2014-06-14 10:58:39 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD: projects/ipfw/sys/netpfil/ipfw/ip_fw_table.c 267384 2014-06-12 09:59:11Z melifaro $");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Lookup table algorithms.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "opt_ipfw.h"
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#ifndef INET
|
|
|
|
#error IPFIREWALL requires INET.
|
|
|
|
#endif /* INET */
|
|
|
|
#include "opt_inet6.h"
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/rwlock.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <net/if.h> /* ip_fw.h requires IFNAMSIZ */
|
|
|
|
#include <net/radix.h>
|
|
|
|
#include <net/route.h>
|
|
|
|
#include <net/vnet.h>
|
|
|
|
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#include <netinet/ip_var.h> /* struct ipfw_rule_ref */
|
|
|
|
#include <netinet/ip_fw.h>
|
|
|
|
|
|
|
|
#include <netpfil/ipfw/ip_fw_private.h>
|
2014-06-14 11:13:02 +00:00
|
|
|
#include <netpfil/ipfw/ip_fw_table.h>
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
static MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
static int badd(const void *key, void *item, void *base, size_t nmemb,
|
|
|
|
size_t size, int (*compar) (const void *, const void *));
|
|
|
|
static int bdel(const void *key, void *base, size_t nmemb, size_t size,
|
|
|
|
int (*compar) (const void *, const void *));
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CIDR implementation using radix
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
/*
|
|
|
|
* The radix code expects addr and mask to be array of bytes,
|
|
|
|
* with the first byte being the length of the array. rn_inithead
|
|
|
|
* is called with the offset in bits of the lookup key within the
|
|
|
|
* array. If we use a sockaddr_in as the underlying type,
|
|
|
|
* sin_len is conveniently located at offset 0, sin_addr is at
|
|
|
|
* offset 4 and normally aligned.
|
|
|
|
* But for portability, let's avoid assumption and make the code explicit
|
|
|
|
*/
|
|
|
|
#define KEY_LEN(v) *((uint8_t *)&(v))
|
|
|
|
/*
|
|
|
|
* Do not require radix to compare more than actual IPv4/IPv6 address
|
|
|
|
*/
|
|
|
|
#define KEY_LEN_INET (offsetof(struct sockaddr_in, sin_addr) + sizeof(in_addr_t))
|
2014-07-09 18:52:12 +00:00
|
|
|
#define KEY_LEN_INET6 (offsetof(struct sa_in6, sin6_addr) + sizeof(struct in6_addr))
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
#define OFF_LEN_INET (8 * offsetof(struct sockaddr_in, sin_addr))
|
2014-07-09 18:52:12 +00:00
|
|
|
#define OFF_LEN_INET6 (8 * offsetof(struct sa_in6, sin6_addr))
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-09 18:52:12 +00:00
|
|
|
struct radix_cidr_entry {
|
2014-06-14 10:58:39 +00:00
|
|
|
struct radix_node rn[2];
|
2014-07-09 18:52:12 +00:00
|
|
|
struct sockaddr_in addr;
|
|
|
|
uint32_t value;
|
|
|
|
uint8_t masklen;
|
2014-06-14 10:58:39 +00:00
|
|
|
};
|
|
|
|
|
2014-07-09 18:52:12 +00:00
|
|
|
struct sa_in6 {
|
|
|
|
uint8_t sin6_len;
|
|
|
|
uint8_t sin6_family;
|
|
|
|
uint8_t pad[2];
|
|
|
|
struct in6_addr sin6_addr;
|
2014-06-14 10:58:39 +00:00
|
|
|
};
|
|
|
|
|
2014-07-09 18:52:12 +00:00
|
|
|
struct radix_cidr_xentry {
|
2014-06-14 10:58:39 +00:00
|
|
|
struct radix_node rn[2];
|
2014-07-09 18:52:12 +00:00
|
|
|
struct sa_in6 addr6;
|
|
|
|
uint32_t value;
|
|
|
|
uint8_t masklen;
|
2014-06-14 10:58:39 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen,
|
|
|
|
uint32_t *val)
|
|
|
|
{
|
|
|
|
struct radix_node_head *rnh;
|
|
|
|
|
|
|
|
if (keylen == sizeof(in_addr_t)) {
|
2014-07-09 18:52:12 +00:00
|
|
|
struct radix_cidr_entry *ent;
|
2014-06-14 10:58:39 +00:00
|
|
|
struct sockaddr_in sa;
|
|
|
|
KEY_LEN(sa) = KEY_LEN_INET;
|
|
|
|
sa.sin_addr.s_addr = *((in_addr_t *)key);
|
|
|
|
rnh = (struct radix_node_head *)ti->state;
|
2014-07-09 18:52:12 +00:00
|
|
|
ent = (struct radix_cidr_entry *)(rnh->rnh_matchaddr(&sa, rnh));
|
2014-06-14 10:58:39 +00:00
|
|
|
if (ent != NULL) {
|
|
|
|
*val = ent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
} else {
|
2014-07-09 18:52:12 +00:00
|
|
|
struct radix_cidr_xentry *xent;
|
|
|
|
struct sa_in6 sa6;
|
2014-06-14 10:58:39 +00:00
|
|
|
KEY_LEN(sa6) = KEY_LEN_INET6;
|
|
|
|
memcpy(&sa6.sin6_addr, key, sizeof(struct in6_addr));
|
|
|
|
rnh = (struct radix_node_head *)ti->xstate;
|
2014-07-09 18:52:12 +00:00
|
|
|
xent = (struct radix_cidr_xentry *)(rnh->rnh_matchaddr(&sa6, rnh));
|
2014-06-14 10:58:39 +00:00
|
|
|
if (xent != NULL) {
|
|
|
|
*val = xent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* New table
|
|
|
|
*/
|
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_init_radix(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
|
|
|
|
char *data)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
if (!rn_inithead(&ti->state, OFF_LEN_INET))
|
|
|
|
return (ENOMEM);
|
|
|
|
if (!rn_inithead(&ti->xstate, OFF_LEN_INET6)) {
|
|
|
|
rn_detachhead(&ti->state);
|
|
|
|
return (ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
*ta_state = NULL;
|
|
|
|
ti->lookup = ta_lookup_radix;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
flush_table_entry(struct radix_node *rn, void *arg)
|
|
|
|
{
|
|
|
|
struct radix_node_head * const rnh = arg;
|
2014-07-09 18:52:12 +00:00
|
|
|
struct radix_cidr_entry *ent;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-09 18:52:12 +00:00
|
|
|
ent = (struct radix_cidr_entry *)
|
2014-06-14 10:58:39 +00:00
|
|
|
rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
|
|
|
|
if (ent != NULL)
|
|
|
|
free(ent, M_IPFW_TBL);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_destroy_radix(void *ta_state, struct table_info *ti)
|
|
|
|
{
|
|
|
|
struct radix_node_head *rnh;
|
|
|
|
|
|
|
|
rnh = (struct radix_node_head *)(ti->state);
|
|
|
|
rnh->rnh_walktree(rnh, flush_table_entry, rnh);
|
|
|
|
rn_detachhead(&ti->state);
|
|
|
|
|
|
|
|
rnh = (struct radix_node_head *)(ti->xstate);
|
|
|
|
rnh->rnh_walktree(rnh, flush_table_entry, rnh);
|
|
|
|
rn_detachhead(&ti->xstate);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-06 18:16:04 +00:00
|
|
|
ta_dump_radix_tentry(void *ta_state, struct table_info *ti, void *e,
|
|
|
|
ipfw_obj_tentry *tent)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-09 18:52:12 +00:00
|
|
|
struct radix_cidr_entry *n;
|
|
|
|
struct radix_cidr_xentry *xn;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-09 18:52:12 +00:00
|
|
|
n = (struct radix_cidr_entry *)e;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
/* Guess IPv4/IPv6 radix by sockaddr family */
|
|
|
|
if (n->addr.sin_family == AF_INET) {
|
2014-07-06 18:16:04 +00:00
|
|
|
tent->k.addr.s_addr = n->addr.sin_addr.s_addr;
|
2014-07-09 18:52:12 +00:00
|
|
|
tent->masklen = n->masklen;
|
2014-07-06 18:16:04 +00:00
|
|
|
tent->subtype = AF_INET;
|
|
|
|
tent->value = n->value;
|
2014-06-14 10:58:39 +00:00
|
|
|
#ifdef INET6
|
|
|
|
} else {
|
2014-07-09 18:52:12 +00:00
|
|
|
xn = (struct radix_cidr_xentry *)e;
|
|
|
|
memcpy(&tent->k, &xn->addr6.sin6_addr, sizeof(struct in6_addr));
|
|
|
|
tent->masklen = xn->masklen;
|
2014-07-06 18:16:04 +00:00
|
|
|
tent->subtype = AF_INET6;
|
|
|
|
tent->value = xn->value;
|
2014-06-14 10:58:39 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-07-06 18:16:04 +00:00
|
|
|
static int
|
|
|
|
ta_find_radix_tentry(void *ta_state, struct table_info *ti, void *key,
|
|
|
|
uint32_t keylen, ipfw_obj_tentry *tent)
|
|
|
|
{
|
|
|
|
struct radix_node_head *rnh;
|
|
|
|
void *e;
|
|
|
|
|
|
|
|
e = NULL;
|
|
|
|
if (keylen == sizeof(in_addr_t)) {
|
|
|
|
struct sockaddr_in sa;
|
|
|
|
KEY_LEN(sa) = KEY_LEN_INET;
|
|
|
|
sa.sin_addr.s_addr = *((in_addr_t *)key);
|
|
|
|
rnh = (struct radix_node_head *)ti->state;
|
|
|
|
e = rnh->rnh_matchaddr(&sa, rnh);
|
|
|
|
} else {
|
2014-07-09 18:52:12 +00:00
|
|
|
struct sa_in6 sa6;
|
2014-07-06 18:16:04 +00:00
|
|
|
KEY_LEN(sa6) = KEY_LEN_INET6;
|
|
|
|
memcpy(&sa6.sin6_addr, key, sizeof(struct in6_addr));
|
|
|
|
rnh = (struct radix_node_head *)ti->xstate;
|
|
|
|
e = rnh->rnh_matchaddr(&sa6, rnh);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (e != NULL) {
|
|
|
|
ta_dump_radix_tentry(ta_state, ti, e, tent);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (ENOENT);
|
|
|
|
}
|
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
static void
|
|
|
|
ta_foreach_radix(void *ta_state, struct table_info *ti, ta_foreach_f *f,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
struct radix_node_head *rnh;
|
|
|
|
|
|
|
|
rnh = (struct radix_node_head *)(ti->state);
|
|
|
|
rnh->rnh_walktree(rnh, (walktree_f_t *)f, arg);
|
|
|
|
|
|
|
|
rnh = (struct radix_node_head *)(ti->xstate);
|
|
|
|
rnh->rnh_walktree(rnh, (walktree_f_t *)f, arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct ta_buf_cidr
|
|
|
|
{
|
|
|
|
struct sockaddr *addr_ptr;
|
|
|
|
struct sockaddr *mask_ptr;
|
|
|
|
void *ent_ptr;
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
struct sockaddr_in sa;
|
|
|
|
struct sockaddr_in ma;
|
|
|
|
} a4;
|
|
|
|
struct {
|
2014-07-09 18:52:12 +00:00
|
|
|
struct sa_in6 sa;
|
|
|
|
struct sa_in6 ma;
|
2014-06-14 10:58:39 +00:00
|
|
|
} a6;
|
|
|
|
} addr;
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef INET6
|
|
|
|
static inline void
|
|
|
|
ipv6_writemask(struct in6_addr *addr6, uint8_t mask)
|
|
|
|
{
|
|
|
|
uint32_t *cp;
|
|
|
|
|
|
|
|
for (cp = (uint32_t *)addr6; mask >= 32; mask -= 32)
|
|
|
|
*cp++ = 0xFFFFFFFF;
|
|
|
|
*cp = htonl(mask ? ~((1 << (32 - mask)) - 1) : 0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_prepare_add_cidr(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
|
|
|
struct ta_buf_cidr *tb;
|
2014-07-09 18:52:12 +00:00
|
|
|
struct radix_cidr_entry *ent;
|
|
|
|
struct radix_cidr_xentry *xent;
|
2014-06-14 10:58:39 +00:00
|
|
|
in_addr_t addr;
|
2014-07-09 18:52:12 +00:00
|
|
|
struct sockaddr_in *mask;
|
|
|
|
struct sa_in6 *mask6;
|
2014-06-14 10:58:39 +00:00
|
|
|
int mlen;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_cidr *)ta_buf;
|
|
|
|
memset(tb, 0, sizeof(struct ta_buf_cidr));
|
|
|
|
|
|
|
|
mlen = tei->masklen;
|
2014-07-03 22:25:59 +00:00
|
|
|
|
|
|
|
if (tei->subtype == AF_INET) {
|
2014-06-14 10:58:39 +00:00
|
|
|
#ifdef INET
|
|
|
|
if (mlen > 32)
|
|
|
|
return (EINVAL);
|
|
|
|
ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
|
|
|
|
ent->value = tei->value;
|
2014-07-09 18:52:12 +00:00
|
|
|
mask = &tb->addr.a4.ma;
|
2014-06-14 10:58:39 +00:00
|
|
|
/* Set 'total' structure length */
|
|
|
|
KEY_LEN(ent->addr) = KEY_LEN_INET;
|
2014-07-09 18:52:12 +00:00
|
|
|
KEY_LEN(*mask) = KEY_LEN_INET;
|
2014-06-14 10:58:39 +00:00
|
|
|
ent->addr.sin_family = AF_INET;
|
2014-07-09 18:52:12 +00:00
|
|
|
mask->sin_addr.s_addr =
|
2014-06-14 10:58:39 +00:00
|
|
|
htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
|
|
|
|
addr = *((in_addr_t *)tei->paddr);
|
2014-07-09 18:52:12 +00:00
|
|
|
ent->addr.sin_addr.s_addr = addr & mask->sin_addr.s_addr;
|
|
|
|
ent->masklen = mlen;
|
2014-06-14 10:58:39 +00:00
|
|
|
/* Set pointers */
|
|
|
|
tb->ent_ptr = ent;
|
|
|
|
tb->addr_ptr = (struct sockaddr *)&ent->addr;
|
2014-07-09 18:52:12 +00:00
|
|
|
if (mlen != 32)
|
|
|
|
tb->mask_ptr = (struct sockaddr *)mask;
|
2014-06-14 10:58:39 +00:00
|
|
|
#endif
|
|
|
|
#ifdef INET6
|
2014-07-03 22:25:59 +00:00
|
|
|
} else if (tei->subtype == AF_INET6) {
|
2014-06-14 10:58:39 +00:00
|
|
|
/* IPv6 case */
|
|
|
|
if (mlen > 128)
|
|
|
|
return (EINVAL);
|
|
|
|
xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO);
|
|
|
|
xent->value = tei->value;
|
2014-07-09 18:52:12 +00:00
|
|
|
mask6 = &tb->addr.a6.ma;
|
2014-06-14 10:58:39 +00:00
|
|
|
/* Set 'total' structure length */
|
2014-07-09 18:52:12 +00:00
|
|
|
KEY_LEN(xent->addr6) = KEY_LEN_INET6;
|
|
|
|
KEY_LEN(*mask6) = KEY_LEN_INET6;
|
|
|
|
xent->addr6.sin6_family = AF_INET6;
|
|
|
|
ipv6_writemask(&mask6->sin6_addr, mlen);
|
|
|
|
memcpy(&xent->addr6.sin6_addr, tei->paddr,
|
2014-06-14 10:58:39 +00:00
|
|
|
sizeof(struct in6_addr));
|
2014-07-09 18:52:12 +00:00
|
|
|
APPLY_MASK(&xent->addr6.sin6_addr, &mask6->sin6_addr);
|
|
|
|
xent->masklen = mlen;
|
2014-06-14 10:58:39 +00:00
|
|
|
/* Set pointers */
|
|
|
|
tb->ent_ptr = xent;
|
2014-07-09 18:52:12 +00:00
|
|
|
tb->addr_ptr = (struct sockaddr *)&xent->addr6;
|
|
|
|
if (mlen != 128)
|
|
|
|
tb->mask_ptr = (struct sockaddr *)mask6;
|
2014-06-14 10:58:39 +00:00
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
/* Unknown CIDR type */
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-29 08:00:13 +00:00
|
|
|
ta_add_cidr(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
|
|
|
struct radix_node_head *rnh;
|
|
|
|
struct radix_node *rn;
|
|
|
|
struct ta_buf_cidr *tb;
|
2014-07-03 22:25:59 +00:00
|
|
|
uint32_t value;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
tb = (struct ta_buf_cidr *)ta_buf;
|
|
|
|
|
2014-07-03 22:25:59 +00:00
|
|
|
if (tei->subtype == AF_INET)
|
2014-06-14 10:58:39 +00:00
|
|
|
rnh = ti->state;
|
|
|
|
else
|
|
|
|
rnh = ti->xstate;
|
|
|
|
|
|
|
|
rn = rnh->rnh_addaddr(tb->addr_ptr, tb->mask_ptr, rnh, tb->ent_ptr);
|
|
|
|
|
2014-07-03 22:25:59 +00:00
|
|
|
if (rn == NULL) {
|
|
|
|
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
|
|
|
|
return (EEXIST);
|
|
|
|
/* Record already exists. Update value if we're asked to */
|
|
|
|
rn = rnh->rnh_lookup(tb->addr_ptr, tb->mask_ptr, rnh);
|
|
|
|
if (rn == NULL) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Radix may have failed addition for other reasons
|
|
|
|
* like failure in mask allocation code.
|
|
|
|
*/
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tei->subtype == AF_INET) {
|
|
|
|
/* IPv4. */
|
2014-07-09 18:52:12 +00:00
|
|
|
value = ((struct radix_cidr_entry *)tb->ent_ptr)->value;
|
|
|
|
((struct radix_cidr_entry *)rn)->value = value;
|
2014-07-03 22:25:59 +00:00
|
|
|
} else {
|
|
|
|
/* IPv6 */
|
2014-07-09 18:52:12 +00:00
|
|
|
value = ((struct radix_cidr_xentry *)tb->ent_ptr)->value;
|
|
|
|
((struct radix_cidr_xentry *)rn)->value = value;
|
2014-07-03 22:25:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Indicate that update has happened instead of addition */
|
|
|
|
tei->flags |= TEI_FLAGS_UPDATED;
|
2014-07-29 08:00:13 +00:00
|
|
|
*pnum = 0;
|
2014-07-09 18:52:12 +00:00
|
|
|
|
|
|
|
return (0);
|
2014-07-03 22:25:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
tb->ent_ptr = NULL;
|
2014-07-29 08:00:13 +00:00
|
|
|
*pnum = 1;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_prepare_del_cidr(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
|
|
|
struct ta_buf_cidr *tb;
|
2014-07-09 18:52:12 +00:00
|
|
|
struct sockaddr_in sa, mask;
|
|
|
|
struct sa_in6 sa6, mask6;
|
2014-06-14 10:58:39 +00:00
|
|
|
in_addr_t addr;
|
|
|
|
int mlen;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_cidr *)ta_buf;
|
|
|
|
memset(tb, 0, sizeof(struct ta_buf_cidr));
|
|
|
|
|
|
|
|
mlen = tei->masklen;
|
|
|
|
|
2014-07-03 22:25:59 +00:00
|
|
|
if (tei->subtype == AF_INET) {
|
2014-07-09 18:52:12 +00:00
|
|
|
if (mlen > 32)
|
|
|
|
return (EINVAL);
|
|
|
|
memset(&sa, 0, sizeof(struct sockaddr_in));
|
|
|
|
memset(&mask, 0, sizeof(struct sockaddr_in));
|
2014-06-14 10:58:39 +00:00
|
|
|
/* Set 'total' structure length */
|
|
|
|
KEY_LEN(sa) = KEY_LEN_INET;
|
|
|
|
KEY_LEN(mask) = KEY_LEN_INET;
|
|
|
|
mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
|
|
|
|
addr = *((in_addr_t *)tei->paddr);
|
|
|
|
sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
|
|
|
|
tb->addr.a4.sa = sa;
|
|
|
|
tb->addr.a4.ma = mask;
|
|
|
|
tb->addr_ptr = (struct sockaddr *)&tb->addr.a4.sa;
|
2014-07-09 18:52:12 +00:00
|
|
|
if (mlen != 32)
|
|
|
|
tb->mask_ptr = (struct sockaddr *)&tb->addr.a4.ma;
|
2014-06-14 10:58:39 +00:00
|
|
|
#ifdef INET6
|
2014-07-03 22:25:59 +00:00
|
|
|
} else if (tei->subtype == AF_INET6) {
|
2014-06-14 10:58:39 +00:00
|
|
|
if (mlen > 128)
|
|
|
|
return (EINVAL);
|
2014-07-09 18:52:12 +00:00
|
|
|
memset(&sa6, 0, sizeof(struct sa_in6));
|
|
|
|
memset(&mask6, 0, sizeof(struct sa_in6));
|
2014-06-14 10:58:39 +00:00
|
|
|
/* Set 'total' structure length */
|
|
|
|
KEY_LEN(sa6) = KEY_LEN_INET6;
|
|
|
|
KEY_LEN(mask6) = KEY_LEN_INET6;
|
|
|
|
ipv6_writemask(&mask6.sin6_addr, mlen);
|
|
|
|
memcpy(&sa6.sin6_addr, tei->paddr,
|
|
|
|
sizeof(struct in6_addr));
|
|
|
|
APPLY_MASK(&sa6.sin6_addr, &mask6.sin6_addr);
|
|
|
|
tb->addr.a6.sa = sa6;
|
|
|
|
tb->addr.a6.ma = mask6;
|
|
|
|
tb->addr_ptr = (struct sockaddr *)&tb->addr.a6.sa;
|
2014-07-09 18:52:12 +00:00
|
|
|
if (mlen != 128)
|
|
|
|
tb->mask_ptr = (struct sockaddr *)&tb->addr.a6.ma;
|
2014-06-14 10:58:39 +00:00
|
|
|
#endif
|
|
|
|
} else
|
|
|
|
return (EINVAL);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-29 08:00:13 +00:00
|
|
|
ta_del_cidr(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
|
|
|
struct radix_node_head *rnh;
|
|
|
|
struct radix_node *rn;
|
|
|
|
struct ta_buf_cidr *tb;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_cidr *)ta_buf;
|
|
|
|
|
2014-07-03 22:25:59 +00:00
|
|
|
if (tei->subtype == AF_INET)
|
2014-06-14 10:58:39 +00:00
|
|
|
rnh = ti->state;
|
|
|
|
else
|
|
|
|
rnh = ti->xstate;
|
|
|
|
|
|
|
|
rn = rnh->rnh_deladdr(tb->addr_ptr, tb->mask_ptr, rnh);
|
|
|
|
|
|
|
|
tb->ent_ptr = rn;
|
|
|
|
|
|
|
|
if (rn == NULL)
|
2014-07-06 18:16:04 +00:00
|
|
|
return (ENOENT);
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-29 08:00:13 +00:00
|
|
|
*pnum = 1;
|
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_flush_cidr_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
|
|
|
struct ta_buf_cidr *tb;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_cidr *)ta_buf;
|
|
|
|
|
2014-07-03 22:25:59 +00:00
|
|
|
if (tb->ent_ptr != NULL)
|
|
|
|
free(tb->ent_ptr, M_IPFW_TBL);
|
2014-06-14 10:58:39 +00:00
|
|
|
}
|
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
struct table_algo cidr_radix = {
|
2014-07-29 08:00:13 +00:00
|
|
|
.name = "cidr:radix",
|
2014-07-29 22:44:26 +00:00
|
|
|
.type = IPFW_TABLE_CIDR,
|
2014-06-14 10:58:39 +00:00
|
|
|
.init = ta_init_radix,
|
|
|
|
.destroy = ta_destroy_radix,
|
|
|
|
.prepare_add = ta_prepare_add_cidr,
|
|
|
|
.prepare_del = ta_prepare_del_cidr,
|
|
|
|
.add = ta_add_cidr,
|
|
|
|
.del = ta_del_cidr,
|
|
|
|
.flush_entry = ta_flush_cidr_entry,
|
|
|
|
.foreach = ta_foreach_radix,
|
2014-07-06 18:16:04 +00:00
|
|
|
.dump_tentry = ta_dump_radix_tentry,
|
|
|
|
.find_tentry = ta_find_radix_tentry,
|
2014-06-14 10:58:39 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
/*
|
|
|
|
* cidr:hash cmds
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ti->data:
|
|
|
|
* [inv.mask4][inv.mask6][log2hsize4][log2hsize6]
|
|
|
|
* [ 8][ 8[ 8][ 8]
|
|
|
|
*
|
|
|
|
* inv.mask4: 32 - mask
|
|
|
|
* inv.mask6:
|
|
|
|
* 1) _slow lookup: mask
|
|
|
|
* 2) _aligned: (128 - mask) / 8
|
|
|
|
* 3) _64: 8
|
2014-07-30 12:39:49 +00:00
|
|
|
*
|
|
|
|
*
|
|
|
|
* pflags:
|
|
|
|
* [v4=1/v6=0][hsize]
|
|
|
|
* [ 32][ 32]
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
struct chashentry;
|
|
|
|
|
|
|
|
SLIST_HEAD(chashbhead, chashentry);
|
|
|
|
|
|
|
|
struct chash_cfg {
|
|
|
|
struct chashbhead *head4;
|
|
|
|
struct chashbhead *head6;
|
|
|
|
size_t size4;
|
|
|
|
size_t size6;
|
2014-07-30 12:39:49 +00:00
|
|
|
size_t items4;
|
|
|
|
size_t items6;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
uint8_t mask4;
|
|
|
|
uint8_t mask6;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct chashentry {
|
|
|
|
SLIST_ENTRY(chashentry) next;
|
|
|
|
uint32_t value;
|
|
|
|
uint32_t type;
|
|
|
|
union {
|
|
|
|
uint32_t a4; /* Host format */
|
|
|
|
struct in6_addr a6; /* Network format */
|
|
|
|
} a;
|
|
|
|
};
|
|
|
|
|
|
|
|
static __inline uint32_t
|
|
|
|
hash_ip(uint32_t addr, int hsize)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (addr % (hsize - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline uint32_t
|
|
|
|
hash_ip6(struct in6_addr *addr6, int hsize)
|
|
|
|
{
|
|
|
|
uint32_t i;
|
|
|
|
|
|
|
|
i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1] ^
|
|
|
|
addr6->s6_addr32[2] ^ addr6->s6_addr32[3];
|
|
|
|
|
|
|
|
return (i % (hsize - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static __inline uint16_t
|
|
|
|
hash_ip64(struct in6_addr *addr6, int hsize)
|
|
|
|
{
|
|
|
|
uint32_t i;
|
|
|
|
|
|
|
|
i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1];
|
|
|
|
|
|
|
|
return (i % (hsize - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static __inline uint32_t
|
|
|
|
hash_ip6_slow(struct in6_addr *addr6, void *key, int mask, int hsize)
|
|
|
|
{
|
|
|
|
struct in6_addr mask6;
|
|
|
|
|
|
|
|
ipv6_writemask(&mask6, mask);
|
|
|
|
memcpy(addr6, key, sizeof(struct in6_addr));
|
|
|
|
APPLY_MASK(addr6, &mask6);
|
|
|
|
return (hash_ip6(addr6, hsize));
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline uint32_t
|
|
|
|
hash_ip6_al(struct in6_addr *addr6, void *key, int mask, int hsize)
|
|
|
|
{
|
|
|
|
uint64_t *paddr;
|
|
|
|
|
|
|
|
paddr = (uint64_t *)addr6;
|
|
|
|
*paddr = 0;
|
|
|
|
*(paddr + 1) = 0;
|
|
|
|
memcpy(addr6, key, mask);
|
|
|
|
return (hash_ip6(addr6, hsize));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen,
|
|
|
|
uint32_t *val)
|
|
|
|
{
|
|
|
|
struct chashbhead *head;
|
|
|
|
struct chashentry *ent;
|
|
|
|
uint16_t hash, hsize;
|
|
|
|
uint8_t imask;
|
|
|
|
|
|
|
|
if (keylen == sizeof(in_addr_t)) {
|
|
|
|
head = (struct chashbhead *)ti->state;
|
|
|
|
imask = ti->data >> 24;
|
|
|
|
hsize = 1 << ((ti->data & 0xFFFF) >> 8);
|
|
|
|
uint32_t a;
|
|
|
|
a = ntohl(*((in_addr_t *)key));
|
|
|
|
a = a >> imask;
|
|
|
|
hash = hash_ip(a, hsize);
|
|
|
|
SLIST_FOREACH(ent, &head[hash], next) {
|
|
|
|
if (ent->a.a4 == a) {
|
|
|
|
*val = ent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* IPv6: worst scenario: non-round mask */
|
|
|
|
struct in6_addr addr6;
|
|
|
|
head = (struct chashbhead *)ti->xstate;
|
|
|
|
imask = (ti->data & 0xFF0000) >> 16;
|
|
|
|
hsize = 1 << (ti->data & 0xFF);
|
|
|
|
hash = hash_ip6_slow(&addr6, key, imask, hsize);
|
|
|
|
SLIST_FOREACH(ent, &head[hash], next) {
|
|
|
|
if (memcmp(&ent->a.a6, &addr6, 16) == 0) {
|
|
|
|
*val = ent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_lookup_chash_aligned(struct table_info *ti, void *key, uint32_t keylen,
|
|
|
|
uint32_t *val)
|
|
|
|
{
|
|
|
|
struct chashbhead *head;
|
|
|
|
struct chashentry *ent;
|
|
|
|
uint16_t hash, hsize;
|
|
|
|
uint8_t imask;
|
|
|
|
|
|
|
|
if (keylen == sizeof(in_addr_t)) {
|
|
|
|
head = (struct chashbhead *)ti->state;
|
|
|
|
imask = ti->data >> 24;
|
|
|
|
hsize = 1 << ((ti->data & 0xFFFF) >> 8);
|
|
|
|
uint32_t a;
|
|
|
|
a = ntohl(*((in_addr_t *)key));
|
|
|
|
a = a >> imask;
|
|
|
|
hash = hash_ip(a, hsize);
|
|
|
|
SLIST_FOREACH(ent, &head[hash], next) {
|
|
|
|
if (ent->a.a4 == a) {
|
|
|
|
*val = ent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* IPv6: aligned to 8bit mask */
|
|
|
|
struct in6_addr addr6;
|
|
|
|
uint64_t *paddr, *ptmp;
|
|
|
|
head = (struct chashbhead *)ti->xstate;
|
|
|
|
imask = (ti->data & 0xFF0000) >> 16;
|
|
|
|
hsize = 1 << (ti->data & 0xFF);
|
|
|
|
|
|
|
|
hash = hash_ip6_al(&addr6, key, imask, hsize);
|
|
|
|
paddr = (uint64_t *)&addr6;
|
|
|
|
SLIST_FOREACH(ent, &head[hash], next) {
|
|
|
|
ptmp = (uint64_t *)&ent->a.a6;
|
|
|
|
if (paddr[0] == ptmp[0] && paddr[1] == ptmp[1]) {
|
|
|
|
*val = ent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen,
|
|
|
|
uint32_t *val)
|
|
|
|
{
|
|
|
|
struct chashbhead *head;
|
|
|
|
struct chashentry *ent;
|
|
|
|
uint16_t hash, hsize;
|
|
|
|
uint8_t imask;
|
|
|
|
|
|
|
|
if (keylen == sizeof(in_addr_t)) {
|
|
|
|
head = (struct chashbhead *)ti->state;
|
|
|
|
imask = ti->data >> 24;
|
|
|
|
hsize = 1 << ((ti->data & 0xFFFF) >> 8);
|
|
|
|
uint32_t a;
|
|
|
|
a = ntohl(*((in_addr_t *)key));
|
|
|
|
a = a >> imask;
|
|
|
|
hash = hash_ip(a, hsize);
|
|
|
|
SLIST_FOREACH(ent, &head[hash], next) {
|
|
|
|
if (ent->a.a4 == a) {
|
|
|
|
*val = ent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* IPv6: /64 */
|
|
|
|
uint64_t a6, *paddr;
|
|
|
|
head = (struct chashbhead *)ti->xstate;
|
|
|
|
paddr = (uint64_t *)key;
|
|
|
|
hsize = 1 << (ti->data & 0xFF);
|
|
|
|
a6 = *paddr;
|
|
|
|
hash = hash_ip64((struct in6_addr *)key, hsize);
|
|
|
|
SLIST_FOREACH(ent, &head[hash], next) {
|
|
|
|
paddr = (uint64_t *)&ent->a.a6;
|
|
|
|
if (a6 == *paddr) {
|
|
|
|
*val = ent->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
chash_parse_opts(struct chash_cfg *ccfg, char *data)
|
|
|
|
{
|
|
|
|
char *pdel, *pend, *s;
|
|
|
|
int mask4, mask6;
|
|
|
|
|
|
|
|
mask4 = ccfg->mask4;
|
|
|
|
mask6 = ccfg->mask6;
|
|
|
|
|
|
|
|
if (data == NULL)
|
|
|
|
return (0);
|
|
|
|
if ((pdel = strchr(data, ' ')) == NULL)
|
|
|
|
return (0);
|
|
|
|
while (*pdel == ' ')
|
|
|
|
pdel++;
|
|
|
|
if (strncmp(pdel, "masks=", 6) != 0)
|
|
|
|
return (EINVAL);
|
|
|
|
if ((s = strchr(pdel, ' ')) != NULL)
|
|
|
|
*s++ = '\0';
|
|
|
|
|
|
|
|
pdel += 6;
|
|
|
|
/* Need /XX[,/YY] */
|
|
|
|
if (*pdel++ != '/')
|
|
|
|
return (EINVAL);
|
|
|
|
mask4 = strtol(pdel, &pend, 10);
|
|
|
|
if (*pend == ',') {
|
|
|
|
/* ,/YY */
|
|
|
|
pdel = pend + 1;
|
|
|
|
if (*pdel++ != '/')
|
|
|
|
return (EINVAL);
|
|
|
|
mask6 = strtol(pdel, &pend, 10);
|
|
|
|
if (*pend != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
} else if (*pend != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
|
|
|
|
if (mask4 < 0 || mask4 > 32 || mask6 < 0 || mask6 > 128)
|
|
|
|
return (EINVAL);
|
|
|
|
|
|
|
|
ccfg->mask4 = mask4;
|
|
|
|
ccfg->mask6 = mask6;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_print_chash_config(void *ta_state, struct table_info *ti, char *buf,
|
|
|
|
size_t bufsize)
|
|
|
|
{
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
|
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
|
|
|
|
if (ccfg->mask4 != 32 || ccfg->mask6 != 128)
|
|
|
|
snprintf(buf, bufsize, "%s masks=/%d,/%d", "cidr:hash",
|
|
|
|
ccfg->mask4, ccfg->mask6);
|
|
|
|
else
|
|
|
|
snprintf(buf, bufsize, "%s", "cidr:hash");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* New table.
|
|
|
|
* We assume 'data' to be either NULL or the following format:
|
|
|
|
* 'cidr:hash [masks=/32[,/128]]'
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_init_chash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
|
|
|
|
char *data)
|
|
|
|
{
|
|
|
|
int error, i;
|
|
|
|
int v4, v6;
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
|
|
|
|
ccfg = malloc(sizeof(struct chash_cfg), M_IPFW, M_WAITOK | M_ZERO);
|
|
|
|
|
|
|
|
ccfg->mask4 = 32;
|
|
|
|
ccfg->mask6 = 128;
|
|
|
|
|
|
|
|
if ((error = chash_parse_opts(ccfg, data)) != 0) {
|
|
|
|
free(ccfg, M_IPFW);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
v4 = 6;
|
|
|
|
v6 = 6;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
ccfg->size4 = 1 << v4;
|
|
|
|
ccfg->size6 = 1 << v6;
|
|
|
|
|
|
|
|
ccfg->head4 = malloc(sizeof(struct chashbhead) * ccfg->size4, M_IPFW,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
ccfg->head6 = malloc(sizeof(struct chashbhead) * ccfg->size6, M_IPFW,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
for (i = 0; i < ccfg->size4; i++)
|
|
|
|
SLIST_INIT(&ccfg->head4[i]);
|
|
|
|
for (i = 0; i < ccfg->size6; i++)
|
|
|
|
SLIST_INIT(&ccfg->head6[i]);
|
|
|
|
|
|
|
|
|
|
|
|
*ta_state = ccfg;
|
|
|
|
ti->state = ccfg->head4;
|
|
|
|
ti->xstate = ccfg->head6;
|
|
|
|
|
|
|
|
/* Store data depending on v6 mask length */
|
|
|
|
if (ccfg->mask6 == 64) {
|
|
|
|
ti->data = (32 - ccfg->mask4) << 24 | (128 - ccfg->mask6) << 16 |
|
|
|
|
v4 << 8 | v6;
|
|
|
|
ti->lookup = ta_lookup_chash_64;
|
|
|
|
} else if ((ccfg->mask6 % 8) == 0) {
|
|
|
|
ti->data = (32 - ccfg->mask4) << 24 |
|
|
|
|
ccfg->mask6 << 13 | v4 << 8 | v6;
|
|
|
|
ti->lookup = ta_lookup_chash_aligned;
|
|
|
|
} else {
|
|
|
|
/* don't do that! */
|
|
|
|
ti->data = (32 - ccfg->mask4) << 24 |
|
|
|
|
ccfg->mask6 << 16 | v4 << 8 | v6;
|
|
|
|
ti->lookup = ta_lookup_chash_slow;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_destroy_chash(void *ta_state, struct table_info *ti)
|
|
|
|
{
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
struct chashentry *ent, *ent_next;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
|
|
|
|
for (i = 0; i < ccfg->size4; i++)
|
|
|
|
SLIST_FOREACH_SAFE(ent, &ccfg->head4[i], next, ent_next)
|
|
|
|
free(ent, M_IPFW_TBL);
|
|
|
|
|
|
|
|
for (i = 0; i < ccfg->size6; i++)
|
|
|
|
SLIST_FOREACH_SAFE(ent, &ccfg->head6[i], next, ent_next)
|
|
|
|
free(ent, M_IPFW_TBL);
|
|
|
|
|
|
|
|
free(ccfg->head4, M_IPFW);
|
|
|
|
free(ccfg->head6, M_IPFW);
|
2014-07-30 12:39:49 +00:00
|
|
|
|
|
|
|
free(ccfg, M_IPFW);
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_dump_chash_tentry(void *ta_state, struct table_info *ti, void *e,
|
|
|
|
ipfw_obj_tentry *tent)
|
|
|
|
{
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
struct chashentry *ent;
|
|
|
|
|
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
ent = (struct chashentry *)e;
|
|
|
|
|
|
|
|
if (ent->type == AF_INET) {
|
|
|
|
tent->k.addr.s_addr = htonl(ent->a.a4 << (32 - ccfg->mask4));
|
|
|
|
tent->masklen = ccfg->mask4;
|
|
|
|
tent->subtype = AF_INET;
|
|
|
|
tent->value = ent->value;
|
|
|
|
#ifdef INET6
|
|
|
|
} else {
|
|
|
|
memcpy(&tent->k, &ent->a.a6, sizeof(struct in6_addr));
|
|
|
|
tent->masklen = ccfg->mask6;
|
|
|
|
tent->subtype = AF_INET6;
|
|
|
|
tent->value = ent->value;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
static uint32_t
|
|
|
|
hash_ent(struct chashentry *ent, int af, int mlen, uint32_t size)
|
|
|
|
{
|
|
|
|
uint32_t hash;
|
|
|
|
|
|
|
|
if (af == AF_INET) {
|
|
|
|
hash = hash_ip(ent->a.a4, size);
|
|
|
|
} else {
|
|
|
|
if (mlen == 64)
|
|
|
|
hash = hash_ip64(&ent->a.a6, size);
|
|
|
|
else
|
|
|
|
hash = hash_ip6(&ent->a.a6, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent)
|
|
|
|
{
|
|
|
|
struct in6_addr mask6;
|
|
|
|
int mlen;
|
|
|
|
|
|
|
|
|
|
|
|
mlen = tei->masklen;
|
|
|
|
|
|
|
|
if (tei->subtype == AF_INET) {
|
|
|
|
#ifdef INET
|
|
|
|
if (mlen > 32)
|
|
|
|
return (EINVAL);
|
|
|
|
ent->type = AF_INET;
|
|
|
|
|
|
|
|
/* Calculate masked address */
|
|
|
|
ent->a.a4 = ntohl(*((in_addr_t *)tei->paddr)) >> (32 - mlen);
|
|
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
|
|
} else if (tei->subtype == AF_INET6) {
|
|
|
|
/* IPv6 case */
|
|
|
|
if (mlen > 128)
|
|
|
|
return (EINVAL);
|
|
|
|
ent->type = AF_INET6;
|
|
|
|
|
|
|
|
ipv6_writemask(&mask6, mlen);
|
|
|
|
memcpy(&ent->a.a6, tei->paddr, sizeof(struct in6_addr));
|
|
|
|
APPLY_MASK(&ent->a.a6, &mask6);
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
/* Unknown CIDR type */
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
ent->value = tei->value;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
static int
|
|
|
|
ta_find_chash_tentry(void *ta_state, struct table_info *ti, void *key,
|
|
|
|
uint32_t keylen, ipfw_obj_tentry *tent)
|
|
|
|
{
|
2014-07-30 12:39:49 +00:00
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
struct chashbhead *head;
|
|
|
|
struct chashentry ent, *tmp;
|
|
|
|
struct tentry_info tei;
|
|
|
|
int error;
|
|
|
|
uint32_t hash;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
|
|
|
|
memset(&ent, 0, sizeof(ent));
|
|
|
|
memset(&tei, 0, sizeof(tei));
|
|
|
|
|
|
|
|
if (keylen == sizeof(in_addr_t)) {
|
|
|
|
tei.paddr = key;
|
|
|
|
tei.masklen = ccfg->mask4;
|
|
|
|
tei.subtype = AF_INET;
|
|
|
|
|
|
|
|
if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
head = ccfg->head4;
|
|
|
|
hash = hash_ent(&ent, AF_INET, ccfg->mask4, ccfg->size4);
|
|
|
|
/* Check for existence */
|
|
|
|
SLIST_FOREACH(tmp, &head[hash], next) {
|
|
|
|
if (tmp->a.a4 != ent.a.a4)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ta_dump_chash_tentry(ta_state, ti, tmp, tent);
|
|
|
|
return (0);
|
|
|
|
}
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
} else {
|
2014-07-30 12:39:49 +00:00
|
|
|
tei.paddr = key;
|
|
|
|
tei.masklen = ccfg->mask6;
|
|
|
|
tei.subtype = AF_INET6;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
head = ccfg->head6;
|
|
|
|
hash = hash_ent(&ent, AF_INET6, ccfg->mask6, ccfg->size6);
|
|
|
|
/* Check for existence */
|
|
|
|
SLIST_FOREACH(tmp, &head[hash], next) {
|
|
|
|
if (memcmp(&tmp->a.a6, &ent.a.a6, 16) != 0)
|
|
|
|
continue;
|
|
|
|
ta_dump_chash_tentry(ta_state, ti, tmp, tent);
|
|
|
|
return (0);
|
|
|
|
}
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
}
|
2014-07-30 12:39:49 +00:00
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
return (ENOENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_foreach_chash(void *ta_state, struct table_info *ti, ta_foreach_f *f,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
struct chashentry *ent, *ent_next;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
|
|
|
|
for (i = 0; i < ccfg->size4; i++)
|
|
|
|
SLIST_FOREACH_SAFE(ent, &ccfg->head4[i], next, ent_next)
|
|
|
|
f(ent, arg);
|
|
|
|
|
|
|
|
for (i = 0; i < ccfg->size6; i++)
|
|
|
|
SLIST_FOREACH_SAFE(ent, &ccfg->head6[i], next, ent_next)
|
|
|
|
f(ent, arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct ta_buf_chash
|
|
|
|
{
|
|
|
|
void *ent_ptr;
|
2014-07-30 12:39:49 +00:00
|
|
|
struct chashentry ent;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
|
|
|
{
|
|
|
|
struct ta_buf_chash *tb;
|
|
|
|
struct chashentry *ent;
|
2014-07-30 12:39:49 +00:00
|
|
|
int error;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
|
|
|
|
tb = (struct ta_buf_chash *)ta_buf;
|
|
|
|
memset(tb, 0, sizeof(struct ta_buf_chash));
|
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
error = tei_to_chash_ent(tei, ent);
|
|
|
|
if (error != 0) {
|
|
|
|
free(ent, M_IPFW_TBL);
|
|
|
|
return (error);
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
}
|
2014-07-30 12:39:49 +00:00
|
|
|
tb->ent_ptr = ent;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_add_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
|
|
|
{
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
struct chashbhead *head;
|
|
|
|
struct chashentry *ent, *tmp;
|
|
|
|
struct ta_buf_chash *tb;
|
|
|
|
int exists;
|
|
|
|
uint32_t hash;
|
|
|
|
|
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
tb = (struct ta_buf_chash *)ta_buf;
|
|
|
|
ent = (struct chashentry *)tb->ent_ptr;
|
|
|
|
hash = 0;
|
|
|
|
exists = 0;
|
|
|
|
|
|
|
|
if (tei->subtype == AF_INET) {
|
|
|
|
if (tei->masklen != ccfg->mask4)
|
|
|
|
return (EINVAL);
|
|
|
|
head = ccfg->head4;
|
2014-07-30 12:39:49 +00:00
|
|
|
hash = hash_ent(ent, AF_INET, ccfg->mask4, ccfg->size4);
|
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
/* Check for existence */
|
|
|
|
SLIST_FOREACH(tmp, &head[hash], next) {
|
|
|
|
if (tmp->a.a4 == ent->a.a4) {
|
|
|
|
exists = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (tei->masklen != ccfg->mask6)
|
|
|
|
return (EINVAL);
|
|
|
|
head = ccfg->head6;
|
2014-07-30 12:39:49 +00:00
|
|
|
hash = hash_ent(ent, AF_INET6, ccfg->mask6, ccfg->size6);
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
/* Check for existence */
|
|
|
|
SLIST_FOREACH(tmp, &head[hash], next) {
|
2014-07-30 12:39:49 +00:00
|
|
|
if (memcmp(&tmp->a.a6, &ent->a.a6, 16) == 0) {
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
exists = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exists == 1) {
|
|
|
|
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
|
|
|
|
return (EEXIST);
|
|
|
|
/* Record already exists. Update value if we're asked to */
|
|
|
|
tmp->value = tei->value;
|
|
|
|
/* Indicate that update has happened instead of addition */
|
|
|
|
tei->flags |= TEI_FLAGS_UPDATED;
|
|
|
|
*pnum = 0;
|
|
|
|
} else {
|
|
|
|
SLIST_INSERT_HEAD(&head[hash], ent, next);
|
|
|
|
tb->ent_ptr = NULL;
|
|
|
|
*pnum = 1;
|
2014-07-30 12:39:49 +00:00
|
|
|
|
|
|
|
/* Update counters and check if we need to grow hash */
|
|
|
|
if (tei->subtype == AF_INET) {
|
|
|
|
ccfg->items4++;
|
|
|
|
if (ccfg->items4 > ccfg->size4 && ccfg->size4 < 65536)
|
|
|
|
*pflags = (ccfg->size4 * 2) | (1UL << 32);
|
|
|
|
} else {
|
|
|
|
ccfg->items6++;
|
|
|
|
if (ccfg->items6 > ccfg->size6 && ccfg->size6 < 65536)
|
|
|
|
*pflags = ccfg->size6 * 2;
|
|
|
|
}
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
|
|
|
{
|
|
|
|
struct ta_buf_chash *tb;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_chash *)ta_buf;
|
|
|
|
memset(tb, 0, sizeof(struct ta_buf_chash));
|
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
return (tei_to_chash_ent(tei, &tb->ent));
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_del_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
|
|
|
{
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
struct chashbhead *head;
|
2014-07-30 12:39:49 +00:00
|
|
|
struct chashentry *ent, *tmp_next, *dent;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
struct ta_buf_chash *tb;
|
|
|
|
uint32_t hash;
|
|
|
|
|
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
tb = (struct ta_buf_chash *)ta_buf;
|
2014-07-30 12:39:49 +00:00
|
|
|
dent = &tb->ent;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
|
|
|
|
if (tei->subtype == AF_INET) {
|
|
|
|
if (tei->masklen != ccfg->mask4)
|
|
|
|
return (EINVAL);
|
|
|
|
head = ccfg->head4;
|
2014-07-30 12:39:49 +00:00
|
|
|
hash = hash_ent(dent, AF_INET, ccfg->mask4, ccfg->size4);
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
|
|
|
|
SLIST_FOREACH_SAFE(ent, &head[hash], next, tmp_next) {
|
2014-07-30 12:39:49 +00:00
|
|
|
if (ent->a.a4 == dent->a.a4) {
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
SLIST_REMOVE(&head[hash], ent, chashentry,next);
|
|
|
|
*pnum = 1;
|
2014-07-30 12:39:49 +00:00
|
|
|
ccfg->items4--;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (tei->masklen != ccfg->mask6)
|
|
|
|
return (EINVAL);
|
|
|
|
head = ccfg->head6;
|
2014-07-30 12:39:49 +00:00
|
|
|
hash = hash_ent(dent, AF_INET6, ccfg->mask6, ccfg->size6);
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
SLIST_FOREACH_SAFE(ent, &head[hash], next, tmp_next) {
|
2014-07-30 12:39:49 +00:00
|
|
|
if (memcmp(&ent->a.a6, &dent->a.a6, 16) == 0) {
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
SLIST_REMOVE(&head[hash], ent, chashentry,next);
|
2014-07-30 12:39:49 +00:00
|
|
|
ccfg->items6--;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
*pnum = 1;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (ENOENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
|
|
|
{
|
|
|
|
struct ta_buf_chash *tb;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_chash *)ta_buf;
|
|
|
|
|
|
|
|
if (tb->ent_ptr != NULL)
|
|
|
|
free(tb->ent_ptr, M_IPFW_TBL);
|
|
|
|
}
|
|
|
|
|
2014-07-30 12:39:49 +00:00
|
|
|
/*
|
|
|
|
* Hash growing callbacks.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct mod_item {
|
|
|
|
void *main_ptr;
|
|
|
|
size_t size;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate new, larger chash.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags)
|
|
|
|
{
|
|
|
|
struct mod_item *mi;
|
|
|
|
struct chashbhead *head;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
mi = (struct mod_item *)ta_buf;
|
|
|
|
|
|
|
|
memset(mi, 0, sizeof(struct mod_item));
|
|
|
|
mi->size = *pflags & 0xFFFFFFFF;
|
|
|
|
head = malloc(sizeof(struct chashbhead) * mi->size, M_IPFW,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
for (i = 0; i < mi->size; i++)
|
|
|
|
SLIST_INIT(&head[i]);
|
|
|
|
|
|
|
|
mi->main_ptr = head;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy data from old runtime array to new one.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf,
|
|
|
|
uint64_t *pflags)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* In is not possible to do rehash if we're not holidng WLOCK. */
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch old & new arrays.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf,
|
|
|
|
uint64_t pflags)
|
|
|
|
{
|
|
|
|
struct mod_item *mi;
|
|
|
|
struct chash_cfg *ccfg;
|
|
|
|
struct chashbhead *old_head, *new_head;
|
|
|
|
struct chashentry *ent, *ent_next;
|
|
|
|
int af, i, mlen;
|
|
|
|
uint32_t nhash;
|
|
|
|
size_t old_size;
|
|
|
|
|
|
|
|
mi = (struct mod_item *)ta_buf;
|
|
|
|
ccfg = (struct chash_cfg *)ta_state;
|
|
|
|
|
|
|
|
/* Check which hash we need to grow and do we still need that */
|
|
|
|
if ((pflags >> 32) == 1) {
|
|
|
|
old_size = ccfg->size4;
|
|
|
|
old_head = ti->state;
|
|
|
|
mlen = ccfg->mask4;
|
|
|
|
af = AF_INET;
|
|
|
|
} else {
|
|
|
|
old_size = ccfg->size6;
|
|
|
|
old_head = ti->xstate;
|
|
|
|
mlen = ccfg->mask6;
|
|
|
|
af = AF_INET6;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (old_size >= mi->size)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
new_head = (struct chashbhead *)mi->main_ptr;
|
|
|
|
for (i = 0; i < old_size; i++) {
|
|
|
|
SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
|
|
|
|
nhash = hash_ent(ent, af, mlen, mi->size);
|
|
|
|
SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (af == AF_INET) {
|
|
|
|
ti->state = new_head;
|
|
|
|
ccfg->head4 = new_head;
|
|
|
|
ccfg->size4 = mi->size;
|
|
|
|
} else {
|
|
|
|
ti->xstate = new_head;
|
|
|
|
ccfg->head6 = new_head;
|
|
|
|
ccfg->size6 = mi->size;
|
|
|
|
}
|
|
|
|
|
|
|
|
mi->main_ptr = old_head;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free unneded array.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ta_flush_mod_chash(void *ta_buf)
|
|
|
|
{
|
|
|
|
struct mod_item *mi;
|
|
|
|
|
|
|
|
mi = (struct mod_item *)ta_buf;
|
|
|
|
if (mi->main_ptr != NULL)
|
|
|
|
free(mi->main_ptr, M_IPFW);
|
|
|
|
}
|
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
struct table_algo cidr_hash = {
|
|
|
|
.name = "cidr:hash",
|
2014-07-29 22:44:26 +00:00
|
|
|
.type = IPFW_TABLE_CIDR,
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
.init = ta_init_chash,
|
|
|
|
.destroy = ta_destroy_chash,
|
|
|
|
.prepare_add = ta_prepare_add_chash,
|
|
|
|
.prepare_del = ta_prepare_del_chash,
|
|
|
|
.add = ta_add_chash,
|
|
|
|
.del = ta_del_chash,
|
|
|
|
.flush_entry = ta_flush_chash_entry,
|
|
|
|
.foreach = ta_foreach_chash,
|
|
|
|
.dump_tentry = ta_dump_chash_tentry,
|
|
|
|
.find_tentry = ta_find_chash_tentry,
|
|
|
|
.print_config = ta_print_chash_config,
|
2014-07-30 12:39:49 +00:00
|
|
|
.prepare_mod = ta_prepare_mod_chash,
|
|
|
|
.fill_mod = ta_fill_mod_chash,
|
|
|
|
.modify = ta_modify_chash,
|
|
|
|
.flush_mod = ta_flush_mod_chash,
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
/*
|
2014-07-28 19:01:25 +00:00
|
|
|
* Iface table cmds.
|
|
|
|
*
|
|
|
|
* Implementation:
|
|
|
|
*
|
|
|
|
* Runtime part:
|
|
|
|
* - sorted array of "struct ifidx" pointed by ti->state.
|
2014-07-30 14:52:26 +00:00
|
|
|
* Array is allocated with rounding up to IFIDX_CHUNK. Only existing
|
2014-07-28 19:01:25 +00:00
|
|
|
* interfaces are stored in array, however its allocated size is
|
|
|
|
* sufficient to hold all table records if needed.
|
|
|
|
* - current array size is stored in ti->data
|
|
|
|
*
|
|
|
|
* Table data:
|
|
|
|
* - "struct iftable_cfg" is allocated to store table state (ta_state).
|
|
|
|
* - All table records are stored inside namedobj instance.
|
2014-06-14 10:58:39 +00:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ifidx {
|
|
|
|
uint16_t kidx;
|
|
|
|
uint16_t spare;
|
|
|
|
uint32_t value;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct iftable_cfg;
|
|
|
|
|
|
|
|
struct ifentry {
|
|
|
|
struct named_object no;
|
|
|
|
struct ipfw_ifc ic;
|
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
uint32_t value;
|
|
|
|
int linked;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct iftable_cfg {
|
|
|
|
struct namedobj_instance *ii;
|
|
|
|
struct ip_fw_chain *ch;
|
|
|
|
struct table_info *ti;
|
|
|
|
void *main_ptr;
|
|
|
|
size_t size; /* Number of items allocated in array */
|
|
|
|
size_t count; /* Number of all items */
|
|
|
|
size_t used; /* Number of items _active_ now */
|
|
|
|
};
|
|
|
|
|
|
|
|
#define IFIDX_CHUNK 16
|
|
|
|
|
|
|
|
int compare_ifidx(const void *k, const void *v);
|
|
|
|
static void if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex);
|
|
|
|
|
|
|
|
int
|
|
|
|
compare_ifidx(const void *k, const void *v)
|
|
|
|
{
|
|
|
|
struct ifidx *ifidx;
|
|
|
|
uint16_t key;
|
|
|
|
|
|
|
|
key = *((uint16_t *)k);
|
|
|
|
ifidx = (struct ifidx *)v;
|
|
|
|
|
|
|
|
if (key < ifidx->kidx)
|
|
|
|
return (-1);
|
|
|
|
else if (key > ifidx->kidx)
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Adds item @item with key @key into ascending-sorted array @base.
|
|
|
|
* Assumes @base has enough additional storage.
|
|
|
|
*
|
|
|
|
* Returns 1 on success, 0 on duplicate key.
|
|
|
|
*/
|
2014-06-14 10:58:39 +00:00
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
badd(const void *key, void *item, void *base, size_t nmemb,
|
|
|
|
size_t size, int (*compar) (const void *, const void *))
|
|
|
|
{
|
|
|
|
int min, max, mid, shift, res;
|
|
|
|
caddr_t paddr;
|
|
|
|
|
|
|
|
if (nmemb == 0) {
|
|
|
|
memcpy(base, item, size);
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Binary search */
|
|
|
|
min = 0;
|
|
|
|
max = nmemb - 1;
|
|
|
|
mid = 0;
|
|
|
|
while (min <= max) {
|
|
|
|
mid = (min + max) / 2;
|
|
|
|
res = compar(key, (const void *)((caddr_t)base + mid * size));
|
|
|
|
if (res == 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (res > 0)
|
|
|
|
min = mid + 1;
|
|
|
|
else
|
|
|
|
max = mid - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Item not found. */
|
|
|
|
res = compar(key, (const void *)((caddr_t)base + mid * size));
|
|
|
|
if (res > 0)
|
|
|
|
shift = mid + 1;
|
|
|
|
else
|
|
|
|
shift = mid;
|
|
|
|
|
|
|
|
paddr = (caddr_t)base + shift * size;
|
|
|
|
if (nmemb > shift)
|
|
|
|
memmove(paddr + size, paddr, (nmemb - shift) * size);
|
|
|
|
|
|
|
|
memcpy(paddr, item, size);
|
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deletes item with key @key from ascending-sorted array @base.
|
|
|
|
*
|
|
|
|
* Returns 1 on success, 0 for non-existent key.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
bdel(const void *key, void *base, size_t nmemb, size_t size,
|
|
|
|
int (*compar) (const void *, const void *))
|
|
|
|
{
|
|
|
|
caddr_t item;
|
|
|
|
size_t sz;
|
|
|
|
|
|
|
|
item = (caddr_t)bsearch(key, base, nmemb, size, compar);
|
|
|
|
|
|
|
|
if (item == NULL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
sz = (caddr_t)base + nmemb * size - item;
|
|
|
|
|
|
|
|
if (sz > 0)
|
|
|
|
memmove(item, item + size, sz);
|
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ifidx *
|
|
|
|
ifidx_find(struct table_info *ti, void *key)
|
|
|
|
{
|
|
|
|
struct ifidx *ifi;
|
|
|
|
|
|
|
|
ifi = bsearch(key, ti->state, ti->data, sizeof(struct ifidx),
|
|
|
|
compare_ifidx);
|
|
|
|
|
|
|
|
return (ifi);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen,
|
2014-06-14 10:58:39 +00:00
|
|
|
uint32_t *val)
|
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ifidx *ifi;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
ifi = ifidx_find(ti, key);
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
if (ifi != NULL) {
|
|
|
|
*val = ifi->value;
|
2014-06-14 10:58:39 +00:00
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
|
|
|
|
char *data)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
|
|
|
|
icfg = malloc(sizeof(struct iftable_cfg), M_IPFW, M_WAITOK | M_ZERO);
|
|
|
|
|
|
|
|
icfg->ii = ipfw_objhash_create(16);
|
|
|
|
icfg->main_ptr = malloc(sizeof(struct ifidx) * IFIDX_CHUNK, M_IPFW,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
icfg->size = IFIDX_CHUNK;
|
|
|
|
icfg->ch = ch;
|
|
|
|
|
|
|
|
*ta_state = icfg;
|
|
|
|
ti->state = icfg->main_ptr;
|
|
|
|
ti->lookup = ta_lookup_ifidx;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/*
|
|
|
|
* Handle tableinfo @ti pointer change (on table array resize).
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ta_change_ti_ifidx(void *ta_state, struct table_info *ti)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct iftable_cfg *icfg;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
icfg->ti = ti;
|
|
|
|
}
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
static void
|
|
|
|
destroy_ifidx_locked(struct namedobj_instance *ii, struct named_object *no,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
struct ifentry *ife;
|
|
|
|
struct ip_fw_chain *ch;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
ch = (struct ip_fw_chain *)arg;
|
|
|
|
ife = (struct ifentry *)no;
|
|
|
|
|
|
|
|
ipfw_iface_del_notify(ch, &ife->ic);
|
|
|
|
free(ife, M_IPFW_TBL);
|
2014-06-14 10:58:39 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/*
|
|
|
|
* Destroys table @ti
|
|
|
|
*/
|
2014-06-14 10:58:39 +00:00
|
|
|
static void
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_destroy_ifidx(void *ta_state, struct table_info *ti)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
struct ip_fw_chain *ch;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
ch = icfg->ch;
|
|
|
|
|
|
|
|
if (icfg->main_ptr != NULL)
|
|
|
|
free(icfg->main_ptr, M_IPFW);
|
|
|
|
|
|
|
|
ipfw_objhash_foreach(icfg->ii, destroy_ifidx_locked, ch);
|
|
|
|
|
|
|
|
ipfw_objhash_destroy(icfg->ii);
|
|
|
|
|
|
|
|
free(icfg, M_IPFW);
|
2014-06-14 10:58:39 +00:00
|
|
|
}
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ta_buf_ifidx
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ifentry *ife;
|
|
|
|
uint32_t value;
|
2014-06-14 10:58:39 +00:00
|
|
|
};
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/*
|
|
|
|
* Prepare state to add to the table:
|
|
|
|
* allocate ifentry and reference needed interface.
|
|
|
|
*/
|
2014-06-14 10:58:39 +00:00
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ta_buf_ifidx *tb;
|
2014-07-09 18:52:12 +00:00
|
|
|
char *ifname;
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ifentry *ife;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
tb = (struct ta_buf_ifidx *)ta_buf;
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
memset(tb, 0, sizeof(struct ta_buf_ifidx));
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
/* Check if string is terminated */
|
2014-07-09 18:52:12 +00:00
|
|
|
ifname = (char *)tei->paddr;
|
|
|
|
if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
|
2014-06-14 10:58:39 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
ife = malloc(sizeof(struct ifentry), M_IPFW_TBL, M_WAITOK | M_ZERO);
|
|
|
|
ife->value = tei->value;
|
|
|
|
ife->ic.cb = if_notifier;
|
|
|
|
ife->ic.cbdata = ife;
|
|
|
|
|
|
|
|
if (ipfw_iface_ref(ch, ifname, &ife->ic) != 0)
|
|
|
|
return (EINVAL);
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/* Use ipfw_iface 'ifname' field as stable storage */
|
|
|
|
ife->no.name = ife->ic.iface->ifname;
|
|
|
|
|
|
|
|
tb->ife = ife;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-29 08:00:13 +00:00
|
|
|
ta_add_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
struct ifentry *ife, *tmp;
|
|
|
|
struct ta_buf_ifidx *tb;
|
|
|
|
struct ipfw_iface *iif;
|
|
|
|
struct ifidx *ifi;
|
|
|
|
char *ifname;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
tb = (struct ta_buf_ifidx *)ta_buf;
|
|
|
|
ifname = (char *)tei->paddr;
|
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
ife = tb->ife;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
ife->icfg = icfg;
|
|
|
|
|
|
|
|
tmp = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
|
|
|
|
|
|
|
|
if (tmp != NULL) {
|
2014-07-03 22:25:59 +00:00
|
|
|
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
|
|
|
|
return (EEXIST);
|
2014-07-28 19:01:25 +00:00
|
|
|
|
|
|
|
/* We need to update value */
|
|
|
|
iif = tmp->ic.iface;
|
|
|
|
tmp->value = ife->value;
|
|
|
|
|
|
|
|
if (iif->resolved != 0) {
|
|
|
|
/* We need to update runtime value, too */
|
|
|
|
ifi = ifidx_find(ti, &iif->ifindex);
|
|
|
|
ifi->value = ife->value;
|
2014-07-03 22:25:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Indicate that update has happened instead of addition */
|
|
|
|
tei->flags |= TEI_FLAGS_UPDATED;
|
2014-07-29 08:00:13 +00:00
|
|
|
*pnum = 0;
|
2014-07-09 18:52:12 +00:00
|
|
|
return (0);
|
2014-07-03 22:25:59 +00:00
|
|
|
}
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/* Link to internal list */
|
|
|
|
ipfw_objhash_add(icfg->ii, &ife->no);
|
|
|
|
|
|
|
|
/* Link notifier (possible running its callback) */
|
|
|
|
ipfw_iface_add_notify(icfg->ch, &ife->ic);
|
|
|
|
icfg->count++;
|
|
|
|
|
|
|
|
if (icfg->count + 1 == icfg->size) {
|
|
|
|
/* Notify core we need to grow */
|
|
|
|
*pflags = icfg->size + IFIDX_CHUNK;
|
|
|
|
}
|
|
|
|
|
|
|
|
tb->ife = NULL;
|
2014-07-29 08:00:13 +00:00
|
|
|
*pnum = 1;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/*
|
|
|
|
* Prepare to delete key from table.
|
|
|
|
* Do basic interface name checks.
|
|
|
|
*/
|
2014-06-14 10:58:39 +00:00
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
struct ta_buf_ifidx *tb;
|
2014-07-28 19:01:25 +00:00
|
|
|
char *ifname;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
tb = (struct ta_buf_ifidx *)ta_buf;
|
|
|
|
memset(tb, 0, sizeof(struct ta_buf_ifidx));
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
/* Check if string is terminated */
|
2014-07-28 19:01:25 +00:00
|
|
|
ifname = (char *)tei->paddr;
|
|
|
|
if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
|
2014-06-14 10:58:39 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/*
|
|
|
|
* Remove key from both configuration list and
|
|
|
|
* runtime array. Removed interface notification.
|
|
|
|
*/
|
2014-06-14 10:58:39 +00:00
|
|
|
static int
|
2014-07-29 08:00:13 +00:00
|
|
|
ta_del_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
struct ifentry *ife;
|
|
|
|
struct ta_buf_ifidx *tb;
|
|
|
|
char *ifname;
|
|
|
|
uint16_t ifindex;
|
|
|
|
int res;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
tb = (struct ta_buf_ifidx *)ta_buf;
|
|
|
|
ifname = (char *)tei->paddr;
|
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
ife = tb->ife;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
if (ife == NULL)
|
2014-07-06 18:16:04 +00:00
|
|
|
return (ENOENT);
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
if (ife->linked != 0) {
|
|
|
|
/* We have to remove item from runtime */
|
|
|
|
ifindex = ife->ic.iface->ifindex;
|
|
|
|
|
|
|
|
res = bdel(&ifindex, icfg->main_ptr, icfg->used,
|
|
|
|
sizeof(struct ifidx), compare_ifidx);
|
|
|
|
|
|
|
|
KASSERT(res == 1, ("index %d does not exist", ifindex));
|
|
|
|
icfg->used--;
|
|
|
|
ti->data = icfg->used;
|
|
|
|
ife->linked = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unlink from local list */
|
|
|
|
ipfw_objhash_del(icfg->ii, &ife->no);
|
|
|
|
/* Unlink notifier */
|
|
|
|
ipfw_iface_del_notify(icfg->ch, &ife->ic);
|
|
|
|
|
|
|
|
icfg->count--;
|
|
|
|
|
|
|
|
tb->ife = ife;
|
2014-07-29 08:00:13 +00:00
|
|
|
*pnum = 1;
|
2014-07-28 19:01:25 +00:00
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
/*
|
|
|
|
* Flush deleted entry.
|
|
|
|
* Drops interface reference and frees entry.
|
|
|
|
*/
|
2014-06-14 10:58:39 +00:00
|
|
|
static void
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_flush_ifidx_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ta_buf_ifidx *tb;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
tb = (struct ta_buf_ifidx *)ta_buf;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
if (tb->ife != NULL) {
|
|
|
|
/* Unlink first */
|
|
|
|
ipfw_iface_unref(ch, &tb->ife->ic);
|
|
|
|
free(tb->ife, M_IPFW_TBL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle interface announce/withdrawal for particular table.
|
|
|
|
* Every real runtime array modification happens here.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex)
|
|
|
|
{
|
|
|
|
struct ifentry *ife;
|
|
|
|
struct ifidx ifi;
|
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
struct table_info *ti;
|
|
|
|
int res;
|
|
|
|
|
|
|
|
ife = (struct ifentry *)cbdata;
|
|
|
|
icfg = ife->icfg;
|
|
|
|
ti = icfg->ti;
|
|
|
|
|
|
|
|
KASSERT(ti != NULL, ("ti=NULL, check change_ti handler"));
|
|
|
|
|
|
|
|
if (ife->linked == 0 && ifindex != 0) {
|
|
|
|
/* Interface announce */
|
|
|
|
ifi.kidx = ifindex;
|
|
|
|
ifi.spare = 0;
|
|
|
|
ifi.value = ife->value;
|
|
|
|
res = badd(&ifindex, &ifi, icfg->main_ptr, icfg->used,
|
|
|
|
sizeof(struct ifidx), compare_ifidx);
|
|
|
|
KASSERT(res == 1, ("index %d already exists", ifindex));
|
|
|
|
icfg->used++;
|
|
|
|
ti->data = icfg->used;
|
|
|
|
ife->linked = 1;
|
|
|
|
} else if (ife->linked != 0 && ifindex == 0) {
|
|
|
|
/* Interface withdrawal */
|
|
|
|
ifindex = ife->ic.iface->ifindex;
|
|
|
|
|
|
|
|
res = bdel(&ifindex, icfg->main_ptr, icfg->used,
|
|
|
|
sizeof(struct ifidx), compare_ifidx);
|
|
|
|
|
|
|
|
KASSERT(res == 1, ("index %d does not exist", ifindex));
|
|
|
|
icfg->used--;
|
|
|
|
ti->data = icfg->used;
|
|
|
|
ife->linked = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Table growing callbacks.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct mod_ifidx {
|
|
|
|
void *main_ptr;
|
|
|
|
size_t size;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate ned, larger runtime ifidx array.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags)
|
|
|
|
{
|
|
|
|
struct mod_ifidx *mi;
|
|
|
|
|
|
|
|
mi = (struct mod_ifidx *)ta_buf;
|
|
|
|
|
|
|
|
memset(mi, 0, sizeof(struct mod_ifidx));
|
|
|
|
mi->size = *pflags;
|
|
|
|
mi->main_ptr = malloc(sizeof(struct ifidx) * mi->size, M_IPFW,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy data from old runtime array to new one.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
|
|
|
|
uint64_t *pflags)
|
|
|
|
{
|
|
|
|
struct mod_ifidx *mi;
|
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
|
|
|
|
mi = (struct mod_ifidx *)ta_buf;
|
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
|
|
|
|
/* Check if we still need to grow array */
|
|
|
|
if (icfg->size >= mi->size) {
|
|
|
|
*pflags = 0;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(mi->main_ptr, icfg->main_ptr, icfg->used * sizeof(struct ifidx));
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch old & new arrays.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
|
|
|
|
uint64_t pflags)
|
|
|
|
{
|
|
|
|
struct mod_ifidx *mi;
|
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
void *old_ptr;
|
|
|
|
|
|
|
|
mi = (struct mod_ifidx *)ta_buf;
|
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
|
|
|
|
old_ptr = icfg->main_ptr;
|
|
|
|
icfg->main_ptr = mi->main_ptr;
|
|
|
|
icfg->size = mi->size;
|
|
|
|
ti->state = icfg->main_ptr;
|
|
|
|
|
|
|
|
mi->main_ptr = old_ptr;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free unneded array.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ta_flush_mod_ifidx(void *ta_buf)
|
|
|
|
{
|
|
|
|
struct mod_ifidx *mi;
|
|
|
|
|
|
|
|
mi = (struct mod_ifidx *)ta_buf;
|
|
|
|
if (mi->main_ptr != NULL)
|
|
|
|
free(mi->main_ptr, M_IPFW);
|
2014-06-14 10:58:39 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e,
|
2014-07-06 18:16:04 +00:00
|
|
|
ipfw_obj_tentry *tent)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ifentry *ife;
|
|
|
|
|
|
|
|
ife = (struct ifentry *)e;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-06 18:16:04 +00:00
|
|
|
tent->masklen = 8 * IF_NAMESIZE;
|
2014-07-28 19:01:25 +00:00
|
|
|
memcpy(&tent->k, ife->no.name, IF_NAMESIZE);
|
|
|
|
tent->value = ife->value;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-07-06 18:16:04 +00:00
|
|
|
static int
|
2014-07-28 19:01:25 +00:00
|
|
|
ta_find_ifidx_tentry(void *ta_state, struct table_info *ti, void *key,
|
2014-07-06 18:16:04 +00:00
|
|
|
uint32_t keylen, ipfw_obj_tentry *tent)
|
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
struct ifentry *ife;
|
|
|
|
char *ifname;
|
2014-07-06 18:16:04 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
ifname = (char *)key;
|
2014-07-06 18:16:04 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
|
|
|
|
return (EINVAL);
|
2014-07-06 18:16:04 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
|
|
|
|
|
|
|
|
if (ife != NULL) {
|
|
|
|
ta_dump_ifidx_tentry(ta_state, ti, ife, tent);
|
2014-07-06 18:16:04 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (ENOENT);
|
|
|
|
}
|
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
struct wa_ifidx {
|
|
|
|
ta_foreach_f *f;
|
|
|
|
void *arg;
|
|
|
|
};
|
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
static void
|
2014-07-28 19:01:25 +00:00
|
|
|
foreach_ifidx(struct namedobj_instance *ii, struct named_object *no,
|
2014-06-14 10:58:39 +00:00
|
|
|
void *arg)
|
|
|
|
{
|
2014-07-28 19:01:25 +00:00
|
|
|
struct ifentry *ife;
|
|
|
|
struct wa_ifidx *wa;
|
2014-06-14 10:58:39 +00:00
|
|
|
|
2014-07-28 19:01:25 +00:00
|
|
|
ife = (struct ifentry *)no;
|
|
|
|
wa = (struct wa_ifidx *)arg;
|
|
|
|
|
|
|
|
wa->f(ife, wa->arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_foreach_ifidx(void *ta_state, struct table_info *ti, ta_foreach_f *f,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
struct iftable_cfg *icfg;
|
|
|
|
struct wa_ifidx wa;
|
|
|
|
|
|
|
|
icfg = (struct iftable_cfg *)ta_state;
|
|
|
|
|
|
|
|
wa.f = f;
|
|
|
|
wa.arg = arg;
|
|
|
|
|
|
|
|
ipfw_objhash_foreach(icfg->ii, foreach_ifidx, &wa);
|
2014-06-14 10:58:39 +00:00
|
|
|
}
|
|
|
|
|
* Add new ipfw cidr algorihm: hash table.
Algorithm works with both IPv4 and IPv6 prefixes, /32 and /128
ranges are assumed by default.
It works the following way: input IP address is masked to specified
mask, hashed and searched inside hash bucket.
Current implementation does not support "lookup" method and hash auto-resize.
This will be changed soon.
some examples:
ipfw table mi_test2 create type cidr algo cidr:hash
ipfw table mi_test create type cidr algo "cidr:hash masks=/30,/64"
ipfw table mi_test2 info
+++ table(mi_test2), set(0) +++
type: cidr, kindex: 7
valtype: number, references: 0
algorithm: cidr:hash
items: 0, size: 220
ipfw table mi_test info
+++ table(mi_test), set(0) +++
type: cidr, kindex: 6
valtype: number, references: 0
algorithm: cidr:hash masks=/30,/64
items: 0, size: 220
ipfw table mi_test add 10.0.0.5/30
ipfw table mi_test add 10.0.0.8/30
ipfw table mi_test add 2a02:6b8:b010::1/64 25
ipfw table mi_test list
+++ table(mi_test), set(0) +++
10.0.0.4/30 0
10.0.0.8/30 0
2a02:6b8:b010::/64 25
2014-07-29 19:49:38 +00:00
|
|
|
struct table_algo iface_idx = {
|
2014-07-29 08:00:13 +00:00
|
|
|
.name = "iface:array",
|
2014-07-29 22:44:26 +00:00
|
|
|
.type = IPFW_TABLE_INTERFACE,
|
2014-07-28 19:01:25 +00:00
|
|
|
.init = ta_init_ifidx,
|
|
|
|
.destroy = ta_destroy_ifidx,
|
|
|
|
.prepare_add = ta_prepare_add_ifidx,
|
|
|
|
.prepare_del = ta_prepare_del_ifidx,
|
|
|
|
.add = ta_add_ifidx,
|
|
|
|
.del = ta_del_ifidx,
|
|
|
|
.flush_entry = ta_flush_ifidx_entry,
|
|
|
|
.foreach = ta_foreach_ifidx,
|
|
|
|
.dump_tentry = ta_dump_ifidx_tentry,
|
|
|
|
.find_tentry = ta_find_ifidx_tentry,
|
|
|
|
.prepare_mod = ta_prepare_mod_ifidx,
|
|
|
|
.fill_mod = ta_fill_mod_ifidx,
|
|
|
|
.modify = ta_modify_ifidx,
|
|
|
|
.flush_mod = ta_flush_mod_ifidx,
|
|
|
|
.change_ti = ta_change_ti_ifidx,
|
2014-06-14 10:58:39 +00:00
|
|
|
};
|
|
|
|
|
2014-07-30 14:52:26 +00:00
|
|
|
/*
|
|
|
|
* Number array cmds.
|
|
|
|
*
|
|
|
|
* Implementation:
|
|
|
|
*
|
|
|
|
* Runtime part:
|
|
|
|
* - sorted array of "struct numarray" pointed by ti->state.
|
|
|
|
* Array is allocated with rounding up to NUMARRAY_CHUNK.
|
|
|
|
* - current array size is stored in ti->data
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct numarray {
|
|
|
|
uint32_t number;
|
|
|
|
uint32_t value;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct numarray_cfg {
|
|
|
|
void *main_ptr;
|
|
|
|
size_t size; /* Number of items allocated in array */
|
|
|
|
size_t used; /* Number of items _active_ now */
|
|
|
|
};
|
|
|
|
|
|
|
|
#define NUMARRAY_CHUNK 16
|
|
|
|
|
|
|
|
int compare_numarray(const void *k, const void *v);
|
|
|
|
|
|
|
|
int
|
|
|
|
compare_numarray(const void *k, const void *v)
|
|
|
|
{
|
|
|
|
struct numarray *na;
|
|
|
|
uint32_t key;
|
|
|
|
|
|
|
|
key = *((uint32_t *)k);
|
|
|
|
na = (struct numarray *)v;
|
|
|
|
|
|
|
|
if (key < na->number)
|
|
|
|
return (-1);
|
|
|
|
else if (key > na->number)
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct numarray *
|
|
|
|
numarray_find(struct table_info *ti, void *key)
|
|
|
|
{
|
|
|
|
struct numarray *ri;
|
|
|
|
|
|
|
|
ri = bsearch(key, ti->state, ti->data, sizeof(struct numarray),
|
|
|
|
compare_ifidx);
|
|
|
|
|
|
|
|
return (ri);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_lookup_numarray(struct table_info *ti, void *key, uint32_t keylen,
|
|
|
|
uint32_t *val)
|
|
|
|
{
|
|
|
|
struct numarray *ri;
|
|
|
|
|
|
|
|
ri = numarray_find(ti, key);
|
|
|
|
|
|
|
|
if (ri != NULL) {
|
|
|
|
*val = ri->value;
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
|
|
|
|
char *data)
|
|
|
|
{
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
|
|
|
|
cfg = malloc(sizeof(*cfg), M_IPFW, M_WAITOK | M_ZERO);
|
|
|
|
|
|
|
|
cfg->size = NUMARRAY_CHUNK;
|
|
|
|
cfg->main_ptr = malloc(sizeof(struct numarray) * cfg->size, M_IPFW,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
|
|
|
|
*ta_state = cfg;
|
|
|
|
ti->state = cfg->main_ptr;
|
|
|
|
ti->lookup = ta_lookup_numarray;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Destroys table @ti
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ta_destroy_numarray(void *ta_state, struct table_info *ti)
|
|
|
|
{
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
|
|
|
|
cfg = (struct numarray_cfg *)ta_state;
|
|
|
|
|
|
|
|
if (cfg->main_ptr != NULL)
|
|
|
|
free(cfg->main_ptr, M_IPFW);
|
|
|
|
|
|
|
|
free(cfg, M_IPFW);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ta_buf_numarray
|
|
|
|
{
|
|
|
|
struct numarray na;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Prepare for addition/deletion to an array.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_prepare_add_numarray(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
|
|
|
{
|
|
|
|
struct ta_buf_numarray *tb;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_numarray *)ta_buf;
|
|
|
|
memset(tb, 0, sizeof(*tb));
|
|
|
|
|
|
|
|
tb->na.number = *((uint32_t *)tei->paddr);
|
|
|
|
tb->na.value = tei->value;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_add_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
|
|
|
{
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
struct ta_buf_numarray *tb;
|
|
|
|
struct numarray *ri;
|
|
|
|
int res;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_numarray*)ta_buf;
|
|
|
|
cfg = (struct numarray_cfg *)ta_state;
|
|
|
|
|
|
|
|
ri = numarray_find(ti, &tb->na.number);
|
|
|
|
|
|
|
|
if (ri != NULL) {
|
|
|
|
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
|
|
|
|
return (EEXIST);
|
|
|
|
|
|
|
|
/* We need to update value */
|
|
|
|
ri->value = tb->na.value;
|
|
|
|
/* Indicate that update has happened instead of addition */
|
|
|
|
tei->flags |= TEI_FLAGS_UPDATED;
|
|
|
|
*pnum = 0;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
res = badd(&tb->na.number, &tb->na, cfg->main_ptr, cfg->used,
|
|
|
|
sizeof(struct numarray), compare_numarray);
|
|
|
|
|
|
|
|
KASSERT(res == 1, ("number %d already exists", tb->na.number));
|
|
|
|
cfg->used++;
|
|
|
|
ti->data = cfg->used;
|
|
|
|
|
|
|
|
if (cfg->used + 1 == cfg->size) {
|
|
|
|
/* Notify core we need to grow */
|
|
|
|
*pflags = cfg->size + NUMARRAY_CHUNK;
|
|
|
|
}
|
|
|
|
*pnum = 1;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove key from both configuration list and
|
|
|
|
* runtime array. Removed interface notification.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_del_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
|
|
|
|
void *ta_buf, uint64_t *pflags, uint32_t *pnum)
|
|
|
|
{
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
struct ta_buf_numarray *tb;
|
|
|
|
struct numarray *ri;
|
|
|
|
int res;
|
|
|
|
|
|
|
|
tb = (struct ta_buf_numarray *)ta_buf;
|
|
|
|
cfg = (struct numarray_cfg *)ta_state;
|
|
|
|
|
|
|
|
ri = numarray_find(ti, &tb->na.number);
|
|
|
|
if (ri == NULL)
|
|
|
|
return (ENOENT);
|
|
|
|
|
|
|
|
res = bdel(&tb->na.number, cfg->main_ptr, cfg->used,
|
|
|
|
sizeof(struct numarray), compare_numarray);
|
|
|
|
|
|
|
|
KASSERT(res == 1, ("number %u does not exist", tb->na.number));
|
|
|
|
cfg->used--;
|
|
|
|
ti->data = cfg->used;
|
|
|
|
|
|
|
|
*pnum = 1;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_flush_numarray_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
|
|
|
|
void *ta_buf)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* Do nothing */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Table growing callbacks.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate ned, larger runtime numarray array.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags)
|
|
|
|
{
|
|
|
|
struct mod_item *mi;
|
|
|
|
|
|
|
|
mi = (struct mod_item *)ta_buf;
|
|
|
|
|
|
|
|
memset(mi, 0, sizeof(struct mod_item));
|
|
|
|
mi->size = *pflags;
|
|
|
|
mi->main_ptr = malloc(sizeof(struct numarray) * mi->size, M_IPFW,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy data from old runtime array to new one.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_fill_mod_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
|
|
|
|
uint64_t *pflags)
|
|
|
|
{
|
|
|
|
struct mod_item *mi;
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
|
|
|
|
mi = (struct mod_item *)ta_buf;
|
|
|
|
cfg = (struct numarray_cfg *)ta_state;
|
|
|
|
|
|
|
|
/* Check if we still need to grow array */
|
|
|
|
if (cfg->size >= mi->size) {
|
|
|
|
*pflags = 0;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(mi->main_ptr, cfg->main_ptr, cfg->used * sizeof(struct numarray));
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch old & new arrays.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ta_modify_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
|
|
|
|
uint64_t pflags)
|
|
|
|
{
|
|
|
|
struct mod_item *mi;
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
void *old_ptr;
|
|
|
|
|
|
|
|
mi = (struct mod_item *)ta_buf;
|
|
|
|
cfg = (struct numarray_cfg *)ta_state;
|
|
|
|
|
|
|
|
old_ptr = cfg->main_ptr;
|
|
|
|
cfg->main_ptr = mi->main_ptr;
|
|
|
|
cfg->size = mi->size;
|
|
|
|
ti->state = cfg->main_ptr;
|
|
|
|
|
|
|
|
mi->main_ptr = old_ptr;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free unneded array.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ta_flush_mod_numarray(void *ta_buf)
|
|
|
|
{
|
|
|
|
struct mod_item *mi;
|
|
|
|
|
|
|
|
mi = (struct mod_item *)ta_buf;
|
|
|
|
if (mi->main_ptr != NULL)
|
|
|
|
free(mi->main_ptr, M_IPFW);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, void *e,
|
|
|
|
ipfw_obj_tentry *tent)
|
|
|
|
{
|
|
|
|
struct numarray *na;
|
|
|
|
|
|
|
|
na = (struct numarray *)e;
|
|
|
|
|
|
|
|
tent->k.key = na->number;
|
|
|
|
tent->value = na->value;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ta_find_numarray_tentry(void *ta_state, struct table_info *ti, void *key,
|
|
|
|
uint32_t keylen, ipfw_obj_tentry *tent)
|
|
|
|
{
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
struct numarray *ri;
|
|
|
|
|
|
|
|
cfg = (struct numarray_cfg *)ta_state;
|
|
|
|
|
|
|
|
ri = numarray_find(ti, key);
|
|
|
|
|
|
|
|
if (ri != NULL) {
|
|
|
|
ta_dump_numarray_tentry(ta_state, ti, ri, tent);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (ENOENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ta_foreach_numarray(void *ta_state, struct table_info *ti, ta_foreach_f *f,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
struct numarray_cfg *cfg;
|
|
|
|
struct numarray *array;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
cfg = (struct numarray_cfg *)ta_state;
|
|
|
|
array = cfg->main_ptr;
|
|
|
|
|
|
|
|
for (i = 0; i < cfg->used; i++)
|
|
|
|
f(&array[i], arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct table_algo number_array = {
|
|
|
|
.name = "number:array",
|
|
|
|
.type = IPFW_TABLE_NUMBER,
|
|
|
|
.init = ta_init_numarray,
|
|
|
|
.destroy = ta_destroy_numarray,
|
|
|
|
.prepare_add = ta_prepare_add_numarray,
|
|
|
|
.prepare_del = ta_prepare_add_numarray,
|
|
|
|
.add = ta_add_numarray,
|
|
|
|
.del = ta_del_numarray,
|
|
|
|
.flush_entry = ta_flush_numarray_entry,
|
|
|
|
.foreach = ta_foreach_numarray,
|
|
|
|
.dump_tentry = ta_dump_numarray_tentry,
|
|
|
|
.find_tentry = ta_find_numarray_tentry,
|
|
|
|
.prepare_mod = ta_prepare_mod_numarray,
|
|
|
|
.fill_mod = ta_fill_mod_numarray,
|
|
|
|
.modify = ta_modify_numarray,
|
|
|
|
.flush_mod = ta_flush_mod_numarray,
|
|
|
|
};
|
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
void
|
2014-07-29 21:38:06 +00:00
|
|
|
ipfw_table_algo_init(struct ip_fw_chain *ch)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-29 21:38:06 +00:00
|
|
|
size_t sz;
|
|
|
|
|
2014-06-14 10:58:39 +00:00
|
|
|
/*
|
|
|
|
* Register all algorithms presented here.
|
|
|
|
*/
|
2014-07-29 21:38:06 +00:00
|
|
|
sz = sizeof(struct table_algo);
|
|
|
|
ipfw_add_table_algo(ch, &cidr_radix, sz, &cidr_radix.idx);
|
|
|
|
ipfw_add_table_algo(ch, &cidr_hash, sz, &cidr_hash.idx);
|
|
|
|
ipfw_add_table_algo(ch, &iface_idx, sz, &iface_idx.idx);
|
2014-07-30 14:52:26 +00:00
|
|
|
ipfw_add_table_algo(ch, &number_array, sz, &number_array.idx);
|
2014-06-14 10:58:39 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2014-07-29 21:38:06 +00:00
|
|
|
ipfw_table_algo_destroy(struct ip_fw_chain *ch)
|
2014-06-14 10:58:39 +00:00
|
|
|
{
|
2014-07-29 21:38:06 +00:00
|
|
|
|
|
|
|
ipfw_del_table_algo(ch, cidr_radix.idx);
|
|
|
|
ipfw_del_table_algo(ch, cidr_hash.idx);
|
|
|
|
ipfw_del_table_algo(ch, iface_idx.idx);
|
2014-07-30 14:52:26 +00:00
|
|
|
ipfw_del_table_algo(ch, number_array.idx);
|
2014-06-14 10:58:39 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|