freebsd-nq/sys/arm64/include/vmparam.h

268 lines
8.1 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
2015-03-23 16:04:04 +00:00
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vmparam.h 5.9 (Berkeley) 5/12/91
* from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
* $FreeBSD$
*/
#ifndef _MACHINE_VMPARAM_H_
#define _MACHINE_VMPARAM_H_
/*
* Virtual memory related constants, all in bytes
*/
#ifndef MAXTSIZ
#define MAXTSIZ (1*1024*1024*1024) /* max text size */
#endif
#ifndef DFLDSIZ
#define DFLDSIZ (128*1024*1024) /* initial data size limit */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (1*1024*1024*1024) /* max data size */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (128*1024*1024) /* initial stack size limit */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ (1*1024*1024*1024) /* max stack size */
#endif
#ifndef SGROWSIZ
#define SGROWSIZ (128*1024) /* amount to grow stack */
#endif
/*
* The physical address space is sparsely populated.
*/
#define VM_PHYSSEG_SPARSE
/*
* The number of PHYSSEG entries.
*/
#define VM_PHYSSEG_MAX 64
/*
* Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
* from which physical pages are allocated and VM_FREEPOOL_DIRECT is
* the pool from which physical pages for small UMA objects are
* allocated.
*/
#define VM_NFREEPOOL 2
#define VM_FREEPOOL_DEFAULT 0
#define VM_FREEPOOL_DIRECT 1
/*
* Create one free page lists: VM_FREELIST_DEFAULT is for all physical
* pages.
*/
#define VM_NFREELIST 1
#define VM_FREELIST_DEFAULT 0
/*
* An allocation size of 16MB is supported in order to optimize the
* use of the direct map by UMA. Specifically, a cache line contains
* at most four TTEs, collectively mapping 16MB of physical memory.
* By reducing the number of distinct 16MB "pages" that are used by UMA,
* the physical memory allocator reduces the likelihood of both 4MB
* page TLB misses and cache misses caused by 4MB page TLB misses.
*/
#define VM_NFREEORDER 12
/*
* Enable superpage reservations: 1 level.
*/
#ifndef VM_NRESERVLEVEL
#define VM_NRESERVLEVEL 1
#endif
/*
* Level 0 reservations consist of 512 pages.
*/
#ifndef VM_LEVEL_0_ORDER
#define VM_LEVEL_0_ORDER 9
#endif
/**
* Address space layout.
*
* ARMv8 implements up to a 48 bit virtual address space. The address space is
* split into 2 regions at each end of the 64 bit address space, with an
* out of range "hole" in the middle.
*
* We use the full 48 bits for each region, however the kernel may only use
* a limited range within this space.
*
* Upper region: 0xffffffffffffffff Top of virtual memory
*
* 0xfffffeffffffffff End of DMAP
* 0xfffffa0000000000 Start of DMAP
*
* 0xffff007fffffffff End of KVA
* 0xffff000000000000 Kernel base address & start of KVA
*
* Hole: 0xfffeffffffffffff
* 0x0001000000000000
*
* Lower region: 0x0000ffffffffffff End of user address space
* 0x0000000000000000 Start of user address space
*
* We use the upper region for the kernel, and the lower region for userland.
*
* We define some interesting address constants:
*
* VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
* 64 bit address space, mostly just for convenience.
*
* VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
* mappable kernel virtual address space.
*
* VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
* user address space.
*/
#define VM_MIN_ADDRESS (0x0000000000000000UL)
#define VM_MAX_ADDRESS (0xffffffffffffffffUL)
/* 512 GiB of kernel addresses */
#define VM_MIN_KERNEL_ADDRESS (0xffff000000000000UL)
#define VM_MAX_KERNEL_ADDRESS (0xffff008000000000UL)
/* The address bits that hold a pointer authentication code */
#define PAC_ADDR_MASK (0xff7f000000000000UL)
/* If true addr is in the kernel address space */
#define ADDR_IS_KERNEL(addr) (((addr) & (1ul << 55)) == (1ul << 55))
/* If true addr is in its canonical form (i.e. no TBI, PAC, etc.) */
#define ADDR_IS_CANONICAL(addr) \
(((addr) & 0xffff000000000000UL) == 0 || \
((addr) & 0xffff000000000000UL) == 0xffff000000000000UL)
Add arm64 pointer authentication support Pointer authentication allows userspace to add instructions to insert a Pointer Authentication Code (PAC) into a register based on an address and modifier and check if the PAC is correct. If the check fails it will either return an invalid address or fault to the kernel. As many of these instructions are a NOP when disabled and in earlier revisions of the architecture this can be used, for example, to sign the return address before pushing it to the stack making Return-oriented programming (ROP) attack more difficult on hardware that supports them. The kernel manages five 128 bit signing keys: 2 instruction keys, 2 data keys, and a generic key. The instructions then use one of these when signing the registers. Instructions that use the first four store the PAC in the register being signed, however the instructions that use the generic key store the PAC in a separate register. Currently all userspace threads share all the keys within a process with a new set of userspace keys being generated when executing a new process. This means a forked child will share its keys with its parent until it calls an appropriate exec system call. In the kernel we allow the use of one of the instruction keys, the ia key. This will be used to sign return addresses in function calls. Unlike userspace each kernel thread has its own randomly generated. Thread0 has a static key as does the early code on secondary CPUs. This should be safe as there is minimal user interaction with these threads, however we could generate random keys when the Armv8.5 Random number generation instructions are present. Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D31261
2021-07-08 13:15:55 +00:00
#define ADDR_MAKE_CANONICAL(addr) ({ \
__typeof(addr) _tmp_addr = (addr); \
\
_tmp_addr &= ~0xffff000000000000UL; \
if (ADDR_IS_KERNEL(addr)) \
_tmp_addr |= 0xffff000000000000UL; \
\
_tmp_addr; \
})
/* 95 TiB maximum for the direct map region */
#define DMAP_MIN_ADDRESS (0xffffa00000000000UL)
#define DMAP_MAX_ADDRESS (0xffffff0000000000UL)
#define DMAP_MIN_PHYSADDR (dmap_phys_base)
#define DMAP_MAX_PHYSADDR (dmap_phys_max)
/* True if pa is in the dmap range */
#define PHYS_IN_DMAP(pa) ((pa) >= DMAP_MIN_PHYSADDR && \
(pa) < DMAP_MAX_PHYSADDR)
/* True if va is in the dmap range */
#define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \
(va) < (dmap_max_addr))
#define PMAP_HAS_DMAP 1
#define PHYS_TO_DMAP(pa) \
({ \
KASSERT(PHYS_IN_DMAP(pa), \
("%s: PA out of range, PA: 0x%lx", __func__, \
(vm_paddr_t)(pa))); \
((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS; \
})
#define DMAP_TO_PHYS(va) \
({ \
KASSERT(VIRT_IN_DMAP(va), \
("%s: VA out of range, VA: 0x%lx", __func__, \
(vm_offset_t)(va))); \
((va) - DMAP_MIN_ADDRESS) + dmap_phys_base; \
})
#define VM_MIN_USER_ADDRESS (0x0000000000000000UL)
#define VM_MAX_USER_ADDRESS (0x0001000000000000UL)
#define VM_MINUSER_ADDRESS (VM_MIN_USER_ADDRESS)
#define VM_MAXUSER_ADDRESS (VM_MAX_USER_ADDRESS)
#define KERNBASE (VM_MIN_KERNEL_ADDRESS)
#define SHAREDPAGE (VM_MAXUSER_ADDRESS - PAGE_SIZE)
#define USRSTACK SHAREDPAGE
/*
* How many physical pages per kmem arena virtual page.
*/
#ifndef VM_KMEM_SIZE_SCALE
#define VM_KMEM_SIZE_SCALE (1)
#endif
/*
* Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
* kernel map.
*/
#ifndef VM_KMEM_SIZE_MAX
#define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \
VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
#endif
/*
* Initial pagein size of beginning of executable file.
*/
#ifndef VM_INITIAL_PAGEIN
#define VM_INITIAL_PAGEIN 16
#endif
#define UMA_MD_SMALL_ALLOC
#ifndef LOCORE
extern vm_paddr_t dmap_phys_base;
extern vm_paddr_t dmap_phys_max;
extern vm_offset_t dmap_max_addr;
extern vm_offset_t vm_max_kernel_address;
#endif
#define ZERO_REGION_SIZE (64 * 1024) /* 64KB */
#define DEVMAP_MAX_VADDR VM_MAX_KERNEL_ADDRESS
/*
* The pmap can create non-transparent large page mappings.
*/
#define PMAP_HAS_LARGEPAGES 1
/*
* Need a page dump array for minidump.
*/
#define MINIDUMP_PAGE_TRACKING 1
#endif /* !_MACHINE_VMPARAM_H_ */