freebsd-nq/sys/dev/isci/isci_io_request.c

975 lines
32 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/isci/isci.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <dev/isci/scil/intel_sas.h>
#include <dev/isci/scil/sci_util.h>
#include <dev/isci/scil/scif_io_request.h>
#include <dev/isci/scil/scif_controller.h>
#include <dev/isci/scil/scif_remote_device.h>
#include <dev/isci/scil/scif_user_callback.h>
#include <dev/isci/scil/scic_io_request.h>
#include <dev/isci/scil/scic_user_callback.h>
/**
* @brief This user callback will inform the user that an IO request has
* completed.
*
* @param[in] controller This parameter specifies the controller on
* which the IO request is completing.
* @param[in] remote_device This parameter specifies the remote device on
* which this request is completing.
* @param[in] io_request This parameter specifies the IO request that has
* completed.
* @param[in] completion_status This parameter specifies the results of
* the IO request operation. SCI_IO_SUCCESS indicates
* successful completion.
*
* @return none
*/
void
scif_cb_io_request_complete(SCI_CONTROLLER_HANDLE_T scif_controller,
SCI_REMOTE_DEVICE_HANDLE_T remote_device,
SCI_IO_REQUEST_HANDLE_T io_request, SCI_IO_STATUS completion_status)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)sci_object_get_association(io_request);
scif_controller_complete_io(scif_controller, remote_device, io_request);
isci_io_request_complete(scif_controller, remote_device, isci_request,
completion_status);
}
void
isci_io_request_complete(SCI_CONTROLLER_HANDLE_T scif_controller,
SCI_REMOTE_DEVICE_HANDLE_T remote_device,
struct ISCI_IO_REQUEST *isci_request, SCI_IO_STATUS completion_status)
{
struct ISCI_CONTROLLER *isci_controller;
struct ISCI_REMOTE_DEVICE *isci_remote_device;
union ccb *ccb;
BOOL complete_ccb;
complete_ccb = TRUE;
isci_controller = (struct ISCI_CONTROLLER *) sci_object_get_association(scif_controller);
isci_remote_device =
(struct ISCI_REMOTE_DEVICE *) sci_object_get_association(remote_device);
ccb = isci_request->ccb;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
switch (completion_status) {
case SCI_IO_SUCCESS:
case SCI_IO_SUCCESS_COMPLETE_BEFORE_START:
#if __FreeBSD_version >= 900026
if (ccb->ccb_h.func_code == XPT_SMP_IO) {
void *smp_response =
scif_io_request_get_response_iu_address(
isci_request->sci_object);
memcpy(ccb->smpio.smp_response, smp_response,
ccb->smpio.smp_response_len);
}
#endif
ccb->ccb_h.status |= CAM_REQ_CMP;
break;
case SCI_IO_SUCCESS_IO_DONE_EARLY:
ccb->ccb_h.status |= CAM_REQ_CMP;
ccb->csio.resid = ccb->csio.dxfer_len -
scif_io_request_get_number_of_bytes_transferred(
isci_request->sci_object);
break;
case SCI_IO_FAILURE_RESPONSE_VALID:
{
SCI_SSP_RESPONSE_IU_T * response_buffer;
uint32_t sense_length;
int error_code, sense_key, asc, ascq;
struct ccb_scsiio *csio = &ccb->csio;
response_buffer = (SCI_SSP_RESPONSE_IU_T *)
scif_io_request_get_response_iu_address(
isci_request->sci_object);
sense_length = sci_ssp_get_sense_data_length(
response_buffer->sense_data_length);
sense_length = MIN(csio->sense_len, sense_length);
memcpy(&csio->sense_data, response_buffer->data, sense_length);
csio->sense_resid = csio->sense_len - sense_length;
csio->scsi_status = response_buffer->status;
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
scsi_extract_sense( &csio->sense_data, &error_code, &sense_key,
&asc, &ascq );
isci_log_message(1, "ISCI",
"isci: bus=%x target=%x lun=%x cdb[0]=%x status=%x key=%x asc=%x ascq=%x\n",
ccb->ccb_h.path_id, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun, csio->cdb_io.cdb_bytes[0],
csio->scsi_status, sense_key, asc, ascq);
break;
}
case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
isci_remote_device_reset(isci_remote_device, NULL);
/* drop through */
case SCI_IO_FAILURE_TERMINATED:
ccb->ccb_h.status |= CAM_REQ_TERMIO;
isci_log_message(1, "ISCI",
"isci: bus=%x target=%x lun=%x cdb[0]=%x terminated\n",
ccb->ccb_h.path_id, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun, ccb->csio.cdb_io.cdb_bytes[0]);
break;
case SCI_IO_FAILURE_INVALID_STATE:
case SCI_IO_FAILURE_INSUFFICIENT_RESOURCES:
complete_ccb = FALSE;
break;
case SCI_IO_FAILURE_INVALID_REMOTE_DEVICE:
ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
break;
case SCI_IO_FAILURE_NO_NCQ_TAG_AVAILABLE:
{
struct ccb_relsim ccb_relsim;
struct cam_path *path;
xpt_create_path(&path, NULL,
cam_sim_path(isci_controller->sim),
isci_remote_device->index, 0);
xpt_setup_ccb(&ccb_relsim.ccb_h, path, 5);
ccb_relsim.ccb_h.func_code = XPT_REL_SIMQ;
ccb_relsim.ccb_h.flags = CAM_DEV_QFREEZE;
ccb_relsim.release_flags = RELSIM_ADJUST_OPENINGS;
ccb_relsim.openings =
scif_remote_device_get_max_queue_depth(remote_device);
xpt_action((union ccb *)&ccb_relsim);
xpt_free_path(path);
complete_ccb = FALSE;
}
break;
case SCI_IO_FAILURE:
case SCI_IO_FAILURE_REQUIRES_SCSI_ABORT:
case SCI_IO_FAILURE_UNSUPPORTED_PROTOCOL:
case SCI_IO_FAILURE_PROTOCOL_VIOLATION:
case SCI_IO_FAILURE_INVALID_PARAMETER_VALUE:
case SCI_IO_FAILURE_CONTROLLER_SPECIFIC_ERR:
default:
isci_log_message(1, "ISCI",
"isci: bus=%x target=%x lun=%x cdb[0]=%x completion status=%x\n",
ccb->ccb_h.path_id, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun, ccb->csio.cdb_io.cdb_bytes[0],
completion_status);
ccb->ccb_h.status |= CAM_REQ_CMP_ERR;
break;
}
callout_stop(&isci_request->parent.timer);
bus_dmamap_sync(isci_request->parent.dma_tag,
isci_request->parent.dma_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(isci_request->parent.dma_tag,
isci_request->parent.dma_map);
isci_request->ccb = NULL;
sci_pool_put(isci_controller->request_pool,
(struct ISCI_REQUEST *)isci_request);
if (complete_ccb) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
/* ccb will be completed with some type of non-success
* status. So temporarily freeze the queue until the
* upper layers can act on the status. The
* CAM_DEV_QFRZN flag will then release the queue
* after the status is acted upon.
*/
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, 1);
}
if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
KASSERT(ccb == isci_remote_device->queued_ccb_in_progress,
("multiple internally queued ccbs in flight"));
TAILQ_REMOVE(&isci_remote_device->queued_ccbs,
&ccb->ccb_h, sim_links.tqe);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
/*
* This CCB that was in the queue was completed, so
* set the in_progress pointer to NULL denoting that
* we can retry another CCB from the queue. We only
* allow one CCB at a time from the queue to be
* in progress so that we can effectively maintain
* ordering.
*/
isci_remote_device->queued_ccb_in_progress = NULL;
}
if (isci_remote_device->frozen_lun_mask != 0) {
isci_remote_device_release_device_queue(isci_remote_device);
}
xpt_done(ccb);
if (isci_controller->is_frozen == TRUE) {
isci_controller->is_frozen = FALSE;
xpt_release_simq(isci_controller->sim, TRUE);
}
} else {
isci_remote_device_freeze_lun_queue(isci_remote_device,
ccb->ccb_h.target_lun);
if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
KASSERT(ccb == isci_remote_device->queued_ccb_in_progress,
("multiple internally queued ccbs in flight"));
/*
* Do nothing, CCB is already on the device's queue.
* We leave it on the queue, to be retried again
* next time a CCB on this device completes, or we
* get a ready notification for this device.
*/
isci_log_message(1, "ISCI", "already queued %p %x\n",
ccb, ccb->csio.cdb_io.cdb_bytes[0]);
isci_remote_device->queued_ccb_in_progress = NULL;
} else {
isci_log_message(1, "ISCI", "queue %p %x\n", ccb,
ccb->csio.cdb_io.cdb_bytes[0]);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
TAILQ_INSERT_TAIL(&isci_remote_device->queued_ccbs,
&ccb->ccb_h, sim_links.tqe);
}
}
}
/**
* @brief This callback method asks the user to provide the physical
* address for the supplied virtual address when building an
* io request object.
*
* @param[in] controller This parameter is the core controller object
* handle.
* @param[in] io_request This parameter is the io request object handle
* for which the physical address is being requested.
* @param[in] virtual_address This paramter is the virtual address which
* is to be returned as a physical address.
* @param[out] physical_address The physical address for the supplied virtual
* address.
*
* @return None.
*/
void
scic_cb_io_request_get_physical_address(SCI_CONTROLLER_HANDLE_T controller,
SCI_IO_REQUEST_HANDLE_T io_request, void *virtual_address,
SCI_PHYSICAL_ADDRESS *physical_address)
{
SCI_IO_REQUEST_HANDLE_T scif_request =
sci_object_get_association(io_request);
struct ISCI_REQUEST *isci_request =
sci_object_get_association(scif_request);
if(isci_request != NULL) {
/* isci_request is not NULL, meaning this is a request initiated
* by CAM or the isci layer (i.e. device reset for I/O
* timeout). Therefore we can calculate the physical address
* based on the address we stored in the struct ISCI_REQUEST
* object.
*/
*physical_address = isci_request->physical_address +
(uintptr_t)virtual_address -
(uintptr_t)isci_request;
} else {
/* isci_request is NULL, meaning this is a request generated
* internally by SCIL (i.e. for SMP requests or NCQ error
* recovery). Therefore we calculate the physical address
* based on the controller's uncached controller memory buffer,
* since we know that this is what SCIL uses for internal
* framework requests.
*/
SCI_CONTROLLER_HANDLE_T scif_controller =
(SCI_CONTROLLER_HANDLE_T) sci_object_get_association(controller);
struct ISCI_CONTROLLER *isci_controller =
(struct ISCI_CONTROLLER *)sci_object_get_association(scif_controller);
U64 virt_addr_offset = (uintptr_t)virtual_address -
(U64)isci_controller->uncached_controller_memory.virtual_address;
*physical_address =
isci_controller->uncached_controller_memory.physical_address
+ virt_addr_offset;
}
}
/**
* @brief This callback method asks the user to provide the address for
* the command descriptor block (CDB) associated with this IO request.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
*
* @return This method returns the virtual address of the CDB.
*/
void *
scif_cb_io_request_get_cdb_address(void * scif_user_io_request)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
return (isci_request->ccb->csio.cdb_io.cdb_bytes);
}
/**
* @brief This callback method asks the user to provide the length of
* the command descriptor block (CDB) associated with this IO request.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
*
* @return This method returns the length of the CDB.
*/
uint32_t
scif_cb_io_request_get_cdb_length(void * scif_user_io_request)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
return (isci_request->ccb->csio.cdb_len);
}
/**
* @brief This callback method asks the user to provide the Logical Unit (LUN)
* associated with this IO request.
*
* @note The contents of the value returned from this callback are defined
* by the protocol standard (e.g. T10 SAS specification). Please
* refer to the transport command information unit description
* in the associated standard.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
*
* @return This method returns the LUN associated with this request.
*/
uint32_t
scif_cb_io_request_get_lun(void * scif_user_io_request)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
return (isci_request->ccb->ccb_h.target_lun);
}
/**
* @brief This callback method asks the user to provide the task attribute
* associated with this IO request.
*
* @note The contents of the value returned from this callback are defined
* by the protocol standard (e.g. T10 SAS specification). Please
* refer to the transport command information unit description
* in the associated standard.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
*
* @return This method returns the task attribute associated with this
* IO request.
*/
uint32_t
scif_cb_io_request_get_task_attribute(void * scif_user_io_request)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
uint32_t task_attribute;
if((isci_request->ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0)
switch(isci_request->ccb->csio.tag_action) {
case MSG_HEAD_OF_Q_TAG:
task_attribute = SCI_SAS_HEAD_OF_QUEUE_ATTRIBUTE;
break;
case MSG_ORDERED_Q_TAG:
task_attribute = SCI_SAS_ORDERED_ATTRIBUTE;
break;
case MSG_ACA_TASK:
task_attribute = SCI_SAS_ACA_ATTRIBUTE;
break;
default:
task_attribute = SCI_SAS_SIMPLE_ATTRIBUTE;
break;
}
else
task_attribute = SCI_SAS_SIMPLE_ATTRIBUTE;
return (task_attribute);
}
/**
* @brief This callback method asks the user to provide the command priority
* associated with this IO request.
*
* @note The contents of the value returned from this callback are defined
* by the protocol standard (e.g. T10 SAS specification). Please
* refer to the transport command information unit description
* in the associated standard.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
*
* @return This method returns the command priority associated with this
* IO request.
*/
uint32_t
scif_cb_io_request_get_command_priority(void * scif_user_io_request)
{
return (0);
}
/**
* @brief This method simply returns the virtual address associated
* with the scsi_io and byte_offset supplied parameters.
*
* @note This callback is not utilized in the fast path. The expectation
* is that this method is utilized for items such as SCSI to ATA
* translation for commands like INQUIRY, READ CAPACITY, etc.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
* @param[in] byte_offset This parameter specifies the offset into the data
* buffers pointed to by the SGL. The byte offset starts at 0
* and continues until the last byte pointed to be the last SGL
* element.
*
* @return A virtual address pointer to the location specified by the
* parameters.
*/
uint8_t *
scif_cb_io_request_get_virtual_address_from_sgl(void * scif_user_io_request,
uint32_t byte_offset)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
return (isci_request->ccb->csio.data_ptr + byte_offset);
}
/**
* @brief This callback method asks the user to provide the number of
* bytes to be transfered as part of this request.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
*
* @return This method returns the number of payload data bytes to be
* transfered for this IO request.
*/
uint32_t
scif_cb_io_request_get_transfer_length(void * scif_user_io_request)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
return (isci_request->ccb->csio.dxfer_len);
}
/**
* @brief This callback method asks the user to provide the data direction
* for this request.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
*
* @return This method returns the value of SCI_IO_REQUEST_DATA_OUT,
* SCI_IO_REQUEST_DATA_IN, or SCI_IO_REQUEST_NO_DATA.
*/
SCI_IO_REQUEST_DATA_DIRECTION
scif_cb_io_request_get_data_direction(void * scif_user_io_request)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
switch (isci_request->ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
return (SCI_IO_REQUEST_DATA_IN);
case CAM_DIR_OUT:
return (SCI_IO_REQUEST_DATA_OUT);
default:
return (SCI_IO_REQUEST_NO_DATA);
}
}
/**
* @brief This callback method asks the user to provide the address
* to where the next Scatter-Gather Element is located.
*
* Details regarding usage:
* - Regarding the first SGE: the user should initialize an index,
* or a pointer, prior to construction of the request that will
* reference the very first scatter-gather element. This is
* important since this method is called for every scatter-gather
* element, including the first element.
* - Regarding the last SGE: the user should return NULL from this
* method when this method is called and the SGL has exhausted
* all elements.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
* @param[in] current_sge_address This parameter specifies the address for
* the current SGE (i.e. the one that has just processed).
* @param[out] next_sge An address specifying the location for the next scatter
* gather element to be processed.
*
* @return None.
*/
void
scif_cb_io_request_get_next_sge(void * scif_user_io_request,
void * current_sge_address, void ** next_sge)
{
struct ISCI_IO_REQUEST *isci_request =
(struct ISCI_IO_REQUEST *)scif_user_io_request;
if (isci_request->current_sge_index == isci_request->num_segments)
*next_sge = NULL;
else {
bus_dma_segment_t *sge =
&isci_request->sge[isci_request->current_sge_index];
isci_request->current_sge_index++;
*next_sge = sge;
}
}
/**
* @brief This callback method asks the user to provide the contents of the
* "address" field in the Scatter-Gather Element.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
* @param[in] sge_address This parameter specifies the address for the
* SGE from which to retrieve the address field.
*
* @return A physical address specifying the contents of the SGE's address
* field.
*/
SCI_PHYSICAL_ADDRESS
scif_cb_sge_get_address_field(void *scif_user_io_request, void *sge_address)
{
bus_dma_segment_t *sge = (bus_dma_segment_t *)sge_address;
return ((SCI_PHYSICAL_ADDRESS)sge->ds_addr);
}
/**
* @brief This callback method asks the user to provide the contents of the
* "length" field in the Scatter-Gather Element.
*
* @param[in] scif_user_io_request This parameter points to the user's
* IO request object. It is a cookie that allows the user to
* provide the necessary information for this callback.
* @param[in] sge_address This parameter specifies the address for the
* SGE from which to retrieve the address field.
*
* @return This method returns the length field specified inside the SGE
* referenced by the sge_address parameter.
*/
uint32_t
scif_cb_sge_get_length_field(void *scif_user_io_request, void *sge_address)
{
bus_dma_segment_t *sge = (bus_dma_segment_t *)sge_address;
return ((uint32_t)sge->ds_len);
}
void
isci_request_construct(struct ISCI_REQUEST *request,
SCI_CONTROLLER_HANDLE_T scif_controller_handle,
bus_dma_tag_t io_buffer_dma_tag, bus_addr_t physical_address)
{
request->controller_handle = scif_controller_handle;
request->dma_tag = io_buffer_dma_tag;
request->physical_address = physical_address;
bus_dmamap_create(request->dma_tag, 0, &request->dma_map);
callout_init(&request->timer, CALLOUT_MPSAFE);
}
static void
isci_io_request_construct(void *arg, bus_dma_segment_t *seg, int nseg,
int error)
{
union ccb *ccb;
struct ISCI_IO_REQUEST *io_request = (struct ISCI_IO_REQUEST *)arg;
SCI_REMOTE_DEVICE_HANDLE_T *device = io_request->parent.remote_device_handle;
SCI_STATUS status;
io_request->num_segments = nseg;
io_request->sge = seg;
ccb = io_request->ccb;
/* XXX More cleanup is needed here */
if ((nseg == 0) || (error != 0)) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
status = scif_io_request_construct(
io_request->parent.controller_handle,
io_request->parent.remote_device_handle,
SCI_CONTROLLER_INVALID_IO_TAG, (void *)io_request,
(void *)((char*)io_request + sizeof(struct ISCI_IO_REQUEST)),
&io_request->sci_object);
if (status != SCI_SUCCESS) {
isci_io_request_complete(io_request->parent.controller_handle,
device, io_request, (SCI_IO_STATUS)status);
return;
}
sci_object_set_association(io_request->sci_object, io_request);
bus_dmamap_sync(io_request->parent.dma_tag, io_request->parent.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
status = (SCI_STATUS)scif_controller_start_io(
io_request->parent.controller_handle, device,
io_request->sci_object, SCI_CONTROLLER_INVALID_IO_TAG);
if (status != SCI_SUCCESS) {
isci_io_request_complete(io_request->parent.controller_handle,
device, io_request, (SCI_IO_STATUS)status);
return;
}
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY)
callout_reset(&io_request->parent.timer, ccb->ccb_h.timeout,
isci_io_request_timeout, io_request);
}
void
isci_io_request_execute_scsi_io(union ccb *ccb,
struct ISCI_CONTROLLER *controller)
{
struct ccb_scsiio *csio = &ccb->csio;
target_id_t target_id = ccb->ccb_h.target_id;
struct ISCI_REQUEST *request;
struct ISCI_IO_REQUEST *io_request;
struct ISCI_REMOTE_DEVICE *device =
controller->remote_device[target_id];
int error;
if (device == NULL) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
xpt_done(ccb);
return;
}
if (sci_pool_empty(controller->request_pool)) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
xpt_freeze_simq(controller->sim, 1);
controller->is_frozen = TRUE;
xpt_done(ccb);
return;
}
ASSERT(device->is_resetting == FALSE);
sci_pool_get(controller->request_pool, request);
io_request = (struct ISCI_IO_REQUEST *)request;
io_request->ccb = ccb;
io_request->current_sge_index = 0;
io_request->parent.remote_device_handle = device->sci_object;
if ((ccb->ccb_h.flags & CAM_SCATTER_VALID) != 0)
panic("Unexpected CAM_SCATTER_VALID flag! flags = 0x%x\n",
ccb->ccb_h.flags);
if ((ccb->ccb_h.flags & CAM_DATA_PHYS) != 0)
panic("Unexpected CAM_DATA_PHYS flag! flags = 0x%x\n",
ccb->ccb_h.flags);
error = bus_dmamap_load(io_request->parent.dma_tag,
io_request->parent.dma_map, csio->data_ptr, csio->dxfer_len,
isci_io_request_construct, io_request, 0x0);
/* A resource shortage from BUSDMA will be automatically
* continued at a later point, pushing the CCB processing
* forward, which will in turn unfreeze the simq.
*/
if (error == EINPROGRESS) {
xpt_freeze_simq(controller->sim, 1);
ccb->ccb_h.flags |= CAM_RELEASE_SIMQ;
}
}
void
isci_io_request_timeout(void *arg)
{
struct ISCI_IO_REQUEST *request = (struct ISCI_IO_REQUEST *)arg;
struct ISCI_REMOTE_DEVICE *remote_device = (struct ISCI_REMOTE_DEVICE *)
sci_object_get_association(request->parent.remote_device_handle);
struct ISCI_CONTROLLER *controller = remote_device->domain->controller;
mtx_lock(&controller->lock);
isci_remote_device_reset(remote_device, NULL);
mtx_unlock(&controller->lock);
}
#if __FreeBSD_version >= 900026
/**
* @brief This callback method gets the size of and pointer to the buffer
* (if any) containing the request buffer for an SMP request.
*
* @param[in] core_request This parameter specifies the SCI core's request
* object associated with the SMP request.
* @param[out] smp_request_buffer This parameter returns a pointer to the
* payload portion of the SMP request - i.e. everything after
* the SMP request header.
*
* @return Size of the request buffer in bytes. This does *not* include
* the size of the SMP request header.
*/
static uint32_t
smp_io_request_cb_get_request_buffer(SCI_IO_REQUEST_HANDLE_T core_request,
uint8_t ** smp_request_buffer)
{
struct ISCI_IO_REQUEST *isci_request = (struct ISCI_IO_REQUEST *)
sci_object_get_association(sci_object_get_association(core_request));
*smp_request_buffer = isci_request->ccb->smpio.smp_request +
sizeof(SMP_REQUEST_HEADER_T);
return (isci_request->ccb->smpio.smp_request_len -
sizeof(SMP_REQUEST_HEADER_T));
}
/**
* @brief This callback method gets the SMP function for an SMP request.
*
* @param[in] core_request This parameter specifies the SCI core's request
* object associated with the SMP request.
*
* @return SMP function for the SMP request.
*/
static uint8_t
smp_io_request_cb_get_function(SCI_IO_REQUEST_HANDLE_T core_request)
{
struct ISCI_IO_REQUEST *isci_request = (struct ISCI_IO_REQUEST *)
sci_object_get_association(sci_object_get_association(core_request));
SMP_REQUEST_HEADER_T *header =
(SMP_REQUEST_HEADER_T *)isci_request->ccb->smpio.smp_request;
return (header->function);
}
/**
* @brief This callback method gets the SMP frame type for an SMP request.
*
* @param[in] core_request This parameter specifies the SCI core's request
* object associated with the SMP request.
*
* @return SMP frame type for the SMP request.
*/
static uint8_t
smp_io_request_cb_get_frame_type(SCI_IO_REQUEST_HANDLE_T core_request)
{
struct ISCI_IO_REQUEST *isci_request = (struct ISCI_IO_REQUEST *)
sci_object_get_association(sci_object_get_association(core_request));
SMP_REQUEST_HEADER_T *header =
(SMP_REQUEST_HEADER_T *)isci_request->ccb->smpio.smp_request;
return (header->smp_frame_type);
}
/**
* @brief This callback method gets the allocated response length for an SMP request.
*
* @param[in] core_request This parameter specifies the SCI core's request
* object associated with the SMP request.
*
* @return Allocated response length for the SMP request.
*/
static uint8_t
smp_io_request_cb_get_allocated_response_length(
SCI_IO_REQUEST_HANDLE_T core_request)
{
struct ISCI_IO_REQUEST *isci_request = (struct ISCI_IO_REQUEST *)
sci_object_get_association(sci_object_get_association(core_request));
SMP_REQUEST_HEADER_T *header =
(SMP_REQUEST_HEADER_T *)isci_request->ccb->smpio.smp_request;
return (header->allocated_response_length);
}
static SCI_STATUS
isci_smp_request_construct(struct ISCI_IO_REQUEST *request)
{
SCI_STATUS status;
SCIC_SMP_PASSTHRU_REQUEST_CALLBACKS_T callbacks;
status = scif_request_construct(request->parent.controller_handle,
request->parent.remote_device_handle, SCI_CONTROLLER_INVALID_IO_TAG,
(void *)request,
(void *)((char*)request + sizeof(struct ISCI_IO_REQUEST)),
&request->sci_object);
if (status == SCI_SUCCESS) {
callbacks.scic_cb_smp_passthru_get_request =
&smp_io_request_cb_get_request_buffer;
callbacks.scic_cb_smp_passthru_get_function =
&smp_io_request_cb_get_function;
callbacks.scic_cb_smp_passthru_get_frame_type =
&smp_io_request_cb_get_frame_type;
callbacks.scic_cb_smp_passthru_get_allocated_response_length =
&smp_io_request_cb_get_allocated_response_length;
/* create the smp passthrough part of the io request */
status = scic_io_request_construct_smp_pass_through(
scif_io_request_get_scic_handle(request->sci_object),
&callbacks);
}
return (status);
}
void
isci_io_request_execute_smp_io(union ccb *ccb,
struct ISCI_CONTROLLER *controller)
{
SCI_STATUS status;
target_id_t target_id = ccb->ccb_h.target_id;
struct ISCI_REQUEST *request;
struct ISCI_IO_REQUEST *io_request;
SCI_REMOTE_DEVICE_HANDLE_T smp_device_handle;
struct ISCI_REMOTE_DEVICE *end_device = controller->remote_device[target_id];
/* SMP commands are sent to an end device, because SMP devices are not
* exposed to the kernel. It is our responsibility to use this method
* to get the SMP device that contains the specified end device. If
* the device is direct-attached, the handle will come back NULL, and
* we'll just fail the SMP_IO with DEV_NOT_THERE.
*/
scif_remote_device_get_containing_device(end_device->sci_object,
&smp_device_handle);
if (smp_device_handle == NULL) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
xpt_done(ccb);
return;
}
if (sci_pool_empty(controller->request_pool)) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
xpt_freeze_simq(controller->sim, 1);
controller->is_frozen = TRUE;
xpt_done(ccb);
return;
}
ASSERT(device->is_resetting == FALSE);
sci_pool_get(controller->request_pool, request);
io_request = (struct ISCI_IO_REQUEST *)request;
io_request->ccb = ccb;
io_request->parent.remote_device_handle = smp_device_handle;
status = isci_smp_request_construct(io_request);
if (status != SCI_SUCCESS) {
isci_io_request_complete(controller->scif_controller_handle,
smp_device_handle, io_request, (SCI_IO_STATUS)status);
return;
}
sci_object_set_association(io_request->sci_object, io_request);
status = (SCI_STATUS) scif_controller_start_io(
controller->scif_controller_handle, smp_device_handle,
io_request->sci_object, SCI_CONTROLLER_INVALID_IO_TAG);
if (status != SCI_SUCCESS) {
isci_io_request_complete(controller->scif_controller_handle,
smp_device_handle, io_request, (SCI_IO_STATUS)status);
return;
}
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY)
callout_reset(&io_request->parent.timer, ccb->ccb_h.timeout,
isci_io_request_timeout, request);
}
#endif