shared lock (for reads)
REGION_TYPE_SHARED_WRITE = 2,
REGION_TYPE_EXCLUSIVE = 3, // exclusive lock (for writes)
} REGION_TYPE;
/*
* MR private defines
*/
#define MR_PD_INVALID 0xFFFF
#define MAX_SPAN_DEPTH 8
#define MAX_RAIDMAP_SPAN_DEPTH (MAX_SPAN_DEPTH)
#define MAX_ROW_SIZE 32
#define MAX_RAIDMAP_ROW_SIZE (MAX_ROW_SIZE)
#define MAX_LOGICAL_DRIVES 64
#define MAX_RAIDMAP_LOGICAL_DRIVES (MAX_LOGICAL_DRIVES)
#define MAX_RAIDMAP_VIEWS (MAX_LOGICAL_DRIVES)
#define MAX_ARRAYS 128
#define MAX_RAIDMAP_ARRAYS (MAX_ARRAYS)
#define MAX_PHYSICAL_DEVICES 256
#define MAX_RAIDMAP_PHYSICAL_DEVICES (MAX_PHYSICAL_DEVICES)
#define MR_DCMD_LD_MAP_GET_INFO 0x0300e101
/*
* SCSI-CAM Related Defines
*/
#define MRSAS_SCSI_MAX_LUNS 0 //zero for now
#define MRSAS_SCSI_INITIATOR_ID 255
#define MRSAS_SCSI_MAX_CMDS 8
#define MRSAS_SCSI_MAX_CDB_LEN 16
#define MRSAS_SCSI_SENSE_BUFFERSIZE 96
#define MRSAS_MAX_SGL 70
#define MRSAS_MAX_IO_SIZE (256 * 1024)
#define MRSAS_INTERNAL_CMDS 32
/* Request types */
#define MRSAS_REQ_TYPE_INTERNAL_CMD 0x0
#define MRSAS_REQ_TYPE_AEN_FETCH 0x1
#define MRSAS_REQ_TYPE_PASSTHRU 0x2
#define MRSAS_REQ_TYPE_GETSET_PARAM 0x3
#define MRSAS_REQ_TYPE_SCSI_IO 0x4
/* Request states */
#define MRSAS_REQ_STATE_FREE 0
#define MRSAS_REQ_STATE_BUSY 1
#define MRSAS_REQ_STATE_TRAN 2
#define MRSAS_REQ_STATE_COMPLETE 3
enum mrsas_req_flags {
MRSAS_DIR_UNKNOWN = 0x1,
MRSAS_DIR_IN = 0x2,
MRSAS_DIR_OUT = 0x4,
MRSAS_DIR_NONE = 0x8,
};
/*
* Adapter Reset States
*/
enum {
MRSAS_HBA_OPERATIONAL = 0,
MRSAS_ADPRESET_SM_INFAULT = 1,
MRSAS_ADPRESET_SM_FW_RESET_SUCCESS = 2,
MRSAS_ADPRESET_SM_OPERATIONAL = 3,
MRSAS_HW_CRITICAL_ERROR = 4,
MRSAS_ADPRESET_INPROG_SIGN = 0xDEADDEAD,
};
/*
* MPT Command Structure
*/
struct mrsas_mpt_cmd {
MRSAS_RAID_SCSI_IO_REQUEST *io_request;
bus_addr_t io_request_phys_addr;
MPI2_SGE_IO_UNION *chain_frame;
bus_addr_t chain_frame_phys_addr;
u_int32_t sge_count;
u_int8_t *sense;
bus_addr_t sense_phys_addr;
u_int8_t retry_for_fw_reset;
MRSAS_REQUEST_DESCRIPTOR_UNION *request_desc;
u_int32_t sync_cmd_idx; //For getting MFI cmd from list when complete
u_int32_t index;
u_int8_t flags;
u_int8_t load_balance;
bus_size_t length; // request length
u_int32_t error_code; // error during request dmamap load
bus_dmamap_t data_dmamap;
void *data;
union ccb *ccb_ptr; // pointer to ccb
struct callout cm_callout;
struct mrsas_softc *sc;
TAILQ_ENTRY(mrsas_mpt_cmd) next;
};
/*
* MFI Command Structure
*/
struct mrsas_mfi_cmd {
union mrsas_frame *frame;
bus_dmamap_t frame_dmamap; // mfi frame dmamap
void *frame_mem; // mfi frame virtual addr
bus_addr_t frame_phys_addr; // mfi frame physical addr
u_int8_t *sense;
bus_dmamap_t sense_dmamap; // mfi sense dmamap
void *sense_mem; // mfi sense virtual addr
bus_addr_t sense_phys_addr;
u_int32_t index;
u_int8_t sync_cmd;
u_int8_t cmd_status;
u_int8_t abort_aen;
u_int8_t retry_for_fw_reset;
struct mrsas_softc *sc;
union ccb *ccb_ptr;
union {
struct {
u_int16_t smid;
u_int16_t resvd;
} context;
u_int32_t frame_count;
} cmd_id;
TAILQ_ENTRY(mrsas_mfi_cmd) next;
};
/*
* define constants for device list query options
*/
enum MR_PD_QUERY_TYPE {
MR_PD_QUERY_TYPE_ALL = 0,
MR_PD_QUERY_TYPE_STATE = 1,
MR_PD_QUERY_TYPE_POWER_STATE = 2,
MR_PD_QUERY_TYPE_MEDIA_TYPE = 3,
MR_PD_QUERY_TYPE_SPEED = 4,
MR_PD_QUERY_TYPE_EXPOSED_TO_HOST = 5,
};
#define MR_EVT_CFG_CLEARED 0x0004
#define MR_EVT_LD_STATE_CHANGE 0x0051
#define MR_EVT_PD_INSERTED 0x005b
#define MR_EVT_PD_REMOVED 0x0070
#define MR_EVT_LD_CREATED 0x008a
#define MR_EVT_LD_DELETED 0x008b
#define MR_EVT_FOREIGN_CFG_IMPORTED 0x00db
#define MR_EVT_LD_OFFLINE 0x00fc
#define MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED 0x0152
enum MR_PD_STATE {
MR_PD_STATE_UNCONFIGURED_GOOD = 0x00,
MR_PD_STATE_UNCONFIGURED_BAD = 0x01,
MR_PD_STATE_HOT_SPARE = 0x02,
MR_PD_STATE_OFFLINE = 0x10,
MR_PD_STATE_FAILED = 0x11,
MR_PD_STATE_REBUILD = 0x14,
MR_PD_STATE_ONLINE = 0x18,
MR_PD_STATE_COPYBACK = 0x20,
MR_PD_STATE_SYSTEM = 0x40,
};
/*
* defines the physical drive address structure
*/
#pragma pack(1)
struct MR_PD_ADDRESS {
u_int16_t deviceId;
u_int16_t enclDeviceId;
union {
struct {
u_int8_t enclIndex;
u_int8_t slotNumber;
} mrPdAddress;
struct {
u_int8_t enclPosition;
u_int8_t enclConnectorIndex;
} mrEnclAddress;
} u1;
u_int8_t scsiDevType;
union {
u_int8_t connectedPortBitmap;
u_int8_t connectedPortNumbers;
} u2;
u_int64_t sasAddr[2];
};
#pragma pack()
/*
* defines the physical drive list structure
*/
#pragma pack(1)
struct MR_PD_LIST {
u_int32_t size;
u_int32_t count;
struct MR_PD_ADDRESS addr[1];
};
#pragma pack()
#pragma pack(1)
struct mrsas_pd_list {
u_int16_t tid;
u_int8_t driveType;
u_int8_t driveState;
};
#pragma pack()
/*
* defines the logical drive reference structure
*/
typedef union _MR_LD_REF { // LD reference structure
struct {
u_int8_t targetId; // LD target id (0 to MAX_TARGET_ID)
u_int8_t reserved; // reserved to make in line with MR_PD_REF
u_int16_t seqNum; // Sequence Number
} ld_context;
u_int32_t ref; // shorthand reference to full 32-bits
} MR_LD_REF; // 4 bytes
/*
* defines the logical drive list structure
*/
#pragma pack(1)
struct MR_LD_LIST {
u_int32_t ldCount; // number of LDs
u_int32_t reserved; // pad to 8-byte boundary
struct {
MR_LD_REF ref; // LD reference
u_int8_t state; // current LD state (MR_LD_STATE)
u_int8_t reserved[3]; // pad to 8-byte boundary
u_int64_t size; // LD size
} ldList[MAX_LOGICAL_DRIVES];
};
#pragma pack()
/*
* SAS controller properties
*/
#pragma pack(1)
struct mrsas_ctrl_prop {
u_int16_t seq_num;
u_int16_t pred_fail_poll_interval;
u_int16_t intr_throttle_count;
u_int16_t intr_throttle_timeouts;
u_int8_t rebuild_rate;
u_int8_t patrol_read_rate;
u_int8_t bgi_rate;
u_int8_t cc_rate;
u_int8_t recon_rate;
u_int8_t cache_flush_interval;
u_int8_t spinup_drv_count;
u_int8_t spinup_delay;
u_int8_t cluster_enable;
u_int8_t coercion_mode;
u_int8_t alarm_enable;
u_int8_t disable_auto_rebuild;
u_int8_t disable_battery_warn;
u_int8_t ecc_bucket_size;
u_int16_t ecc_bucket_leak_rate;
u_int8_t restore_hotspare_on_insertion;
u_int8_t expose_encl_devices;
u_int8_t maintainPdFailHistory;
u_int8_t disallowHostRequestReordering;
u_int8_t abortCCOnError; // set TRUE to abort CC on detecting an inconsistency
u_int8_t loadBalanceMode; // load balance mode (MR_LOAD_BALANCE_MODE)
u_int8_t disableAutoDetectBackplane; // 0 - use auto detect logic of backplanes
// like SGPIO, i2c SEP using h/w mechansim
// like GPIO pins.
// 1 - disable auto detect SGPIO,
// 2 - disable i2c SEP auto detect
// 3 - disable both auto detect
u_int8_t snapVDSpace; // % of source LD to be reserved for a VDs snapshot in
// snapshot repository, for metadata and user data.
// 1=5%, 2=10%, 3=15% and so on.
/*
* Add properties that can be controlled by a bit in the following structure.
*/
struct {
u_int32_t copyBackDisabled : 1; // set TRUE to disable copyBack
// (0=copback enabled)
u_int32_t SMARTerEnabled : 1;
u_int32_t prCorrectUnconfiguredAreas : 1;
u_int32_t useFdeOnly : 1;
u_int32_t disableNCQ : 1;
u_int32_t SSDSMARTerEnabled : 1;
u_int32_t SSDPatrolReadEnabled : 1;
u_int32_t enableSpinDownUnconfigured : 1;
u_int32_t autoEnhancedImport : 1;
u_int32_t enableSecretKeyControl : 1;
u_int32_t disableOnlineCtrlReset : 1;
u_int32_t allowBootWithPinnedCache : 1;
u_int32_t disableSpinDownHS : 1;
u_int32_t enableJBOD : 1;
u_int32_t reserved :18;
} OnOffProperties;
u_int8_t autoSnapVDSpace; // % of source LD to be reserved for auto
// snapshot in snapshot repository, for
// metadata and user data.
// 1=5%, 2=10%, 3=15% and so on.
u_int8_t viewSpace; // snapshot writeable VIEWs capacity as a %
// of source LD capacity. 0=READ only.
// 1=5%, 2=10%, 3=15% and so on
u_int16_t spinDownTime; // # of idle minutes before device is spun
// down (0=use FW defaults).
u_int8_t reserved[24];
};
#pragma pack()
/*
* SAS controller information
*/
//#pragma pack(1)
struct mrsas_ctrl_info {
/*
* PCI device information
*/
struct {
u_int16_t vendor_id;
u_int16_t device_id;
u_int16_t sub_vendor_id;
u_int16_t sub_device_id;
u_int8_t reserved[24];
} __packed pci;
/*
* Host interface information
*/
struct {
u_int8_t PCIX:1;
u_int8_t PCIE:1;
u_int8_t iSCSI:1;
u_int8_t SAS_3G:1;
u_int8_t reserved_0:4;
u_int8_t reserved_1[6];
u_int8_t port_count;
u_int64_t port_addr[8];
} __packed host_interface;
/*
* Device (backend) interface information
*/
struct {
u_int8_t SPI:1;
u_int8_t SAS_3G:1;
u_int8_t SATA_1_5G:1;
u_int8_t SATA_3G:1;
u_int8_t reserved_0:4;
u_int8_t reserved_1[6];
u_int8_t port_count;
u_int64_t port_addr[8];
} __packed device_interface;
/*
* List of components residing in flash. All str are null terminated
*/
u_int32_t image_check_word;
u_int32_t image_component_count;
struct {
char name[8];
char version[32];
char build_date[16];
char built_time[16];
} __packed image_component[8];
/*
* List of flash components that have been flashed on the card, but
* are not in use, pending reset of the adapter. This list will be
* empty if a flash operation has not occurred. All stings are null
* terminated
*/
u_int32_t pending_image_component_count;
struct {
char name[8];
char version[32];
char build_date[16];
char build_time[16];
} __packed pending_image_component[8];
u_int8_t max_arms;
u_int8_t max_spans;
u_int8_t max_arrays;
u_int8_t max_lds;
char product_name[80];
char serial_no[32];
/*
* Other physical/controller/operation information. Indicates the
* presence of the hardware
*/
struct {
u_int32_t bbu:1;
u_int32_t alarm:1;
u_int32_t nvram:1;
u_int32_t uart:1;
u_int32_t reserved:28;
} __packed hw_present;
u_int32_t current_fw_time;
/*
* Maximum data transfer sizes
*/
u_int16_t max_concurrent_cmds;
u_int16_t max_sge_count;
u_int32_t max_request_size;
/*
* Logical and physical device counts
*/
u_int16_t ld_present_count;
u_int16_t ld_degraded_count;
u_int16_t ld_offline_count;
u_int16_t pd_present_count;
u_int16_t pd_disk_present_count;
u_int16_t pd_disk_pred_failure_count;
u_int16_t pd_disk_failed_count;
/*
* Memory size information
*/
u_int16_t nvram_size;
u_int16_t memory_size;
u_int16_t flash_size;
/*
* Error counters
*/
u_int16_t mem_correctable_error_count;
u_int16_t mem_uncorrectable_error_count;
/*
* Cluster information
*/
u_int8_t cluster_permitted;
u_int8_t cluster_active;
/*
* Additional max data transfer sizes
*/
u_int16_t max_strips_per_io;
/*
* Controller capabilities structures
*/
struct {
u_int32_t raid_level_0:1;
u_int32_t raid_level_1:1;
u_int32_t raid_level_5:1;
u_int32_t raid_level_1E:1;
u_int32_t raid_level_6:1;
u_int32_t reserved:27;
} __packed raid_levels;
struct {
u_int32_t rbld_rate:1;
u_int32_t cc_rate:1;
u_int32_t bgi_rate:1;
u_int32_t recon_rate:1;
u_int32_t patrol_rate:1;
u_int32_t alarm_control:1;
u_int32_t cluster_supported:1;
u_int32_t bbu:1;
u_int32_t spanning_allowed:1;
u_int32_t dedicated_hotspares:1;
u_int32_t revertible_hotspares:1;
u_int32_t foreign_config_import:1;
u_int32_t self_diagnostic:1;
u_int32_t mixed_redundancy_arr:1;
u_int32_t global_hot_spares:1;
u_int32_t reserved:17;
} __packed adapter_operations;
struct {
u_int32_t read_policy:1;
u_int32_t write_policy:1;
u_int32_t io_policy:1;
u_int32_t access_policy:1;
u_int32_t disk_cache_policy:1;
u_int32_t reserved:27;
} __packed ld_operations;
struct {
u_int8_t min;
u_int8_t max;
u_int8_t reserved[2];
} __packed stripe_sz_ops;
struct {
u_int32_t force_online:1;
u_int32_t force_offline:1;
u_int32_t force_rebuild:1;
u_int32_t reserved:29;
} __packed pd_operations;
struct {
u_int32_t ctrl_supports_sas:1;
u_int32_t ctrl_supports_sata:1;
u_int32_t allow_mix_in_encl:1;
u_int32_t allow_mix_in_ld:1;
u_int32_t allow_sata_in_cluster:1;
u_int32_t reserved:27;
} __packed pd_mix_support;
/*
* Define ECC single-bit-error bucket information
*/
u_int8_t ecc_bucket_count;
u_int8_t reserved_2[11];
/*
* Include the controller properties (changeable items)
*/
struct mrsas_ctrl_prop properties;
/*
* Define FW pkg version (set in envt v'bles on OEM basis)
*/
char package_version[0x60];
/*
* If adapterOperations.supportMoreThan8Phys is set, and deviceInterface.portCount is greater than 8,
* SAS Addrs for first 8 ports shall be populated in deviceInterface.portAddr, and the rest shall be
* populated in deviceInterfacePortAddr2.
*/
u_int64_t deviceInterfacePortAddr2[8]; //0x6a0
u_int8_t reserved3[128]; //0x6e0
struct { //0x760
u_int16_t minPdRaidLevel_0 : 4;
u_int16_t maxPdRaidLevel_0 : 12;
u_int16_t minPdRaidLevel_1 : 4;
u_int16_t maxPdRaidLevel_1 : 12;
u_int16_t minPdRaidLevel_5 : 4;
u_int16_t maxPdRaidLevel_5 : 12;
u_int16_t minPdRaidLevel_1E : 4;
u_int16_t maxPdRaidLevel_1E : 12;
u_int16_t minPdRaidLevel_6 : 4;
u_int16_t maxPdRaidLevel_6 : 12;
u_int16_t minPdRaidLevel_10 : 4;
u_int16_t maxPdRaidLevel_10 : 12;
u_int16_t minPdRaidLevel_50 : 4;
u_int16_t maxPdRaidLevel_50 : 12;
u_int16_t minPdRaidLevel_60 : 4;
u_int16_t maxPdRaidLevel_60 : 12;
u_int16_t minPdRaidLevel_1E_RLQ0 : 4;
u_int16_t maxPdRaidLevel_1E_RLQ0 : 12;
u_int16_t minPdRaidLevel_1E0_RLQ0 : 4;
u_int16_t maxPdRaidLevel_1E0_RLQ0 : 12;
u_int16_t reserved[6];
} pdsForRaidLevels;
u_int16_t maxPds; //0x780
u_int16_t maxDedHSPs; //0x782
u_int16_t maxGlobalHSPs; //0x784
u_int16_t ddfSize; //0x786
u_int8_t maxLdsPerArray; //0x788
u_int8_t partitionsInDDF; //0x789
u_int8_t lockKeyBinding; //0x78a
u_int8_t maxPITsPerLd; //0x78b
u_int8_t maxViewsPerLd; //0x78c
u_int8_t maxTargetId; //0x78d
u_int16_t maxBvlVdSize; //0x78e
u_int16_t maxConfigurableSSCSize; //0x790
u_int16_t currentSSCsize; //0x792
char expanderFwVersion[12]; //0x794
u_int16_t PFKTrialTimeRemaining; //0x7A0
u_int16_t cacheMemorySize; //0x7A2
struct { //0x7A4
u_int32_t supportPIcontroller :1;
u_int32_t supportLdPIType1 :1;
u_int32_t supportLdPIType2 :1;
u_int32_t supportLdPIType3 :1;
u_int32_t supportLdBBMInfo :1;
u_int32_t supportShieldState :1;
u_int32_t blockSSDWriteCacheChange :1;
u_int32_t supportSuspendResumeBGops :1;
u_int32_t supportEmergencySpares :1;
u_int32_t supportSetLinkSpeed :1;
u_int32_t supportBootTimePFKChange :1;
u_int32_t supportJBOD :1;
u_int32_t disableOnlinePFKChange :1;
u_int32_t supportPerfTuning :1;
u_int32_t supportSSDPatrolRead :1;
u_int32_t realTimeScheduler :1;
u_int32_t supportResetNow :1;
u_int32_t supportEmulatedDrives :1;
u_int32_t headlessMode :1;
u_int32_t dedicatedHotSparesLimited :1;
u_int32_t supportUnevenSpans :1;
u_int32_t reserved :11;
} adapterOperations2;
u_int8_t driverVersion[32]; //0x7A8
u_int8_t maxDAPdCountSpinup60; //0x7C8
u_int8_t temperatureROC; //0x7C9
u_int8_t temperatureCtrl; //0x7CA
u_int8_t reserved4; //0x7CB
u_int16_t maxConfigurablePds; //0x7CC
u_int8_t reserved5[2]; //0x7CD reserved for future use
/*
* HA cluster information
*/
struct {
u_int32_t peerIsPresent :1;
u_int32_t peerIsIncompatible :1;
u_int32_t hwIncompatible :1;
u_int32_t fwVersionMismatch :1;
u_int32_t ctrlPropIncompatible :1;
u_int32_t premiumFeatureMismatch :1;
u_int32_t reserved :26;
} cluster;
char clusterId[16]; //0x7D4
u_int8_t pad[0x800-0x7E4]; //0x7E4
} __packed;
/*
* Ld and PD Max Support Defines
*/
#define MRSAS_MAX_PD 256
#define MRSAS_MAX_LD 64
/*
* When SCSI mid-layer calls driver's reset routine, driver waits for
* MRSAS_RESET_WAIT_TIME seconds for all outstanding IO to complete. Note
* that the driver cannot _actually_ abort or reset pending commands. While
* it is waiting for the commands to complete, it prints a diagnostic message
* every MRSAS_RESET_NOTICE_INTERVAL seconds
*/
#define MRSAS_RESET_WAIT_TIME 180
#define MRSAS_INTERNAL_CMD_WAIT_TIME 180
#define MRSAS_IOC_INIT_WAIT_TIME 60
#define MRSAS_RESET_NOTICE_INTERVAL 5
#define MRSAS_IOCTL_CMD 0
#define MRSAS_DEFAULT_CMD_TIMEOUT 90
#define MRSAS_THROTTLE_QUEUE_DEPTH 16
/*
* FW reports the maximum of number of commands that it can accept (maximum
* commands that can be outstanding) at any time. The driver must report a
* lower number to the mid layer because it can issue a few internal commands
* itself (E.g, AEN, abort cmd, IOCTLs etc). The number of commands it needs
* is shown below
*/
#define MRSAS_INT_CMDS 32
#define MRSAS_SKINNY_INT_CMDS 5
#define MRSAS_MAX_MSIX_QUEUES 16
/*
* FW can accept both 32 and 64 bit SGLs. We want to allocate 32/64 bit
* SGLs based on the size of bus_addr_t
*/
#define IS_DMA64 (sizeof(bus_addr_t) == 8)
#define MFI_XSCALE_OMR0_CHANGE_INTERRUPT 0x00000001 // MFI state change interrupt
#define MFI_INTR_FLAG_REPLY_MESSAGE 0x00000001
#define MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE 0x00000002
#define MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT 0x00000004 //MFI state change interrupt
#define MFI_OB_INTR_STATUS_MASK 0x00000002
#define MFI_POLL_TIMEOUT_SECS 60
#define MFI_REPLY_1078_MESSAGE_INTERRUPT 0x80000000
#define MFI_REPLY_GEN2_MESSAGE_INTERRUPT 0x00000001
#define MFI_GEN2_ENABLE_INTERRUPT_MASK 0x00000001
#define MFI_REPLY_SKINNY_MESSAGE_INTERRUPT 0x40000000
#define MFI_SKINNY_ENABLE_INTERRUPT_MASK (0x00000001)
#define MFI_1068_PCSR_OFFSET 0x84
#define MFI_1068_FW_HANDSHAKE_OFFSET 0x64
#define MFI_1068_FW_READY 0xDDDD0000
#pragma pack(1)
struct mrsas_sge32 {
u_int32_t phys_addr;
u_int32_t length;
};
#pragma pack()
#pragma pack(1)
struct mrsas_sge64 {
u_int64_t phys_addr;
u_int32_t length;
};
#pragma pack()
#pragma pack()
union mrsas_sgl {
struct mrsas_sge32 sge32[1];
struct mrsas_sge64 sge64[1];
};
#pragma pack()
#pragma pack(1)
struct mrsas_header {
u_int8_t cmd; /*00e */
u_int8_t sense_len; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t scsi_status; /*03h */
u_int8_t target_id; /*04h */
u_int8_t lun; /*05h */
u_int8_t cdb_len; /*06h */
u_int8_t sge_count; /*07h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t timeout; /*12h */
u_int32_t data_xferlen; /*14h */
};
#pragma pack()
#pragma pack(1)
struct mrsas_init_frame {
u_int8_t cmd; /*00h */
u_int8_t reserved_0; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t reserved_1; /*03h */
u_int32_t reserved_2; /*04h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t reserved_3; /*12h */
u_int32_t data_xfer_len; /*14h */
u_int32_t queue_info_new_phys_addr_lo; /*18h */
u_int32_t queue_info_new_phys_addr_hi; /*1Ch */
u_int32_t queue_info_old_phys_addr_lo; /*20h */
u_int32_t queue_info_old_phys_addr_hi; /*24h */
u_int32_t driver_ver_lo; /*28h */
u_int32_t driver_ver_hi; /*2Ch */
u_int32_t reserved_4[4]; /*30h */
};
#pragma pack()
#pragma pack(1)
struct mrsas_io_frame {
u_int8_t cmd; /*00h */
u_int8_t sense_len; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t scsi_status; /*03h */
u_int8_t target_id; /*04h */
u_int8_t access_byte; /*05h */
u_int8_t reserved_0; /*06h */
u_int8_t sge_count; /*07h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t timeout; /*12h */
u_int32_t lba_count; /*14h */
u_int32_t sense_buf_phys_addr_lo; /*18h */
u_int32_t sense_buf_phys_addr_hi; /*1Ch */
u_int32_t start_lba_lo; /*20h */
u_int32_t start_lba_hi; /*24h */
union mrsas_sgl sgl; /*28h */
};
#pragma pack()
#pragma pack(1)
struct mrsas_pthru_frame {
u_int8_t cmd; /*00h */
u_int8_t sense_len; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t scsi_status; /*03h */
u_int8_t target_id; /*04h */
u_int8_t lun; /*05h */
u_int8_t cdb_len; /*06h */
u_int8_t sge_count; /*07h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t timeout; /*12h */
u_int32_t data_xfer_len; /*14h */
u_int32_t sense_buf_phys_addr_lo; /*18h */
u_int32_t sense_buf_phys_addr_hi; /*1Ch */
u_int8_t cdb[16]; /*20h */
union mrsas_sgl sgl; /*30h */
};
#pragma pack()
#pragma pack(1)
struct mrsas_dcmd_frame {
u_int8_t cmd; /*00h */
u_int8_t reserved_0; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t reserved_1[4]; /*03h */
u_int8_t sge_count; /*07h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t timeout; /*12h */
u_int32_t data_xfer_len; /*14h */
u_int32_t opcode; /*18h */
union { /*1Ch */
u_int8_t b[12];
u_int16_t s[6];
u_int32_t w[3];
} mbox;
union mrsas_sgl sgl; /*28h */
};
#pragma pack()
#pragma pack(1)
struct mrsas_abort_frame {
u_int8_t cmd; /*00h */
u_int8_t reserved_0; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t reserved_1; /*03h */
u_int32_t reserved_2; /*04h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t reserved_3; /*12h */
u_int32_t reserved_4; /*14h */
u_int32_t abort_context; /*18h */
u_int32_t pad_1; /*1Ch */
u_int32_t abort_mfi_phys_addr_lo; /*20h */
u_int32_t abort_mfi_phys_addr_hi; /*24h */
u_int32_t reserved_5[6]; /*28h */
};
#pragma pack()
#pragma pack(1)
struct mrsas_smp_frame {
u_int8_t cmd; /*00h */
u_int8_t reserved_1; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t connection_status; /*03h */
u_int8_t reserved_2[3]; /*04h */
u_int8_t sge_count; /*07h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t timeout; /*12h */
u_int32_t data_xfer_len; /*14h */
u_int64_t sas_addr; /*18h */
union {
struct mrsas_sge32 sge32[2]; /* [0]: resp [1]: req */
struct mrsas_sge64 sge64[2]; /* [0]: resp [1]: req */
} sgl;
};
#pragma pack()
#pragma pack(1)
struct mrsas_stp_frame {
u_int8_t cmd; /*00h */
u_int8_t reserved_1; /*01h */
u_int8_t cmd_status; /*02h */
u_int8_t reserved_2; /*03h */
u_int8_t target_id; /*04h */
u_int8_t reserved_3[2]; /*05h */
u_int8_t sge_count; /*07h */
u_int32_t context; /*08h */
u_int32_t pad_0; /*0Ch */
u_int16_t flags; /*10h */
u_int16_t timeout; /*12h */
u_int32_t data_xfer_len; /*14h */
u_int16_t fis[10]; /*18h */
u_int32_t stp_flags;
union {
struct mrsas_sge32 sge32[2]; /* [0]: resp [1]: data */
struct mrsas_sge64 sge64[2]; /* [0]: resp [1]: data */
} sgl;
};
#pragma pack()
union mrsas_frame {
struct mrsas_header hdr;
struct mrsas_init_frame init;
struct mrsas_io_frame io;
struct mrsas_pthru_frame pthru;
struct mrsas_dcmd_frame dcmd;
struct mrsas_abort_frame abort;
struct mrsas_smp_frame smp;
struct mrsas_stp_frame stp;
u_int8_t raw_bytes[64];
};
#pragma pack(1)
union mrsas_evt_class_locale {
struct {
u_int16_t locale;
u_int8_t reserved;
int8_t class;
} __packed members;
u_int32_t word;
} __packed;
#pragma pack()
#pragma pack(1)
struct mrsas_evt_log_info {
u_int32_t newest_seq_num;
u_int32_t oldest_seq_num;
u_int32_t clear_seq_num;
u_int32_t shutdown_seq_num;
u_int32_t boot_seq_num;
} __packed;
#pragma pack()
struct mrsas_progress {
u_int16_t progress;
u_int16_t elapsed_seconds;
} __packed;
struct mrsas_evtarg_ld {
u_int16_t target_id;
u_int8_t ld_index;
u_int8_t reserved;
} __packed;
struct mrsas_evtarg_pd {
u_int16_t device_id;
u_int8_t encl_index;
u_int8_t slot_number;
} __packed;
struct mrsas_evt_detail {
u_int32_t seq_num;
u_int32_t time_stamp;
u_int32_t code;
union mrsas_evt_class_locale cl;
u_int8_t arg_type;
u_int8_t reserved1[15];
union {
struct {
struct mrsas_evtarg_pd pd;
u_int8_t cdb_length;
u_int8_t sense_length;
u_int8_t reserved[2];
u_int8_t cdb[16];
u_int8_t sense[64];
} __packed cdbSense;
struct mrsas_evtarg_ld ld;
struct {
struct mrsas_evtarg_ld ld;
u_int64_t count;
} __packed ld_count;
struct {
u_int64_t lba;
struct mrsas_evtarg_ld ld;
} __packed ld_lba;
struct {
struct mrsas_evtarg_ld ld;
u_int32_t prevOwner;
u_int32_t newOwner;
} __packed ld_owner;
struct {
u_int64_t ld_lba;
u_int64_t pd_lba;
struct mrsas_evtarg_ld ld;
struct mrsas_evtarg_pd pd;
} __packed ld_lba_pd_lba;
struct {
struct mrsas_evtarg_ld ld;
struct mrsas_progress prog;
} __packed ld_prog;
struct {
struct mrsas_evtarg_ld ld;
u_int32_t prev_state;
u_int32_t new_state;
} __packed ld_state;
struct {
u_int64_t strip;
struct mrsas_evtarg_ld ld;
} __packed ld_strip;
struct mrsas_evtarg_pd pd;
struct {
struct mrsas_evtarg_pd pd;
u_int32_t err;
} __packed pd_err;
struct {
u_int64_t lba;
struct mrsas_evtarg_pd pd;
} __packed pd_lba;
struct {
u_int64_t lba;
struct mrsas_evtarg_pd pd;
struct mrsas_evtarg_ld ld;
} __packed pd_lba_ld;
struct {
struct mrsas_evtarg_pd pd;
struct mrsas_progress prog;
} __packed pd_prog;
struct {
struct mrsas_evtarg_pd pd;
u_int32_t prevState;
u_int32_t newState;
} __packed pd_state;
struct {
u_int16_t vendorId;
u_int16_t deviceId;
u_int16_t subVendorId;
u_int16_t subDeviceId;
} __packed pci;
u_int32_t rate;
char str[96];
struct {
u_int32_t rtc;
u_int32_t elapsedSeconds;
} __packed time;
struct {
u_int32_t ecar;
u_int32_t elog;
char str[64];
} __packed ecc;
u_int8_t b[96];
u_int16_t s[48];
u_int32_t w[24];
u_int64_t d[12];
} args;
char description[128];
} __packed;
/*******************************************************************
* per-instance data
********************************************************************/
struct mrsas_softc {
device_t mrsas_dev; // bus device
struct cdev *mrsas_cdev; // controller device
uint16_t device_id; // pci device
struct resource *reg_res; // register interface window
int reg_res_id; // register resource id
bus_space_tag_t bus_tag; // bus space tag
bus_space_handle_t bus_handle; // bus space handle
bus_dma_tag_t mrsas_parent_tag; // bus dma parent tag
bus_dma_tag_t verbuf_tag; // verbuf tag
bus_dmamap_t verbuf_dmamap; // verbuf dmamap
void *verbuf_mem; // verbuf mem
bus_addr_t verbuf_phys_addr; // verbuf physical addr
bus_dma_tag_t sense_tag; // bus dma verbuf tag
bus_dmamap_t sense_dmamap; // bus dma verbuf dmamap
void *sense_mem; // pointer to sense buf
bus_addr_t sense_phys_addr; // bus dma verbuf mem
bus_dma_tag_t io_request_tag; // bus dma io request tag
bus_dmamap_t io_request_dmamap; // bus dma io request dmamap
void *io_request_mem; // bus dma io request mem
bus_addr_t io_request_phys_addr; // io request physical address
bus_dma_tag_t chain_frame_tag; // bus dma chain frame tag
bus_dmamap_t chain_frame_dmamap; // bus dma chain frame dmamap
void *chain_frame_mem; // bus dma chain frame mem
bus_addr_t chain_frame_phys_addr; // chain frame phys address
bus_dma_tag_t reply_desc_tag; // bus dma io request tag
bus_dmamap_t reply_desc_dmamap; // bus dma io request dmamap
void *reply_desc_mem; // bus dma io request mem
bus_addr_t reply_desc_phys_addr; // bus dma io request mem
bus_dma_tag_t ioc_init_tag; // bus dma io request tag
bus_dmamap_t ioc_init_dmamap; // bus dma io request dmamap
void *ioc_init_mem; // bus dma io request mem
bus_addr_t ioc_init_phys_mem; // io request physical address
bus_dma_tag_t data_tag; // bus dma data from OS tag
struct cam_sim *sim_0; // SIM pointer
struct cam_sim *sim_1; // SIM pointer
struct cam_path *path_0; // ldio path pointer to CAM
struct cam_path *path_1; // syspd path pointer to CAM
struct mtx sim_lock; // sim lock
struct mtx pci_lock; // serialize pci access
struct mtx io_lock; // IO lock
struct mtx ioctl_lock; // IOCTL lock
struct mtx mpt_cmd_pool_lock; // lock for cmd pool linked list
struct mtx mfi_cmd_pool_lock; // lock for cmd pool linked list
struct mtx raidmap_lock; // lock for raid map access/update
struct mtx aen_lock; // aen lock
uint32_t max_fw_cmds; // Max commands from FW
uint32_t max_num_sge; // Max number of SGEs
struct resource *mrsas_irq; // interrupt interface window
void *intr_handle; // handle
int irq_id; // intr resource id
struct mrsas_mpt_cmd **mpt_cmd_list;
struct mrsas_mfi_cmd **mfi_cmd_list;
TAILQ_HEAD(, mrsas_mpt_cmd) mrsas_mpt_cmd_list_head;
TAILQ_HEAD(, mrsas_mfi_cmd) mrsas_mfi_cmd_list_head;
bus_addr_t req_frames_desc_phys;
u_int8_t *req_frames_desc;
u_int8_t *req_desc;
bus_addr_t io_request_frames_phys;
u_int8_t *io_request_frames;
bus_addr_t reply_frames_desc_phys;
u_int16_t last_reply_idx;
u_int32_t reply_q_depth;
u_int32_t request_alloc_sz;
u_int32_t reply_alloc_sz;
u_int32_t io_frames_alloc_sz;
u_int32_t chain_frames_alloc_sz;
u_int16_t max_sge_in_main_msg;
u_int16_t max_sge_in_chain;
u_int8_t chain_offset_io_request;
u_int8_t chain_offset_mfi_pthru;
u_int32_t map_sz;
u_int64_t map_id;
struct mrsas_mfi_cmd *map_update_cmd;
struct mrsas_mfi_cmd *aen_cmd;
u_int8_t fast_path_io;
void* chan;
void* ocr_chan;
u_int8_t adprecovery;
u_int8_t remove_in_progress;
u_int8_t ocr_thread_active;
u_int8_t do_timedout_reset;
u_int32_t reset_in_progress;
u_int32_t reset_count;
bus_dma_tag_t raidmap_tag[2]; // bus dma tag for RAID map
bus_dmamap_t raidmap_dmamap[2]; // bus dma dmamap RAID map
void *raidmap_mem[2]; // bus dma mem RAID map
bus_addr_t raidmap_phys_addr[2]; // RAID map physical address
bus_dma_tag_t mficmd_frame_tag; // tag for mfi frame
bus_dma_tag_t mficmd_sense_tag; // tag for mfi sense
bus_dma_tag_t evt_detail_tag; // event detail tag
bus_dmamap_t evt_detail_dmamap; // event detail dmamap
struct mrsas_evt_detail *evt_detail_mem; // event detail mem
bus_addr_t evt_detail_phys_addr; // event detail physical addr
bus_dma_tag_t ctlr_info_tag; // tag for get ctlr info cmd
bus_dmamap_t ctlr_info_dmamap; // get ctlr info cmd dmamap
void *ctlr_info_mem; // get ctlr info cmd virtual addr
bus_addr_t ctlr_info_phys_addr; //get ctlr info cmd physical addr
u_int32_t max_sectors_per_req;
u_int8_t disableOnlineCtrlReset;
atomic_t fw_outstanding;
u_int32_t mrsas_debug;
u_int32_t mrsas_io_timeout;
u_int32_t mrsas_fw_fault_check_delay;
u_int32_t io_cmds_highwater;
u_int8_t UnevenSpanSupport;
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
struct proc *ocr_thread;
u_int32_t last_seq_num;
bus_dma_tag_t el_info_tag; // tag for get event log info cmd
bus_dmamap_t el_info_dmamap; // get event log info cmd dmamap
void *el_info_mem; // get event log info cmd virtual addr
bus_addr_t el_info_phys_addr; //get event log info cmd physical addr
struct mrsas_pd_list pd_list[MRSAS_MAX_PD];
struct mrsas_pd_list local_pd_list[MRSAS_MAX_PD];
u_int8_t ld_ids[MRSAS_MAX_LD];
struct taskqueue *ev_tq; //taskqueue for events
struct task ev_task;
u_int32_t CurLdCount;
u_int64_t reset_flags;
LD_LOAD_BALANCE_INFO load_balance_info[MAX_LOGICAL_DRIVES];
LD_SPAN_INFO log_to_span[MAX_LOGICAL_DRIVES];
};
/* Compatibility shims for different OS versions */
#if __FreeBSD_version >= 800001
#define mrsas_kproc_create(func, farg, proc_ptr, flags, stackpgs, fmtstr, arg) \
kproc_create(func, farg, proc_ptr, flags, stackpgs, fmtstr, arg)
#define mrsas_kproc_exit(arg) kproc_exit(arg)
#else
#define mrsas_kproc_create(func, farg, proc_ptr, flags, stackpgs, fmtstr, arg) \
kthread_create(func, farg, proc_ptr, flags, stackpgs, fmtstr, arg)
#define mrsas_kproc_exit(arg) kthread_exit(arg)
#endif
static __inline void
clear_bit(int b, volatile void *p)
{
atomic_clear_int(((volatile int *)p) + (b >> 5), 1 << (b & 0x1f));
}
static __inline void
set_bit(int b, volatile void *p)
{
atomic_set_int(((volatile int *)p) + (b >> 5), 1 << (b & 0x1f));
}
static __inline int
test_bit(int b, volatile void *p)
{
return ((volatile int *)p)[b >> 5] & (1 << (b & 0x1f));
}
#endif /* MRSAS_H */