freebsd-nq/share/man/man4/numa.4

153 lines
4.7 KiB
Groff
Raw Normal View History

Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.\" Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd October 22, 2018
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Dt NUMA 4
.Os
.Sh NAME
.Nm NUMA
.Nd Non-Uniform Memory Access
.Sh SYNOPSIS
.Cd options MAXMEMDOM
.Cd options NUMA
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Sh DESCRIPTION
Non-Uniform Memory Access is a computer architecture design which
involves unequal costs between processors, memory and IO devices
in a given system.
.Pp
In a
.Nm
architecture, the latency to access specific memory or IO devices
depends upon which processor the memory or device is attached to.
Accessing memory local to a processor is faster than accessing memory
that is connected to one of the other processors.
.Fx
implements NUMA-aware memory allocation policies.
By default it attempts to ensure that allocations are balanced across
each domain.
Users may override the default domain selection policy using
.Xr cpuset 1 .
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Pp
.Nm
support is enabled when the
.Cd NUMA
option is specified in the kernel configuration file.
Each platform defines the
.Cd MAXMEMDOM
constant, which specifies the maximum number of supported NUMA domains.
This constant may be specified in the kernel configuration file.
.Nm
support can be disabled at boot time by setting the
.Va vm.numa.disabled
tunable to 1.
Other values for this tunable are currently ignored.
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Pp
Thread and process
.Nm
policies are controlled with the
.Xr cpuset_getdomain 2
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
and
.Xr cpuset_setdomain 2
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
syscalls.
The
.Xr cpuset 1
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
tool is available for starting processes with a non-default
policy, or to change the policy of an existing thread or process.
See
.Xr SMP 4
for information about CPU to domain mapping.
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Pp
Systems with non-uniform access to I/O devices may mark those devices
with the local VM domain identifier.
Drivers can find out their local domain information by calling
.Xr bus_get_domain 9 .
.Ss MIB Variables
The operation of
.Nm
is controlled and exposes information with these
.Xr sysctl 8
MIB variables:
.Pp
.Bl -tag -width indent -compact
.It Va vm.ndomains
The number of VM domains which have been detected.
.Pp
.It Va vm.phys_locality
A table indicating the relative cost of each VM domain to each other.
A value of 10 indicates equal cost.
A value of -1 means the locality map is not available or no
locality information is available.
.Pp
.It Va vm.phys_segs
The map of physical memory, grouped by VM domain.
.El
.Sh IMPLEMENTATION NOTES
The current
.Nm
implementation is VM-focused.
The hardware
.Nm
domains are mapped into a contiguous, non-sparse
VM domain space, starting from 0.
Thus, VM domain information (for example, the domain identifier) is not
necessarily the same as is found in the hardware specific information.
Policy information is available in both struct thread and struct proc.
.Sh SEE ALSO
.Xr cpuset 1 ,
.Xr cpuset_getaffinity 2 ,
.Xr cpuset_setaffinity 2 ,
.Xr SMP 4 ,
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Xr bus_get_domain 9
.Sh HISTORY
.Nm
first appeared in
.Fx 9.0
as a first-touch allocation policy with a fail-over to round-robin allocation
and was not configurable.
It was then modified in
.Fx 10.0
to implement a round-robin allocation policy and was also not configurable.
.Pp
The
.Xr numa_getaffinity 2
and
.Xr numa_setaffinity 2
syscalls and the
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Xr numactl 1
tool first appeared in
.Fx 11.0
and were removed in
.Fx 12.0 .
The current implementation appeared in
.Fx 12.0 .
Add an initial NUMA affinity/policy configuration for threads and processes. This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
2015-07-11 15:21:37 +00:00
.Sh AUTHORS
This manual page written by
.An Adrian Chadd Aq Mt adrian@FreeBSD.org .
.Sh NOTES
No statistics are kept to indicate how often
.Nm
allocation policies succeed or fail.