freebsd-nq/lib/libc_r/uthread/uthread_cond.c

766 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1999-08-28 00:22:10 +00:00
* $FreeBSD$
*/
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include "namespace.h"
#include <pthread.h>
#include "un-namespace.h"
#include "pthread_private.h"
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Prototypes
*/
static inline pthread_t cond_queue_deq(pthread_cond_t);
static inline void cond_queue_remove(pthread_cond_t, pthread_t);
static inline void cond_queue_enq(pthread_cond_t, pthread_t);
int __pthread_cond_timedwait(pthread_cond_t *,
pthread_mutex_t *, const struct timespec *);
int __pthread_cond_wait(pthread_cond_t *,
pthread_mutex_t *);
/*
* Double underscore versions are cancellation points. Single underscore
* versions are not and are provided for libc internal usage (which
* shouldn't introduce cancellation points).
*/
__weak_reference(__pthread_cond_wait, pthread_cond_wait);
__weak_reference(__pthread_cond_timedwait, pthread_cond_timedwait);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
__weak_reference(_pthread_cond_init, pthread_cond_init);
__weak_reference(_pthread_cond_destroy, pthread_cond_destroy);
__weak_reference(_pthread_cond_signal, pthread_cond_signal);
__weak_reference(_pthread_cond_broadcast, pthread_cond_broadcast);
/*
* Reinitialize a private condition variable; this is only used for
* internal condition variables. Currently, there is no difference.
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
int
_cond_reinit(pthread_cond_t *cond)
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
{
int ret = 0;
if (cond == NULL)
ret = EINVAL;
else if (*cond == NULL)
ret = _pthread_cond_init(cond, NULL);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
else {
/*
* Initialize the condition variable structure:
*/
TAILQ_INIT(&(*cond)->c_queue);
(*cond)->c_flags = COND_FLAGS_INITED;
(*cond)->c_type = COND_TYPE_FAST;
(*cond)->c_mutex = NULL;
(*cond)->c_seqno = 0;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
memset(&(*cond)->lock, 0, sizeof((*cond)->lock));
}
return (ret);
}
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int
_pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *cond_attr)
{
enum pthread_cond_type type;
pthread_cond_t pcond;
int rval = 0;
if (cond == NULL)
rval = EINVAL;
else {
/*
* Check if a pointer to a condition variable attribute
* structure was passed by the caller:
*/
if (cond_attr != NULL && *cond_attr != NULL) {
/* Default to a fast condition variable: */
type = (*cond_attr)->c_type;
} else {
/* Default to a fast condition variable: */
type = COND_TYPE_FAST;
}
/* Process according to condition variable type: */
switch (type) {
/* Fast condition variable: */
case COND_TYPE_FAST:
/* Nothing to do here. */
break;
/* Trap invalid condition variable types: */
default:
/* Return an invalid argument error: */
rval = EINVAL;
break;
}
/* Check for no errors: */
if (rval == 0) {
if ((pcond = (pthread_cond_t)
malloc(sizeof(struct pthread_cond))) == NULL) {
rval = ENOMEM;
} else {
/*
* Initialise the condition variable
* structure:
*/
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
TAILQ_INIT(&pcond->c_queue);
pcond->c_flags |= COND_FLAGS_INITED;
pcond->c_type = type;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
pcond->c_mutex = NULL;
pcond->c_seqno = 0;
memset(&pcond->lock,0,sizeof(pcond->lock));
*cond = pcond;
}
}
}
/* Return the completion status: */
return (rval);
}
int
_pthread_cond_destroy(pthread_cond_t *cond)
{
int rval = 0;
if (cond == NULL || *cond == NULL)
rval = EINVAL;
else {
/* Lock the condition variable structure: */
_SPINLOCK(&(*cond)->lock);
/*
* Free the memory allocated for the condition
* variable structure:
*/
free(*cond);
/*
* NULL the caller's pointer now that the condition
* variable has been destroyed:
*/
*cond = NULL;
}
/* Return the completion status: */
return (rval);
}
int
_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
struct pthread *curthread = _get_curthread();
int rval = 0;
int done = 0;
int interrupted = 0;
int seqno;
if (cond == NULL)
return (EINVAL);
/*
* If the condition variable is statically initialized,
* perform the dynamic initialization:
*/
if (*cond == NULL &&
(rval = _pthread_cond_init(cond, NULL)) != 0)
return (rval);
/*
* Enter a loop waiting for a condition signal or broadcast
* to wake up this thread. A loop is needed in case the waiting
* thread is interrupted by a signal to execute a signal handler.
* It is not (currently) possible to remain in the waiting queue
* while running a handler. Instead, the thread is interrupted
* and backed out of the waiting queue prior to executing the
* signal handler.
*/
do {
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Lock the condition variable structure: */
_SPINLOCK(&(*cond)->lock);
/*
* If the condvar was statically allocated, properly
* initialize the tail queue.
*/
if (((*cond)->c_flags & COND_FLAGS_INITED) == 0) {
TAILQ_INIT(&(*cond)->c_queue);
(*cond)->c_flags |= COND_FLAGS_INITED;
}
/* Process according to condition variable type: */
switch ((*cond)->c_type) {
/* Fast condition variable: */
case COND_TYPE_FAST:
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
if ((mutex == NULL) || (((*cond)->c_mutex != NULL) &&
((*cond)->c_mutex != *mutex))) {
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Return invalid argument error: */
rval = EINVAL;
} else {
/* Reset the timeout and interrupted flags: */
curthread->timeout = 0;
curthread->interrupted = 0;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Queue the running thread for the condition
* variable:
*/
cond_queue_enq(*cond, curthread);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Remember the mutex and sequence number: */
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
(*cond)->c_mutex = *mutex;
seqno = (*cond)->c_seqno;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Wait forever: */
curthread->wakeup_time.tv_sec = -1;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Unlock the mutex: */
if ((rval = _mutex_cv_unlock(mutex)) != 0) {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Cannot unlock the mutex, so remove
* the running thread from the condition
* variable queue:
*/
cond_queue_remove(*cond, curthread);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Check for no more waiters: */
if (TAILQ_FIRST(&(*cond)->c_queue) ==
NULL)
(*cond)->c_mutex = NULL;
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
} else {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Schedule the next thread and unlock
* the condition variable structure:
*/
_thread_kern_sched_state_unlock(PS_COND_WAIT,
&(*cond)->lock, __FILE__, __LINE__);
done = (seqno != (*cond)->c_seqno);
interrupted = curthread->interrupted;
/*
* Check if the wait was interrupted
* (canceled) or needs to be resumed
* after handling a signal.
*/
if (interrupted != 0) {
/*
* Lock the mutex and ignore any
* errors. Note that even
* though this thread may have
* been canceled, POSIX requires
* that the mutex be reaquired
* prior to cancellation.
*/
(void)_mutex_cv_lock(mutex);
} else {
/*
* Lock the condition variable
* while removing the thread.
*/
_SPINLOCK(&(*cond)->lock);
cond_queue_remove(*cond,
curthread);
/* Check for no more waiters: */
if (TAILQ_FIRST(&(*cond)->c_queue) == NULL)
(*cond)->c_mutex = NULL;
_SPINUNLOCK(&(*cond)->lock);
/* Lock the mutex: */
rval = _mutex_cv_lock(mutex);
}
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
}
}
break;
/* Trap invalid condition variable types: */
default:
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
/* Return an invalid argument error: */
rval = EINVAL;
break;
}
if ((interrupted != 0) && (curthread->continuation != NULL))
curthread->continuation((void *) curthread);
} while ((done == 0) && (rval == 0));
/* Return the completion status: */
return (rval);
}
int
__pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
int ret;
_thread_enter_cancellation_point();
ret = _pthread_cond_wait(cond, mutex);
_thread_leave_cancellation_point();
return (ret);
}
int
_pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime)
{
struct pthread *curthread = _get_curthread();
int rval = 0;
int done = 0;
int interrupted = 0;
int seqno;
if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000)
return (EINVAL);
/*
* If the condition variable is statically initialized, perform dynamic
* initialization.
*/
if (*cond == NULL && (rval = _pthread_cond_init(cond, NULL)) != 0)
return (rval);
/*
* Enter a loop waiting for a condition signal or broadcast
* to wake up this thread. A loop is needed in case the waiting
* thread is interrupted by a signal to execute a signal handler.
* It is not (currently) possible to remain in the waiting queue
* while running a handler. Instead, the thread is interrupted
* and backed out of the waiting queue prior to executing the
* signal handler.
*/
do {
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Lock the condition variable structure: */
_SPINLOCK(&(*cond)->lock);
/*
* If the condvar was statically allocated, properly
* initialize the tail queue.
*/
if (((*cond)->c_flags & COND_FLAGS_INITED) == 0) {
TAILQ_INIT(&(*cond)->c_queue);
(*cond)->c_flags |= COND_FLAGS_INITED;
}
/* Process according to condition variable type: */
switch ((*cond)->c_type) {
/* Fast condition variable: */
case COND_TYPE_FAST:
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
if ((mutex == NULL) || (((*cond)->c_mutex != NULL) &&
((*cond)->c_mutex != *mutex))) {
/* Return invalid argument error: */
rval = EINVAL;
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
} else {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Set the wakeup time: */
curthread->wakeup_time.tv_sec =
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
abstime->tv_sec;
curthread->wakeup_time.tv_nsec =
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
abstime->tv_nsec;
/* Reset the timeout and interrupted flags: */
curthread->timeout = 0;
curthread->interrupted = 0;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Queue the running thread for the condition
* variable:
*/
cond_queue_enq(*cond, curthread);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Remember the mutex and sequence number: */
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
(*cond)->c_mutex = *mutex;
seqno = (*cond)->c_seqno;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Unlock the mutex: */
if ((rval = _mutex_cv_unlock(mutex)) != 0) {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Cannot unlock the mutex, so remove
* the running thread from the condition
* variable queue:
*/
cond_queue_remove(*cond, curthread);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Check for no more waiters: */
if (TAILQ_FIRST(&(*cond)->c_queue) == NULL)
(*cond)->c_mutex = NULL;
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
} else {
/*
* Schedule the next thread and unlock
* the condition variable structure:
*/
_thread_kern_sched_state_unlock(PS_COND_WAIT,
&(*cond)->lock, __FILE__, __LINE__);
done = (seqno != (*cond)->c_seqno);
interrupted = curthread->interrupted;
/*
* Check if the wait was interrupted
* (canceled) or needs to be resumed
* after handling a signal.
*/
if (interrupted != 0) {
/*
* Lock the mutex and ignore any
* errors. Note that even
* though this thread may have
* been canceled, POSIX requires
* that the mutex be reaquired
* prior to cancellation.
*/
(void)_mutex_cv_lock(mutex);
} else {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Lock the condition variable
* while removing the thread.
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
*/
_SPINLOCK(&(*cond)->lock);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
cond_queue_remove(*cond,
curthread);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Check for no more waiters: */
if (TAILQ_FIRST(&(*cond)->c_queue) == NULL)
(*cond)->c_mutex = NULL;
_SPINUNLOCK(&(*cond)->lock);
/* Lock the mutex: */
rval = _mutex_cv_lock(mutex);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Return ETIMEDOUT if the wait
* timed out and there wasn't an
* error locking the mutex:
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
*/
if ((curthread->timeout != 0)
&& rval == 0)
rval = ETIMEDOUT;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
}
}
}
break;
/* Trap invalid condition variable types: */
default:
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
/* Return an invalid argument error: */
rval = EINVAL;
break;
}
if ((interrupted != 0) && (curthread->continuation != NULL))
curthread->continuation((void *) curthread);
} while ((done == 0) && (rval == 0));
/* Return the completion status: */
return (rval);
}
int
__pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime)
{
int ret;
_thread_enter_cancellation_point();
ret = _pthread_cond_timedwait(cond, mutex, abstime);
_thread_enter_cancellation_point();
return (ret);
}
int
_pthread_cond_signal(pthread_cond_t *cond)
{
int rval = 0;
pthread_t pthread;
if (cond == NULL)
rval = EINVAL;
/*
* If the condition variable is statically initialized, perform dynamic
* initialization.
*/
else if (*cond != NULL ||
(rval = _pthread_cond_init(cond, NULL)) == 0) {
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/*
* Defer signals to protect the scheduling queues
* from access by the signal handler:
*/
_thread_kern_sig_defer();
/* Lock the condition variable structure: */
_SPINLOCK(&(*cond)->lock);
/* Process according to condition variable type: */
switch ((*cond)->c_type) {
/* Fast condition variable: */
case COND_TYPE_FAST:
/* Increment the sequence number: */
(*cond)->c_seqno++;
if ((pthread = cond_queue_deq(*cond)) != NULL) {
/*
* Wake up the signaled thread:
*/
PTHREAD_NEW_STATE(pthread, PS_RUNNING);
}
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Check for no more waiters: */
if (TAILQ_FIRST(&(*cond)->c_queue) == NULL)
(*cond)->c_mutex = NULL;
break;
/* Trap invalid condition variable types: */
default:
/* Return an invalid argument error: */
rval = EINVAL;
break;
}
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/*
* Undefer and handle pending signals, yielding if
* necessary:
*/
_thread_kern_sig_undefer();
}
/* Return the completion status: */
return (rval);
}
int
_pthread_cond_broadcast(pthread_cond_t *cond)
{
int rval = 0;
pthread_t pthread;
if (cond == NULL)
rval = EINVAL;
/*
* If the condition variable is statically initialized, perform dynamic
* initialization.
*/
else if (*cond != NULL ||
(rval = _pthread_cond_init(cond, NULL)) == 0) {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* Defer signals to protect the scheduling queues
* from access by the signal handler:
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
_thread_kern_sig_defer();
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Lock the condition variable structure: */
_SPINLOCK(&(*cond)->lock);
/* Process according to condition variable type: */
switch ((*cond)->c_type) {
/* Fast condition variable: */
case COND_TYPE_FAST:
/* Increment the sequence number: */
(*cond)->c_seqno++;
/*
* Enter a loop to bring all threads off the
* condition queue:
*/
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
while ((pthread = cond_queue_deq(*cond)) != NULL) {
/*
* Wake up the signaled thread:
*/
PTHREAD_NEW_STATE(pthread, PS_RUNNING);
}
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* There are no more waiting threads: */
(*cond)->c_mutex = NULL;
break;
/* Trap invalid condition variable types: */
default:
/* Return an invalid argument error: */
rval = EINVAL;
break;
}
/* Unlock the condition variable structure: */
_SPINUNLOCK(&(*cond)->lock);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/*
* Undefer and handle pending signals, yielding if
* necessary:
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
_thread_kern_sig_undefer();
}
/* Return the completion status: */
return (rval);
}
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void
_cond_wait_backout(pthread_t pthread)
{
pthread_cond_t cond;
cond = pthread->data.cond;
if (cond != NULL) {
/*
* Defer signals to protect the scheduling queues
* from access by the signal handler:
*/
_thread_kern_sig_defer();
/* Lock the condition variable structure: */
_SPINLOCK(&cond->lock);
/* Process according to condition variable type: */
switch (cond->c_type) {
/* Fast condition variable: */
case COND_TYPE_FAST:
cond_queue_remove(cond, pthread);
/* Check for no more waiters: */
if (TAILQ_FIRST(&cond->c_queue) == NULL)
cond->c_mutex = NULL;
break;
default:
break;
}
/* Unlock the condition variable structure: */
_SPINUNLOCK(&cond->lock);
/*
* Undefer and handle pending signals, yielding if
* necessary:
*/
_thread_kern_sig_undefer();
}
}
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Dequeue a waiting thread from the head of a condition queue in
* descending priority order.
*/
static inline pthread_t
cond_queue_deq(pthread_cond_t cond)
{
pthread_t pthread;
while ((pthread = TAILQ_FIRST(&cond->c_queue)) != NULL) {
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
TAILQ_REMOVE(&cond->c_queue, pthread, sqe);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
pthread->flags &= ~PTHREAD_FLAGS_IN_CONDQ;
if ((pthread->timeout == 0) && (pthread->interrupted == 0))
/*
* Only exit the loop when we find a thread
* that hasn't timed out or been canceled;
* those threads are already running and don't
* need their run state changed.
*/
break;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
}
return(pthread);
}
/*
* Remove a waiting thread from a condition queue in descending priority
* order.
*/
static inline void
cond_queue_remove(pthread_cond_t cond, pthread_t pthread)
{
/*
* Because pthread_cond_timedwait() can timeout as well
* as be signaled by another thread, it is necessary to
* guard against removing the thread from the queue if
* it isn't in the queue.
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
if (pthread->flags & PTHREAD_FLAGS_IN_CONDQ) {
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
TAILQ_REMOVE(&cond->c_queue, pthread, sqe);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
pthread->flags &= ~PTHREAD_FLAGS_IN_CONDQ;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
}
}
/*
* Enqueue a waiting thread to a condition queue in descending priority
* order.
*/
static inline void
cond_queue_enq(pthread_cond_t cond, pthread_t pthread)
{
pthread_t tid = TAILQ_LAST(&cond->c_queue, cond_head);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
PTHREAD_ASSERT_NOT_IN_SYNCQ(pthread);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* For the common case of all threads having equal priority,
* we perform a quick check against the priority of the thread
* at the tail of the queue.
*/
if ((tid == NULL) || (pthread->active_priority <= tid->active_priority))
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
TAILQ_INSERT_TAIL(&cond->c_queue, pthread, sqe);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
else {
tid = TAILQ_FIRST(&cond->c_queue);
while (pthread->active_priority <= tid->active_priority)
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
tid = TAILQ_NEXT(tid, sqe);
TAILQ_INSERT_BEFORE(tid, pthread, sqe);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
}
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
pthread->flags |= PTHREAD_FLAGS_IN_CONDQ;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
pthread->data.cond = cond;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
}