1998-09-15 06:36:34 +00:00
|
|
|
/*
|
|
|
|
* Implementation of SCSI Processor Target Peripheral driver for CAM.
|
|
|
|
*
|
|
|
|
* Copyright (c) 1998 Justin T. Gibbs.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
|
|
* without modification, immediately at the beginning of the file.
|
|
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1998-11-22 23:44:47 +00:00
|
|
|
* $Id: scsi_pt.c,v 1.3 1998/10/22 22:16:56 ken Exp $
|
1998-09-15 06:36:34 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/buf.h>
|
|
|
|
#include <sys/devicestat.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/conf.h>
|
|
|
|
|
|
|
|
#include <cam/cam.h>
|
|
|
|
#include <cam/cam_ccb.h>
|
|
|
|
#include <cam/cam_extend.h>
|
|
|
|
#include <cam/cam_periph.h>
|
|
|
|
#include <cam/cam_xpt_periph.h>
|
|
|
|
#include <cam/cam_debug.h>
|
|
|
|
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
#include <cam/scsi/scsi_message.h>
|
|
|
|
#include <cam/scsi/scsi_pt.h>
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
PT_STATE_PROBE,
|
|
|
|
PT_STATE_NORMAL
|
|
|
|
} pt_state;
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
PT_FLAG_NONE = 0x00,
|
|
|
|
PT_FLAG_OPEN = 0x01,
|
|
|
|
PT_FLAG_DEVICE_INVALID = 0x02,
|
|
|
|
PT_FLAG_RETRY_UA = 0x04
|
|
|
|
} pt_flags;
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
PT_CCB_BUFFER_IO = 0x01,
|
|
|
|
PT_CCB_WAITING = 0x02,
|
|
|
|
PT_CCB_RETRY_UA = 0x04,
|
|
|
|
PT_CCB_BUFFER_IO_UA = PT_CCB_BUFFER_IO|PT_CCB_RETRY_UA
|
|
|
|
} pt_ccb_state;
|
|
|
|
|
|
|
|
/* Offsets into our private area for storing information */
|
|
|
|
#define ccb_state ppriv_field0
|
|
|
|
#define ccb_bp ppriv_ptr1
|
|
|
|
|
|
|
|
struct pt_softc {
|
|
|
|
struct buf_queue_head buf_queue;
|
|
|
|
struct devstat device_stats;
|
|
|
|
LIST_HEAD(, ccb_hdr) pending_ccbs;
|
|
|
|
pt_state state;
|
|
|
|
pt_flags flags;
|
|
|
|
union ccb saved_ccb;
|
|
|
|
};
|
|
|
|
|
|
|
|
static d_open_t ptopen;
|
|
|
|
static d_read_t ptread;
|
|
|
|
static d_write_t ptwrite;
|
|
|
|
static d_close_t ptclose;
|
|
|
|
static d_strategy_t ptstrategy;
|
|
|
|
static periph_init_t ptinit;
|
|
|
|
static void ptasync(void *callback_arg, u_int32_t code,
|
|
|
|
struct cam_path *path, void *arg);
|
|
|
|
static periph_ctor_t ptctor;
|
Fix a problem with the way we handled device invalidation when attaching
to a device failed.
In theory, the same steps that happen when we get an AC_LOST_DEVICE async
notification should have been taken when a driver fails to attach. In
practice, that wasn't the case.
This only affected the da, cd and ch drivers, but the fix affects all
peripheral drivers.
There were several possible problems:
- In the da driver, we didn't remove the peripheral's softc from the da
driver's linked list of softcs. Once the peripheral and softc got
removed, we'd get a kernel panic the next time the timeout routine
called dasendorderedtag().
- In the da, cd and possibly ch drivers, we didn't remove the
peripheral's devstat structure from the devstat queue. Once the
peripheral and softc were removed, this could cause a panic if anyone
tried to access device statistics. (one component of the linked list
wouldn't exist anymore)
- In the cd driver, we didn't take the peripheral off the changer run
queue if it was scheduled to run. In practice, it's highly unlikely,
and maybe impossible that the peripheral would have been on the
changer run queue at that stage of the probe process.
The fix is:
- Add a new peripheral callback function (the "oninvalidate" function)
that is called the first time cam_periph_invalidate() is called for a
peripheral.
- Create new foooninvalidate() routines for each peripheral driver. This
routine is always called at splsoftcam(), and contains all the stuff
that used to be in the AC_LOST_DEVICE case of the async callback
handler.
- Move the devstat cleanup call to the destructor/cleanup routines, since
some of the drivers do I/O in their close routines.
- Make sure that when we're flushing the buffer queue, we traverse it at
splbio().
- Add a check for the invalid flag in the pt driver's open routine.
Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
|
|
|
static periph_oninv_t ptoninvalidate;
|
1998-09-15 06:36:34 +00:00
|
|
|
static periph_dtor_t ptdtor;
|
|
|
|
static periph_start_t ptstart;
|
|
|
|
static void ptdone(struct cam_periph *periph,
|
|
|
|
union ccb *done_ccb);
|
|
|
|
static int pterror(union ccb *ccb, u_int32_t cam_flags,
|
|
|
|
u_int32_t sense_flags);
|
|
|
|
|
|
|
|
void scsi_send_receive(struct ccb_scsiio *csio, u_int32_t retries,
|
|
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
|
|
u_int tag_action, int readop, u_int byte2,
|
|
|
|
u_int32_t xfer_len, u_int8_t *data_ptr,
|
|
|
|
u_int8_t sense_len, u_int32_t timeout);
|
|
|
|
|
|
|
|
static struct periph_driver ptdriver =
|
|
|
|
{
|
|
|
|
ptinit, "pt",
|
|
|
|
TAILQ_HEAD_INITIALIZER(ptdriver.units), /* generation */ 0
|
|
|
|
};
|
|
|
|
|
|
|
|
DATA_SET(periphdriver_set, ptdriver);
|
|
|
|
|
|
|
|
#define PT_CDEV_MAJOR 61
|
|
|
|
|
|
|
|
static struct cdevsw pt_cdevsw =
|
|
|
|
{
|
|
|
|
/*d_open*/ ptopen,
|
|
|
|
/*d_close*/ ptclose,
|
|
|
|
/*d_read*/ ptread,
|
|
|
|
/*d_write*/ ptwrite,
|
|
|
|
/*d_ioctl*/ noioctl,
|
|
|
|
/*d_stop*/ nostop,
|
|
|
|
/*d_reset*/ noreset,
|
|
|
|
/*d_devtotty*/ nodevtotty,
|
|
|
|
/*d_poll*/ seltrue,
|
|
|
|
/*d_mmap*/ nommap,
|
|
|
|
/*d_strategy*/ ptstrategy,
|
|
|
|
/*d_name*/ "pt",
|
|
|
|
/*d_spare*/ NULL,
|
|
|
|
/*d_maj*/ -1,
|
|
|
|
/*d_dump*/ nodump,
|
|
|
|
/*d_psize*/ nopsize,
|
|
|
|
/*d_flags*/ 0,
|
|
|
|
/*d_maxio*/ 0,
|
|
|
|
/*b_maj*/ -1
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct extend_array *ptperiphs;
|
|
|
|
|
|
|
|
static int
|
|
|
|
ptopen(dev_t dev, int flags, int fmt, struct proc *p)
|
|
|
|
{
|
|
|
|
struct cam_periph *periph;
|
|
|
|
struct pt_softc *softc;
|
|
|
|
int unit;
|
|
|
|
int error;
|
Fix a problem with the way we handled device invalidation when attaching
to a device failed.
In theory, the same steps that happen when we get an AC_LOST_DEVICE async
notification should have been taken when a driver fails to attach. In
practice, that wasn't the case.
This only affected the da, cd and ch drivers, but the fix affects all
peripheral drivers.
There were several possible problems:
- In the da driver, we didn't remove the peripheral's softc from the da
driver's linked list of softcs. Once the peripheral and softc got
removed, we'd get a kernel panic the next time the timeout routine
called dasendorderedtag().
- In the da, cd and possibly ch drivers, we didn't remove the
peripheral's devstat structure from the devstat queue. Once the
peripheral and softc were removed, this could cause a panic if anyone
tried to access device statistics. (one component of the linked list
wouldn't exist anymore)
- In the cd driver, we didn't take the peripheral off the changer run
queue if it was scheduled to run. In practice, it's highly unlikely,
and maybe impossible that the peripheral would have been on the
changer run queue at that stage of the probe process.
The fix is:
- Add a new peripheral callback function (the "oninvalidate" function)
that is called the first time cam_periph_invalidate() is called for a
peripheral.
- Create new foooninvalidate() routines for each peripheral driver. This
routine is always called at splsoftcam(), and contains all the stuff
that used to be in the AC_LOST_DEVICE case of the async callback
handler.
- Move the devstat cleanup call to the destructor/cleanup routines, since
some of the drivers do I/O in their close routines.
- Make sure that when we're flushing the buffer queue, we traverse it at
splbio().
- Add a check for the invalid flag in the pt driver's open routine.
Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
|
|
|
int s;
|
1998-09-15 06:36:34 +00:00
|
|
|
|
|
|
|
unit = minor(dev);
|
|
|
|
periph = cam_extend_get(ptperiphs, unit);
|
|
|
|
if (periph == NULL)
|
|
|
|
return (ENXIO);
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
|
Fix a problem with the way we handled device invalidation when attaching
to a device failed.
In theory, the same steps that happen when we get an AC_LOST_DEVICE async
notification should have been taken when a driver fails to attach. In
practice, that wasn't the case.
This only affected the da, cd and ch drivers, but the fix affects all
peripheral drivers.
There were several possible problems:
- In the da driver, we didn't remove the peripheral's softc from the da
driver's linked list of softcs. Once the peripheral and softc got
removed, we'd get a kernel panic the next time the timeout routine
called dasendorderedtag().
- In the da, cd and possibly ch drivers, we didn't remove the
peripheral's devstat structure from the devstat queue. Once the
peripheral and softc were removed, this could cause a panic if anyone
tried to access device statistics. (one component of the linked list
wouldn't exist anymore)
- In the cd driver, we didn't take the peripheral off the changer run
queue if it was scheduled to run. In practice, it's highly unlikely,
and maybe impossible that the peripheral would have been on the
changer run queue at that stage of the probe process.
The fix is:
- Add a new peripheral callback function (the "oninvalidate" function)
that is called the first time cam_periph_invalidate() is called for a
peripheral.
- Create new foooninvalidate() routines for each peripheral driver. This
routine is always called at splsoftcam(), and contains all the stuff
that used to be in the AC_LOST_DEVICE case of the async callback
handler.
- Move the devstat cleanup call to the destructor/cleanup routines, since
some of the drivers do I/O in their close routines.
- Make sure that when we're flushing the buffer queue, we traverse it at
splbio().
- Add a check for the invalid flag in the pt driver's open routine.
Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
|
|
|
s = splsoftcam();
|
|
|
|
if (softc->flags & PT_FLAG_DEVICE_INVALID) {
|
|
|
|
splx(s);
|
|
|
|
return(ENXIO);
|
|
|
|
}
|
|
|
|
|
1998-09-15 06:36:34 +00:00
|
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
|
|
|
|
("ptopen: dev=0x%x (unit %d)\n", dev, unit));
|
|
|
|
|
1998-11-22 23:44:47 +00:00
|
|
|
if ((error = cam_periph_lock(periph, PRIBIO|PCATCH)) != 0) {
|
|
|
|
splx(s);
|
1998-09-15 06:36:34 +00:00
|
|
|
return (error); /* error code from tsleep */
|
1998-11-22 23:44:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
splx(s);
|
1998-09-15 06:36:34 +00:00
|
|
|
|
|
|
|
if ((softc->flags & PT_FLAG_OPEN) == 0) {
|
|
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
|
|
|
|
error = ENXIO;
|
|
|
|
else
|
|
|
|
softc->flags |= PT_FLAG_OPEN;
|
|
|
|
} else
|
|
|
|
error = EBUSY;
|
|
|
|
|
|
|
|
cam_periph_unlock(periph);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ptclose(dev_t dev, int flag, int fmt, struct proc *p)
|
|
|
|
{
|
|
|
|
struct cam_periph *periph;
|
|
|
|
struct pt_softc *softc;
|
|
|
|
int unit;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
unit = minor(dev);
|
|
|
|
periph = cam_extend_get(ptperiphs, unit);
|
|
|
|
if (periph == NULL)
|
|
|
|
return (ENXIO);
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
|
|
|
|
if ((error = cam_periph_lock(periph, PRIBIO)) != 0)
|
|
|
|
return (error); /* error code from tsleep */
|
|
|
|
|
|
|
|
softc->flags &= ~PT_FLAG_OPEN;
|
|
|
|
cam_periph_unlock(periph);
|
|
|
|
cam_periph_release(periph);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ptread(dev_t dev, struct uio *uio, int ioflag)
|
|
|
|
{
|
|
|
|
return(physio(ptstrategy, NULL, dev, 1, minphys, uio));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ptwrite(dev_t dev, struct uio *uio, int ioflag)
|
|
|
|
{
|
|
|
|
return(physio(ptstrategy, NULL, dev, 0, minphys, uio));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Actually translate the requested transfer into one the physical driver
|
|
|
|
* can understand. The transfer is described by a buf and will include
|
|
|
|
* only one physical transfer.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ptstrategy(struct buf *bp)
|
|
|
|
{
|
|
|
|
struct cam_periph *periph;
|
|
|
|
struct pt_softc *softc;
|
|
|
|
u_int unit;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
unit = minor(bp->b_dev);
|
|
|
|
periph = cam_extend_get(ptperiphs, unit);
|
|
|
|
if (periph == NULL) {
|
|
|
|
bp->b_error = ENXIO;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mask interrupts so that the pack cannot be invalidated until
|
|
|
|
* after we are in the queue. Otherwise, we might not properly
|
|
|
|
* clean up one of the buffers.
|
|
|
|
*/
|
|
|
|
s = splbio();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the device has been made invalid, error out
|
|
|
|
*/
|
|
|
|
if ((softc->flags & PT_FLAG_DEVICE_INVALID)) {
|
|
|
|
splx(s);
|
|
|
|
bp->b_error = ENXIO;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Place it in the queue of disk activities for this disk
|
|
|
|
*/
|
|
|
|
bufq_insert_tail(&softc->buf_queue, bp);
|
|
|
|
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Schedule ourselves for performing the work.
|
|
|
|
*/
|
|
|
|
xpt_schedule(periph, /* XXX priority */1);
|
|
|
|
|
|
|
|
return;
|
|
|
|
bad:
|
|
|
|
bp->b_flags |= B_ERROR;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Correctly set the buf to indicate a completed xfer
|
|
|
|
*/
|
|
|
|
bp->b_resid = bp->b_bcount;
|
|
|
|
biodone(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ptinit(void)
|
|
|
|
{
|
|
|
|
cam_status status;
|
|
|
|
struct cam_path *path;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create our extend array for storing the devices we attach to.
|
|
|
|
*/
|
|
|
|
ptperiphs = cam_extend_new();
|
|
|
|
if (ptperiphs == NULL) {
|
|
|
|
printf("pt: Failed to alloc extend array!\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Install a global async callback. This callback will
|
|
|
|
* receive async callbacks like "new device found".
|
|
|
|
*/
|
|
|
|
status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
|
|
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
|
|
|
|
|
|
if (status == CAM_REQ_CMP) {
|
|
|
|
struct ccb_setasync csa;
|
|
|
|
|
|
|
|
xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
|
|
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
|
|
csa.event_enable = AC_FOUND_DEVICE;
|
|
|
|
csa.callback = ptasync;
|
|
|
|
csa.callback_arg = NULL;
|
|
|
|
xpt_action((union ccb *)&csa);
|
|
|
|
status = csa.ccb_h.status;
|
|
|
|
xpt_free_path(path);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
|
|
printf("pt: Failed to attach master async callback "
|
|
|
|
"due to status 0x%x!\n", status);
|
|
|
|
} else {
|
|
|
|
/* If we were successfull, register our devsw */
|
|
|
|
dev_t dev;
|
|
|
|
|
|
|
|
dev = makedev(PT_CDEV_MAJOR, 0);
|
|
|
|
cdevsw_add(&dev,&pt_cdevsw, NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static cam_status
|
|
|
|
ptctor(struct cam_periph *periph, void *arg)
|
|
|
|
{
|
|
|
|
struct pt_softc *softc;
|
|
|
|
struct ccb_setasync csa;
|
|
|
|
struct ccb_getdev *cgd;
|
|
|
|
|
|
|
|
cgd = (struct ccb_getdev *)arg;
|
|
|
|
if (periph == NULL) {
|
|
|
|
printf("ptregister: periph was NULL!!\n");
|
|
|
|
return(CAM_REQ_CMP_ERR);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cgd == NULL) {
|
|
|
|
printf("ptregister: no getdev CCB, can't register device\n");
|
|
|
|
return(CAM_REQ_CMP_ERR);
|
|
|
|
}
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)malloc(sizeof(*softc),M_DEVBUF,M_NOWAIT);
|
|
|
|
|
|
|
|
if (softc == NULL) {
|
|
|
|
printf("daregister: Unable to probe new device. "
|
|
|
|
"Unable to allocate softc\n");
|
|
|
|
return(CAM_REQ_CMP_ERR);
|
|
|
|
}
|
|
|
|
|
|
|
|
bzero(softc, sizeof(*softc));
|
|
|
|
LIST_INIT(&softc->pending_ccbs);
|
|
|
|
softc->state = PT_STATE_NORMAL;
|
|
|
|
bufq_init(&softc->buf_queue);
|
|
|
|
|
|
|
|
periph->softc = softc;
|
|
|
|
|
|
|
|
cam_extend_set(ptperiphs, periph->unit_number, periph);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The DA driver supports a blocksize, but
|
|
|
|
* we don't know the blocksize until we do
|
|
|
|
* a read capacity. So, set a flag to
|
|
|
|
* indicate that the blocksize is
|
|
|
|
* unavailable right now. We'll clear the
|
|
|
|
* flag as soon as we've done a read capacity.
|
|
|
|
*/
|
|
|
|
devstat_add_entry(&softc->device_stats, "pt",
|
|
|
|
periph->unit_number, 0,
|
|
|
|
DEVSTAT_NO_BLOCKSIZE,
|
|
|
|
cgd->pd_type | DEVSTAT_TYPE_IF_SCSI);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add async callbacks for bus reset and
|
|
|
|
* bus device reset calls. I don't bother
|
|
|
|
* checking if this fails as, in most cases,
|
|
|
|
* the system will function just fine without
|
|
|
|
* them and the only alternative would be to
|
|
|
|
* not attach the device on failure.
|
|
|
|
*/
|
|
|
|
xpt_setup_ccb(&csa.ccb_h, periph->path, /*priority*/5);
|
|
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
|
|
csa.event_enable = AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE;
|
|
|
|
csa.callback = ptasync;
|
|
|
|
csa.callback_arg = periph;
|
|
|
|
xpt_action((union ccb *)&csa);
|
|
|
|
|
|
|
|
/* Tell the user we've attached to the device */
|
|
|
|
xpt_announce_periph(periph, NULL);
|
|
|
|
|
|
|
|
return(CAM_REQ_CMP);
|
|
|
|
}
|
|
|
|
|
Fix a problem with the way we handled device invalidation when attaching
to a device failed.
In theory, the same steps that happen when we get an AC_LOST_DEVICE async
notification should have been taken when a driver fails to attach. In
practice, that wasn't the case.
This only affected the da, cd and ch drivers, but the fix affects all
peripheral drivers.
There were several possible problems:
- In the da driver, we didn't remove the peripheral's softc from the da
driver's linked list of softcs. Once the peripheral and softc got
removed, we'd get a kernel panic the next time the timeout routine
called dasendorderedtag().
- In the da, cd and possibly ch drivers, we didn't remove the
peripheral's devstat structure from the devstat queue. Once the
peripheral and softc were removed, this could cause a panic if anyone
tried to access device statistics. (one component of the linked list
wouldn't exist anymore)
- In the cd driver, we didn't take the peripheral off the changer run
queue if it was scheduled to run. In practice, it's highly unlikely,
and maybe impossible that the peripheral would have been on the
changer run queue at that stage of the probe process.
The fix is:
- Add a new peripheral callback function (the "oninvalidate" function)
that is called the first time cam_periph_invalidate() is called for a
peripheral.
- Create new foooninvalidate() routines for each peripheral driver. This
routine is always called at splsoftcam(), and contains all the stuff
that used to be in the AC_LOST_DEVICE case of the async callback
handler.
- Move the devstat cleanup call to the destructor/cleanup routines, since
some of the drivers do I/O in their close routines.
- Make sure that when we're flushing the buffer queue, we traverse it at
splbio().
- Add a check for the invalid flag in the pt driver's open routine.
Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
|
|
|
static void
|
|
|
|
ptoninvalidate(struct cam_periph *periph)
|
|
|
|
{
|
|
|
|
int s;
|
|
|
|
struct pt_softc *softc;
|
|
|
|
struct buf *q_bp;
|
|
|
|
struct ccb_setasync csa;
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* De-register any async callbacks.
|
|
|
|
*/
|
|
|
|
xpt_setup_ccb(&csa.ccb_h, periph->path,
|
|
|
|
/* priority */ 5);
|
|
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
|
|
csa.event_enable = 0;
|
|
|
|
csa.callback = ptasync;
|
|
|
|
csa.callback_arg = periph;
|
|
|
|
xpt_action((union ccb *)&csa);
|
|
|
|
|
|
|
|
softc->flags |= PT_FLAG_DEVICE_INVALID;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Although the oninvalidate() routines are always called at
|
|
|
|
* splsoftcam, we need to be at splbio() here to keep the buffer
|
|
|
|
* queue from being modified while we traverse it.
|
|
|
|
*/
|
|
|
|
s = splbio();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return all queued I/O with ENXIO.
|
|
|
|
* XXX Handle any transactions queued to the card
|
|
|
|
* with XPT_ABORT_CCB.
|
|
|
|
*/
|
|
|
|
while ((q_bp = bufq_first(&softc->buf_queue)) != NULL){
|
|
|
|
bufq_remove(&softc->buf_queue, q_bp);
|
|
|
|
q_bp->b_resid = q_bp->b_bcount;
|
|
|
|
q_bp->b_error = ENXIO;
|
|
|
|
q_bp->b_flags |= B_ERROR;
|
|
|
|
biodone(q_bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
xpt_print_path(periph->path);
|
|
|
|
printf("lost device\n");
|
|
|
|
}
|
|
|
|
|
1998-09-15 06:36:34 +00:00
|
|
|
static void
|
|
|
|
ptdtor(struct cam_periph *periph)
|
|
|
|
{
|
Fix a problem with the way we handled device invalidation when attaching
to a device failed.
In theory, the same steps that happen when we get an AC_LOST_DEVICE async
notification should have been taken when a driver fails to attach. In
practice, that wasn't the case.
This only affected the da, cd and ch drivers, but the fix affects all
peripheral drivers.
There were several possible problems:
- In the da driver, we didn't remove the peripheral's softc from the da
driver's linked list of softcs. Once the peripheral and softc got
removed, we'd get a kernel panic the next time the timeout routine
called dasendorderedtag().
- In the da, cd and possibly ch drivers, we didn't remove the
peripheral's devstat structure from the devstat queue. Once the
peripheral and softc were removed, this could cause a panic if anyone
tried to access device statistics. (one component of the linked list
wouldn't exist anymore)
- In the cd driver, we didn't take the peripheral off the changer run
queue if it was scheduled to run. In practice, it's highly unlikely,
and maybe impossible that the peripheral would have been on the
changer run queue at that stage of the probe process.
The fix is:
- Add a new peripheral callback function (the "oninvalidate" function)
that is called the first time cam_periph_invalidate() is called for a
peripheral.
- Create new foooninvalidate() routines for each peripheral driver. This
routine is always called at splsoftcam(), and contains all the stuff
that used to be in the AC_LOST_DEVICE case of the async callback
handler.
- Move the devstat cleanup call to the destructor/cleanup routines, since
some of the drivers do I/O in their close routines.
- Make sure that when we're flushing the buffer queue, we traverse it at
splbio().
- Add a check for the invalid flag in the pt driver's open routine.
Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
|
|
|
struct pt_softc *softc;
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
|
|
|
|
devstat_remove_entry(&softc->device_stats);
|
|
|
|
|
1998-09-15 06:36:34 +00:00
|
|
|
cam_extend_release(ptperiphs, periph->unit_number);
|
|
|
|
xpt_print_path(periph->path);
|
|
|
|
printf("removing device entry\n");
|
Fix a problem with the way we handled device invalidation when attaching
to a device failed.
In theory, the same steps that happen when we get an AC_LOST_DEVICE async
notification should have been taken when a driver fails to attach. In
practice, that wasn't the case.
This only affected the da, cd and ch drivers, but the fix affects all
peripheral drivers.
There were several possible problems:
- In the da driver, we didn't remove the peripheral's softc from the da
driver's linked list of softcs. Once the peripheral and softc got
removed, we'd get a kernel panic the next time the timeout routine
called dasendorderedtag().
- In the da, cd and possibly ch drivers, we didn't remove the
peripheral's devstat structure from the devstat queue. Once the
peripheral and softc were removed, this could cause a panic if anyone
tried to access device statistics. (one component of the linked list
wouldn't exist anymore)
- In the cd driver, we didn't take the peripheral off the changer run
queue if it was scheduled to run. In practice, it's highly unlikely,
and maybe impossible that the peripheral would have been on the
changer run queue at that stage of the probe process.
The fix is:
- Add a new peripheral callback function (the "oninvalidate" function)
that is called the first time cam_periph_invalidate() is called for a
peripheral.
- Create new foooninvalidate() routines for each peripheral driver. This
routine is always called at splsoftcam(), and contains all the stuff
that used to be in the AC_LOST_DEVICE case of the async callback
handler.
- Move the devstat cleanup call to the destructor/cleanup routines, since
some of the drivers do I/O in their close routines.
- Make sure that when we're flushing the buffer queue, we traverse it at
splbio().
- Add a check for the invalid flag in the pt driver's open routine.
Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
|
|
|
free(softc, M_DEVBUF);
|
1998-09-15 06:36:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ptasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
|
|
|
|
{
|
|
|
|
struct cam_periph *periph;
|
|
|
|
|
|
|
|
periph = (struct cam_periph *)callback_arg;
|
|
|
|
switch (code) {
|
|
|
|
case AC_FOUND_DEVICE:
|
|
|
|
{
|
|
|
|
struct ccb_getdev *cgd;
|
|
|
|
cam_status status;
|
|
|
|
|
|
|
|
cgd = (struct ccb_getdev *)arg;
|
|
|
|
|
|
|
|
if (cgd->pd_type != T_PROCESSOR)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a peripheral instance for
|
|
|
|
* this device and start the probe
|
|
|
|
* process.
|
|
|
|
*/
|
Fix a problem with the way we handled device invalidation when attaching
to a device failed.
In theory, the same steps that happen when we get an AC_LOST_DEVICE async
notification should have been taken when a driver fails to attach. In
practice, that wasn't the case.
This only affected the da, cd and ch drivers, but the fix affects all
peripheral drivers.
There were several possible problems:
- In the da driver, we didn't remove the peripheral's softc from the da
driver's linked list of softcs. Once the peripheral and softc got
removed, we'd get a kernel panic the next time the timeout routine
called dasendorderedtag().
- In the da, cd and possibly ch drivers, we didn't remove the
peripheral's devstat structure from the devstat queue. Once the
peripheral and softc were removed, this could cause a panic if anyone
tried to access device statistics. (one component of the linked list
wouldn't exist anymore)
- In the cd driver, we didn't take the peripheral off the changer run
queue if it was scheduled to run. In practice, it's highly unlikely,
and maybe impossible that the peripheral would have been on the
changer run queue at that stage of the probe process.
The fix is:
- Add a new peripheral callback function (the "oninvalidate" function)
that is called the first time cam_periph_invalidate() is called for a
peripheral.
- Create new foooninvalidate() routines for each peripheral driver. This
routine is always called at splsoftcam(), and contains all the stuff
that used to be in the AC_LOST_DEVICE case of the async callback
handler.
- Move the devstat cleanup call to the destructor/cleanup routines, since
some of the drivers do I/O in their close routines.
- Make sure that when we're flushing the buffer queue, we traverse it at
splbio().
- Add a check for the invalid flag in the pt driver's open routine.
Reviewed by: gibbs
1998-10-22 22:16:56 +00:00
|
|
|
status = cam_periph_alloc(ptctor, ptoninvalidate, ptdtor,
|
|
|
|
ptstart, "pt", CAM_PERIPH_BIO,
|
|
|
|
cgd->ccb_h.path, ptasync,
|
|
|
|
AC_FOUND_DEVICE, cgd);
|
1998-09-15 06:36:34 +00:00
|
|
|
|
|
|
|
if (status != CAM_REQ_CMP
|
|
|
|
&& status != CAM_REQ_INPROG)
|
|
|
|
printf("ptasync: Unable to attach to new device "
|
|
|
|
"due to status 0x%x\n", status);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case AC_LOST_DEVICE:
|
|
|
|
{
|
|
|
|
cam_periph_invalidate(periph);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case AC_SENT_BDR:
|
|
|
|
case AC_BUS_RESET:
|
|
|
|
{
|
|
|
|
struct pt_softc *softc;
|
|
|
|
struct ccb_hdr *ccbh;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
s = splsoftcam();
|
|
|
|
/*
|
|
|
|
* Don't fail on the expected unit attention
|
|
|
|
* that will occur.
|
|
|
|
*/
|
|
|
|
softc->flags |= PT_FLAG_RETRY_UA;
|
|
|
|
for (ccbh = LIST_FIRST(&softc->pending_ccbs);
|
|
|
|
ccbh != NULL; ccbh = LIST_NEXT(ccbh, periph_links.le))
|
|
|
|
ccbh->ccb_state |= PT_CCB_RETRY_UA;
|
|
|
|
splx(s);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case AC_TRANSFER_NEG:
|
|
|
|
case AC_SCSI_AEN:
|
|
|
|
case AC_UNSOL_RESEL:
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ptstart(struct cam_periph *periph, union ccb *start_ccb)
|
|
|
|
{
|
|
|
|
struct pt_softc *softc;
|
|
|
|
struct buf *bp;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* See if there is a buf with work for us to do..
|
|
|
|
*/
|
|
|
|
s = splbio();
|
|
|
|
bp = bufq_first(&softc->buf_queue);
|
|
|
|
if (periph->immediate_priority <= periph->pinfo.priority) {
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_SUBTRACE,
|
|
|
|
("queuing for immediate ccb\n"));
|
|
|
|
start_ccb->ccb_h.ccb_state = PT_CCB_WAITING;
|
|
|
|
SLIST_INSERT_HEAD(&periph->ccb_list, &start_ccb->ccb_h,
|
|
|
|
periph_links.sle);
|
|
|
|
periph->immediate_priority = CAM_PRIORITY_NONE;
|
|
|
|
splx(s);
|
|
|
|
wakeup(&periph->ccb_list);
|
|
|
|
} else if (bp == NULL) {
|
|
|
|
splx(s);
|
|
|
|
xpt_release_ccb(start_ccb);
|
|
|
|
} else {
|
|
|
|
int oldspl;
|
|
|
|
|
|
|
|
bufq_remove(&softc->buf_queue, bp);
|
|
|
|
|
|
|
|
devstat_start_transaction(&softc->device_stats);
|
|
|
|
|
|
|
|
scsi_send_receive(&start_ccb->csio,
|
|
|
|
/*retries*/4,
|
|
|
|
ptdone,
|
|
|
|
MSG_SIMPLE_Q_TAG,
|
|
|
|
bp->b_flags & B_READ,
|
|
|
|
/*byte2*/0,
|
|
|
|
bp->b_bcount,
|
|
|
|
bp->b_data,
|
|
|
|
/*sense_len*/SSD_FULL_SIZE,
|
|
|
|
/*timeout*/10000);
|
|
|
|
|
|
|
|
start_ccb->ccb_h.ccb_state = PT_CCB_BUFFER_IO;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Block out any asyncronous callbacks
|
|
|
|
* while we touch the pending ccb list.
|
|
|
|
*/
|
|
|
|
oldspl = splcam();
|
|
|
|
LIST_INSERT_HEAD(&softc->pending_ccbs, &start_ccb->ccb_h,
|
|
|
|
periph_links.le);
|
|
|
|
splx(oldspl);
|
|
|
|
|
|
|
|
start_ccb->ccb_h.ccb_bp = bp;
|
|
|
|
bp = bufq_first(&softc->buf_queue);
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
xpt_action(start_ccb);
|
|
|
|
|
|
|
|
if (bp != NULL) {
|
|
|
|
/* Have more work to do, so ensure we stay scheduled */
|
|
|
|
xpt_schedule(periph, /* XXX priority */1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ptdone(struct cam_periph *periph, union ccb *done_ccb)
|
|
|
|
{
|
|
|
|
struct pt_softc *softc;
|
|
|
|
struct ccb_scsiio *csio;
|
|
|
|
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
csio = &done_ccb->csio;
|
|
|
|
switch (csio->ccb_h.ccb_state) {
|
|
|
|
case PT_CCB_BUFFER_IO:
|
|
|
|
case PT_CCB_BUFFER_IO_UA:
|
|
|
|
{
|
|
|
|
struct buf *bp;
|
|
|
|
int oldspl;
|
|
|
|
|
|
|
|
bp = (struct buf *)done_ccb->ccb_h.ccb_bp;
|
|
|
|
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
|
|
|
|
int error;
|
|
|
|
int s;
|
|
|
|
int sf;
|
|
|
|
|
|
|
|
if ((csio->ccb_h.ccb_state & PT_CCB_RETRY_UA) != 0)
|
|
|
|
sf = SF_RETRY_UA;
|
|
|
|
else
|
|
|
|
sf = 0;
|
|
|
|
|
|
|
|
if ((error = pterror(done_ccb, 0, sf)) == ERESTART) {
|
|
|
|
/*
|
|
|
|
* A retry was scheuled, so
|
|
|
|
* just return.
|
|
|
|
*/
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (error != 0) {
|
|
|
|
struct buf *q_bp;
|
|
|
|
|
|
|
|
s = splbio();
|
|
|
|
|
|
|
|
if (error == ENXIO) {
|
|
|
|
/*
|
|
|
|
* Catastrophic error. Mark our device
|
|
|
|
* as invalid.
|
|
|
|
*/
|
|
|
|
xpt_print_path(periph->path);
|
|
|
|
printf("Invalidating device\n");
|
|
|
|
softc->flags |= PT_FLAG_DEVICE_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return all queued I/O with EIO, so that
|
|
|
|
* the client can retry these I/Os in the
|
|
|
|
* proper order should it attempt to recover.
|
|
|
|
*/
|
|
|
|
while ((q_bp = bufq_first(&softc->buf_queue))
|
|
|
|
!= NULL) {
|
|
|
|
bufq_remove(&softc->buf_queue, q_bp);
|
|
|
|
q_bp->b_resid = q_bp->b_bcount;
|
|
|
|
q_bp->b_error = EIO;
|
|
|
|
q_bp->b_flags |= B_ERROR;
|
|
|
|
biodone(q_bp);
|
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
bp->b_error = error;
|
|
|
|
bp->b_resid = bp->b_bcount;
|
|
|
|
bp->b_flags |= B_ERROR;
|
|
|
|
} else {
|
|
|
|
bp->b_resid = csio->resid;
|
|
|
|
bp->b_error = 0;
|
|
|
|
if (bp->b_resid != 0) {
|
|
|
|
/* Short transfer ??? */
|
|
|
|
bp->b_flags |= B_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
|
|
|
|
cam_release_devq(done_ccb->ccb_h.path,
|
|
|
|
/*relsim_flags*/0,
|
|
|
|
/*reduction*/0,
|
|
|
|
/*timeout*/0,
|
|
|
|
/*getcount_only*/0);
|
|
|
|
} else {
|
|
|
|
bp->b_resid = csio->resid;
|
|
|
|
if (bp->b_resid != 0)
|
|
|
|
bp->b_flags |= B_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Block out any asyncronous callbacks
|
|
|
|
* while we touch the pending ccb list.
|
|
|
|
*/
|
|
|
|
oldspl = splcam();
|
|
|
|
LIST_REMOVE(&done_ccb->ccb_h, periph_links.le);
|
|
|
|
splx(oldspl);
|
|
|
|
|
|
|
|
devstat_end_transaction(&softc->device_stats,
|
|
|
|
bp->b_bcount - bp->b_resid,
|
|
|
|
done_ccb->csio.tag_action & 0xf,
|
|
|
|
(bp->b_flags & B_READ) ? DEVSTAT_READ
|
|
|
|
: DEVSTAT_WRITE);
|
|
|
|
|
|
|
|
biodone(bp);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case PT_CCB_WAITING:
|
|
|
|
/* Caller will release the CCB */
|
|
|
|
wakeup(&done_ccb->ccb_h.cbfcnp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
xpt_release_ccb(done_ccb);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pterror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
|
|
|
|
{
|
|
|
|
struct pt_softc *softc;
|
|
|
|
struct cam_periph *periph;
|
|
|
|
|
|
|
|
periph = xpt_path_periph(ccb->ccb_h.path);
|
|
|
|
softc = (struct pt_softc *)periph->softc;
|
|
|
|
|
|
|
|
return(cam_periph_error(ccb, cam_flags, sense_flags,
|
|
|
|
&softc->saved_ccb));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
scsi_send_receive(struct ccb_scsiio *csio, u_int32_t retries,
|
|
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
|
|
u_int tag_action, int readop, u_int byte2,
|
|
|
|
u_int32_t xfer_len, u_int8_t *data_ptr, u_int8_t sense_len,
|
|
|
|
u_int32_t timeout)
|
|
|
|
{
|
|
|
|
struct scsi_send_receive *scsi_cmd;
|
|
|
|
|
|
|
|
scsi_cmd = (struct scsi_send_receive *)&csio->cdb_io.cdb_bytes;
|
|
|
|
scsi_cmd->opcode = readop ? RECEIVE : SEND;
|
|
|
|
scsi_cmd->byte2 = byte2;
|
|
|
|
scsi_ulto3b(xfer_len, scsi_cmd->xfer_len);
|
|
|
|
scsi_cmd->control = 0;
|
|
|
|
|
|
|
|
cam_fill_csio(csio,
|
|
|
|
retries,
|
|
|
|
cbfcnp,
|
|
|
|
/*flags*/readop ? CAM_DIR_IN : CAM_DIR_OUT,
|
|
|
|
tag_action,
|
|
|
|
data_ptr,
|
|
|
|
xfer_len,
|
|
|
|
sense_len,
|
|
|
|
sizeof(*scsi_cmd),
|
|
|
|
timeout);
|
|
|
|
}
|