freebsd-nq/sys/netinet6/in6_rmx.c

170 lines
5.3 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
2007-12-10 16:03:40 +00:00
*
* $KAME: in6_rmx.c,v 1.11 2001/07/26 06:53:16 jinmei Exp $
*/
/*-
* Copyright 1994, 1995 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
2007-12-10 16:03:40 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/mbuf.h>
#include <sys/rwlock.h>
#include <sys/syslog.h>
#include <sys/callout.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/route/route_ctl.h>
#include <net/route/route_var.h>
Introduce nexthop objects and new routing KPI. This is the foundational change for the routing subsytem rearchitecture. More details and goals are available in https://reviews.freebsd.org/D24141 . This patch introduces concept of nexthop objects and new nexthop-based routing KPI. Nexthops are objects, containing all necessary information for performing the packet output decision. Output interface, mtu, flags, gw address goes there. For most of the cases, these objects will serve the same role as the struct rtentry is currently serving. Typically there will be low tens of such objects for the router even with multiple BGP full-views, as these objects will be shared between routing entries. This allows to store more information in the nexthop. New KPI: struct nhop_object *fib4_lookup(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, uint32_t flowid); struct nhop_object *fib6_lookup(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, uint32_t flowid); These 2 function are intended to replace all all flavours of <in_|in6_>rtalloc[1]<_ign><_fib>, mpath functions and the previous fib[46]-generation functions. Upon successful lookup, they return nexthop object which is guaranteed to exist within current NET_EPOCH. If longer lifetime is desired, one can specify NHR_REF as a flag and get a referenced version of the nexthop. Reference semantic closely resembles rtentry one, allowing sed-style conversion. Additionally, another 2 functions are introduced to support uRPF functionality inside variety of our firewalls. Their primary goal is to hide the multipath implementation details inside the routing subsystem, greatly simplifying firewalls implementation: int fib4_lookup_urpf(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); int fib6_lookup_urpf(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); All functions have a separate scopeid argument, paving way to eliminating IPv6 scope embedding and allowing to support IPv4 link-locals in the future. Structure changes: * rtentry gets new 'rt_nhop' pointer, slightly growing the overall size. * rib_head gets new 'rnh_preadd' callback pointer, slightly growing overall sz. Old KPI: During the transition state old and new KPI will coexists. As there are another 4-5 decent-sized conversion patches, it will probably take a couple of weeks. To support both KPIs, fields not required by the new KPI (most of rtentry) has to be kept, resulting in the temporary size increase. Once conversion is finished, rtentry will notably shrink. More details: * architectural overview: https://reviews.freebsd.org/D24141 * list of the next changes: https://reviews.freebsd.org/D24232 Reviewed by: ae,glebius(initial version) Differential Revision: https://reviews.freebsd.org/D24232
2020-04-12 14:30:00 +00:00
#include <net/route/nhop.h>
#include <netinet/in.h>
#include <netinet/ip_var.h>
#include <netinet/in_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/icmp6.h>
#include <netinet6/nd6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
Introduce nexthop objects and new routing KPI. This is the foundational change for the routing subsytem rearchitecture. More details and goals are available in https://reviews.freebsd.org/D24141 . This patch introduces concept of nexthop objects and new nexthop-based routing KPI. Nexthops are objects, containing all necessary information for performing the packet output decision. Output interface, mtu, flags, gw address goes there. For most of the cases, these objects will serve the same role as the struct rtentry is currently serving. Typically there will be low tens of such objects for the router even with multiple BGP full-views, as these objects will be shared between routing entries. This allows to store more information in the nexthop. New KPI: struct nhop_object *fib4_lookup(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, uint32_t flowid); struct nhop_object *fib6_lookup(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, uint32_t flowid); These 2 function are intended to replace all all flavours of <in_|in6_>rtalloc[1]<_ign><_fib>, mpath functions and the previous fib[46]-generation functions. Upon successful lookup, they return nexthop object which is guaranteed to exist within current NET_EPOCH. If longer lifetime is desired, one can specify NHR_REF as a flag and get a referenced version of the nexthop. Reference semantic closely resembles rtentry one, allowing sed-style conversion. Additionally, another 2 functions are introduced to support uRPF functionality inside variety of our firewalls. Their primary goal is to hide the multipath implementation details inside the routing subsystem, greatly simplifying firewalls implementation: int fib4_lookup_urpf(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); int fib6_lookup_urpf(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); All functions have a separate scopeid argument, paving way to eliminating IPv6 scope embedding and allowing to support IPv4 link-locals in the future. Structure changes: * rtentry gets new 'rt_nhop' pointer, slightly growing the overall size. * rib_head gets new 'rnh_preadd' callback pointer, slightly growing overall sz. Old KPI: During the transition state old and new KPI will coexists. As there are another 4-5 decent-sized conversion patches, it will probably take a couple of weeks. To support both KPIs, fields not required by the new KPI (most of rtentry) has to be kept, resulting in the temporary size increase. Once conversion is finished, rtentry will notably shrink. More details: * architectural overview: https://reviews.freebsd.org/D24141 * list of the next changes: https://reviews.freebsd.org/D24232 Reviewed by: ae,glebius(initial version) Differential Revision: https://reviews.freebsd.org/D24232
2020-04-12 14:30:00 +00:00
static int
rib6_preadd(u_int fibnum, const struct sockaddr *addr, const struct sockaddr *mask,
struct nhop_object *nh)
{
uint16_t nh_type;
/* XXX: RTF_LOCAL */
/*
* Check route MTU:
* inherit interface MTU if not set or
* check if MTU is too large.
*/
if (nh->nh_mtu == 0) {
nh->nh_mtu = IN6_LINKMTU(nh->nh_ifp);
} else if (nh->nh_mtu > IN6_LINKMTU(nh->nh_ifp))
nh->nh_mtu = IN6_LINKMTU(nh->nh_ifp);
/* Ensure that default route nhop has special flag */
const struct sockaddr_in6 *mask6 = (const struct sockaddr_in6 *)mask;
if ((nhop_get_rtflags(nh) & RTF_HOST) == 0 && mask6 != NULL &&
Introduce nexthop objects and new routing KPI. This is the foundational change for the routing subsytem rearchitecture. More details and goals are available in https://reviews.freebsd.org/D24141 . This patch introduces concept of nexthop objects and new nexthop-based routing KPI. Nexthops are objects, containing all necessary information for performing the packet output decision. Output interface, mtu, flags, gw address goes there. For most of the cases, these objects will serve the same role as the struct rtentry is currently serving. Typically there will be low tens of such objects for the router even with multiple BGP full-views, as these objects will be shared between routing entries. This allows to store more information in the nexthop. New KPI: struct nhop_object *fib4_lookup(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, uint32_t flowid); struct nhop_object *fib6_lookup(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, uint32_t flowid); These 2 function are intended to replace all all flavours of <in_|in6_>rtalloc[1]<_ign><_fib>, mpath functions and the previous fib[46]-generation functions. Upon successful lookup, they return nexthop object which is guaranteed to exist within current NET_EPOCH. If longer lifetime is desired, one can specify NHR_REF as a flag and get a referenced version of the nexthop. Reference semantic closely resembles rtentry one, allowing sed-style conversion. Additionally, another 2 functions are introduced to support uRPF functionality inside variety of our firewalls. Their primary goal is to hide the multipath implementation details inside the routing subsystem, greatly simplifying firewalls implementation: int fib4_lookup_urpf(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); int fib6_lookup_urpf(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); All functions have a separate scopeid argument, paving way to eliminating IPv6 scope embedding and allowing to support IPv4 link-locals in the future. Structure changes: * rtentry gets new 'rt_nhop' pointer, slightly growing the overall size. * rib_head gets new 'rnh_preadd' callback pointer, slightly growing overall sz. Old KPI: During the transition state old and new KPI will coexists. As there are another 4-5 decent-sized conversion patches, it will probably take a couple of weeks. To support both KPIs, fields not required by the new KPI (most of rtentry) has to be kept, resulting in the temporary size increase. Once conversion is finished, rtentry will notably shrink. More details: * architectural overview: https://reviews.freebsd.org/D24141 * list of the next changes: https://reviews.freebsd.org/D24232 Reviewed by: ae,glebius(initial version) Differential Revision: https://reviews.freebsd.org/D24232
2020-04-12 14:30:00 +00:00
IN6_IS_ADDR_UNSPECIFIED(&mask6->sin6_addr))
nh->nh_flags |= NHF_DEFAULT;
/* Set nexthop type */
if (nhop_get_type(nh) == 0) {
if (nh->nh_flags & NHF_GATEWAY)
nh_type = NH_TYPE_IPV6_ETHER_NHOP;
else
nh_type = NH_TYPE_IPV6_ETHER_RSLV;
nhop_set_type(nh, nh_type);
}
return (0);
}
/*
* Initialize our routing tree.
*/
struct rib_head *
in6_inithead(uint32_t fibnum)
{
struct rib_head *rh;
struct rib_subscription *rs;
rh = rt_table_init(offsetof(struct sockaddr_in6, sin6_addr) << 3,
AF_INET6, fibnum);
if (rh == NULL)
return (NULL);
Introduce nexthop objects and new routing KPI. This is the foundational change for the routing subsytem rearchitecture. More details and goals are available in https://reviews.freebsd.org/D24141 . This patch introduces concept of nexthop objects and new nexthop-based routing KPI. Nexthops are objects, containing all necessary information for performing the packet output decision. Output interface, mtu, flags, gw address goes there. For most of the cases, these objects will serve the same role as the struct rtentry is currently serving. Typically there will be low tens of such objects for the router even with multiple BGP full-views, as these objects will be shared between routing entries. This allows to store more information in the nexthop. New KPI: struct nhop_object *fib4_lookup(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, uint32_t flowid); struct nhop_object *fib6_lookup(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, uint32_t flowid); These 2 function are intended to replace all all flavours of <in_|in6_>rtalloc[1]<_ign><_fib>, mpath functions and the previous fib[46]-generation functions. Upon successful lookup, they return nexthop object which is guaranteed to exist within current NET_EPOCH. If longer lifetime is desired, one can specify NHR_REF as a flag and get a referenced version of the nexthop. Reference semantic closely resembles rtentry one, allowing sed-style conversion. Additionally, another 2 functions are introduced to support uRPF functionality inside variety of our firewalls. Their primary goal is to hide the multipath implementation details inside the routing subsystem, greatly simplifying firewalls implementation: int fib4_lookup_urpf(uint32_t fibnum, struct in_addr dst, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); int fib6_lookup_urpf(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, const struct ifnet *src_if); All functions have a separate scopeid argument, paving way to eliminating IPv6 scope embedding and allowing to support IPv4 link-locals in the future. Structure changes: * rtentry gets new 'rt_nhop' pointer, slightly growing the overall size. * rib_head gets new 'rnh_preadd' callback pointer, slightly growing overall sz. Old KPI: During the transition state old and new KPI will coexists. As there are another 4-5 decent-sized conversion patches, it will probably take a couple of weeks. To support both KPIs, fields not required by the new KPI (most of rtentry) has to be kept, resulting in the temporary size increase. Once conversion is finished, rtentry will notably shrink. More details: * architectural overview: https://reviews.freebsd.org/D24141 * list of the next changes: https://reviews.freebsd.org/D24232 Reviewed by: ae,glebius(initial version) Differential Revision: https://reviews.freebsd.org/D24232
2020-04-12 14:30:00 +00:00
rh->rnh_preadd = rib6_preadd;
rs = rib_subscribe_internal(rh, nd6_subscription_cb, NULL,
RIB_NOTIFY_IMMEDIATE, true);
KASSERT(rs != NULL, ("Unable to subscribe to fib %u\n", fibnum));
return (rh);
}
#ifdef VIMAGE
void
in6_detachhead(struct rib_head *rh)
{
rt_table_destroy(rh);
}
#endif