2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
2010-05-28 13:45:14 -07:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2018-05-31 10:36:37 -07:00
|
|
|
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
|
2017-04-26 14:55:10 -04:00
|
|
|
* Copyright 2017 Nexenta Systems, Inc.
|
2017-04-13 09:40:00 -07:00
|
|
|
* Copyright (c) 2014 Integros [integros.com]
|
|
|
|
* Copyright 2016 Toomas Soome <tsoome@me.com>
|
2017-05-30 11:39:17 -07:00
|
|
|
* Copyright 2017 Joyent, Inc.
|
2018-09-05 19:33:36 -06:00
|
|
|
* Copyright (c) 2017, Intel Corporation.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/fm/fs/zfs.h>
|
|
|
|
#include <sys/spa.h>
|
|
|
|
#include <sys/spa_impl.h>
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
#include <sys/bpobj.h>
|
2008-11-20 12:01:55 -08:00
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/dmu_tx.h>
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
#include <sys/dsl_dir.h>
|
2008-11-20 12:01:55 -08:00
|
|
|
#include <sys/vdev_impl.h>
|
|
|
|
#include <sys/uberblock_impl.h>
|
|
|
|
#include <sys/metaslab.h>
|
|
|
|
#include <sys/metaslab_impl.h>
|
|
|
|
#include <sys/space_map.h>
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
#include <sys/space_reftree.h>
|
2008-11-20 12:01:55 -08:00
|
|
|
#include <sys/zio.h>
|
|
|
|
#include <sys/zap.h>
|
|
|
|
#include <sys/fs/zfs.h>
|
2008-12-03 12:09:06 -08:00
|
|
|
#include <sys/arc.h>
|
2009-07-02 15:44:48 -07:00
|
|
|
#include <sys/zil.h>
|
2010-05-28 13:45:14 -07:00
|
|
|
#include <sys/dsl_scan.h>
|
2016-07-22 11:52:49 -04:00
|
|
|
#include <sys/abd.h>
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
#include <sys/vdev_initialize.h>
|
2019-03-29 09:13:20 -07:00
|
|
|
#include <sys/vdev_trim.h>
|
2012-12-17 10:33:57 +09:00
|
|
|
#include <sys/zvol.h>
|
2016-10-19 12:55:59 -07:00
|
|
|
#include <sys/zfs_ratelimit.h>
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2019-01-25 16:38:27 -08:00
|
|
|
/* default target for number of metaslabs per top-level vdev */
|
|
|
|
int zfs_vdev_default_ms_count = 200;
|
2016-12-16 14:11:29 -08:00
|
|
|
|
2017-08-11 15:28:17 -06:00
|
|
|
/* minimum number of metaslabs per top-level vdev */
|
2019-01-25 16:38:27 -08:00
|
|
|
int zfs_vdev_min_ms_count = 16;
|
2016-12-16 14:11:29 -08:00
|
|
|
|
2017-08-11 15:28:17 -06:00
|
|
|
/* practical upper limit of total metaslabs per top-level vdev */
|
2019-01-25 16:38:27 -08:00
|
|
|
int zfs_vdev_ms_count_limit = 1ULL << 17;
|
2017-08-11 15:28:17 -06:00
|
|
|
|
|
|
|
/* lower limit for metaslab size (512M) */
|
2019-01-25 16:38:27 -08:00
|
|
|
int zfs_vdev_default_ms_shift = 29;
|
2016-12-16 14:11:29 -08:00
|
|
|
|
2019-01-25 16:38:27 -08:00
|
|
|
/* upper limit for metaslab size (16G) */
|
|
|
|
int zfs_vdev_max_ms_shift = 34;
|
2017-08-11 15:28:17 -06:00
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
int vdev_validate_skip = B_FALSE;
|
|
|
|
|
2014-09-13 16:13:00 +02:00
|
|
|
/*
|
2016-12-16 14:11:29 -08:00
|
|
|
* Since the DTL space map of a vdev is not expected to have a lot of
|
|
|
|
* entries, we default its block size to 4K.
|
2014-09-13 16:13:00 +02:00
|
|
|
*/
|
2016-12-16 14:11:29 -08:00
|
|
|
int vdev_dtl_sm_blksz = (1 << 12);
|
2014-09-13 16:13:00 +02:00
|
|
|
|
2018-03-04 17:34:51 -08:00
|
|
|
/*
|
2018-11-08 16:47:24 -08:00
|
|
|
* Rate limit slow IO (delay) events to this many per second.
|
2018-03-04 17:34:51 -08:00
|
|
|
*/
|
2018-11-08 16:47:24 -08:00
|
|
|
unsigned int zfs_slow_io_events_per_second = 20;
|
2018-03-04 17:34:51 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Rate limit checksum events after this many checksum errors per second.
|
|
|
|
*/
|
2018-11-08 16:47:24 -08:00
|
|
|
unsigned int zfs_checksum_events_per_second = 20;
|
2018-03-04 17:34:51 -08:00
|
|
|
|
2018-03-13 12:43:14 -05:00
|
|
|
/*
|
|
|
|
* Ignore errors during scrub/resilver. Allows to work around resilver
|
|
|
|
* upon import when there are pool errors.
|
|
|
|
*/
|
|
|
|
int zfs_scan_ignore_errors = 0;
|
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
/*
|
|
|
|
* vdev-wide space maps that have lots of entries written to them at
|
|
|
|
* the end of each transaction can benefit from a higher I/O bandwidth
|
|
|
|
* (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
|
|
|
|
*/
|
|
|
|
int vdev_standard_sm_blksz = (1 << 17);
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
|
2018-10-23 09:44:37 -07:00
|
|
|
/*
|
|
|
|
* Tunable parameter for debugging or performance analysis. Setting this
|
|
|
|
* will cause pool corruption on power loss if a volatile out-of-order
|
|
|
|
* write cache is enabled.
|
|
|
|
*/
|
|
|
|
int zfs_nocacheflush = 0;
|
|
|
|
|
2016-03-10 10:16:02 -05:00
|
|
|
/*PRINTFLIKE2*/
|
|
|
|
void
|
|
|
|
vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
|
|
|
|
{
|
|
|
|
va_list adx;
|
|
|
|
char buf[256];
|
|
|
|
|
|
|
|
va_start(adx, fmt);
|
|
|
|
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
|
|
|
|
va_end(adx);
|
|
|
|
|
|
|
|
if (vd->vdev_path != NULL) {
|
|
|
|
zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
|
|
|
|
vd->vdev_path, buf);
|
|
|
|
} else {
|
|
|
|
zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
|
|
|
|
vd->vdev_ops->vdev_op_type,
|
|
|
|
(u_longlong_t)vd->vdev_id,
|
|
|
|
(u_longlong_t)vd->vdev_guid, buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
void
|
|
|
|
vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
|
|
|
|
{
|
|
|
|
char state[20];
|
|
|
|
|
|
|
|
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
|
|
|
|
zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
|
|
|
|
vd->vdev_ops->vdev_op_type);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (vd->vdev_state) {
|
|
|
|
case VDEV_STATE_UNKNOWN:
|
|
|
|
(void) snprintf(state, sizeof (state), "unknown");
|
|
|
|
break;
|
|
|
|
case VDEV_STATE_CLOSED:
|
|
|
|
(void) snprintf(state, sizeof (state), "closed");
|
|
|
|
break;
|
|
|
|
case VDEV_STATE_OFFLINE:
|
|
|
|
(void) snprintf(state, sizeof (state), "offline");
|
|
|
|
break;
|
|
|
|
case VDEV_STATE_REMOVED:
|
|
|
|
(void) snprintf(state, sizeof (state), "removed");
|
|
|
|
break;
|
|
|
|
case VDEV_STATE_CANT_OPEN:
|
|
|
|
(void) snprintf(state, sizeof (state), "can't open");
|
|
|
|
break;
|
|
|
|
case VDEV_STATE_FAULTED:
|
|
|
|
(void) snprintf(state, sizeof (state), "faulted");
|
|
|
|
break;
|
|
|
|
case VDEV_STATE_DEGRADED:
|
|
|
|
(void) snprintf(state, sizeof (state), "degraded");
|
|
|
|
break;
|
|
|
|
case VDEV_STATE_HEALTHY:
|
|
|
|
(void) snprintf(state, sizeof (state), "healthy");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
(void) snprintf(state, sizeof (state), "<state %u>",
|
|
|
|
(uint_t)vd->vdev_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
|
2018-04-16 10:08:13 +03:00
|
|
|
"", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
vd->vdev_islog ? " (log)" : "",
|
|
|
|
(u_longlong_t)vd->vdev_guid,
|
|
|
|
vd->vdev_path ? vd->vdev_path : "N/A", state);
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++)
|
|
|
|
vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Virtual device management.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static vdev_ops_t *vdev_ops_table[] = {
|
|
|
|
&vdev_root_ops,
|
|
|
|
&vdev_raidz_ops,
|
|
|
|
&vdev_mirror_ops,
|
|
|
|
&vdev_replacing_ops,
|
|
|
|
&vdev_spare_ops,
|
|
|
|
&vdev_disk_ops,
|
|
|
|
&vdev_file_ops,
|
|
|
|
&vdev_missing_ops,
|
2010-05-28 13:45:14 -07:00
|
|
|
&vdev_hole_ops,
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
&vdev_indirect_ops,
|
2008-11-20 12:01:55 -08:00
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Given a vdev type, return the appropriate ops vector.
|
|
|
|
*/
|
|
|
|
static vdev_ops_t *
|
|
|
|
vdev_getops(const char *type)
|
|
|
|
{
|
|
|
|
vdev_ops_t *ops, **opspp;
|
|
|
|
|
|
|
|
for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
|
|
|
|
if (strcmp(ops->vdev_op_type, type) == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
return (ops);
|
|
|
|
}
|
|
|
|
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
/* ARGSUSED */
|
|
|
|
void
|
|
|
|
vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
|
|
|
|
{
|
|
|
|
res->rs_start = in->rs_start;
|
|
|
|
res->rs_end = in->rs_end;
|
|
|
|
}
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
/*
|
|
|
|
* Derive the enumerated alloction bias from string input.
|
|
|
|
* String origin is either the per-vdev zap or zpool(1M).
|
|
|
|
*/
|
|
|
|
static vdev_alloc_bias_t
|
|
|
|
vdev_derive_alloc_bias(const char *bias)
|
|
|
|
{
|
|
|
|
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
|
|
|
|
|
|
|
|
if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
|
|
|
|
alloc_bias = VDEV_BIAS_LOG;
|
|
|
|
else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
|
|
|
|
alloc_bias = VDEV_BIAS_SPECIAL;
|
|
|
|
else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
|
|
|
|
alloc_bias = VDEV_BIAS_DEDUP;
|
|
|
|
|
|
|
|
return (alloc_bias);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Default asize function: return the MAX of psize with the asize of
|
|
|
|
* all children. This is what's used by anything other than RAID-Z.
|
|
|
|
*/
|
|
|
|
uint64_t
|
|
|
|
vdev_default_asize(vdev_t *vd, uint64_t psize)
|
|
|
|
{
|
|
|
|
uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
|
|
|
|
uint64_t csize;
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2008-11-20 12:01:55 -08:00
|
|
|
csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
|
|
|
|
asize = MAX(asize, csize);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (asize);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2009-07-02 15:44:48 -07:00
|
|
|
* Get the minimum allocatable size. We define the allocatable size as
|
|
|
|
* the vdev's asize rounded to the nearest metaslab. This allows us to
|
|
|
|
* replace or attach devices which don't have the same physical size but
|
|
|
|
* can still satisfy the same number of allocations.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
|
|
|
uint64_t
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_get_min_asize(vdev_t *vd)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_t *pvd = vd->vdev_parent;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
/*
|
2012-01-23 18:43:32 -08:00
|
|
|
* If our parent is NULL (inactive spare or cache) or is the root,
|
2009-07-02 15:44:48 -07:00
|
|
|
* just return our own asize.
|
|
|
|
*/
|
|
|
|
if (pvd == NULL)
|
|
|
|
return (vd->vdev_asize);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
2009-07-02 15:44:48 -07:00
|
|
|
* The top-level vdev just returns the allocatable size rounded
|
|
|
|
* to the nearest metaslab.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2009-07-02 15:44:48 -07:00
|
|
|
if (vd == vd->vdev_top)
|
|
|
|
return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
/*
|
|
|
|
* The allocatable space for a raidz vdev is N * sizeof(smallest child),
|
|
|
|
* so each child must provide at least 1/Nth of its asize.
|
|
|
|
*/
|
|
|
|
if (pvd->vdev_ops == &vdev_raidz_ops)
|
2017-04-03 16:38:51 -07:00
|
|
|
return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
|
|
|
|
pvd->vdev_children);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
return (pvd->vdev_min_asize);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_set_min_asize(vdev_t *vd)
|
|
|
|
{
|
|
|
|
vd->vdev_min_asize = vdev_get_min_asize(vd);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_set_min_asize(vd->vdev_child[c]);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
vdev_t *
|
|
|
|
vdev_lookup_top(spa_t *spa, uint64_t vdev)
|
|
|
|
{
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vdev < rvd->vdev_children) {
|
|
|
|
ASSERT(rvd->vdev_child[vdev] != NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
return (rvd->vdev_child[vdev]);
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
vdev_t *
|
|
|
|
vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
|
|
|
|
{
|
|
|
|
vdev_t *mvd;
|
|
|
|
|
|
|
|
if (vd->vdev_guid == guid)
|
|
|
|
return (vd);
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2008-11-20 12:01:55 -08:00
|
|
|
if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
|
|
|
|
NULL)
|
|
|
|
return (mvd);
|
|
|
|
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
|
2015-05-06 09:07:55 -07:00
|
|
|
static int
|
|
|
|
vdev_count_leaves_impl(vdev_t *vd)
|
|
|
|
{
|
|
|
|
int n = 0;
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
|
|
return (1);
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2015-05-06 09:07:55 -07:00
|
|
|
n += vdev_count_leaves_impl(vd->vdev_child[c]);
|
|
|
|
|
|
|
|
return (n);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
vdev_count_leaves(spa_t *spa)
|
|
|
|
{
|
2018-03-08 15:39:07 -08:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
rc = vdev_count_leaves_impl(spa->spa_root_vdev);
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
|
|
|
|
return (rc);
|
2015-05-06 09:07:55 -07:00
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
|
|
|
vdev_add_child(vdev_t *pvd, vdev_t *cvd)
|
|
|
|
{
|
|
|
|
size_t oldsize, newsize;
|
|
|
|
uint64_t id = cvd->vdev_id;
|
|
|
|
vdev_t **newchild;
|
|
|
|
|
2015-06-11 10:17:59 -07:00
|
|
|
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
ASSERT(cvd->vdev_parent == NULL);
|
|
|
|
|
|
|
|
cvd->vdev_parent = pvd;
|
|
|
|
|
|
|
|
if (pvd == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
|
|
|
|
|
|
|
|
oldsize = pvd->vdev_children * sizeof (vdev_t *);
|
|
|
|
pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
|
|
|
|
newsize = pvd->vdev_children * sizeof (vdev_t *);
|
|
|
|
|
2014-11-20 19:09:39 -05:00
|
|
|
newchild = kmem_alloc(newsize, KM_SLEEP);
|
2008-11-20 12:01:55 -08:00
|
|
|
if (pvd->vdev_child != NULL) {
|
|
|
|
bcopy(pvd->vdev_child, newchild, oldsize);
|
|
|
|
kmem_free(pvd->vdev_child, oldsize);
|
|
|
|
}
|
|
|
|
|
|
|
|
pvd->vdev_child = newchild;
|
|
|
|
pvd->vdev_child[id] = cvd;
|
|
|
|
|
|
|
|
cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
|
|
|
|
ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Walk up all ancestors to update guid sum.
|
|
|
|
*/
|
|
|
|
for (; pvd != NULL; pvd = pvd->vdev_parent)
|
|
|
|
pvd->vdev_guid_sum += cvd->vdev_guid_sum;
|
2019-03-12 10:37:06 -07:00
|
|
|
|
|
|
|
if (cvd->vdev_ops->vdev_op_leaf) {
|
|
|
|
list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
|
|
|
|
cvd->vdev_spa->spa_leaf_list_gen++;
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
|
|
|
|
{
|
|
|
|
int c;
|
|
|
|
uint_t id = cvd->vdev_id;
|
|
|
|
|
|
|
|
ASSERT(cvd->vdev_parent == pvd);
|
|
|
|
|
|
|
|
if (pvd == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ASSERT(id < pvd->vdev_children);
|
|
|
|
ASSERT(pvd->vdev_child[id] == cvd);
|
|
|
|
|
|
|
|
pvd->vdev_child[id] = NULL;
|
|
|
|
cvd->vdev_parent = NULL;
|
|
|
|
|
|
|
|
for (c = 0; c < pvd->vdev_children; c++)
|
|
|
|
if (pvd->vdev_child[c])
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (c == pvd->vdev_children) {
|
|
|
|
kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
|
|
|
|
pvd->vdev_child = NULL;
|
|
|
|
pvd->vdev_children = 0;
|
|
|
|
}
|
|
|
|
|
2019-03-12 10:37:06 -07:00
|
|
|
if (cvd->vdev_ops->vdev_op_leaf) {
|
|
|
|
spa_t *spa = cvd->vdev_spa;
|
|
|
|
list_remove(&spa->spa_leaf_list, cvd);
|
|
|
|
spa->spa_leaf_list_gen++;
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Walk up all ancestors to update guid sum.
|
|
|
|
*/
|
|
|
|
for (; pvd != NULL; pvd = pvd->vdev_parent)
|
|
|
|
pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove any holes in the child array.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_compact_children(vdev_t *pvd)
|
|
|
|
{
|
|
|
|
vdev_t **newchild, *cvd;
|
|
|
|
int oldc = pvd->vdev_children;
|
2009-07-02 15:44:48 -07:00
|
|
|
int newc;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (oldc == 0)
|
|
|
|
return;
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = newc = 0; c < oldc; c++)
|
2008-11-20 12:01:55 -08:00
|
|
|
if (pvd->vdev_child[c])
|
|
|
|
newc++;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (newc > 0) {
|
|
|
|
newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
for (int c = newc = 0; c < oldc; c++) {
|
|
|
|
if ((cvd = pvd->vdev_child[c]) != NULL) {
|
|
|
|
newchild[newc] = cvd;
|
|
|
|
cvd->vdev_id = newc++;
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
} else {
|
|
|
|
newchild = NULL;
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
|
|
|
|
pvd->vdev_child = newchild;
|
|
|
|
pvd->vdev_children = newc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate and minimally initialize a vdev_t.
|
|
|
|
*/
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_t *
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
|
|
|
|
{
|
|
|
|
vdev_t *vd;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vdev_indirect_config_t *vic;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2014-11-20 19:09:39 -05:00
|
|
|
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vic = &vd->vdev_indirect_config;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (spa->spa_root_vdev == NULL) {
|
|
|
|
ASSERT(ops == &vdev_root_ops);
|
|
|
|
spa->spa_root_vdev = vd;
|
2011-11-11 14:07:54 -08:00
|
|
|
spa->spa_load_guid = spa_generate_guid(NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
if (guid == 0 && ops != &vdev_hole_ops) {
|
2008-11-20 12:01:55 -08:00
|
|
|
if (spa->spa_root_vdev == vd) {
|
|
|
|
/*
|
|
|
|
* The root vdev's guid will also be the pool guid,
|
|
|
|
* which must be unique among all pools.
|
|
|
|
*/
|
2010-05-28 13:45:14 -07:00
|
|
|
guid = spa_generate_guid(NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Any other vdev's guid must be unique within the pool.
|
|
|
|
*/
|
2010-05-28 13:45:14 -07:00
|
|
|
guid = spa_generate_guid(spa);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
ASSERT(!spa_guid_exists(spa_guid(spa), guid));
|
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_spa = spa;
|
|
|
|
vd->vdev_id = id;
|
|
|
|
vd->vdev_guid = guid;
|
|
|
|
vd->vdev_guid_sum = guid;
|
|
|
|
vd->vdev_ops = ops;
|
|
|
|
vd->vdev_state = VDEV_STATE_CLOSED;
|
2010-05-28 13:45:14 -07:00
|
|
|
vd->vdev_ishole = (ops == &vdev_hole_ops);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vic->vic_prev_indirect_vdev = UINT64_MAX;
|
|
|
|
|
|
|
|
rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
|
|
|
|
mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2016-10-19 12:55:59 -07:00
|
|
|
/*
|
|
|
|
* Initialize rate limit structs for events. We rate limit ZIO delay
|
|
|
|
* and checksum events so that we don't overwhelm ZED with thousands
|
|
|
|
* of events when a disk is acting up.
|
|
|
|
*/
|
2018-11-08 16:47:24 -08:00
|
|
|
zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
|
|
|
|
1);
|
|
|
|
zfs_ratelimit_init(&vd->vdev_checksum_rl,
|
|
|
|
&zfs_checksum_events_per_second, 1);
|
2016-10-19 12:55:59 -07:00
|
|
|
|
2010-08-26 10:26:44 -07:00
|
|
|
list_link_init(&vd->vdev_config_dirty_node);
|
|
|
|
list_link_init(&vd->vdev_state_dirty_node);
|
2018-12-19 09:20:39 -07:00
|
|
|
list_link_init(&vd->vdev_initialize_node);
|
2019-03-12 10:37:06 -07:00
|
|
|
list_link_init(&vd->vdev_leaf_node);
|
2019-03-29 09:13:20 -07:00
|
|
|
list_link_init(&vd->vdev_trim_node);
|
Identify locks flagged by lockdep
When running a kernel with CONFIG_LOCKDEP=y, lockdep reports possible
recursive locking in some cases and possible circular locking dependency
in others, within the SPL and ZFS modules.
This patch uses a mutex type defined in SPL, MUTEX_NOLOCKDEP, to mark
such mutexes when they are initialized. This mutex type causes
attempts to take or release those locks to be wrapped in lockdep_off()
and lockdep_on() calls to silence the dependency checker and allow the
use of lock_stats to examine contention.
For RW locks, it uses an analogous lock type, RW_NOLOCKDEP.
The goal is that these locks are ultimately changed back to type
MUTEX_DEFAULT or RW_DEFAULT, after the locks are annotated to reflect
their relationship (e.g. z_name_lock below) or any real problem with the
lock dependencies are fixed.
Some of the affected locks are:
tc_open_lock:
=============
This is an array of locks, all with same name, which txg_quiesce must
take all of in order to move txg to next state. All default to the same
lockdep class, and so to lockdep appears recursive.
zp->z_name_lock:
================
In zfs_rmdir,
dzp = znode for the directory (input to zfs_dirent_lock)
zp = znode for the entry being removed (output of zfs_dirent_lock)
zfs_rmdir()->zfs_dirent_lock() takes z_name_lock in dzp
zfs_rmdir() takes z_name_lock in zp
Since both dzp and zp are type znode_t, the locks have the same default
class, and lockdep considers it a possible recursive lock attempt.
l->l_rwlock:
============
zap_expand_leaf() sometimes creates two new zap leaf structures, via
these call paths:
zap_deref_leaf()->zap_get_leaf_byblk()->zap_leaf_open()
zap_expand_leaf()->zap_create_leaf()->zap_expand_leaf()->zap_create_leaf()
Because both zap_leaf_open() and zap_create_leaf() initialize
l->l_rwlock in their (separate) leaf structures, the lockdep class is
the same, and the linux kernel believes these might both be the same
lock, and emits a possible recursive lock warning.
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3895
2015-10-15 13:08:27 -07:00
|
|
|
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
|
2008-12-03 12:09:06 -08:00
|
|
|
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
|
2017-11-15 20:27:01 -05:00
|
|
|
mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
|
2019-03-29 09:13:20 -07:00
|
|
|
mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
|
2016-10-19 12:55:59 -07:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int t = 0; t < DTL_TYPES; t++) {
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
|
2009-01-15 13:59:39 -08:00
|
|
|
}
|
2017-04-24 09:34:36 -07:00
|
|
|
txg_list_create(&vd->vdev_ms_list, spa,
|
2008-11-20 12:01:55 -08:00
|
|
|
offsetof(struct metaslab, ms_txg_node));
|
2017-04-24 09:34:36 -07:00
|
|
|
txg_list_create(&vd->vdev_dtl_list, spa,
|
2008-11-20 12:01:55 -08:00
|
|
|
offsetof(struct vdev, vdev_dtl_node));
|
|
|
|
vd->vdev_stat.vs_timestamp = gethrtime();
|
|
|
|
vdev_queue_init(vd);
|
|
|
|
vdev_cache_init(vd);
|
|
|
|
|
|
|
|
return (vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a new vdev. The 'alloctype' is used to control whether we are
|
|
|
|
* creating a new vdev or loading an existing one - the behavior is slightly
|
|
|
|
* different for each case.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
|
|
|
|
int alloctype)
|
|
|
|
{
|
|
|
|
vdev_ops_t *ops;
|
|
|
|
char *type;
|
|
|
|
uint64_t guid = 0, islog, nparity;
|
|
|
|
vdev_t *vd;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vdev_indirect_config_t *vic;
|
2017-05-19 12:30:16 -07:00
|
|
|
char *tmp = NULL;
|
|
|
|
int rc;
|
2018-09-05 19:33:36 -06:00
|
|
|
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
|
|
|
|
boolean_t top_level = (parent && !parent->vdev_parent);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if ((ops = vdev_getops(type)) == NULL)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If this is a load, get the vdev guid from the nvlist.
|
|
|
|
* Otherwise, vdev_alloc_common() will generate one for us.
|
|
|
|
*/
|
|
|
|
if (alloctype == VDEV_ALLOC_LOAD) {
|
|
|
|
uint64_t label_id;
|
|
|
|
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
|
|
|
|
label_id != id)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
} else if (alloctype == VDEV_ALLOC_SPARE) {
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
} else if (alloctype == VDEV_ALLOC_L2CACHE) {
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2009-07-02 15:44:48 -07:00
|
|
|
} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The first allocated vdev must be of type 'root'.
|
|
|
|
*/
|
|
|
|
if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine whether we're a log vdev.
|
|
|
|
*/
|
|
|
|
islog = 0;
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
|
|
|
|
if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2010-05-28 13:45:14 -07:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Set the nparity property for RAID-Z vdevs.
|
|
|
|
*/
|
|
|
|
nparity = -1ULL;
|
|
|
|
if (ops == &vdev_raidz_ops) {
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
|
|
|
|
&nparity) == 0) {
|
2010-05-28 13:45:14 -07:00
|
|
|
if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2009-08-18 11:43:27 -07:00
|
|
|
* Previous versions could only support 1 or 2 parity
|
|
|
|
* device.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2009-08-18 11:43:27 -07:00
|
|
|
if (nparity > 1 &&
|
|
|
|
spa_version(spa) < SPA_VERSION_RAIDZ2)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2009-08-18 11:43:27 -07:00
|
|
|
if (nparity > 2 &&
|
|
|
|
spa_version(spa) < SPA_VERSION_RAIDZ3)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2008-11-20 12:01:55 -08:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We require the parity to be specified for SPAs that
|
|
|
|
* support multiple parity levels.
|
|
|
|
*/
|
2009-08-18 11:43:27 -07:00
|
|
|
if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Otherwise, we default to 1 parity device for RAID-Z.
|
|
|
|
*/
|
|
|
|
nparity = 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
nparity = 0;
|
|
|
|
}
|
|
|
|
ASSERT(nparity != -1ULL);
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
/*
|
|
|
|
* If creating a top-level vdev, check for allocation classes input
|
|
|
|
*/
|
|
|
|
if (top_level && alloctype == VDEV_ALLOC_ADD) {
|
|
|
|
char *bias;
|
|
|
|
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
|
|
|
|
&bias) == 0) {
|
|
|
|
alloc_bias = vdev_derive_alloc_bias(bias);
|
|
|
|
|
|
|
|
/* spa_vdev_add() expects feature to be enabled */
|
|
|
|
if (spa->spa_load_state != SPA_LOAD_CREATE &&
|
|
|
|
!spa_feature_is_enabled(spa,
|
|
|
|
SPA_FEATURE_ALLOCATION_CLASSES)) {
|
|
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
vd = vdev_alloc_common(spa, id, guid, ops);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vic = &vd->vdev_indirect_config;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
vd->vdev_islog = islog;
|
|
|
|
vd->vdev_nparity = nparity;
|
2018-09-05 19:33:36 -06:00
|
|
|
if (top_level && alloc_bias != VDEV_BIAS_NONE)
|
|
|
|
vd->vdev_alloc_bias = alloc_bias;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
|
|
|
|
vd->vdev_path = spa_strdup(vd->vdev_path);
|
2017-05-19 12:30:16 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
|
|
|
|
* fault on a vdev and want it to persist across imports (like with
|
|
|
|
* zpool offline -f).
|
|
|
|
*/
|
|
|
|
rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
|
|
|
|
if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
|
|
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
|
|
|
|
vd->vdev_faulted = 1;
|
|
|
|
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
|
|
|
|
vd->vdev_devid = spa_strdup(vd->vdev_devid);
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
|
|
|
|
&vd->vdev_physpath) == 0)
|
|
|
|
vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
|
2016-10-24 10:45:59 -07:00
|
|
|
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
|
|
&vd->vdev_enc_sysfs_path) == 0)
|
|
|
|
vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
|
|
|
|
vd->vdev_fru = spa_strdup(vd->vdev_fru);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the whole_disk property. If it's not specified, leave the value
|
|
|
|
* as -1.
|
|
|
|
*/
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
|
|
|
&vd->vdev_wholedisk) != 0)
|
|
|
|
vd->vdev_wholedisk = -1ULL;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
ASSERT0(vic->vic_mapping_object);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
|
|
|
|
&vic->vic_mapping_object);
|
|
|
|
ASSERT0(vic->vic_births_object);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
|
|
|
|
&vic->vic_births_object);
|
|
|
|
ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
|
|
|
|
&vic->vic_prev_indirect_vdev);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Look for the 'not present' flag. This will only be set if the device
|
|
|
|
* was not present at the time of import.
|
|
|
|
*/
|
2009-07-02 15:44:48 -07:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
|
|
|
|
&vd->vdev_not_present);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the alignment requirement.
|
|
|
|
*/
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* Retrieve the vdev creation time.
|
|
|
|
*/
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
|
|
|
|
&vd->vdev_crtxg);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* If we're a top-level vdev, try to load the allocation parameters.
|
|
|
|
*/
|
2018-09-05 19:33:36 -06:00
|
|
|
if (top_level &&
|
2010-05-28 13:45:14 -07:00
|
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
|
2008-11-20 12:01:55 -08:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
|
|
&vd->vdev_ms_array);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
|
|
&vd->vdev_ms_shift);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
|
|
|
|
&vd->vdev_asize);
|
2010-05-28 13:45:14 -07:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
|
|
|
|
&vd->vdev_removing);
|
2016-04-11 16:16:57 -04:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
|
|
|
|
&vd->vdev_top_zap);
|
|
|
|
} else {
|
|
|
|
ASSERT0(vd->vdev_top_zap);
|
2010-05-28 13:45:14 -07:00
|
|
|
}
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
|
2010-05-28 13:45:14 -07:00
|
|
|
ASSERT(alloctype == VDEV_ALLOC_LOAD ||
|
|
|
|
alloctype == VDEV_ALLOC_ADD ||
|
|
|
|
alloctype == VDEV_ALLOC_SPLIT ||
|
|
|
|
alloctype == VDEV_ALLOC_ROOTPOOL);
|
2018-09-05 19:33:36 -06:00
|
|
|
/* Note: metaslab_group_create() is now deferred */
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2016-04-11 16:16:57 -04:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
|
|
|
|
(void) nvlist_lookup_uint64(nv,
|
|
|
|
ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
|
|
|
|
} else {
|
|
|
|
ASSERT0(vd->vdev_leaf_zap);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* If we're a leaf vdev, try to load the DTL object and other state.
|
|
|
|
*/
|
2016-04-11 16:16:57 -04:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
2009-07-02 15:44:48 -07:00
|
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
|
|
|
|
alloctype == VDEV_ALLOC_ROOTPOOL)) {
|
2008-12-03 12:09:06 -08:00
|
|
|
if (alloctype == VDEV_ALLOC_LOAD) {
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
&vd->vdev_dtl_object);
|
2008-12-03 12:09:06 -08:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
|
|
|
|
&vd->vdev_unspare);
|
|
|
|
}
|
2009-07-02 15:44:48 -07:00
|
|
|
|
|
|
|
if (alloctype == VDEV_ALLOC_ROOTPOOL) {
|
|
|
|
uint64_t spare = 0;
|
|
|
|
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
|
|
|
|
&spare) == 0 && spare)
|
|
|
|
spa_spare_add(vd);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
|
|
|
|
&vd->vdev_offline);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2013-08-07 12:16:22 -08:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
|
|
|
|
&vd->vdev_resilver_txg);
|
2010-08-26 14:24:34 -07:00
|
|
|
|
2018-10-19 00:06:18 -04:00
|
|
|
if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
|
|
|
|
vdev_set_deferred_resilver(spa, vd);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2017-05-19 12:30:16 -07:00
|
|
|
* In general, when importing a pool we want to ignore the
|
|
|
|
* persistent fault state, as the diagnosis made on another
|
|
|
|
* system may not be valid in the current context. The only
|
|
|
|
* exception is if we forced a vdev to a persistently faulted
|
|
|
|
* state with 'zpool offline -f'. The persistent fault will
|
|
|
|
* remain across imports until cleared.
|
|
|
|
*
|
|
|
|
* Local vdevs will remain in the faulted state.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2017-05-19 12:30:16 -07:00
|
|
|
if (spa_load_state(spa) == SPA_LOAD_OPEN ||
|
|
|
|
spa_load_state(spa) == SPA_LOAD_IMPORT) {
|
2008-11-20 12:01:55 -08:00
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
|
|
|
|
&vd->vdev_faulted);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
|
|
|
|
&vd->vdev_degraded);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
|
|
|
|
&vd->vdev_removed);
|
2010-05-28 13:45:14 -07:00
|
|
|
|
|
|
|
if (vd->vdev_faulted || vd->vdev_degraded) {
|
|
|
|
char *aux;
|
|
|
|
|
|
|
|
vd->vdev_label_aux =
|
|
|
|
VDEV_AUX_ERR_EXCEEDED;
|
|
|
|
if (nvlist_lookup_string(nv,
|
|
|
|
ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
|
|
|
|
strcmp(aux, "external") == 0)
|
|
|
|
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
|
2018-05-03 18:23:15 -05:00
|
|
|
else
|
|
|
|
vd->vdev_faulted = 0ULL;
|
2010-05-28 13:45:14 -07:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add ourselves to the parent's list of children.
|
|
|
|
*/
|
|
|
|
vdev_add_child(parent, vd);
|
|
|
|
|
|
|
|
*vdp = vd;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_free(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
2019-03-29 09:13:20 -07:00
|
|
|
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
2019-03-29 09:13:20 -07:00
|
|
|
ASSERT3P(vd->vdev_trim_thread, ==, NULL);
|
|
|
|
ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2017-11-15 20:27:01 -05:00
|
|
|
/*
|
|
|
|
* Scan queues are normally destroyed at the end of a scan. If the
|
|
|
|
* queue exists here, that implies the vdev is being removed while
|
|
|
|
* the scan is still running.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_scan_io_queue != NULL) {
|
|
|
|
mutex_enter(&vd->vdev_scan_io_queue_lock);
|
|
|
|
dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
|
|
|
|
vd->vdev_scan_io_queue = NULL;
|
|
|
|
mutex_exit(&vd->vdev_scan_io_queue_lock);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* vdev_free() implies closing the vdev first. This is simpler than
|
|
|
|
* trying to ensure complicated semantics for all callers.
|
|
|
|
*/
|
|
|
|
vdev_close(vd);
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
|
2010-05-28 13:45:14 -07:00
|
|
|
ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Free all children.
|
|
|
|
*/
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_free(vd->vdev_child[c]);
|
|
|
|
|
|
|
|
ASSERT(vd->vdev_child == NULL);
|
|
|
|
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Discard allocation state.
|
|
|
|
*/
|
2010-05-28 13:45:14 -07:00
|
|
|
if (vd->vdev_mg != NULL) {
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_metaslab_fini(vd);
|
2010-05-28 13:45:14 -07:00
|
|
|
metaslab_group_destroy(vd->vdev_mg);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2013-05-10 14:17:03 -07:00
|
|
|
ASSERT0(vd->vdev_stat.vs_space);
|
|
|
|
ASSERT0(vd->vdev_stat.vs_dspace);
|
|
|
|
ASSERT0(vd->vdev_stat.vs_alloc);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove this vdev from its parent's child list.
|
|
|
|
*/
|
|
|
|
vdev_remove_child(vd->vdev_parent, vd);
|
|
|
|
|
|
|
|
ASSERT(vd->vdev_parent == NULL);
|
2019-03-12 10:37:06 -07:00
|
|
|
ASSERT(!list_link_active(&vd->vdev_leaf_node));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Clean up vdev structure.
|
|
|
|
*/
|
|
|
|
vdev_queue_fini(vd);
|
|
|
|
vdev_cache_fini(vd);
|
|
|
|
|
|
|
|
if (vd->vdev_path)
|
|
|
|
spa_strfree(vd->vdev_path);
|
|
|
|
if (vd->vdev_devid)
|
|
|
|
spa_strfree(vd->vdev_devid);
|
|
|
|
if (vd->vdev_physpath)
|
|
|
|
spa_strfree(vd->vdev_physpath);
|
2016-10-24 10:45:59 -07:00
|
|
|
|
|
|
|
if (vd->vdev_enc_sysfs_path)
|
|
|
|
spa_strfree(vd->vdev_enc_sysfs_path);
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
if (vd->vdev_fru)
|
|
|
|
spa_strfree(vd->vdev_fru);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (vd->vdev_isspare)
|
|
|
|
spa_spare_remove(vd);
|
|
|
|
if (vd->vdev_isl2cache)
|
|
|
|
spa_l2cache_remove(vd);
|
|
|
|
|
|
|
|
txg_list_destroy(&vd->vdev_ms_list);
|
|
|
|
txg_list_destroy(&vd->vdev_dtl_list);
|
2009-01-15 13:59:39 -08:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
space_map_close(vd->vdev_dtl_sm);
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int t = 0; t < DTL_TYPES; t++) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
|
|
|
|
range_tree_destroy(vd->vdev_dtl[t]);
|
2009-01-15 13:59:39 -08:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2009-01-15 13:59:39 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
EQUIV(vd->vdev_indirect_births != NULL,
|
|
|
|
vd->vdev_indirect_mapping != NULL);
|
|
|
|
if (vd->vdev_indirect_births != NULL) {
|
|
|
|
vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
|
|
|
|
vdev_indirect_births_close(vd->vdev_indirect_births);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vd->vdev_obsolete_sm != NULL) {
|
|
|
|
ASSERT(vd->vdev_removing ||
|
|
|
|
vd->vdev_ops == &vdev_indirect_ops);
|
|
|
|
space_map_close(vd->vdev_obsolete_sm);
|
|
|
|
vd->vdev_obsolete_sm = NULL;
|
|
|
|
}
|
|
|
|
range_tree_destroy(vd->vdev_obsolete_segments);
|
|
|
|
rw_destroy(&vd->vdev_indirect_rwlock);
|
|
|
|
mutex_destroy(&vd->vdev_obsolete_lock);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_destroy(&vd->vdev_dtl_lock);
|
|
|
|
mutex_destroy(&vd->vdev_stat_lock);
|
2008-12-03 12:09:06 -08:00
|
|
|
mutex_destroy(&vd->vdev_probe_lock);
|
2017-11-15 20:27:01 -05:00
|
|
|
mutex_destroy(&vd->vdev_scan_io_queue_lock);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
mutex_destroy(&vd->vdev_initialize_lock);
|
|
|
|
mutex_destroy(&vd->vdev_initialize_io_lock);
|
|
|
|
cv_destroy(&vd->vdev_initialize_io_cv);
|
|
|
|
cv_destroy(&vd->vdev_initialize_cv);
|
2019-03-29 09:13:20 -07:00
|
|
|
mutex_destroy(&vd->vdev_trim_lock);
|
|
|
|
mutex_destroy(&vd->vdev_autotrim_lock);
|
|
|
|
mutex_destroy(&vd->vdev_trim_io_lock);
|
|
|
|
cv_destroy(&vd->vdev_trim_cv);
|
|
|
|
cv_destroy(&vd->vdev_autotrim_cv);
|
|
|
|
cv_destroy(&vd->vdev_trim_io_cv);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2016-11-26 21:30:44 +01:00
|
|
|
zfs_ratelimit_fini(&vd->vdev_delay_rl);
|
|
|
|
zfs_ratelimit_fini(&vd->vdev_checksum_rl);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (vd == spa->spa_root_vdev)
|
|
|
|
spa->spa_root_vdev = NULL;
|
|
|
|
|
|
|
|
kmem_free(vd, sizeof (vdev_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Transfer top-level vdev state from svd to tvd.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
|
|
|
|
{
|
|
|
|
spa_t *spa = svd->vdev_spa;
|
|
|
|
metaslab_t *msp;
|
|
|
|
vdev_t *vd;
|
|
|
|
int t;
|
|
|
|
|
|
|
|
ASSERT(tvd == tvd->vdev_top);
|
|
|
|
|
2016-07-22 16:19:29 -04:00
|
|
|
tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
|
2008-11-20 12:01:55 -08:00
|
|
|
tvd->vdev_ms_array = svd->vdev_ms_array;
|
|
|
|
tvd->vdev_ms_shift = svd->vdev_ms_shift;
|
|
|
|
tvd->vdev_ms_count = svd->vdev_ms_count;
|
2016-04-11 16:16:57 -04:00
|
|
|
tvd->vdev_top_zap = svd->vdev_top_zap;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
svd->vdev_ms_array = 0;
|
|
|
|
svd->vdev_ms_shift = 0;
|
|
|
|
svd->vdev_ms_count = 0;
|
2016-04-11 16:16:57 -04:00
|
|
|
svd->vdev_top_zap = 0;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2012-04-08 13:23:08 -04:00
|
|
|
if (tvd->vdev_mg)
|
|
|
|
ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
|
2008-11-20 12:01:55 -08:00
|
|
|
tvd->vdev_mg = svd->vdev_mg;
|
|
|
|
tvd->vdev_ms = svd->vdev_ms;
|
|
|
|
|
|
|
|
svd->vdev_mg = NULL;
|
|
|
|
svd->vdev_ms = NULL;
|
|
|
|
|
|
|
|
if (tvd->vdev_mg != NULL)
|
|
|
|
tvd->vdev_mg->mg_vd = tvd;
|
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
|
|
|
|
svd->vdev_checkpoint_sm = NULL;
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
|
|
|
|
svd->vdev_alloc_bias = VDEV_BIAS_NONE;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
|
|
|
|
tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
|
|
|
|
tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
|
|
|
|
|
|
|
|
svd->vdev_stat.vs_alloc = 0;
|
|
|
|
svd->vdev_stat.vs_space = 0;
|
|
|
|
svd->vdev_stat.vs_dspace = 0;
|
|
|
|
|
OpenZFS 9290 - device removal reduces redundancy of mirrors
Mirrors are supposed to provide redundancy in the face of whole-disk
failure and silent damage (e.g. some data on disk is not right, but ZFS
hasn't detected the whole device as being broken). However, the current
device removal implementation bypasses some of the mirror's redundancy.
Note that in no case is incorrect data returned, but we might get a
checksum error when we should have been able to find the right data.
There are two underlying problems:
1. When we remove a mirror device, we only read one side of the mirror.
Since we can't verify the checksum, this side may be silently bad, but
the good data is on the other side of the mirror (which we didn't read).
This can cause the removal to "bake in" the busted data – all copies of
the data in the new location are the same, busted version, while we left
the good version behind.
The fix for this is to read and copy both sides of the mirror. If the
old and new vdevs are mirrors, we will read both sides of the old
mirror, and write each copy to the corresponding side of the new mirror.
(If the old and new vdevs have a different number of children, we will
do this as best as possible.) Even though we aren't verifying checksums,
this ensures that as long as there's a good copy of the data, we'll have
a good copy after the removal, even if there's silent damage to one side
of the mirror. If we're removing a mirror that has some silent damage,
we'll have exactly the same damage in the new location (assuming that
the new location is also a mirror).
2. When we read from an indirect vdev that points to a mirror vdev, we
only consider one copy of the data. This can lead to reduced effective
redundancy, because we might read a bad copy of the data from one side
of the mirror, and not retry the other, good side of the mirror.
Note that the problem is not with the removal process, but rather after
the removal has completed (having copied correct data to both sides of
the mirror), if one side of the new mirror is silently damaged, we
encounter the problem when reading the relocated data via the indirect
vdev. Also note that the problem doesn't occur when ZFS knows that one
side of the mirror is bad, e.g. when a disk entirely fails or is
offlined.
The impact is that reads (from indirect vdevs that point to mirrors) may
return a checksum error even though the good data exists on one side of
the mirror, and scrub doesn't repair all data on the mirror (if some of
it is pointed to via an indirect vdev).
The fix for this is complicated by "split blocks" - one logical block
may be split into two (or more) pieces with each piece moved to a
different new location. In this case we need to read all versions of
each split (one from each side of the mirror), and figure out which
combination of versions results in the correct checksum, and then repair
the incorrect versions.
This ensures that we supply the same redundancy whether you use device
removal or not. For example, if a mirror has small silent errors on all
of its children, we can still reconstruct the correct data, as long as
those errors are at sufficiently-separated offsets (specifically,
separated by the largest block size - default of 128KB, but up to 16MB).
Porting notes:
* A new indirect vdev check was moved from dsl_scan_needs_resilver_cb()
to dsl_scan_needs_resilver(), which was added to ZoL as part of the
sequential scrub work.
* Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t
parameter. The extra parameter is unique to ZoL.
* When posting indirect checksum errors the ABD can be passed directly,
zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9290
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591
Closes #6900
2018-02-13 11:37:56 -08:00
|
|
|
/*
|
|
|
|
* State which may be set on a top-level vdev that's in the
|
|
|
|
* process of being removed.
|
|
|
|
*/
|
|
|
|
ASSERT0(tvd->vdev_indirect_config.vic_births_object);
|
|
|
|
ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
|
|
|
|
ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
|
|
|
|
ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
|
|
|
|
ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
|
|
|
|
ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
|
|
|
|
ASSERT0(tvd->vdev_removing);
|
|
|
|
tvd->vdev_removing = svd->vdev_removing;
|
|
|
|
tvd->vdev_indirect_config = svd->vdev_indirect_config;
|
|
|
|
tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
|
|
|
|
tvd->vdev_indirect_births = svd->vdev_indirect_births;
|
|
|
|
range_tree_swap(&svd->vdev_obsolete_segments,
|
|
|
|
&tvd->vdev_obsolete_segments);
|
|
|
|
tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
|
|
|
|
svd->vdev_indirect_config.vic_mapping_object = 0;
|
|
|
|
svd->vdev_indirect_config.vic_births_object = 0;
|
|
|
|
svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
|
|
|
|
svd->vdev_indirect_mapping = NULL;
|
|
|
|
svd->vdev_indirect_births = NULL;
|
|
|
|
svd->vdev_obsolete_sm = NULL;
|
|
|
|
svd->vdev_removing = 0;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
|
|
while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
|
|
|
|
(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
|
|
|
|
while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
|
|
|
|
(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
|
|
|
|
if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
|
|
|
|
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
|
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (list_link_active(&svd->vdev_config_dirty_node)) {
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_config_clean(svd);
|
|
|
|
vdev_config_dirty(tvd);
|
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (list_link_active(&svd->vdev_state_dirty_node)) {
|
|
|
|
vdev_state_clean(svd);
|
|
|
|
vdev_state_dirty(tvd);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
|
|
|
|
svd->vdev_deflate_ratio = 0;
|
|
|
|
|
|
|
|
tvd->vdev_islog = svd->vdev_islog;
|
|
|
|
svd->vdev_islog = 0;
|
2017-11-15 20:27:01 -05:00
|
|
|
|
|
|
|
dsl_scan_io_queue_vdev_xfer(svd, tvd);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_top_update(vdev_t *tvd, vdev_t *vd)
|
|
|
|
{
|
|
|
|
if (vd == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
vd->vdev_top = tvd;
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_top_update(tvd, vd->vdev_child[c]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add a mirror/replacing vdev above an existing vdev.
|
|
|
|
*/
|
|
|
|
vdev_t *
|
|
|
|
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
|
|
|
|
{
|
|
|
|
spa_t *spa = cvd->vdev_spa;
|
|
|
|
vdev_t *pvd = cvd->vdev_parent;
|
|
|
|
vdev_t *mvd;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
|
|
|
|
|
|
|
|
mvd->vdev_asize = cvd->vdev_asize;
|
2009-07-02 15:44:48 -07:00
|
|
|
mvd->vdev_min_asize = cvd->vdev_min_asize;
|
2012-01-23 18:43:32 -08:00
|
|
|
mvd->vdev_max_asize = cvd->vdev_max_asize;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
mvd->vdev_psize = cvd->vdev_psize;
|
2008-11-20 12:01:55 -08:00
|
|
|
mvd->vdev_ashift = cvd->vdev_ashift;
|
|
|
|
mvd->vdev_state = cvd->vdev_state;
|
2010-05-28 13:45:14 -07:00
|
|
|
mvd->vdev_crtxg = cvd->vdev_crtxg;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
vdev_remove_child(pvd, cvd);
|
|
|
|
vdev_add_child(pvd, mvd);
|
|
|
|
cvd->vdev_id = mvd->vdev_children;
|
|
|
|
vdev_add_child(mvd, cvd);
|
|
|
|
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
|
|
|
|
|
|
|
|
if (mvd == mvd->vdev_top)
|
|
|
|
vdev_top_transfer(cvd, mvd);
|
|
|
|
|
|
|
|
return (mvd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove a 1-way mirror/replacing vdev from the tree.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_remove_parent(vdev_t *cvd)
|
|
|
|
{
|
|
|
|
vdev_t *mvd = cvd->vdev_parent;
|
|
|
|
vdev_t *pvd = mvd->vdev_parent;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
ASSERT(mvd->vdev_children == 1);
|
|
|
|
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
|
|
|
|
mvd->vdev_ops == &vdev_replacing_ops ||
|
|
|
|
mvd->vdev_ops == &vdev_spare_ops);
|
|
|
|
cvd->vdev_ashift = mvd->vdev_ashift;
|
|
|
|
|
|
|
|
vdev_remove_child(mvd, cvd);
|
|
|
|
vdev_remove_child(pvd, mvd);
|
2009-01-15 13:59:39 -08:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2008-12-03 12:09:06 -08:00
|
|
|
* If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
|
|
|
|
* Otherwise, we could have detached an offline device, and when we
|
|
|
|
* go to import the pool we'll think we have two top-level vdevs,
|
|
|
|
* instead of a different version of the same top-level vdev.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2009-01-15 13:59:39 -08:00
|
|
|
if (mvd->vdev_top == mvd) {
|
|
|
|
uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
|
2010-05-28 13:45:14 -07:00
|
|
|
cvd->vdev_orig_guid = cvd->vdev_guid;
|
2009-01-15 13:59:39 -08:00
|
|
|
cvd->vdev_guid += guid_delta;
|
|
|
|
cvd->vdev_guid_sum += guid_delta;
|
2014-06-10 16:29:12 +10:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If pool not set for autoexpand, we need to also preserve
|
|
|
|
* mvd's asize to prevent automatic expansion of cvd.
|
|
|
|
* Otherwise if we are adjusting the mirror by attaching and
|
|
|
|
* detaching children of non-uniform sizes, the mirror could
|
|
|
|
* autoexpand, unexpectedly requiring larger devices to
|
|
|
|
* re-establish the mirror.
|
|
|
|
*/
|
|
|
|
if (!cvd->vdev_spa->spa_autoexpand)
|
|
|
|
cvd->vdev_asize = mvd->vdev_asize;
|
2009-01-15 13:59:39 -08:00
|
|
|
}
|
2008-12-03 12:09:06 -08:00
|
|
|
cvd->vdev_id = mvd->vdev_id;
|
|
|
|
vdev_add_child(pvd, cvd);
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
|
|
|
|
|
|
|
|
if (cvd == cvd->vdev_top)
|
|
|
|
vdev_top_transfer(mvd, cvd);
|
|
|
|
|
|
|
|
ASSERT(mvd->vdev_children == 0);
|
|
|
|
vdev_free(mvd);
|
|
|
|
}
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
static void
|
|
|
|
vdev_metaslab_group_create(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* metaslab_group_create was delayed until allocation bias was available
|
|
|
|
*/
|
|
|
|
if (vd->vdev_mg == NULL) {
|
|
|
|
metaslab_class_t *mc;
|
|
|
|
|
|
|
|
if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
|
|
|
|
vd->vdev_alloc_bias = VDEV_BIAS_LOG;
|
|
|
|
|
|
|
|
ASSERT3U(vd->vdev_islog, ==,
|
|
|
|
(vd->vdev_alloc_bias == VDEV_BIAS_LOG));
|
|
|
|
|
|
|
|
switch (vd->vdev_alloc_bias) {
|
|
|
|
case VDEV_BIAS_LOG:
|
|
|
|
mc = spa_log_class(spa);
|
|
|
|
break;
|
|
|
|
case VDEV_BIAS_SPECIAL:
|
|
|
|
mc = spa_special_class(spa);
|
|
|
|
break;
|
|
|
|
case VDEV_BIAS_DEDUP:
|
|
|
|
mc = spa_dedup_class(spa);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
mc = spa_normal_class(spa);
|
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_mg = metaslab_group_create(mc, vd,
|
|
|
|
spa->spa_alloc_count);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The spa ashift values currently only reflect the
|
|
|
|
* general vdev classes. Class destination is late
|
|
|
|
* binding so ashift checking had to wait until now
|
|
|
|
*/
|
|
|
|
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
|
|
|
|
mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
|
|
|
|
if (vd->vdev_ashift > spa->spa_max_ashift)
|
|
|
|
spa->spa_max_ashift = vd->vdev_ashift;
|
|
|
|
if (vd->vdev_ashift < spa->spa_min_ashift)
|
|
|
|
spa->spa_min_ashift = vd->vdev_ashift;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
int
|
|
|
|
vdev_metaslab_init(vdev_t *vd, uint64_t txg)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
|
|
uint64_t m;
|
|
|
|
uint64_t oldc = vd->vdev_ms_count;
|
|
|
|
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
|
|
|
|
metaslab_t **mspp;
|
|
|
|
int error;
|
2018-09-05 19:33:36 -06:00
|
|
|
boolean_t expanding = (oldc != 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This vdev is not being allocated from yet or is a hole.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_ms_shift == 0)
|
2008-11-20 12:01:55 -08:00
|
|
|
return (0);
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
ASSERT(oldc <= newc);
|
|
|
|
|
2016-07-06 17:06:17 -07:00
|
|
|
mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
if (expanding) {
|
2008-11-20 12:01:55 -08:00
|
|
|
bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
|
2016-07-06 17:06:17 -07:00
|
|
|
vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_ms = mspp;
|
|
|
|
vd->vdev_ms_count = newc;
|
|
|
|
for (m = oldc; m < newc; m++) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
uint64_t object = 0;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
/*
|
|
|
|
* vdev_ms_array may be 0 if we are creating the "fake"
|
|
|
|
* metaslabs for an indirect vdev for zdb's leak detection.
|
|
|
|
* See zdb_leak_init().
|
|
|
|
*/
|
|
|
|
if (txg == 0 && vd->vdev_ms_array != 0) {
|
2008-11-20 12:01:55 -08:00
|
|
|
error = dmu_read(mos, vd->vdev_ms_array,
|
2009-07-02 15:44:48 -07:00
|
|
|
m * sizeof (uint64_t), sizeof (uint64_t), &object,
|
|
|
|
DMU_READ_PREFETCH);
|
2016-03-10 10:16:02 -05:00
|
|
|
if (error != 0) {
|
|
|
|
vdev_dbgmsg(vd, "unable to read the metaslab "
|
|
|
|
"array [error=%d]", error);
|
2008-11-20 12:01:55 -08:00
|
|
|
return (error);
|
2016-03-10 10:16:02 -05:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2014-10-06 16:32:36 +02:00
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
#ifndef _KERNEL
|
|
|
|
/*
|
|
|
|
* To accomodate zdb_leak_init() fake indirect
|
|
|
|
* metaslabs, we allocate a metaslab group for
|
|
|
|
* indirect vdevs which normally don't have one.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_mg == NULL) {
|
|
|
|
ASSERT0(vdev_is_concrete(vd));
|
|
|
|
vdev_metaslab_group_create(vd);
|
|
|
|
}
|
|
|
|
#endif
|
2014-10-06 16:32:36 +02:00
|
|
|
error = metaslab_init(vd->vdev_mg, m, object, txg,
|
|
|
|
&(vd->vdev_ms[m]));
|
2016-03-10 10:16:02 -05:00
|
|
|
if (error != 0) {
|
|
|
|
vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
|
|
|
|
error);
|
2014-10-06 16:32:36 +02:00
|
|
|
return (error);
|
2016-03-10 10:16:02 -05:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
if (txg == 0)
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the vdev is being removed we don't activate
|
|
|
|
* the metaslabs since we want to ensure that no new
|
|
|
|
* allocations are performed on this device.
|
|
|
|
*/
|
2018-09-05 19:33:36 -06:00
|
|
|
if (!expanding && !vd->vdev_removing) {
|
2010-05-28 13:45:14 -07:00
|
|
|
metaslab_group_activate(vd->vdev_mg);
|
2018-09-05 19:33:36 -06:00
|
|
|
}
|
2010-05-28 13:45:14 -07:00
|
|
|
|
|
|
|
if (txg == 0)
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_metaslab_fini(vdev_t *vd)
|
|
|
|
{
|
2016-12-16 14:11:29 -08:00
|
|
|
if (vd->vdev_checkpoint_sm != NULL) {
|
|
|
|
ASSERT(spa_feature_is_active(vd->vdev_spa,
|
|
|
|
SPA_FEATURE_POOL_CHECKPOINT));
|
|
|
|
space_map_close(vd->vdev_checkpoint_sm);
|
|
|
|
/*
|
|
|
|
* Even though we close the space map, we need to set its
|
|
|
|
* pointer to NULL. The reason is that vdev_metaslab_fini()
|
|
|
|
* may be called multiple times for certain operations
|
|
|
|
* (i.e. when destroying a pool) so we need to ensure that
|
|
|
|
* this clause never executes twice. This logic is similar
|
|
|
|
* to the one used for the vdev_ms clause below.
|
|
|
|
*/
|
|
|
|
vd->vdev_checkpoint_sm = NULL;
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (vd->vdev_ms != NULL) {
|
2019-02-20 09:59:57 -08:00
|
|
|
metaslab_group_t *mg = vd->vdev_mg;
|
|
|
|
metaslab_group_passivate(mg);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
|
2019-02-20 09:59:57 -08:00
|
|
|
uint64_t count = vd->vdev_ms_count;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
for (uint64_t m = 0; m < count; m++) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
if (msp != NULL)
|
|
|
|
metaslab_fini(msp);
|
|
|
|
}
|
2016-07-06 17:06:17 -07:00
|
|
|
vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_ms = NULL;
|
Add FASTWRITE algorithm for synchronous writes.
Currently, ZIL blocks are spread over vdevs using hint block pointers
managed by the ZIL commit code and passed to metaslab_alloc(). Spreading
log blocks accross vdevs is important for performance: indeed, using
mutliple disks in parallel decreases the ZIL commit latency, which is
the main performance metric for synchronous writes. However, the current
implementation suffers from the following issues:
1) It would be best if the ZIL module was not aware of such low-level
details. They should be handled by the ZIO and metaslab modules;
2) Because the hint block pointer is managed per log, simultaneous
commits from multiple logs might use the same vdevs at the same time,
which is inefficient;
3) Because dmu_write() does not honor the block pointer hint, indirect
writes are not spread.
The naive solution of rotating the metaslab rotor each time a block is
allocated for the ZIL or dmu_sync() doesn't work in practice because the
first ZIL block to be written is actually allocated during the previous
commit. Consequently, when metaslab_alloc() decides the vdev for this
block, it will do so while a bunch of other allocations are happening at
the same time (from dmu_sync() and other ZILs). This means the vdev for
this block is chosen more or less at random. When the next commit
happens, there is a high chance (especially when the number of blocks
per commit is slightly less than the number of the disks) that one disk
will have to write two blocks (with a potential seek) while other disks
are sitting idle, which defeats spreading and increases the commit
latency.
This commit introduces a new concept in the metaslab allocator:
fastwrites. Basically, each top-level vdev maintains a counter
indicating the number of synchronous writes (from dmu_sync() and the
ZIL) which have been allocated but not yet completed. When the metaslab
is called with the FASTWRITE flag, it will choose the vdev with the
least amount of pending synchronous writes. If there are multiple vdevs
with the same value, the first matching vdev (starting from the rotor)
is used. Once metaslab_alloc() has decided which vdev the block is
allocated to, it updates the fastwrite counter for this vdev.
The rationale goes like this: when an allocation is done with
FASTWRITE, it "reserves" the vdev until the data is written. Until then,
all future allocations will naturally avoid this vdev, even after a full
rotation of the rotor. As a result, pending synchronous writes at a
given point in time will be nicely spread over all vdevs. This contrasts
with the previous algorithm, which is based on the implicit assumption
that blocks are written instantaneously after they're allocated.
metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to
manually increase or decrease fastwrite counters, respectively. They
should be used with caution, as there is no per-BP tracking of fastwrite
information, so leaks and "double-unmarks" are possible. There is,
however, an assert in the vdev teardown code which will fire if the
fastwrite counters are not zero when the pool is exported or the vdev
removed. Note that as stated above, marking is also done implictly by
metaslab_alloc().
ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to
the metaslab when allocating (assuming ZIO does the allocation, which is
only true in the case of dmu_sync). This flag will also trigger an
unmark when zio_done() fires.
A side-effect of the new algorithm is that when a ZIL stops being used,
its last block can stay in the pending state (allocated but not yet
written) for a long time, polluting the fastwrite counters. To avoid
that, I've implemented a somewhat crude but working solution which
unmarks these pending blocks in zil_sync(), thus guaranteeing that
linguering fastwrites will get pruned at each sync event.
The best performance improvements are observed with pools using a large
number of top-level vdevs and heavy synchronous write workflows
(especially indirect writes and concurrent writes from multiple ZILs).
Real-life testing shows a 200% to 300% performance increase with
indirect writes and various commit sizes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
2012-06-27 15:20:20 +02:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vd->vdev_ms_count = 0;
|
2019-02-20 09:59:57 -08:00
|
|
|
|
|
|
|
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
|
|
|
|
ASSERT0(mg->mg_histogram[i]);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
}
|
|
|
|
ASSERT0(vd->vdev_ms_count);
|
Add FASTWRITE algorithm for synchronous writes.
Currently, ZIL blocks are spread over vdevs using hint block pointers
managed by the ZIL commit code and passed to metaslab_alloc(). Spreading
log blocks accross vdevs is important for performance: indeed, using
mutliple disks in parallel decreases the ZIL commit latency, which is
the main performance metric for synchronous writes. However, the current
implementation suffers from the following issues:
1) It would be best if the ZIL module was not aware of such low-level
details. They should be handled by the ZIO and metaslab modules;
2) Because the hint block pointer is managed per log, simultaneous
commits from multiple logs might use the same vdevs at the same time,
which is inefficient;
3) Because dmu_write() does not honor the block pointer hint, indirect
writes are not spread.
The naive solution of rotating the metaslab rotor each time a block is
allocated for the ZIL or dmu_sync() doesn't work in practice because the
first ZIL block to be written is actually allocated during the previous
commit. Consequently, when metaslab_alloc() decides the vdev for this
block, it will do so while a bunch of other allocations are happening at
the same time (from dmu_sync() and other ZILs). This means the vdev for
this block is chosen more or less at random. When the next commit
happens, there is a high chance (especially when the number of blocks
per commit is slightly less than the number of the disks) that one disk
will have to write two blocks (with a potential seek) while other disks
are sitting idle, which defeats spreading and increases the commit
latency.
This commit introduces a new concept in the metaslab allocator:
fastwrites. Basically, each top-level vdev maintains a counter
indicating the number of synchronous writes (from dmu_sync() and the
ZIL) which have been allocated but not yet completed. When the metaslab
is called with the FASTWRITE flag, it will choose the vdev with the
least amount of pending synchronous writes. If there are multiple vdevs
with the same value, the first matching vdev (starting from the rotor)
is used. Once metaslab_alloc() has decided which vdev the block is
allocated to, it updates the fastwrite counter for this vdev.
The rationale goes like this: when an allocation is done with
FASTWRITE, it "reserves" the vdev until the data is written. Until then,
all future allocations will naturally avoid this vdev, even after a full
rotation of the rotor. As a result, pending synchronous writes at a
given point in time will be nicely spread over all vdevs. This contrasts
with the previous algorithm, which is based on the implicit assumption
that blocks are written instantaneously after they're allocated.
metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to
manually increase or decrease fastwrite counters, respectively. They
should be used with caution, as there is no per-BP tracking of fastwrite
information, so leaks and "double-unmarks" are possible. There is,
however, an assert in the vdev teardown code which will fire if the
fastwrite counters are not zero when the pool is exported or the vdev
removed. Note that as stated above, marking is also done implictly by
metaslab_alloc().
ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to
the metaslab when allocating (assuming ZIO does the allocation, which is
only true in the case of dmu_sync). This flag will also trigger an
unmark when zio_done() fires.
A side-effect of the new algorithm is that when a ZIL stops being used,
its last block can stay in the pending state (allocated but not yet
written) for a long time, polluting the fastwrite counters. To avoid
that, I've implemented a somewhat crude but working solution which
unmarks these pending blocks in zil_sync(), thus guaranteeing that
linguering fastwrites will get pruned at each sync event.
The best performance improvements are observed with pools using a large
number of top-level vdevs and heavy synchronous write workflows
(especially indirect writes and concurrent writes from multiple ZILs).
Real-life testing shows a 200% to 300% performance increase with
indirect writes and various commit sizes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
2012-06-27 15:20:20 +02:00
|
|
|
ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
typedef struct vdev_probe_stats {
|
|
|
|
boolean_t vps_readable;
|
|
|
|
boolean_t vps_writeable;
|
|
|
|
int vps_flags;
|
|
|
|
} vdev_probe_stats_t;
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_probe_done(zio_t *zio)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2009-01-15 13:59:39 -08:00
|
|
|
spa_t *spa = zio->io_spa;
|
2009-02-18 12:51:31 -08:00
|
|
|
vdev_t *vd = zio->io_vd;
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_probe_stats_t *vps = zio->io_private;
|
2009-02-18 12:51:31 -08:00
|
|
|
|
|
|
|
ASSERT(vd->vdev_probe_zio != NULL);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
|
|
if (zio->io_error == 0)
|
|
|
|
vps->vps_readable = 1;
|
2009-01-15 13:59:39 -08:00
|
|
|
if (zio->io_error == 0 && spa_writeable(spa)) {
|
2009-02-18 12:51:31 -08:00
|
|
|
zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
|
2016-07-22 11:52:49 -04:00
|
|
|
zio->io_offset, zio->io_size, zio->io_abd,
|
2008-12-03 12:09:06 -08:00
|
|
|
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
|
|
|
|
ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
|
|
|
|
} else {
|
2016-07-22 11:52:49 -04:00
|
|
|
abd_free(zio->io_abd);
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
|
|
|
} else if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
|
|
if (zio->io_error == 0)
|
|
|
|
vps->vps_writeable = 1;
|
2016-07-22 11:52:49 -04:00
|
|
|
abd_free(zio->io_abd);
|
2008-12-03 12:09:06 -08:00
|
|
|
} else if (zio->io_type == ZIO_TYPE_NULL) {
|
2009-02-18 12:51:31 -08:00
|
|
|
zio_t *pio;
|
2016-10-13 18:59:18 -06:00
|
|
|
zio_link_t *zl;
|
2008-12-03 12:09:06 -08:00
|
|
|
|
|
|
|
vd->vdev_cant_read |= !vps->vps_readable;
|
|
|
|
vd->vdev_cant_write |= !vps->vps_writeable;
|
|
|
|
|
|
|
|
if (vdev_readable(vd) &&
|
2009-01-15 13:59:39 -08:00
|
|
|
(vdev_writeable(vd) || !spa_writeable(spa))) {
|
2008-12-03 12:09:06 -08:00
|
|
|
zio->io_error = 0;
|
|
|
|
} else {
|
|
|
|
ASSERT(zio->io_error != 0);
|
2016-03-10 10:16:02 -05:00
|
|
|
vdev_dbgmsg(vd, "failed probe");
|
2008-12-03 12:09:06 -08:00
|
|
|
zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 13:36:48 -04:00
|
|
|
spa, vd, NULL, NULL, 0, 0);
|
2013-03-08 10:41:28 -08:00
|
|
|
zio->io_error = SET_ERROR(ENXIO);
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
2009-02-18 12:51:31 -08:00
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_probe_lock);
|
|
|
|
ASSERT(vd->vdev_probe_zio == zio);
|
|
|
|
vd->vdev_probe_zio = NULL;
|
|
|
|
mutex_exit(&vd->vdev_probe_lock);
|
|
|
|
|
2016-10-13 18:59:18 -06:00
|
|
|
zl = NULL;
|
|
|
|
while ((pio = zio_walk_parents(zio, &zl)) != NULL)
|
2009-02-18 12:51:31 -08:00
|
|
|
if (!vdev_accessible(vd, pio))
|
2013-03-08 10:41:28 -08:00
|
|
|
pio->io_error = SET_ERROR(ENXIO);
|
2009-02-18 12:51:31 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
kmem_free(vps, sizeof (*vps));
|
|
|
|
}
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
2013-06-11 09:12:34 -08:00
|
|
|
* Determine whether this device is accessible.
|
|
|
|
*
|
|
|
|
* Read and write to several known locations: the pad regions of each
|
|
|
|
* vdev label but the first, which we leave alone in case it contains
|
|
|
|
* a VTOC.
|
2008-12-03 12:09:06 -08:00
|
|
|
*/
|
|
|
|
zio_t *
|
2009-02-18 12:51:31 -08:00
|
|
|
vdev_probe(vdev_t *vd, zio_t *zio)
|
2008-12-03 12:09:06 -08:00
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
2009-02-18 12:51:31 -08:00
|
|
|
vdev_probe_stats_t *vps = NULL;
|
|
|
|
zio_t *pio;
|
|
|
|
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-02-18 12:51:31 -08:00
|
|
|
/*
|
|
|
|
* Don't probe the probe.
|
|
|
|
*/
|
|
|
|
if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
|
|
|
|
return (NULL);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2009-02-18 12:51:31 -08:00
|
|
|
/*
|
|
|
|
* To prevent 'probe storms' when a device fails, we create
|
|
|
|
* just one probe i/o at a time. All zios that want to probe
|
|
|
|
* this vdev will become parents of the probe io.
|
|
|
|
*/
|
|
|
|
mutex_enter(&vd->vdev_probe_lock);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2009-02-18 12:51:31 -08:00
|
|
|
if ((pio = vd->vdev_probe_zio) == NULL) {
|
2014-11-20 19:09:39 -05:00
|
|
|
vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
|
2009-02-18 12:51:31 -08:00
|
|
|
|
|
|
|
vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
|
|
|
|
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
|
2009-07-02 15:44:48 -07:00
|
|
|
ZIO_FLAG_TRYHARD;
|
2009-02-18 12:51:31 -08:00
|
|
|
|
|
|
|
if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
|
|
|
|
/*
|
|
|
|
* vdev_cant_read and vdev_cant_write can only
|
|
|
|
* transition from TRUE to FALSE when we have the
|
|
|
|
* SCL_ZIO lock as writer; otherwise they can only
|
|
|
|
* transition from FALSE to TRUE. This ensures that
|
|
|
|
* any zio looking at these values can assume that
|
|
|
|
* failures persist for the life of the I/O. That's
|
|
|
|
* important because when a device has intermittent
|
|
|
|
* connectivity problems, we want to ensure that
|
|
|
|
* they're ascribed to the device (ENXIO) and not
|
|
|
|
* the zio (EIO).
|
|
|
|
*
|
|
|
|
* Since we hold SCL_ZIO as writer here, clear both
|
|
|
|
* values so the probe can reevaluate from first
|
|
|
|
* principles.
|
|
|
|
*/
|
|
|
|
vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
|
|
|
|
vd->vdev_cant_read = B_FALSE;
|
|
|
|
vd->vdev_cant_write = B_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
|
|
|
|
vdev_probe_done, vps,
|
|
|
|
vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* We can't change the vdev state in this context, so we
|
|
|
|
* kick off an async task to do it on our behalf.
|
|
|
|
*/
|
2009-02-18 12:51:31 -08:00
|
|
|
if (zio != NULL) {
|
|
|
|
vd->vdev_probe_wanted = B_TRUE;
|
|
|
|
spa_async_request(spa, SPA_ASYNC_PROBE);
|
|
|
|
}
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
|
|
|
|
2009-02-18 12:51:31 -08:00
|
|
|
if (zio != NULL)
|
|
|
|
zio_add_child(zio, pio);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2009-02-18 12:51:31 -08:00
|
|
|
mutex_exit(&vd->vdev_probe_lock);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2009-02-18 12:51:31 -08:00
|
|
|
if (vps == NULL) {
|
|
|
|
ASSERT(zio != NULL);
|
|
|
|
return (NULL);
|
|
|
|
}
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int l = 1; l < VDEV_LABELS; l++) {
|
2009-02-18 12:51:31 -08:00
|
|
|
zio_nowait(zio_read_phys(pio, vd,
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_label_offset(vd->vdev_psize, l,
|
2016-07-22 11:52:49 -04:00
|
|
|
offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
|
|
|
|
abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
|
2008-12-03 12:09:06 -08:00
|
|
|
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
|
|
|
|
ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
|
|
|
|
}
|
|
|
|
|
2009-02-18 12:51:31 -08:00
|
|
|
if (zio == NULL)
|
|
|
|
return (pio);
|
|
|
|
|
|
|
|
zio_nowait(pio);
|
|
|
|
return (NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2009-08-18 11:43:27 -07:00
|
|
|
static void
|
|
|
|
vdev_open_child(void *arg)
|
|
|
|
{
|
|
|
|
vdev_t *vd = arg;
|
|
|
|
|
|
|
|
vd->vdev_open_thread = curthread;
|
|
|
|
vd->vdev_open_error = vdev_open(vd);
|
|
|
|
vd->vdev_open_thread = NULL;
|
|
|
|
}
|
|
|
|
|
2012-12-17 10:33:57 +09:00
|
|
|
static boolean_t
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_uses_zvols(vdev_t *vd)
|
|
|
|
{
|
2012-12-17 10:33:57 +09:00
|
|
|
#ifdef _KERNEL
|
|
|
|
if (zvol_is_zvol(vd->vdev_path))
|
2010-05-28 13:45:14 -07:00
|
|
|
return (B_TRUE);
|
2012-12-17 10:33:57 +09:00
|
|
|
#endif
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2010-05-28 13:45:14 -07:00
|
|
|
if (vdev_uses_zvols(vd->vdev_child[c]))
|
|
|
|
return (B_TRUE);
|
2012-12-17 10:33:57 +09:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
return (B_FALSE);
|
|
|
|
}
|
|
|
|
|
2009-08-18 11:43:27 -07:00
|
|
|
void
|
|
|
|
vdev_open_children(vdev_t *vd)
|
|
|
|
{
|
|
|
|
taskq_t *tq;
|
|
|
|
int children = vd->vdev_children;
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* in order to handle pools on top of zvols, do the opens
|
|
|
|
* in a single thread so that the same thread holds the
|
|
|
|
* spa_namespace_lock
|
|
|
|
*/
|
|
|
|
if (vdev_uses_zvols(vd)) {
|
2016-10-24 13:28:58 -07:00
|
|
|
retry_sync:
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < children; c++)
|
2010-05-28 13:45:14 -07:00
|
|
|
vd->vdev_child[c]->vdev_open_error =
|
|
|
|
vdev_open(vd->vdev_child[c]);
|
2016-10-07 22:25:35 +02:00
|
|
|
} else {
|
|
|
|
tq = taskq_create("vdev_open", children, minclsyspri,
|
|
|
|
children, children, TASKQ_PREPOPULATE);
|
2016-10-24 13:28:58 -07:00
|
|
|
if (tq == NULL)
|
|
|
|
goto retry_sync;
|
2009-08-18 11:43:27 -07:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < children; c++)
|
2016-10-07 22:25:35 +02:00
|
|
|
VERIFY(taskq_dispatch(tq, vdev_open_child,
|
2016-10-28 22:40:14 +00:00
|
|
|
vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
|
2009-08-18 11:43:27 -07:00
|
|
|
|
2016-10-07 22:25:35 +02:00
|
|
|
taskq_destroy(tq);
|
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_nonrot = B_TRUE;
|
2015-08-29 12:01:07 -04:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < children; c++)
|
2015-08-29 12:01:07 -04:00
|
|
|
vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
|
2009-08-18 11:43:27 -07:00
|
|
|
}
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
/*
|
|
|
|
* Compute the raidz-deflation ratio. Note, we hard-code
|
|
|
|
* in 128k (1 << 17) because it is the "typical" blocksize.
|
|
|
|
* Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
|
|
|
|
* otherwise it would inconsistently account for existing bp's.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vdev_set_deflate_ratio(vdev_t *vd)
|
|
|
|
{
|
|
|
|
if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
|
|
|
|
vd->vdev_deflate_ratio = (1 << 17) /
|
|
|
|
(vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Prepare a virtual device for access.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
vdev_open(vdev_t *vd)
|
|
|
|
{
|
2009-01-15 13:59:39 -08:00
|
|
|
spa_t *spa = vd->vdev_spa;
|
2008-11-20 12:01:55 -08:00
|
|
|
int error;
|
|
|
|
uint64_t osize = 0;
|
2012-01-23 18:43:32 -08:00
|
|
|
uint64_t max_osize = 0;
|
|
|
|
uint64_t asize, max_asize, psize;
|
2008-11-20 12:01:55 -08:00
|
|
|
uint64_t ashift = 0;
|
|
|
|
|
2009-08-18 11:43:27 -07:00
|
|
|
ASSERT(vd->vdev_open_thread == curthread ||
|
|
|
|
spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
|
|
|
|
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
|
|
|
|
vd->vdev_state == VDEV_STATE_OFFLINE);
|
|
|
|
|
|
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
2009-07-02 15:44:48 -07:00
|
|
|
vd->vdev_cant_read = B_FALSE;
|
|
|
|
vd->vdev_cant_write = B_FALSE;
|
|
|
|
vd->vdev_min_asize = vdev_get_min_asize(vd);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* If this vdev is not removed, check its fault status. If it's
|
|
|
|
* faulted, bail out of the open.
|
|
|
|
*/
|
2008-11-20 12:01:55 -08:00
|
|
|
if (!vd->vdev_removed && vd->vdev_faulted) {
|
|
|
|
ASSERT(vd->vdev_children == 0);
|
2010-05-28 13:45:14 -07:00
|
|
|
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
|
|
|
|
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
2010-05-28 13:45:14 -07:00
|
|
|
vd->vdev_label_aux);
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(ENXIO));
|
2008-11-20 12:01:55 -08:00
|
|
|
} else if (vd->vdev_offline) {
|
|
|
|
ASSERT(vd->vdev_children == 0);
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(ENXIO));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2012-01-23 18:43:32 -08:00
|
|
|
error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2019-02-23 00:36:34 +01:00
|
|
|
/*
|
|
|
|
* Physical volume size should never be larger than its max size, unless
|
|
|
|
* the disk has shrunk while we were reading it or the device is buggy
|
|
|
|
* or damaged: either way it's not safe for use, bail out of the open.
|
|
|
|
*/
|
|
|
|
if (osize > max_osize) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_OPEN_FAILED);
|
|
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* Reset the vdev_reopening flag so that we actually close
|
|
|
|
* the vdev on error.
|
|
|
|
*/
|
|
|
|
vd->vdev_reopening = B_FALSE;
|
2008-11-20 12:01:55 -08:00
|
|
|
if (zio_injection_enabled && error == 0)
|
2009-07-02 15:44:48 -07:00
|
|
|
error = zio_handle_device_injection(vd, NULL, ENXIO);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (error) {
|
|
|
|
if (vd->vdev_removed &&
|
|
|
|
vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
|
|
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
|
|
|
|
vd->vdev_stat.vs_aux);
|
|
|
|
} else {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
vd->vdev_stat.vs_aux);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* Recheck the faulted flag now that we have confirmed that
|
|
|
|
* the vdev is accessible. If we're faulted, bail.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_faulted) {
|
|
|
|
ASSERT(vd->vdev_children == 0);
|
|
|
|
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
|
|
|
|
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
|
|
vd->vdev_label_aux);
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(ENXIO));
|
2010-05-28 13:45:14 -07:00
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (vd->vdev_degraded) {
|
|
|
|
ASSERT(vd->vdev_children == 0);
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
|
|
|
|
VDEV_AUX_ERR_EXCEEDED);
|
|
|
|
} else {
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* For hole or missing vdevs we just return success.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
|
|
|
|
return (0);
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2008-11-20 12:01:55 -08:00
|
|
|
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
|
|
|
|
VDEV_AUX_NONE);
|
|
|
|
break;
|
|
|
|
}
|
2009-07-02 15:44:48 -07:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
|
2012-01-23 18:43:32 -08:00
|
|
|
max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (vd->vdev_children == 0) {
|
|
|
|
if (osize < SPA_MINDEVSIZE) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_TOO_SMALL);
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EOVERFLOW));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
psize = osize;
|
|
|
|
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
|
2012-01-23 18:43:32 -08:00
|
|
|
max_asize = max_osize - (VDEV_LABEL_START_SIZE +
|
|
|
|
VDEV_LABEL_END_SIZE);
|
2008-11-20 12:01:55 -08:00
|
|
|
} else {
|
|
|
|
if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
|
|
|
|
(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_TOO_SMALL);
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EOVERFLOW));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
psize = 0;
|
|
|
|
asize = osize;
|
2012-01-23 18:43:32 -08:00
|
|
|
max_asize = max_osize;
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2017-05-02 13:55:24 -07:00
|
|
|
/*
|
|
|
|
* If the vdev was expanded, record this so that we can re-create the
|
|
|
|
* uberblock rings in labels {2,3}, during the next sync.
|
|
|
|
*/
|
|
|
|
if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
|
|
|
|
vd->vdev_copy_uberblocks = B_TRUE;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_psize = psize;
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
/*
|
2017-04-03 16:38:51 -07:00
|
|
|
* Make sure the allocatable size hasn't shrunk too much.
|
2009-07-02 15:44:48 -07:00
|
|
|
*/
|
|
|
|
if (asize < vd->vdev_min_asize) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_BAD_LABEL);
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EINVAL));
|
2009-07-02 15:44:48 -07:00
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (vd->vdev_asize == 0) {
|
|
|
|
/*
|
|
|
|
* This is the first-ever open, so use the computed values.
|
2013-04-12 10:26:03 -07:00
|
|
|
* For compatibility, a different ashift can be requested.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
|
|
|
vd->vdev_asize = asize;
|
2012-01-23 18:43:32 -08:00
|
|
|
vd->vdev_max_asize = max_asize;
|
2017-03-29 02:21:11 +02:00
|
|
|
if (vd->vdev_ashift == 0) {
|
|
|
|
vd->vdev_ashift = ashift; /* use detected value */
|
|
|
|
}
|
|
|
|
if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
|
|
|
|
vd->vdev_ashift > ASHIFT_MAX)) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_BAD_ASHIFT);
|
|
|
|
return (SET_ERROR(EDOM));
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
} else {
|
|
|
|
/*
|
2012-05-03 05:49:19 -07:00
|
|
|
* Detect if the alignment requirement has increased.
|
|
|
|
* We don't want to make the pool unavailable, just
|
|
|
|
* post an event instead.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2012-05-03 05:49:19 -07:00
|
|
|
if (ashift > vd->vdev_top->vdev_ashift &&
|
|
|
|
vd->vdev_ops->vdev_op_leaf) {
|
|
|
|
zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 13:36:48 -04:00
|
|
|
spa, vd, NULL, NULL, 0, 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2012-05-03 05:49:19 -07:00
|
|
|
|
2012-01-23 18:43:32 -08:00
|
|
|
vd->vdev_max_asize = max_asize;
|
2009-07-02 15:44:48 -07:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
/*
|
2017-04-03 16:38:51 -07:00
|
|
|
* If all children are healthy we update asize if either:
|
|
|
|
* The asize has increased, due to a device expansion caused by dynamic
|
|
|
|
* LUN growth or vdev replacement, and automatic expansion is enabled;
|
|
|
|
* making the additional space available.
|
|
|
|
*
|
|
|
|
* The asize has decreased, due to a device shrink usually caused by a
|
|
|
|
* vdev replace with a smaller device. This ensures that calculations
|
|
|
|
* based of max_asize and asize e.g. esize are always valid. It's safe
|
|
|
|
* to do this as we've already validated that asize is greater than
|
|
|
|
* vdev_min_asize.
|
2009-07-02 15:44:48 -07:00
|
|
|
*/
|
2017-04-03 16:38:51 -07:00
|
|
|
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
|
|
|
|
((asize > vd->vdev_asize &&
|
|
|
|
(vd->vdev_expanding || spa->spa_autoexpand)) ||
|
|
|
|
(asize < vd->vdev_asize)))
|
2009-07-02 15:44:48 -07:00
|
|
|
vd->vdev_asize = asize;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_set_min_asize(vd);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Ensure we can issue some IO before declaring the
|
|
|
|
* vdev open for business.
|
|
|
|
*/
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
|
|
(error = zio_wait(vdev_probe(vd, NULL))) != 0) {
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
|
|
VDEV_AUX_ERR_EXCEEDED);
|
2008-11-20 12:01:55 -08:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2015-05-19 22:14:01 -06:00
|
|
|
/*
|
|
|
|
* Track the min and max ashift values for normal data devices.
|
2018-09-05 19:33:36 -06:00
|
|
|
*
|
|
|
|
* DJB - TBD these should perhaps be tracked per allocation class
|
|
|
|
* (e.g. spa_min_ashift is used to round up post compression buffers)
|
2015-05-19 22:14:01 -06:00
|
|
|
*/
|
|
|
|
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
|
2018-09-05 19:33:36 -06:00
|
|
|
vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
|
|
|
|
vd->vdev_aux == NULL) {
|
2015-05-19 22:14:01 -06:00
|
|
|
if (vd->vdev_ashift > spa->spa_max_ashift)
|
|
|
|
spa->spa_max_ashift = vd->vdev_ashift;
|
|
|
|
if (vd->vdev_ashift < spa->spa_min_ashift)
|
|
|
|
spa->spa_min_ashift = vd->vdev_ashift;
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2008-12-03 12:09:06 -08:00
|
|
|
* If a leaf vdev has a DTL, and seems healthy, then kick off a
|
2009-01-15 13:59:39 -08:00
|
|
|
* resilver. But don't do this if we are doing a reopen for a scrub,
|
|
|
|
* since this would just restart the scrub we are already doing.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2009-01-15 13:59:39 -08:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
|
2018-10-19 00:06:18 -04:00
|
|
|
vdev_resilver_needed(vd, NULL, NULL)) {
|
|
|
|
if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
|
|
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
|
|
|
|
vdev_set_deferred_resilver(spa, vd);
|
|
|
|
else
|
|
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called once the vdevs are all opened, this routine validates the label
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
* contents. This needs to be done before vdev_load() so that we don't
|
2008-11-20 12:01:55 -08:00
|
|
|
* inadvertently do repair I/Os to the wrong device.
|
|
|
|
*
|
|
|
|
* This function will only return failure if one of the vdevs indicates that it
|
|
|
|
* has since been destroyed or exported. This is only possible if
|
|
|
|
* /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
|
|
|
|
* will be updated but the function will return 0.
|
|
|
|
*/
|
|
|
|
int
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
vdev_validate(vdev_t *vd)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
nvlist_t *label;
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
uint64_t guid = 0, aux_guid = 0, top_guid;
|
2008-11-20 12:01:55 -08:00
|
|
|
uint64_t state;
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
nvlist_t *nvl;
|
|
|
|
uint64_t txg;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if (vdev_validate_skip)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
for (uint64_t c = 0; c < vd->vdev_children; c++)
|
|
|
|
if (vdev_validate(vd->vdev_child[c]) != 0)
|
2013-03-08 10:41:28 -08:00
|
|
|
return (SET_ERROR(EBADF));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the device has already failed, or was marked offline, don't do
|
|
|
|
* any further validation. Otherwise, label I/O will fail and we will
|
|
|
|
* overwrite the previous state.
|
|
|
|
*/
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
|
|
|
|
return (0);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
/*
|
|
|
|
* If we are performing an extreme rewind, we allow for a label that
|
|
|
|
* was modified at a point after the current txg.
|
2016-10-19 17:46:08 -04:00
|
|
|
* If config lock is not held do not check for the txg. spa_sync could
|
|
|
|
* be updating the vdev's label before updating spa_last_synced_txg.
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
*/
|
2016-10-19 17:46:08 -04:00
|
|
|
if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
|
|
|
|
spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
txg = UINT64_MAX;
|
|
|
|
else
|
|
|
|
txg = spa_last_synced_txg(spa);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if ((label = vdev_label_read_config(vd, txg)) == NULL) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_BAD_LABEL);
|
2016-09-14 11:01:40 -04:00
|
|
|
vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
|
|
|
|
"txg %llu", (u_longlong_t)txg);
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
return (0);
|
|
|
|
}
|
2010-05-28 13:45:14 -07:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
/*
|
|
|
|
* Determine if this vdev has been split off into another
|
|
|
|
* pool. If so, then refuse to open it.
|
|
|
|
*/
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
|
|
|
|
&aux_guid) == 0 && aux_guid == spa_guid(spa)) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_SPLIT_POOL);
|
|
|
|
nvlist_free(label);
|
|
|
|
vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
|
|
|
|
return (0);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
nvlist_free(label);
|
|
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
|
|
ZPOOL_CONFIG_POOL_GUID);
|
|
|
|
return (0);
|
|
|
|
}
|
2010-05-28 13:45:14 -07:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
/*
|
|
|
|
* If config is not trusted then ignore the spa guid check. This is
|
|
|
|
* necessary because if the machine crashed during a re-guid the new
|
|
|
|
* guid might have been written to all of the vdev labels, but not the
|
|
|
|
* cached config. The check will be performed again once we have the
|
|
|
|
* trusted config from the MOS.
|
|
|
|
*/
|
|
|
|
if (spa->spa_trust_config && guid != spa_guid(spa)) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
nvlist_free(label);
|
|
|
|
vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
|
|
|
|
"match config (%llu != %llu)", (u_longlong_t)guid,
|
|
|
|
(u_longlong_t)spa_guid(spa));
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
|
|
|
|
!= 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
|
|
|
|
&aux_guid) != 0)
|
|
|
|
aux_guid = 0;
|
|
|
|
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
nvlist_free(label);
|
|
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
|
|
ZPOOL_CONFIG_GUID);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
|
|
|
|
!= 0) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
nvlist_free(label);
|
|
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
|
|
ZPOOL_CONFIG_TOP_GUID);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If this vdev just became a top-level vdev because its sibling was
|
|
|
|
* detached, it will have adopted the parent's vdev guid -- but the
|
|
|
|
* label may or may not be on disk yet. Fortunately, either version
|
|
|
|
* of the label will have the same top guid, so if we're a top-level
|
|
|
|
* vdev, we can safely compare to that instead.
|
|
|
|
* However, if the config comes from a cachefile that failed to update
|
|
|
|
* after the detach, a top-level vdev will appear as a non top-level
|
|
|
|
* vdev in the config. Also relax the constraints if we perform an
|
|
|
|
* extreme rewind.
|
|
|
|
*
|
|
|
|
* If we split this vdev off instead, then we also check the
|
|
|
|
* original pool's guid. We don't want to consider the vdev
|
|
|
|
* corrupt if it is partway through a split operation.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
|
|
|
|
boolean_t mismatch = B_FALSE;
|
|
|
|
if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
|
|
|
|
if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
|
|
|
|
mismatch = B_TRUE;
|
|
|
|
} else {
|
|
|
|
if (vd->vdev_guid != top_guid &&
|
|
|
|
vd->vdev_top->vdev_guid != guid)
|
|
|
|
mismatch = B_TRUE;
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if (mismatch) {
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
nvlist_free(label);
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
vdev_dbgmsg(vd, "vdev_validate: config guid "
|
|
|
|
"doesn't match label guid");
|
|
|
|
vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
|
|
|
|
(u_longlong_t)vd->vdev_guid,
|
|
|
|
(u_longlong_t)vd->vdev_top->vdev_guid);
|
|
|
|
vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
|
|
|
|
"aux_guid %llu", (u_longlong_t)guid,
|
|
|
|
(u_longlong_t)top_guid, (u_longlong_t)aux_guid);
|
2008-11-20 12:01:55 -08:00
|
|
|
return (0);
|
|
|
|
}
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
|
|
&state) != 0) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
2008-11-20 12:01:55 -08:00
|
|
|
nvlist_free(label);
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
|
|
ZPOOL_CONFIG_POOL_STATE);
|
|
|
|
return (0);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
nvlist_free(label);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If this is a verbatim import, no need to check the
|
|
|
|
* state of the pool.
|
|
|
|
*/
|
|
|
|
if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
|
|
|
|
spa_load_state(spa) == SPA_LOAD_OPEN &&
|
|
|
|
state != POOL_STATE_ACTIVE) {
|
|
|
|
vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
|
|
|
|
"for spa %s", (u_longlong_t)state, spa->spa_name);
|
|
|
|
return (SET_ERROR(EBADF));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we were able to open and validate a vdev that was
|
|
|
|
* previously marked permanently unavailable, clear that state
|
|
|
|
* now.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_not_present)
|
|
|
|
vd->vdev_not_present = 0;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
|
|
|
|
{
|
|
|
|
if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
|
|
|
|
if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
|
|
|
|
zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
|
|
|
|
"from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
|
|
|
|
dvd->vdev_path, svd->vdev_path);
|
|
|
|
spa_strfree(dvd->vdev_path);
|
|
|
|
dvd->vdev_path = spa_strdup(svd->vdev_path);
|
2016-03-10 10:16:02 -05:00
|
|
|
}
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
} else if (svd->vdev_path != NULL) {
|
|
|
|
dvd->vdev_path = spa_strdup(svd->vdev_path);
|
|
|
|
zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
|
|
|
|
(u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
|
|
|
|
}
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
/*
|
|
|
|
* Recursively copy vdev paths from one vdev to another. Source and destination
|
|
|
|
* vdev trees must have same geometry otherwise return error. Intended to copy
|
|
|
|
* paths from userland config into MOS config.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
|
|
|
|
{
|
|
|
|
if ((svd->vdev_ops == &vdev_missing_ops) ||
|
|
|
|
(svd->vdev_ishole && dvd->vdev_ishole) ||
|
|
|
|
(dvd->vdev_ops == &vdev_indirect_ops))
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (svd->vdev_ops != dvd->vdev_ops) {
|
|
|
|
vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
|
|
|
|
svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
|
|
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (svd->vdev_guid != dvd->vdev_guid) {
|
|
|
|
vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
|
|
|
|
"%llu)", (u_longlong_t)svd->vdev_guid,
|
|
|
|
(u_longlong_t)dvd->vdev_guid);
|
|
|
|
return (SET_ERROR(EINVAL));
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
if (svd->vdev_children != dvd->vdev_children) {
|
|
|
|
vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
|
|
|
|
"%llu != %llu", (u_longlong_t)svd->vdev_children,
|
|
|
|
(u_longlong_t)dvd->vdev_children);
|
|
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < svd->vdev_children; i++) {
|
|
|
|
int error = vdev_copy_path_strict(svd->vdev_child[i],
|
|
|
|
dvd->vdev_child[i]);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (svd->vdev_ops->vdev_op_leaf)
|
|
|
|
vdev_copy_path_impl(svd, dvd);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
static void
|
|
|
|
vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
|
|
|
|
{
|
|
|
|
ASSERT(stvd->vdev_top == stvd);
|
|
|
|
ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < dvd->vdev_children; i++) {
|
|
|
|
vdev_copy_path_search(stvd, dvd->vdev_child[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The idea here is that while a vdev can shift positions within
|
|
|
|
* a top vdev (when replacing, attaching mirror, etc.) it cannot
|
|
|
|
* step outside of it.
|
|
|
|
*/
|
|
|
|
vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
|
|
|
|
|
|
|
|
if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
|
|
|
|
vdev_copy_path_impl(vd, dvd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Recursively copy vdev paths from one root vdev to another. Source and
|
|
|
|
* destination vdev trees may differ in geometry. For each destination leaf
|
|
|
|
* vdev, search a vdev with the same guid and top vdev id in the source.
|
|
|
|
* Intended to copy paths from userland config into MOS config.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
|
|
|
|
{
|
|
|
|
uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
|
|
|
|
ASSERT(srvd->vdev_ops == &vdev_root_ops);
|
|
|
|
ASSERT(drvd->vdev_ops == &vdev_root_ops);
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < children; i++) {
|
|
|
|
vdev_copy_path_search(srvd->vdev_child[i],
|
|
|
|
drvd->vdev_child[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Close a virtual device.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_close(vdev_t *vd)
|
|
|
|
{
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_t *pvd = vd->vdev_parent;
|
2010-08-26 09:53:00 -07:00
|
|
|
ASSERTV(spa_t *spa = vd->vdev_spa);
|
2009-01-15 13:59:39 -08:00
|
|
|
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* If our parent is reopening, then we are as well, unless we are
|
|
|
|
* going offline.
|
|
|
|
*/
|
|
|
|
if (pvd != NULL && pvd->vdev_reopening)
|
|
|
|
vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_ops->vdev_op_close(vd);
|
|
|
|
|
|
|
|
vdev_cache_purge(vd);
|
|
|
|
|
|
|
|
/*
|
2009-07-02 15:44:48 -07:00
|
|
|
* We record the previous state before we close it, so that if we are
|
2008-11-20 12:01:55 -08:00
|
|
|
* doing a reopen(), we don't generate FMA ereports if we notice that
|
|
|
|
* it's still faulted.
|
|
|
|
*/
|
|
|
|
vd->vdev_prevstate = vd->vdev_state;
|
|
|
|
|
|
|
|
if (vd->vdev_offline)
|
|
|
|
vd->vdev_state = VDEV_STATE_OFFLINE;
|
|
|
|
else
|
|
|
|
vd->vdev_state = VDEV_STATE_CLOSED;
|
|
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
void
|
|
|
|
vdev_hold(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
|
|
|
ASSERT(spa_is_root(spa));
|
|
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
|
|
return;
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_hold(vd->vdev_child[c]);
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
|
|
vd->vdev_ops->vdev_op_hold(vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_rele(vdev_t *vd)
|
|
|
|
{
|
2010-08-26 09:52:39 -07:00
|
|
|
ASSERT(spa_is_root(vd->vdev_spa));
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_rele(vd->vdev_child[c]);
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
|
|
vd->vdev_ops->vdev_op_rele(vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reopen all interior vdevs and any unopened leaves. We don't actually
|
|
|
|
* reopen leaf vdevs which had previously been opened as they might deadlock
|
|
|
|
* on the spa_config_lock. Instead we only obtain the leaf's physical size.
|
|
|
|
* If the leaf has never been opened then open it, as usual.
|
|
|
|
*/
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
|
|
|
vdev_reopen(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/* set the reopening flag unless we're taking the vdev offline */
|
|
|
|
vd->vdev_reopening = !vd->vdev_offline;
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_close(vd);
|
|
|
|
(void) vdev_open(vd);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Call vdev_validate() here to make sure we have the same device.
|
|
|
|
* Otherwise, a device with an invalid label could be successfully
|
|
|
|
* opened in response to vdev_reopen().
|
|
|
|
*/
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vd->vdev_aux) {
|
|
|
|
(void) vdev_validate_aux(vd);
|
|
|
|
if (vdev_readable(vd) && vdev_writeable(vd) &&
|
2009-07-02 15:44:48 -07:00
|
|
|
vd->vdev_aux == &spa->spa_l2cache &&
|
|
|
|
!l2arc_vdev_present(vd))
|
|
|
|
l2arc_add_vdev(spa, vd);
|
2008-12-03 12:09:06 -08:00
|
|
|
} else {
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
(void) vdev_validate(vd);
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Reassess parent vdev's health.
|
|
|
|
*/
|
|
|
|
vdev_propagate_state(vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Normally, partial opens (e.g. of a mirror) are allowed.
|
|
|
|
* For a create, however, we want to fail the request if
|
|
|
|
* there are any components we can't open.
|
|
|
|
*/
|
|
|
|
error = vdev_open(vd);
|
|
|
|
|
|
|
|
if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
|
|
|
|
vdev_close(vd);
|
|
|
|
return (error ? error : ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
* Recursively load DTLs and initialize all labels.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
if ((error = vdev_dtl_load(vd)) != 0 ||
|
|
|
|
(error = vdev_label_init(vd, txg, isreplacing ?
|
2008-11-20 12:01:55 -08:00
|
|
|
VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
|
|
|
|
vdev_close(vd);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_metaslab_set_size(vdev_t *vd)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2016-12-16 14:11:29 -08:00
|
|
|
uint64_t asize = vd->vdev_asize;
|
2019-01-25 16:38:27 -08:00
|
|
|
uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
|
2017-08-11 15:28:17 -06:00
|
|
|
uint64_t ms_shift;
|
2016-12-16 14:11:29 -08:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2017-08-11 15:28:17 -06:00
|
|
|
* There are two dimensions to the metaslab sizing calculation:
|
|
|
|
* the size of the metaslab and the count of metaslabs per vdev.
|
|
|
|
*
|
2019-01-25 16:38:27 -08:00
|
|
|
* The default values used below are a good balance between memory
|
|
|
|
* usage (larger metaslab size means more memory needed for loaded
|
|
|
|
* metaslabs; more metaslabs means more memory needed for the
|
|
|
|
* metaslab_t structs), metaslab load time (larger metaslabs take
|
|
|
|
* longer to load), and metaslab sync time (more metaslabs means
|
|
|
|
* more time spent syncing all of them).
|
|
|
|
*
|
|
|
|
* In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
|
|
|
|
* The range of the dimensions are as follows:
|
|
|
|
*
|
|
|
|
* 2^29 <= ms_size <= 2^34
|
2017-08-11 15:28:17 -06:00
|
|
|
* 16 <= ms_count <= 131,072
|
|
|
|
*
|
|
|
|
* On the lower end of vdev sizes, we aim for metaslabs sizes of
|
|
|
|
* at least 512MB (2^29) to minimize fragmentation effects when
|
|
|
|
* testing with smaller devices. However, the count constraint
|
|
|
|
* of at least 16 metaslabs will override this minimum size goal.
|
|
|
|
*
|
|
|
|
* On the upper end of vdev sizes, we aim for a maximum metaslab
|
2019-01-25 16:38:27 -08:00
|
|
|
* size of 16GB. However, we will cap the total count to 2^17
|
|
|
|
* metaslabs to keep our memory footprint in check and let the
|
|
|
|
* metaslab size grow from there if that limit is hit.
|
2017-08-11 15:28:17 -06:00
|
|
|
*
|
|
|
|
* The net effect of applying above constrains is summarized below.
|
|
|
|
*
|
2019-01-25 16:38:27 -08:00
|
|
|
* vdev size metaslab count
|
|
|
|
* --------------|-----------------
|
|
|
|
* < 8GB ~16
|
|
|
|
* 8GB - 100GB one per 512MB
|
|
|
|
* 100GB - 3TB ~200
|
|
|
|
* 3TB - 2PB one per 16GB
|
|
|
|
* > 2PB ~131,072
|
|
|
|
* --------------------------------
|
|
|
|
*
|
|
|
|
* Finally, note that all of the above calculate the initial
|
|
|
|
* number of metaslabs. Expanding a top-level vdev will result
|
|
|
|
* in additional metaslabs being allocated making it possible
|
|
|
|
* to exceed the zfs_vdev_ms_count_limit.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2016-12-16 14:11:29 -08:00
|
|
|
|
2019-01-25 16:38:27 -08:00
|
|
|
if (ms_count < zfs_vdev_min_ms_count)
|
|
|
|
ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
|
|
|
|
else if (ms_count > zfs_vdev_default_ms_count)
|
|
|
|
ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
|
2017-08-11 15:28:17 -06:00
|
|
|
else
|
2019-01-25 16:38:27 -08:00
|
|
|
ms_shift = zfs_vdev_default_ms_shift;
|
2017-08-11 15:28:17 -06:00
|
|
|
|
|
|
|
if (ms_shift < SPA_MAXBLOCKSHIFT) {
|
|
|
|
ms_shift = SPA_MAXBLOCKSHIFT;
|
2019-01-25 16:38:27 -08:00
|
|
|
} else if (ms_shift > zfs_vdev_max_ms_shift) {
|
|
|
|
ms_shift = zfs_vdev_max_ms_shift;
|
2017-08-11 15:28:17 -06:00
|
|
|
/* cap the total count to constrain memory footprint */
|
2019-01-25 16:38:27 -08:00
|
|
|
if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
|
|
|
|
ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
|
2016-12-16 14:11:29 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_ms_shift = ms_shift;
|
|
|
|
ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
|
|
|
|
{
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
/* indirect vdevs don't have metaslabs or dtls */
|
|
|
|
ASSERT(vdev_is_concrete(vd) || flags == 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
ASSERT(ISP2(flags));
|
2010-08-26 14:24:34 -07:00
|
|
|
ASSERT(spa_writeable(vd->vdev_spa));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (flags & VDD_METASLAB)
|
|
|
|
(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
|
|
|
|
|
|
|
|
if (flags & VDD_DTL)
|
|
|
|
(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
|
|
|
|
|
|
|
|
(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
|
|
|
|
}
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
void
|
|
|
|
vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
|
|
|
|
{
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
|
|
vdev_dirty(vd->vdev_top, flags, vd, txg);
|
|
|
|
}
|
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
/*
|
|
|
|
* DTLs.
|
|
|
|
*
|
|
|
|
* A vdev's DTL (dirty time log) is the set of transaction groups for which
|
2010-05-28 13:45:14 -07:00
|
|
|
* the vdev has less than perfect replication. There are four kinds of DTL:
|
2009-01-15 13:59:39 -08:00
|
|
|
*
|
|
|
|
* DTL_MISSING: txgs for which the vdev has no valid copies of the data
|
|
|
|
*
|
|
|
|
* DTL_PARTIAL: txgs for which data is available, but not fully replicated
|
|
|
|
*
|
|
|
|
* DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
|
|
|
|
* scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
|
|
|
|
* txgs that was scrubbed.
|
|
|
|
*
|
|
|
|
* DTL_OUTAGE: txgs which cannot currently be read, whether due to
|
|
|
|
* persistent errors or just some device being offline.
|
|
|
|
* Unlike the other three, the DTL_OUTAGE map is not generally
|
|
|
|
* maintained; it's only computed when needed, typically to
|
|
|
|
* determine whether a device can be detached.
|
|
|
|
*
|
|
|
|
* For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
|
|
|
|
* either has the data or it doesn't.
|
|
|
|
*
|
|
|
|
* For interior vdevs such as mirror and RAID-Z the picture is more complex.
|
|
|
|
* A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
|
|
|
|
* if any child is less than fully replicated, then so is its parent.
|
|
|
|
* A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
|
|
|
|
* comprising only those txgs which appear in 'maxfaults' or more children;
|
|
|
|
* those are the txgs we don't have enough replication to read. For example,
|
|
|
|
* double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
|
|
|
|
* thus, its DTL_MISSING consists of the set of txgs that appear in more than
|
|
|
|
* two child DTL_MISSING maps.
|
|
|
|
*
|
|
|
|
* It should be clear from the above that to compute the DTLs and outage maps
|
|
|
|
* for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
|
|
|
|
* Therefore, that is all we keep on disk. When loading the pool, or after
|
|
|
|
* a configuration change, we generate all other DTLs from first principles.
|
|
|
|
*/
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
2009-01-15 13:59:39 -08:00
|
|
|
vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
2009-01-15 13:59:39 -08:00
|
|
|
|
|
|
|
ASSERT(t < DTL_TYPES);
|
|
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
2010-08-26 14:24:34 -07:00
|
|
|
ASSERT(spa_writeable(vd->vdev_spa));
|
2009-01-15 13:59:39 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
if (!range_tree_contains(rt, txg, size))
|
|
|
|
range_tree_add(rt, txg, size);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
boolean_t
|
|
|
|
vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
2009-01-15 13:59:39 -08:00
|
|
|
boolean_t dirty = B_FALSE;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
ASSERT(t < DTL_TYPES);
|
|
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
/*
|
|
|
|
* While we are loading the pool, the DTLs have not been loaded yet.
|
|
|
|
* Ignore the DTLs and try all devices. This avoids a recursive
|
|
|
|
* mutex enter on the vdev_dtl_lock, and also makes us try hard
|
|
|
|
* when loading the pool (relying on the checksum to ensure that
|
|
|
|
* we get the right data -- note that we while loading, we are
|
|
|
|
* only reading the MOS, which is always checksummed).
|
|
|
|
*/
|
|
|
|
if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
|
|
|
|
return (B_FALSE);
|
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
2016-12-16 14:11:29 -08:00
|
|
|
if (!range_tree_is_empty(rt))
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
dirty = range_tree_contains(rt, txg, size);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
return (dirty);
|
|
|
|
}
|
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
boolean_t
|
|
|
|
vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
|
|
|
|
{
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
2009-01-15 13:59:39 -08:00
|
|
|
boolean_t empty;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
2016-12-16 14:11:29 -08:00
|
|
|
empty = range_tree_is_empty(rt);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2009-01-15 13:59:39 -08:00
|
|
|
|
|
|
|
return (empty);
|
|
|
|
}
|
|
|
|
|
2017-05-12 18:28:03 -06:00
|
|
|
/*
|
|
|
|
* Returns B_TRUE if vdev determines offset needs to be resilvered.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
|
|
|
|
{
|
|
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
|
|
|
|
vd->vdev_ops->vdev_op_leaf)
|
|
|
|
return (B_TRUE);
|
|
|
|
|
|
|
|
return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
|
|
|
|
}
|
|
|
|
|
2013-08-07 12:16:22 -08:00
|
|
|
/*
|
|
|
|
* Returns the lowest txg in the DTL range.
|
|
|
|
*/
|
|
|
|
static uint64_t
|
|
|
|
vdev_dtl_min(vdev_t *vd)
|
|
|
|
{
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_seg_t *rs;
|
2013-08-07 12:16:22 -08:00
|
|
|
|
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
|
2013-08-07 12:16:22 -08:00
|
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
|
|
|
|
return (rs->rs_start - 1);
|
2013-08-07 12:16:22 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns the highest txg in the DTL.
|
|
|
|
*/
|
|
|
|
static uint64_t
|
|
|
|
vdev_dtl_max(vdev_t *vd)
|
|
|
|
{
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_seg_t *rs;
|
2013-08-07 12:16:22 -08:00
|
|
|
|
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
|
2013-08-07 12:16:22 -08:00
|
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
|
|
|
|
return (rs->rs_end);
|
2013-08-07 12:16:22 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine if a resilvering vdev should remove any DTL entries from
|
|
|
|
* its range. If the vdev was resilvering for the entire duration of the
|
|
|
|
* scan then it should excise that range from its DTLs. Otherwise, this
|
|
|
|
* vdev is considered partially resilvered and should leave its DTL
|
|
|
|
* entries intact. The comment in vdev_dtl_reassess() describes how we
|
|
|
|
* excise the DTLs.
|
|
|
|
*/
|
|
|
|
static boolean_t
|
|
|
|
vdev_dtl_should_excise(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
|
|
|
|
|
|
|
|
ASSERT0(scn->scn_phys.scn_errors);
|
|
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
|
2017-05-10 10:32:40 -07:00
|
|
|
if (vd->vdev_state < VDEV_STATE_DEGRADED)
|
|
|
|
return (B_FALSE);
|
|
|
|
|
2018-10-19 00:06:18 -04:00
|
|
|
if (vd->vdev_resilver_deferred)
|
|
|
|
return (B_FALSE);
|
|
|
|
|
2013-08-07 12:16:22 -08:00
|
|
|
if (vd->vdev_resilver_txg == 0 ||
|
2016-12-16 14:11:29 -08:00
|
|
|
range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
|
2013-08-07 12:16:22 -08:00
|
|
|
return (B_TRUE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When a resilver is initiated the scan will assign the scn_max_txg
|
|
|
|
* value to the highest txg value that exists in all DTLs. If this
|
|
|
|
* device's max DTL is not part of this scan (i.e. it is not in
|
|
|
|
* the range (scn_min_txg, scn_max_txg] then it is not eligible
|
|
|
|
* for excision.
|
|
|
|
*/
|
|
|
|
if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
|
|
|
|
ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
|
|
|
|
ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
|
|
|
|
ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
|
|
|
return (B_FALSE);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2018-11-07 18:44:14 -05:00
|
|
|
* Reassess DTLs after a config change or scrub completion. If txg == 0 no
|
|
|
|
* write operations will be issued to the pool.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
2009-01-15 13:59:39 -08:00
|
|
|
avl_tree_t reftree;
|
2017-11-04 14:25:13 -06:00
|
|
|
int minref;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2009-01-15 13:59:39 -08:00
|
|
|
vdev_dtl_reassess(vd->vdev_child[c], txg,
|
|
|
|
scrub_txg, scrub_done);
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
|
2009-01-15 13:59:39 -08:00
|
|
|
return;
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
2010-05-28 13:45:14 -07:00
|
|
|
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
2013-08-07 12:16:22 -08:00
|
|
|
|
2018-03-13 12:43:14 -05:00
|
|
|
/*
|
|
|
|
* If requested, pretend the scan completed cleanly.
|
|
|
|
*/
|
|
|
|
if (zfs_scan_ignore_errors && scn)
|
|
|
|
scn->scn_phys.scn_errors = 0;
|
|
|
|
|
2013-08-07 12:16:22 -08:00
|
|
|
/*
|
|
|
|
* If we've completed a scan cleanly then determine
|
|
|
|
* if this vdev should remove any DTLs. We only want to
|
|
|
|
* excise regions on vdevs that were available during
|
|
|
|
* the entire duration of this scan.
|
|
|
|
*/
|
2008-12-03 12:09:06 -08:00
|
|
|
if (scrub_txg != 0 &&
|
2010-05-28 13:45:14 -07:00
|
|
|
(spa->spa_scrub_started ||
|
2013-08-07 12:16:22 -08:00
|
|
|
(scn != NULL && scn->scn_phys.scn_errors == 0)) &&
|
|
|
|
vdev_dtl_should_excise(vd)) {
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
|
|
|
* We completed a scrub up to scrub_txg. If we
|
|
|
|
* did it without rebooting, then the scrub dtl
|
|
|
|
* will be valid, so excise the old region and
|
|
|
|
* fold in the scrub dtl. Otherwise, leave the
|
|
|
|
* dtl as-is if there was an error.
|
2009-01-15 13:59:39 -08:00
|
|
|
*
|
|
|
|
* There's little trick here: to excise the beginning
|
|
|
|
* of the DTL_MISSING map, we put it into a reference
|
|
|
|
* tree and then add a segment with refcnt -1 that
|
|
|
|
* covers the range [0, scrub_txg). This means
|
|
|
|
* that each txg in that range has refcnt -1 or 0.
|
|
|
|
* We then add DTL_SCRUB with a refcnt of 2, so that
|
|
|
|
* entries in the range [0, scrub_txg) will have a
|
|
|
|
* positive refcnt -- either 1 or 2. We then convert
|
|
|
|
* the reference tree into the new DTL_MISSING map.
|
2008-12-03 12:09:06 -08:00
|
|
|
*/
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
space_reftree_create(&reftree);
|
|
|
|
space_reftree_add_map(&reftree,
|
|
|
|
vd->vdev_dtl[DTL_MISSING], 1);
|
|
|
|
space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
|
|
|
|
space_reftree_add_map(&reftree,
|
|
|
|
vd->vdev_dtl[DTL_SCRUB], 2);
|
|
|
|
space_reftree_generate_map(&reftree,
|
|
|
|
vd->vdev_dtl[DTL_MISSING], 1);
|
|
|
|
space_reftree_destroy(&reftree);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
|
|
|
|
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
|
|
|
|
range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
|
2008-11-20 12:01:55 -08:00
|
|
|
if (scrub_done)
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
|
|
|
|
range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
|
2009-01-15 13:59:39 -08:00
|
|
|
if (!vdev_readable(vd))
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
|
2009-01-15 13:59:39 -08:00
|
|
|
else
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
|
|
|
|
range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
|
2013-08-07 12:16:22 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the vdev was resilvering and no longer has any
|
2016-06-24 00:45:19 +10:00
|
|
|
* DTLs then reset its resilvering flag and dirty
|
|
|
|
* the top level so that we persist the change.
|
2013-08-07 12:16:22 -08:00
|
|
|
*/
|
2018-11-07 18:44:14 -05:00
|
|
|
if (txg != 0 && vd->vdev_resilver_txg != 0 &&
|
2016-12-16 14:11:29 -08:00
|
|
|
range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
|
|
|
|
range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
|
2013-08-07 12:16:22 -08:00
|
|
|
vd->vdev_resilver_txg = 0;
|
2016-06-24 00:45:19 +10:00
|
|
|
vdev_config_dirty(vd->vdev_top);
|
|
|
|
}
|
2013-08-07 12:16:22 -08:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (txg != 0)
|
|
|
|
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int t = 0; t < DTL_TYPES; t++) {
|
2010-05-28 13:45:14 -07:00
|
|
|
/* account for child's outage in parent's missing map */
|
|
|
|
int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
|
2009-01-15 13:59:39 -08:00
|
|
|
if (t == DTL_SCRUB)
|
|
|
|
continue; /* leaf vdevs only */
|
|
|
|
if (t == DTL_PARTIAL)
|
|
|
|
minref = 1; /* i.e. non-zero */
|
|
|
|
else if (vd->vdev_nparity != 0)
|
|
|
|
minref = vd->vdev_nparity + 1; /* RAID-Z */
|
|
|
|
else
|
|
|
|
minref = vd->vdev_children; /* any kind of mirror */
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
space_reftree_create(&reftree);
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2009-01-15 13:59:39 -08:00
|
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
mutex_enter(&cvd->vdev_dtl_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
|
2009-01-15 13:59:39 -08:00
|
|
|
mutex_exit(&cvd->vdev_dtl_lock);
|
|
|
|
}
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
|
|
|
|
space_reftree_destroy(&reftree);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2009-01-15 13:59:39 -08:00
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
int
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_dtl_load(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
objset_t *mos = spa->spa_meta_objset;
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
int error = 0;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
ASSERT(vdev_is_concrete(vd));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
error = space_map_open(&vd->vdev_dtl_sm, mos,
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vd->vdev_dtl_object, 0, -1ULL, 0);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
ASSERT(vd->vdev_dtl_sm != NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
|
|
error = space_map_load(vd->vdev_dtl_sm,
|
|
|
|
vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
|
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
error = vdev_dtl_load(vd->vdev_child[c]);
|
|
|
|
if (error != 0)
|
|
|
|
break;
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
static void
|
|
|
|
vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
|
|
vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
|
|
|
|
const char *string;
|
|
|
|
|
|
|
|
ASSERT(alloc_bias != VDEV_BIAS_NONE);
|
|
|
|
|
|
|
|
string =
|
|
|
|
(alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
|
|
|
|
(alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
|
|
|
|
(alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
|
|
|
|
|
|
|
|
ASSERT(string != NULL);
|
|
|
|
VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
|
|
|
|
1, strlen(string) + 1, string, tx));
|
|
|
|
|
|
|
|
if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
|
|
|
|
spa_activate_allocation_classes(spa, tx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-04-11 16:16:57 -04:00
|
|
|
void
|
|
|
|
vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
|
|
|
VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
|
|
|
|
VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
|
|
|
|
zapobj, tx));
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
|
|
|
|
DMU_OT_NONE, 0, tx);
|
|
|
|
|
|
|
|
ASSERT(zap != 0);
|
|
|
|
VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
|
|
|
|
zap, tx));
|
|
|
|
|
|
|
|
return (zap);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
if (vd->vdev_ops != &vdev_hole_ops &&
|
|
|
|
vd->vdev_ops != &vdev_missing_ops &&
|
|
|
|
vd->vdev_ops != &vdev_root_ops &&
|
|
|
|
!vd->vdev_top->vdev_removing) {
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
|
|
|
|
vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
|
|
|
|
}
|
|
|
|
if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
|
|
|
|
vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
|
2018-09-05 19:33:36 -06:00
|
|
|
if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
|
|
|
|
vdev_zap_allocation_data(vd, tx);
|
2016-04-11 16:16:57 -04:00
|
|
|
}
|
|
|
|
}
|
2018-09-05 19:33:36 -06:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
2016-04-11 16:16:57 -04:00
|
|
|
vdev_construct_zaps(vd->vdev_child[i], tx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
|
|
|
vdev_dtl_sync(vdev_t *vd, uint64_t txg)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
|
2008-11-20 12:01:55 -08:00
|
|
|
objset_t *mos = spa->spa_meta_objset;
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_t *rtsync;
|
2008-11-20 12:01:55 -08:00
|
|
|
dmu_tx_t *tx;
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
uint64_t object = space_map_object(vd->vdev_dtl_sm);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
ASSERT(vdev_is_concrete(vd));
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
2010-05-28 13:45:14 -07:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
|
|
space_map_free(vd->vdev_dtl_sm, tx);
|
|
|
|
space_map_close(vd->vdev_dtl_sm);
|
|
|
|
vd->vdev_dtl_sm = NULL;
|
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
2016-04-11 16:16:57 -04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We only destroy the leaf ZAP for detached leaves or for
|
|
|
|
* removed log devices. Removed data devices handle leaf ZAP
|
|
|
|
* cleanup later, once cancellation is no longer possible.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
|
|
|
|
vd->vdev_top->vdev_islog)) {
|
|
|
|
vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
|
|
|
|
vd->vdev_leaf_zap = 0;
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
if (vd->vdev_dtl_sm == NULL) {
|
|
|
|
uint64_t new_object;
|
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
|
|
|
|
VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
0, -1ULL, 0));
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
ASSERT(vd->vdev_dtl_sm != NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
rtsync = range_tree_create(NULL, NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_walk(rt, range_tree_add, rtsync);
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
|
2017-08-04 09:30:49 -07:00
|
|
|
space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_vacate(rtsync, NULL, NULL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
range_tree_destroy(rtsync);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
/*
|
|
|
|
* If the object for the space map has changed then dirty
|
|
|
|
* the top level so that we update the config.
|
|
|
|
*/
|
|
|
|
if (object != space_map_object(vd->vdev_dtl_sm)) {
|
2016-03-10 10:16:02 -05:00
|
|
|
vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
|
|
|
|
"new object %llu", (u_longlong_t)txg, spa_name(spa),
|
|
|
|
(u_longlong_t)object,
|
|
|
|
(u_longlong_t)space_map_object(vd->vdev_dtl_sm));
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 13:25:53 -08:00
|
|
|
vdev_config_dirty(vd->vdev_top);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
}
|
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
/*
|
|
|
|
* Determine whether the specified vdev can be offlined/detached/removed
|
|
|
|
* without losing data.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vdev_dtl_required(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
vdev_t *tvd = vd->vdev_top;
|
|
|
|
uint8_t cant_read = vd->vdev_cant_read;
|
|
|
|
boolean_t required;
|
|
|
|
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
|
|
|
|
if (vd == spa->spa_root_vdev || vd == tvd)
|
|
|
|
return (B_TRUE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Temporarily mark the device as unreadable, and then determine
|
|
|
|
* whether this results in any DTL outages in the top-level vdev.
|
|
|
|
* If not, we can safely offline/detach/remove the device.
|
|
|
|
*/
|
|
|
|
vd->vdev_cant_read = B_TRUE;
|
|
|
|
vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
|
|
|
|
required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
|
|
|
|
vd->vdev_cant_read = cant_read;
|
|
|
|
vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
|
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
if (!required && zio_injection_enabled)
|
|
|
|
required = !!zio_handle_device_injection(vd, NULL, ECHILD);
|
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
return (required);
|
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
|
|
|
* Determine if resilver is needed, and if so the txg range.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
|
|
|
|
{
|
|
|
|
boolean_t needed = B_FALSE;
|
|
|
|
uint64_t thismin = UINT64_MAX;
|
|
|
|
uint64_t thismax = 0;
|
|
|
|
|
|
|
|
if (vd->vdev_children == 0) {
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
2016-12-16 14:11:29 -08:00
|
|
|
if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
|
2009-01-15 13:59:39 -08:00
|
|
|
vdev_writeable(vd)) {
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2013-08-07 12:16:22 -08:00
|
|
|
thismin = vdev_dtl_min(vd);
|
|
|
|
thismax = vdev_dtl_max(vd);
|
2008-12-03 12:09:06 -08:00
|
|
|
needed = B_TRUE;
|
|
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
} else {
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
uint64_t cmin, cmax;
|
|
|
|
|
|
|
|
if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
|
|
|
|
thismin = MIN(thismin, cmin);
|
|
|
|
thismax = MAX(thismax, cmax);
|
|
|
|
needed = B_TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (needed && minp) {
|
|
|
|
*minp = thismin;
|
|
|
|
*maxp = thismax;
|
|
|
|
}
|
|
|
|
return (needed);
|
|
|
|
}
|
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
/*
|
2018-10-09 15:42:42 -07:00
|
|
|
* Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
|
|
|
|
* will contain either the checkpoint spacemap object or zero if none exists.
|
|
|
|
* All other errors are returned to the caller.
|
2016-12-16 14:11:29 -08:00
|
|
|
*/
|
|
|
|
int
|
2018-10-09 15:42:42 -07:00
|
|
|
vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
|
2016-12-16 14:11:29 -08:00
|
|
|
{
|
|
|
|
ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
|
2018-10-09 15:42:42 -07:00
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
if (vd->vdev_top_zap == 0) {
|
2018-10-09 15:42:42 -07:00
|
|
|
*sm_obj = 0;
|
2016-12-16 14:11:29 -08:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2018-10-09 15:42:42 -07:00
|
|
|
int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
|
|
|
|
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
|
|
|
|
if (error == ENOENT) {
|
|
|
|
*sm_obj = 0;
|
|
|
|
error = 0;
|
|
|
|
}
|
2016-12-16 14:11:29 -08:00
|
|
|
|
2018-10-09 15:42:42 -07:00
|
|
|
return (error);
|
2016-12-16 14:11:29 -08:00
|
|
|
}
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
int
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_load(vdev_t *vd)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
int error = 0;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Recursively load all children.
|
|
|
|
*/
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
|
|
error = vdev_load(vd->vdev_child[c]);
|
|
|
|
if (error != 0) {
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vdev_set_deflate_ratio(vd);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
/*
|
|
|
|
* On spa_load path, grab the allocation bias from our zap
|
|
|
|
*/
|
|
|
|
if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
char bias_str[64];
|
|
|
|
|
|
|
|
if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
|
|
|
|
VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
|
|
|
|
bias_str) == 0) {
|
|
|
|
ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
|
|
|
|
vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* If this is a top-level vdev, initialize its metaslabs.
|
|
|
|
*/
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
|
2018-09-05 19:33:36 -06:00
|
|
|
vdev_metaslab_group_create(vd);
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
2016-03-10 10:16:02 -05:00
|
|
|
vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
|
|
|
|
"asize=%llu", (u_longlong_t)vd->vdev_ashift,
|
|
|
|
(u_longlong_t)vd->vdev_asize);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
return (SET_ERROR(ENXIO));
|
2019-02-20 09:59:57 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
error = vdev_metaslab_init(vd, 0);
|
|
|
|
if (error != 0) {
|
2016-03-10 10:16:02 -05:00
|
|
|
vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
|
|
|
|
"[error=%d]", error);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
return (error);
|
|
|
|
}
|
2016-12-16 14:11:29 -08:00
|
|
|
|
2018-10-09 15:42:42 -07:00
|
|
|
uint64_t checkpoint_sm_obj;
|
|
|
|
error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
|
|
|
|
if (error == 0 && checkpoint_sm_obj != 0) {
|
2016-12-16 14:11:29 -08:00
|
|
|
objset_t *mos = spa_meta_objset(vd->vdev_spa);
|
|
|
|
ASSERT(vd->vdev_asize != 0);
|
|
|
|
ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
|
|
|
|
|
2019-02-20 09:59:57 -08:00
|
|
|
error = space_map_open(&vd->vdev_checkpoint_sm,
|
2016-12-16 14:11:29 -08:00
|
|
|
mos, checkpoint_sm_obj, 0, vd->vdev_asize,
|
2019-02-20 09:59:57 -08:00
|
|
|
vd->vdev_ashift);
|
|
|
|
if (error != 0) {
|
2016-12-16 14:11:29 -08:00
|
|
|
vdev_dbgmsg(vd, "vdev_load: space_map_open "
|
|
|
|
"failed for checkpoint spacemap (obj %llu) "
|
|
|
|
"[error=%d]",
|
|
|
|
(u_longlong_t)checkpoint_sm_obj, error);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Since the checkpoint_sm contains free entries
|
2019-02-12 10:38:11 -08:00
|
|
|
* exclusively we can use space_map_allocated() to
|
|
|
|
* indicate the cumulative checkpointed space that
|
|
|
|
* has been freed.
|
2016-12-16 14:11:29 -08:00
|
|
|
*/
|
|
|
|
vd->vdev_stat.vs_checkpoint_space =
|
2019-02-12 10:38:11 -08:00
|
|
|
-space_map_allocated(vd->vdev_checkpoint_sm);
|
2016-12-16 14:11:29 -08:00
|
|
|
vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
|
|
|
|
vd->vdev_stat.vs_checkpoint_space;
|
2018-10-09 15:42:42 -07:00
|
|
|
} else if (error != 0) {
|
|
|
|
vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
|
|
|
|
"checkpoint space map object from vdev ZAP "
|
|
|
|
"[error=%d]", error);
|
|
|
|
return (error);
|
2016-12-16 14:11:29 -08:00
|
|
|
}
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* If this is a leaf vdev, load its DTL.
|
|
|
|
*/
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
2016-03-10 10:16:02 -05:00
|
|
|
vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
|
|
|
|
"[error=%d]", error);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2018-10-09 15:42:42 -07:00
|
|
|
uint64_t obsolete_sm_object;
|
|
|
|
error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
|
|
|
|
if (error == 0 && obsolete_sm_object != 0) {
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
|
|
ASSERT(vd->vdev_asize != 0);
|
2016-12-16 14:11:29 -08:00
|
|
|
ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
|
|
|
|
if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
|
|
|
|
obsolete_sm_object, 0, vd->vdev_asize, 0))) {
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
2016-03-10 10:16:02 -05:00
|
|
|
vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
|
|
|
|
"obsolete spacemap (obj %llu) [error=%d]",
|
|
|
|
(u_longlong_t)obsolete_sm_object, error);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
return (error);
|
|
|
|
}
|
2018-10-09 15:42:42 -07:00
|
|
|
} else if (error != 0) {
|
|
|
|
vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
|
|
|
|
"space map object from vdev ZAP [error=%d]", error);
|
|
|
|
return (error);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The special vdev case is used for hot spares and l2cache devices. Its
|
|
|
|
* sole purpose it to set the vdev state for the associated vdev. To do this,
|
|
|
|
* we make sure that we can open the underlying device, then try to read the
|
|
|
|
* label, and make sure that the label is sane and that it hasn't been
|
|
|
|
* repurposed to another pool.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
vdev_validate_aux(vdev_t *vd)
|
|
|
|
{
|
|
|
|
nvlist_t *label;
|
|
|
|
uint64_t guid, version;
|
|
|
|
uint64_t state;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (!vdev_readable(vd))
|
|
|
|
return (0);
|
|
|
|
|
2012-12-14 12:38:04 -08:00
|
|
|
if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
return (-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
|
2012-12-13 15:24:15 -08:00
|
|
|
!SPA_VERSION_IS_SUPPORTED(version) ||
|
2008-11-20 12:01:55 -08:00
|
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
|
|
|
|
guid != vd->vdev_guid ||
|
|
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
nvlist_free(label);
|
|
|
|
return (-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't actually check the pool state here. If it's in fact in
|
|
|
|
* use by another pool, we update this fact on the fly when requested.
|
|
|
|
*/
|
|
|
|
nvlist_free(label);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
/*
|
|
|
|
* Free the objects used to store this vdev's spacemaps, and the array
|
|
|
|
* that points to them.
|
|
|
|
*/
|
2010-05-28 13:45:14 -07:00
|
|
|
void
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
if (vd->vdev_ms_array == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
|
|
uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
|
|
|
|
size_t array_bytes = array_count * sizeof (uint64_t);
|
|
|
|
uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
|
|
|
|
VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
|
|
|
|
array_bytes, smobj_array, 0));
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < array_count; i++) {
|
|
|
|
uint64_t smobj = smobj_array[i];
|
|
|
|
if (smobj == 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
space_map_free_obj(mos, smobj, tx);
|
|
|
|
}
|
|
|
|
|
|
|
|
kmem_free(smobj_array, array_bytes);
|
|
|
|
VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
|
|
|
|
vd->vdev_ms_array = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2018-05-15 10:43:25 -07:00
|
|
|
vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
|
2010-05-28 13:45:14 -07:00
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
2018-05-15 10:43:25 -07:00
|
|
|
ASSERT(vd->vdev_islog);
|
2016-04-11 16:16:57 -04:00
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
ASSERT3U(txg, ==, spa_syncing_txg(spa));
|
2010-05-28 13:45:14 -07:00
|
|
|
|
2018-05-15 10:43:25 -07:00
|
|
|
dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
|
2016-04-11 16:16:57 -04:00
|
|
|
|
2018-05-15 10:43:25 -07:00
|
|
|
vdev_destroy_spacemaps(vd, tx);
|
|
|
|
if (vd->vdev_top_zap != 0) {
|
2016-04-11 16:16:57 -04:00
|
|
|
vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
|
|
|
|
vd->vdev_top_zap = 0;
|
|
|
|
}
|
2018-05-15 10:43:25 -07:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
dmu_tx_commit(tx);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
|
|
|
vdev_sync_done(vdev_t *vd, uint64_t txg)
|
|
|
|
{
|
|
|
|
metaslab_t *msp;
|
2010-05-28 13:45:14 -07:00
|
|
|
boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
ASSERT(vdev_is_concrete(vd));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
|
|
|
|
!= NULL)
|
2008-11-20 12:01:55 -08:00
|
|
|
metaslab_sync_done(msp, txg);
|
2010-05-28 13:45:14 -07:00
|
|
|
|
|
|
|
if (reassess)
|
|
|
|
metaslab_sync_reassess(vd->vdev_mg);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_sync(vdev_t *vd, uint64_t txg)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
vdev_t *lvd;
|
|
|
|
metaslab_t *msp;
|
|
|
|
|
2019-01-31 09:17:52 -08:00
|
|
|
ASSERT3U(txg, ==, spa->spa_syncing_txg);
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
|
|
|
|
ASSERT(vd->vdev_removing ||
|
|
|
|
vd->vdev_ops == &vdev_indirect_ops);
|
|
|
|
|
|
|
|
vdev_indirect_sync_obsolete(vd, tx);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the vdev is indirect, it can't have dirty
|
|
|
|
* metaslabs or DTLs.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_ops == &vdev_indirect_ops) {
|
|
|
|
ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
|
|
|
|
ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
|
2019-01-31 09:17:52 -08:00
|
|
|
dmu_tx_commit(tx);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
|
|
|
|
if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
|
|
|
|
!vd->vdev_removing) {
|
2008-11-20 12:01:55 -08:00
|
|
|
ASSERT(vd == vd->vdev_top);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
|
|
|
|
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
|
|
|
|
ASSERT(vd->vdev_ms_array != 0);
|
|
|
|
vdev_config_dirty(vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
|
|
|
|
metaslab_sync(msp, txg);
|
|
|
|
(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
|
|
|
|
}
|
|
|
|
|
|
|
|
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
|
|
|
|
vdev_dtl_sync(lvd, txg);
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
/*
|
2018-05-15 10:43:25 -07:00
|
|
|
* If this is an empty log device being removed, destroy the
|
|
|
|
* metadata associated with it.
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
*/
|
2018-05-15 10:43:25 -07:00
|
|
|
if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
|
|
|
|
vdev_remove_empty_log(vd, txg);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
|
2019-01-31 09:17:52 -08:00
|
|
|
dmu_tx_commit(tx);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
|
|
|
|
{
|
|
|
|
return (vd->vdev_ops->vdev_op_asize(vd, psize));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark the given vdev faulted. A faulted vdev behaves as if the device could
|
|
|
|
* not be opened, and no I/O is attempted.
|
|
|
|
*/
|
|
|
|
int
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2010-08-26 14:24:34 -07:00
|
|
|
vdev_t *vd, *tvd;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
tvd = vd->vdev_top;
|
|
|
|
|
2017-05-19 12:30:16 -07:00
|
|
|
/*
|
|
|
|
* If user did a 'zpool offline -f' then make the fault persist across
|
|
|
|
* reboots.
|
|
|
|
*/
|
|
|
|
if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
|
|
|
|
/*
|
|
|
|
* There are two kinds of forced faults: temporary and
|
|
|
|
* persistent. Temporary faults go away at pool import, while
|
|
|
|
* persistent faults stay set. Both types of faults can be
|
|
|
|
* cleared with a zpool clear.
|
|
|
|
*
|
|
|
|
* We tell if a vdev is persistently faulted by looking at the
|
|
|
|
* ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
|
|
|
|
* import then it's a persistent fault. Otherwise, it's
|
|
|
|
* temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
|
|
|
|
* by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
|
|
|
|
* tells vdev_config_generate() (which gets run later) to set
|
|
|
|
* ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
|
|
|
|
*/
|
|
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
|
|
|
|
vd->vdev_tmpoffline = B_FALSE;
|
|
|
|
aux = VDEV_AUX_EXTERNAL;
|
|
|
|
} else {
|
|
|
|
vd->vdev_tmpoffline = B_TRUE;
|
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* We don't directly use the aux state here, but if we do a
|
|
|
|
* vdev_reopen(), we need this value to be present to remember why we
|
|
|
|
* were faulted.
|
|
|
|
*/
|
|
|
|
vd->vdev_label_aux = aux;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Faulted state takes precedence over degraded.
|
|
|
|
*/
|
2010-05-28 13:45:14 -07:00
|
|
|
vd->vdev_delayed_close = B_FALSE;
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_faulted = 1ULL;
|
|
|
|
vd->vdev_degraded = 0ULL;
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
2010-05-28 13:45:14 -07:00
|
|
|
* If this device has the only valid copy of the data, then
|
|
|
|
* back off and simply mark the vdev as degraded instead.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2010-08-26 14:24:34 -07:00
|
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_degraded = 1ULL;
|
|
|
|
vd->vdev_faulted = 0ULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we reopen the device and it's not dead, only then do we
|
|
|
|
* mark it degraded.
|
|
|
|
*/
|
2010-08-26 14:24:34 -07:00
|
|
|
vdev_reopen(tvd);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
if (vdev_readable(vd))
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark the given vdev degraded. A degraded vdev is purely an indication to the
|
|
|
|
* user that something is wrong. The vdev continues to operate as normal as far
|
|
|
|
* as I/O is concerned.
|
|
|
|
*/
|
|
|
|
int
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_t *vd;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the vdev is already faulted, then don't do anything.
|
|
|
|
*/
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vd->vdev_faulted || vd->vdev_degraded)
|
|
|
|
return (spa_vdev_state_exit(spa, NULL, 0));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
vd->vdev_degraded = 1ULL;
|
|
|
|
if (!vdev_is_dead(vd))
|
|
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
|
2010-05-28 13:45:14 -07:00
|
|
|
aux);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2013-06-11 09:12:34 -08:00
|
|
|
* Online the given vdev.
|
|
|
|
*
|
|
|
|
* If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
|
|
|
|
* spare device should be detached when the device finishes resilvering.
|
|
|
|
* Second, the online should be treated like a 'test' online case, so no FMA
|
|
|
|
* events are generated if the device fails to open.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
|
|
|
int
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
|
2017-04-26 14:55:10 -04:00
|
|
|
boolean_t wasoffline;
|
|
|
|
vdev_state_t oldstate;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2017-04-26 14:55:10 -04:00
|
|
|
wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
|
|
|
|
oldstate = vd->vdev_state;
|
2016-07-27 15:29:15 -07:00
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
tvd = vd->vdev_top;
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_offline = B_FALSE;
|
|
|
|
vd->vdev_tmpoffline = B_FALSE;
|
2008-12-03 12:09:06 -08:00
|
|
|
vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
|
|
|
|
vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
|
2009-07-02 15:44:48 -07:00
|
|
|
|
|
|
|
/* XXX - L2ARC 1.0 does not support expansion */
|
|
|
|
if (!vd->vdev_aux) {
|
|
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
Add support for autoexpand property
While the autoexpand property may seem like a small feature it
depends on a significant amount of system infrastructure. Enough
of that infrastructure is now in place that with a few modifications
for Linux it can be supported.
Auto-expand works as follows; when a block device is modified
(re-sized, closed after being open r/w, etc) a change uevent is
generated for udev. The ZED, which is monitoring udev events,
passes the change event along to zfs_deliver_dle() if the disk
or partition contains a zfs_member as identified by blkid.
From here the device is matched against all imported pool vdevs
using the vdev_guid which was read from the label by blkid. If
a match is found the ZED reopens the pool vdev. This re-opening
is important because it allows the vdev to be briefly closed so
the disk partition table can be re-read. Otherwise, it wouldn't
be possible to report the maximum possible expansion size.
Finally, if the property autoexpand=on a vdev expansion will be
attempted. After performing some sanity checks on the disk to
verify that it is safe to expand, the primary partition (-part1)
will be expanded and the partition table updated. The partition
is then re-opened (again) to detect the updated size which allows
the new capacity to be used.
In order to make all of the above possible the following changes
were required:
* Updated the zpool_expand_001_pos and zpool_expand_003_pos tests.
These tests now create a pool which is layered on a loopback,
scsi_debug, and file vdev. This allows for testing of non-
partitioned block device (loopback), a partition block device
(scsi_debug), and a file which does not receive udev change
events. This provided for better test coverage, and by removing
the layering on ZFS volumes there issues surrounding layering
one pool on another are avoided.
* zpool_find_vdev_by_physpath() updated to accept a vdev guid.
This allows for matching by guid rather than path which is a
more reliable way for the ZED to reference a vdev.
* Fixed zfs_zevent_wait() signal handling which could result
in the ZED spinning when a signal was not handled.
* Removed vdev_disk_rrpart() functionality which can be abandoned
in favor of kernel provided blkdev_reread_part() function.
* Added a rwlock which is held as a writer while a disk is being
reopened. This is important to prevent errors from occurring
for any configuration related IOs which bypass the SCL_ZIO lock.
The zpool_reopen_007_pos.ksh test case was added to verify IO
error are never observed when reopening. This is not expected
to impact IO performance.
Additional fixes which aren't critical but were discovered and
resolved in the course of developing this functionality.
* Added PHYS_PATH="/dev/zvol/dataset" to the vdev configuration for
ZFS volumes. This is as good as a unique physical path, while the
volumes are not used in the test cases anymore for other reasons
this improvement was included.
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #120
Closes #2437
Closes #5771
Closes #7366
Closes #7582
Closes #7629
2018-07-23 15:40:15 -07:00
|
|
|
pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
|
|
|
|
spa->spa_autoexpand);
|
2018-09-18 23:45:52 +02:00
|
|
|
vd->vdev_expansion_time = gethrestime_sec();
|
2009-07-02 15:44:48 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
vdev_reopen(tvd);
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
if (!vd->vdev_aux) {
|
|
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
|
|
pvd->vdev_expanding = B_FALSE;
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (newstate)
|
|
|
|
*newstate = vd->vdev_state;
|
|
|
|
if ((flags & ZFS_ONLINE_UNSPARE) &&
|
|
|
|
!vdev_is_dead(vd) && vd->vdev_parent &&
|
|
|
|
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
|
|
vd->vdev_parent->vdev_child[0] == vd)
|
|
|
|
vd->vdev_unspare = B_TRUE;
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
|
|
|
|
|
|
|
|
/* XXX - L2ARC 1.0 does not support expansion */
|
|
|
|
if (vd->vdev_aux)
|
|
|
|
return (spa_vdev_state_exit(spa, vd, ENOTSUP));
|
|
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
|
|
}
|
2016-07-27 15:29:15 -07:00
|
|
|
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
/* Restart initializing if necessary */
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
if (vdev_writeable(vd) &&
|
|
|
|
vd->vdev_initialize_thread == NULL &&
|
|
|
|
vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
|
|
|
|
(void) vdev_initialize(vd);
|
|
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
|
2019-03-29 09:13:20 -07:00
|
|
|
/* Restart trimming if necessary */
|
|
|
|
mutex_enter(&vd->vdev_trim_lock);
|
|
|
|
if (vdev_writeable(vd) &&
|
|
|
|
vd->vdev_trim_thread == NULL &&
|
|
|
|
vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
|
|
|
|
(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
|
|
|
|
vd->vdev_trim_secure);
|
|
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_trim_lock);
|
|
|
|
|
2017-04-26 14:55:10 -04:00
|
|
|
if (wasoffline ||
|
|
|
|
(oldstate < VDEV_STATE_DEGRADED &&
|
|
|
|
vd->vdev_state >= VDEV_STATE_DEGRADED))
|
2017-05-30 11:39:17 -07:00
|
|
|
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
|
2016-07-27 15:29:15 -07:00
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
static int
|
|
|
|
vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_t *vd, *tvd;
|
2010-05-28 13:45:14 -07:00
|
|
|
int error = 0;
|
|
|
|
uint64_t generation;
|
|
|
|
metaslab_group_t *mg;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
top:
|
|
|
|
spa_vdev_state_enter(spa, SCL_ALLOC);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
tvd = vd->vdev_top;
|
2010-05-28 13:45:14 -07:00
|
|
|
mg = tvd->vdev_mg;
|
|
|
|
generation = spa->spa_config_generation + 1;
|
2009-07-02 15:44:48 -07:00
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* If the device isn't already offline, try to offline it.
|
|
|
|
*/
|
|
|
|
if (!vd->vdev_offline) {
|
|
|
|
/*
|
2009-01-15 13:59:39 -08:00
|
|
|
* If this device has the only valid copy of some data,
|
2009-07-02 15:44:48 -07:00
|
|
|
* don't allow it to be offlined. Log devices are always
|
|
|
|
* expendable.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2009-07-02 15:44:48 -07:00
|
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
|
|
|
|
vdev_dtl_required(vd))
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, NULL, EBUSY));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* If the top-level is a slog and it has had allocations
|
|
|
|
* then proceed. We check that the vdev's metaslab group
|
|
|
|
* is not NULL since it's possible that we may have just
|
|
|
|
* added this vdev but not yet initialized its metaslabs.
|
|
|
|
*/
|
|
|
|
if (tvd->vdev_islog && mg != NULL) {
|
|
|
|
/*
|
|
|
|
* Prevent any future allocations.
|
|
|
|
*/
|
|
|
|
metaslab_group_passivate(mg);
|
|
|
|
(void) spa_vdev_state_exit(spa, vd, 0);
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
error = spa_reset_logs(spa);
|
2010-05-28 13:45:14 -07:00
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
/*
|
|
|
|
* If the log device was successfully reset but has
|
|
|
|
* checkpointed data, do not offline it.
|
|
|
|
*/
|
|
|
|
if (error == 0 &&
|
|
|
|
tvd->vdev_checkpoint_sm != NULL) {
|
2019-02-12 10:38:11 -08:00
|
|
|
ASSERT3U(space_map_allocated(
|
|
|
|
tvd->vdev_checkpoint_sm), !=, 0);
|
2016-12-16 14:11:29 -08:00
|
|
|
error = ZFS_ERR_CHECKPOINT_EXISTS;
|
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
spa_vdev_state_enter(spa, SCL_ALLOC);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check to see if the config has changed.
|
|
|
|
*/
|
|
|
|
if (error || generation != spa->spa_config_generation) {
|
|
|
|
metaslab_group_activate(mg);
|
|
|
|
if (error)
|
|
|
|
return (spa_vdev_state_exit(spa,
|
|
|
|
vd, error));
|
|
|
|
(void) spa_vdev_state_exit(spa, vd, 0);
|
|
|
|
goto top;
|
|
|
|
}
|
2013-05-10 14:17:03 -07:00
|
|
|
ASSERT0(tvd->vdev_stat.vs_alloc);
|
2010-05-28 13:45:14 -07:00
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* Offline this device and reopen its top-level vdev.
|
2009-07-02 15:44:48 -07:00
|
|
|
* If the top-level vdev is a log device then just offline
|
|
|
|
* it. Otherwise, if this action results in the top-level
|
|
|
|
* vdev becoming unusable, undo it and fail the request.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
|
|
|
vd->vdev_offline = B_TRUE;
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_reopen(tvd);
|
|
|
|
|
|
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
|
|
|
|
vdev_is_dead(tvd)) {
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_offline = B_FALSE;
|
2009-07-02 15:44:48 -07:00
|
|
|
vdev_reopen(tvd);
|
2008-12-03 12:09:06 -08:00
|
|
|
return (spa_vdev_state_exit(spa, NULL, EBUSY));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2010-05-28 13:45:14 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Add the device back into the metaslab rotor so that
|
|
|
|
* once we online the device it's open for business.
|
|
|
|
*/
|
|
|
|
if (tvd->vdev_islog && mg != NULL)
|
|
|
|
metaslab_group_activate(mg);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
|
|
}
|
2009-07-02 15:44:48 -07:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
int
|
|
|
|
vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
|
|
|
|
{
|
|
|
|
int error;
|
2009-07-02 15:44:48 -07:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
|
|
error = vdev_offline_locked(spa, guid, flags);
|
|
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
|
|
|
|
return (error);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear the error counts associated with this vdev. Unlike vdev_online() and
|
|
|
|
* vdev_offline(), we assume the spa config is locked. We also clear all
|
|
|
|
* children. If 'vd' is NULL, then the user wants to clear all vdevs.
|
|
|
|
*/
|
|
|
|
void
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_clear(spa_t *spa, vdev_t *vd)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (vd == NULL)
|
2008-12-03 12:09:06 -08:00
|
|
|
vd = rvd;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
vd->vdev_stat.vs_read_errors = 0;
|
|
|
|
vd->vdev_stat.vs_write_errors = 0;
|
|
|
|
vd->vdev_stat.vs_checksum_errors = 0;
|
2018-11-08 16:47:24 -08:00
|
|
|
vd->vdev_stat.vs_slow_ios = 0;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_clear(spa, vd->vdev_child[c]);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
/*
|
|
|
|
* It makes no sense to "clear" an indirect vdev.
|
|
|
|
*/
|
|
|
|
if (!vdev_is_concrete(vd))
|
|
|
|
return;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2008-12-03 12:09:06 -08:00
|
|
|
* If we're in the FAULTED state or have experienced failed I/O, then
|
|
|
|
* clear the persistent state and attempt to reopen the device. We
|
|
|
|
* also mark the vdev config dirty, so that the new faulted state is
|
|
|
|
* written out to disk.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vd->vdev_faulted || vd->vdev_degraded ||
|
|
|
|
!vdev_readable(vd) || !vdev_writeable(vd)) {
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
2017-01-03 18:31:18 +01:00
|
|
|
* When reopening in response to a clear event, it may be due to
|
2010-05-28 13:45:14 -07:00
|
|
|
* a fmadm repair request. In this case, if the device is
|
|
|
|
* still broken, we want to still post the ereport again.
|
|
|
|
*/
|
|
|
|
vd->vdev_forcefault = B_TRUE;
|
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
vd->vdev_faulted = vd->vdev_degraded = 0ULL;
|
2008-12-03 12:09:06 -08:00
|
|
|
vd->vdev_cant_read = B_FALSE;
|
|
|
|
vd->vdev_cant_write = B_FALSE;
|
2017-05-19 12:30:16 -07:00
|
|
|
vd->vdev_stat.vs_aux = 0;
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
vd->vdev_forcefault = B_FALSE;
|
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
if (vd != rvd && vdev_writeable(vd->vdev_top))
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_state_dirty(vd->vdev_top);
|
|
|
|
|
2018-10-19 00:06:18 -04:00
|
|
|
if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
|
|
|
|
if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
|
|
|
|
spa_feature_is_enabled(spa,
|
|
|
|
SPA_FEATURE_RESILVER_DEFER))
|
|
|
|
vdev_set_deferred_resilver(spa, vd);
|
|
|
|
else
|
|
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2017-05-30 11:39:17 -07:00
|
|
|
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2010-05-28 13:45:14 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* When clearing a FMA-diagnosed fault, we always want to
|
|
|
|
* unspare the device, as we assume that the original spare was
|
|
|
|
* done in response to the FMA fault.
|
|
|
|
*/
|
|
|
|
if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
|
|
|
|
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
|
|
vd->vdev_parent->vdev_child[0] == vd)
|
|
|
|
vd->vdev_unspare = B_TRUE;
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
boolean_t
|
|
|
|
vdev_is_dead(vdev_t *vd)
|
|
|
|
{
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* Holes and missing devices are always considered "dead".
|
|
|
|
* This simplifies the code since we don't have to check for
|
|
|
|
* these types of devices in the various code paths.
|
|
|
|
* Instead we rely on the fact that we skip over dead devices
|
|
|
|
* before issuing I/O to them.
|
|
|
|
*/
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
return (vd->vdev_state < VDEV_STATE_DEGRADED ||
|
|
|
|
vd->vdev_ops == &vdev_hole_ops ||
|
2010-05-28 13:45:14 -07:00
|
|
|
vd->vdev_ops == &vdev_missing_ops);
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
boolean_t
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_readable(vdev_t *vd)
|
|
|
|
{
|
2008-12-03 12:09:06 -08:00
|
|
|
return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
boolean_t
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_writeable(vdev_t *vd)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
|
|
|
|
vdev_is_concrete(vd));
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
boolean_t
|
|
|
|
vdev_allocatable(vdev_t *vd)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2009-01-15 13:59:39 -08:00
|
|
|
uint64_t state = vd->vdev_state;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
2009-01-15 13:59:39 -08:00
|
|
|
* We currently allow allocations from vdevs which may be in the
|
2008-12-03 12:09:06 -08:00
|
|
|
* process of reopening (i.e. VDEV_STATE_CLOSED). If the device
|
|
|
|
* fails to reopen then we'll catch it later when we're holding
|
2009-01-15 13:59:39 -08:00
|
|
|
* the proper locks. Note that we have to get the vdev state
|
|
|
|
* in a local variable because although it changes atomically,
|
|
|
|
* we're asking two separate questions about it.
|
2008-12-03 12:09:06 -08:00
|
|
|
*/
|
2009-01-15 13:59:39 -08:00
|
|
|
return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
!vd->vdev_cant_write && vdev_is_concrete(vd) &&
|
2016-10-13 18:59:18 -06:00
|
|
|
vd->vdev_mg->mg_initialized);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
boolean_t
|
|
|
|
vdev_accessible(vdev_t *vd, zio_t *zio)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(zio->io_vd == vd);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
|
|
|
|
return (B_FALSE);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
|
|
return (!vd->vdev_cant_read);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
|
|
return (!vd->vdev_cant_write);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
return (B_TRUE);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
static void
|
|
|
|
vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2019-03-29 09:13:20 -07:00
|
|
|
for (int t = 0; t < VS_ZIO_TYPES; t++) {
|
2016-02-29 10:05:23 -08:00
|
|
|
vs->vs_ops[t] += cvs->vs_ops[t];
|
|
|
|
vs->vs_bytes[t] += cvs->vs_bytes[t];
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
cvs->vs_scan_removing = cvd->vdev_removing;
|
|
|
|
}
|
2014-07-19 12:19:24 -08:00
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
/*
|
|
|
|
* Get extended stats
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
|
|
|
|
{
|
|
|
|
int t, b;
|
|
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
2016-05-25 14:21:35 -07:00
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
|
2016-02-29 10:05:23 -08:00
|
|
|
vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
|
2016-05-25 14:21:35 -07:00
|
|
|
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
|
2016-02-29 10:05:23 -08:00
|
|
|
vsx->vsx_total_histo[t][b] +=
|
|
|
|
cvsx->vsx_total_histo[t][b];
|
|
|
|
}
|
2014-09-04 16:08:28 -07:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
|
2016-05-25 14:21:35 -07:00
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
|
2016-02-29 10:05:23 -08:00
|
|
|
vsx->vsx_queue_histo[t][b] +=
|
|
|
|
cvsx->vsx_queue_histo[t][b];
|
|
|
|
}
|
|
|
|
vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
|
|
|
|
vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
|
2016-05-25 14:21:35 -07:00
|
|
|
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
|
|
|
|
vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
|
|
|
|
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
|
|
|
|
vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
|
2016-02-29 10:05:23 -08:00
|
|
|
}
|
2016-05-25 14:21:35 -07:00
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
}
|
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
boolean_t
|
|
|
|
vdev_is_spacemap_addressable(vdev_t *vd)
|
|
|
|
{
|
2019-01-16 15:06:20 -08:00
|
|
|
if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
|
|
|
|
return (B_TRUE);
|
|
|
|
|
2016-12-16 14:11:29 -08:00
|
|
|
/*
|
2019-01-16 15:06:20 -08:00
|
|
|
* If double-word space map entries are not enabled we assume
|
|
|
|
* 47 bits of the space map entry are dedicated to the entry's
|
|
|
|
* offset (see SM_OFFSET_BITS in space_map.h). We then use that
|
|
|
|
* to calculate the maximum address that can be described by a
|
|
|
|
* space map entry for the given device.
|
2016-12-16 14:11:29 -08:00
|
|
|
*/
|
2019-01-16 15:06:20 -08:00
|
|
|
uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
|
2016-12-16 14:11:29 -08:00
|
|
|
|
|
|
|
if (shift >= 63) /* detect potential overflow */
|
|
|
|
return (B_TRUE);
|
|
|
|
|
|
|
|
return (vd->vdev_asize < (1ULL << shift));
|
|
|
|
}
|
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
/*
|
|
|
|
* Get statistics for the given vdev.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
|
|
|
|
{
|
2017-11-04 14:25:13 -06:00
|
|
|
int t;
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
|
|
|
* If we're getting stats on the root vdev, aggregate the I/O counts
|
|
|
|
* over all top-level vdevs (i.e. the direct children of the root).
|
|
|
|
*/
|
2016-02-29 10:05:23 -08:00
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
|
|
if (vs) {
|
|
|
|
memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
|
|
|
|
memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
|
|
|
|
}
|
|
|
|
if (vsx)
|
|
|
|
memset(vsx, 0, sizeof (*vsx));
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2016-02-29 10:05:23 -08:00
|
|
|
vdev_t *cvd = vd->vdev_child[c];
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_stat_t *cvs = &cvd->vdev_stat;
|
2016-02-29 10:05:23 -08:00
|
|
|
vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
|
|
|
|
|
|
|
|
vdev_get_stats_ex_impl(cvd, cvs, cvsx);
|
|
|
|
if (vs)
|
|
|
|
vdev_get_child_stat(cvd, vs, cvs);
|
|
|
|
if (vsx)
|
|
|
|
vdev_get_child_stat_ex(cvd, vsx, cvsx);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We're a leaf. Just copy our ZIO active queue stats in. The
|
|
|
|
* other leaf stats are updated in vdev_stat_update().
|
|
|
|
*/
|
|
|
|
if (!vsx)
|
|
|
|
return;
|
|
|
|
|
|
|
|
memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
|
|
|
|
|
|
|
|
for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
|
|
|
|
vsx->vsx_active_queue[t] =
|
|
|
|
vd->vdev_queue.vq_class[t].vqc_active;
|
|
|
|
vsx->vsx_pend_queue[t] = avl_numnodes(
|
|
|
|
&vd->vdev_queue.vq_class[t].vqc_queued_tree);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
}
|
2016-02-29 10:05:23 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
|
|
|
|
{
|
2017-02-02 00:14:02 +03:00
|
|
|
vdev_t *tvd = vd->vdev_top;
|
2016-02-29 10:05:23 -08:00
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
|
|
if (vs) {
|
|
|
|
bcopy(&vd->vdev_stat, vs, sizeof (*vs));
|
|
|
|
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
|
|
|
|
vs->vs_state = vd->vdev_state;
|
|
|
|
vs->vs_rsize = vdev_get_min_asize(vd);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
2016-02-29 10:05:23 -08:00
|
|
|
vs->vs_rsize += VDEV_LABEL_START_SIZE +
|
|
|
|
VDEV_LABEL_END_SIZE;
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
/*
|
2019-03-29 09:13:20 -07:00
|
|
|
* Report initializing progress. Since we don't
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
* have the initializing locks held, this is only
|
|
|
|
* an estimate (although a fairly accurate one).
|
|
|
|
*/
|
|
|
|
vs->vs_initialize_bytes_done =
|
|
|
|
vd->vdev_initialize_bytes_done;
|
|
|
|
vs->vs_initialize_bytes_est =
|
|
|
|
vd->vdev_initialize_bytes_est;
|
|
|
|
vs->vs_initialize_state = vd->vdev_initialize_state;
|
|
|
|
vs->vs_initialize_action_time =
|
|
|
|
vd->vdev_initialize_action_time;
|
2019-03-29 09:13:20 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Report manual TRIM progress. Since we don't have
|
|
|
|
* the manual TRIM locks held, this is only an
|
|
|
|
* estimate (although fairly accurate one).
|
|
|
|
*/
|
|
|
|
vs->vs_trim_notsup = !vd->vdev_has_trim;
|
|
|
|
vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
|
|
|
|
vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
|
|
|
|
vs->vs_trim_state = vd->vdev_trim_state;
|
|
|
|
vs->vs_trim_action_time = vd->vdev_trim_action_time;
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 07:54:59 -07:00
|
|
|
}
|
2017-02-02 00:14:02 +03:00
|
|
|
/*
|
2019-03-29 09:13:20 -07:00
|
|
|
* Report expandable space on top-level, non-auxiliary devices
|
2017-02-02 00:14:02 +03:00
|
|
|
* only. The expandable space is reported in terms of metaslab
|
|
|
|
* sized units since that determines how much space the pool
|
|
|
|
* can expand.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_aux == NULL && tvd != NULL) {
|
|
|
|
vs->vs_esize = P2ALIGN(
|
|
|
|
vd->vdev_max_asize - vd->vdev_asize,
|
|
|
|
1ULL << tvd->vdev_ms_shift);
|
|
|
|
}
|
2016-02-29 10:05:23 -08:00
|
|
|
if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vdev_is_concrete(vd)) {
|
2018-09-05 19:33:36 -06:00
|
|
|
vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
|
|
|
|
vd->vdev_mg->mg_fragmentation : 0;
|
2016-02-29 10:05:23 -08:00
|
|
|
}
|
2018-10-19 00:06:18 -04:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
|
|
vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
|
2016-02-29 10:05:23 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
vdev_get_stats_ex_impl(vd, vs, vsx);
|
2014-07-19 12:19:24 -08:00
|
|
|
mutex_exit(&vd->vdev_stat_lock);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
void
|
|
|
|
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
|
|
|
|
{
|
|
|
|
return (vdev_get_stats_ex(vd, vs, NULL));
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
|
|
|
vdev_clear_stats(vdev_t *vd)
|
|
|
|
{
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
|
|
vd->vdev_stat.vs_space = 0;
|
|
|
|
vd->vdev_stat.vs_dspace = 0;
|
|
|
|
vd->vdev_stat.vs_alloc = 0;
|
|
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
}
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
void
|
|
|
|
vdev_scan_stat_init(vdev_t *vd)
|
|
|
|
{
|
|
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_scan_stat_init(vd->vdev_child[c]);
|
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
|
|
vs->vs_scan_processed = 0;
|
|
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_stat_update(zio_t *zio, uint64_t psize)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2009-01-15 13:59:39 -08:00
|
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
2008-12-03 12:09:06 -08:00
|
|
|
vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_t *pvd;
|
|
|
|
uint64_t txg = zio->io_txg;
|
|
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
2016-02-29 10:05:23 -08:00
|
|
|
vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
|
2008-11-20 12:01:55 -08:00
|
|
|
zio_type_t type = zio->io_type;
|
|
|
|
int flags = zio->io_flags;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
|
|
|
* If this i/o is a gang leader, it didn't do any actual work.
|
|
|
|
*/
|
|
|
|
if (zio->io_gang_tree)
|
|
|
|
return;
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
if (zio->io_error == 0) {
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
|
|
|
* If this is a root i/o, don't count it -- we've already
|
|
|
|
* counted the top-level vdevs, and vdev_get_stats() will
|
|
|
|
* aggregate them when asked. This reduces contention on
|
|
|
|
* the root vdev_stat_lock and implicitly handles blocks
|
|
|
|
* that compress away to holes, for which there is no i/o.
|
|
|
|
* (Holes never create vdev children, so all the counters
|
|
|
|
* remain zero, which is what we want.)
|
|
|
|
*
|
|
|
|
* Note: this only applies to successful i/o (io_error == 0)
|
|
|
|
* because unlike i/o counts, errors are not additive.
|
|
|
|
* When reading a ditto block, for example, failure of
|
|
|
|
* one top-level vdev does not imply a root-level error.
|
|
|
|
*/
|
|
|
|
if (vd == rvd)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ASSERT(vd == zio->io_vd);
|
2009-01-15 13:59:39 -08:00
|
|
|
|
|
|
|
if (flags & ZIO_FLAG_IO_BYPASS)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (flags & ZIO_FLAG_IO_REPAIR) {
|
2010-08-26 14:24:34 -07:00
|
|
|
if (flags & ZIO_FLAG_SCAN_THREAD) {
|
2010-05-28 13:45:14 -07:00
|
|
|
dsl_scan_phys_t *scn_phys =
|
|
|
|
&spa->spa_dsl_pool->dp_scan->scn_phys;
|
|
|
|
uint64_t *processed = &scn_phys->scn_processed;
|
|
|
|
|
|
|
|
/* XXX cleanup? */
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
|
|
atomic_add_64(processed, psize);
|
|
|
|
vs->vs_scan_processed += psize;
|
|
|
|
}
|
|
|
|
|
2009-01-15 13:59:39 -08:00
|
|
|
if (flags & ZIO_FLAG_SELF_HEAL)
|
2008-12-03 12:09:06 -08:00
|
|
|
vs->vs_self_healed += psize;
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2009-01-15 13:59:39 -08:00
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
/*
|
|
|
|
* The bytes/ops/histograms are recorded at the leaf level and
|
|
|
|
* aggregated into the higher level vdevs in vdev_get_stats().
|
|
|
|
*/
|
2016-08-01 17:32:18 -07:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
|
|
(zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
|
2019-03-29 09:13:20 -07:00
|
|
|
zio_type_t vs_type = type;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* TRIM ops and bytes are reported to user space as
|
|
|
|
* ZIO_TYPE_IOCTL. This is done to preserve the
|
|
|
|
* vdev_stat_t structure layout for user space.
|
|
|
|
*/
|
|
|
|
if (type == ZIO_TYPE_TRIM)
|
|
|
|
vs_type = ZIO_TYPE_IOCTL;
|
2016-02-29 10:05:23 -08:00
|
|
|
|
2019-03-29 09:13:20 -07:00
|
|
|
vs->vs_ops[vs_type]++;
|
|
|
|
vs->vs_bytes[vs_type] += psize;
|
2016-02-29 10:05:23 -08:00
|
|
|
|
2016-05-25 14:21:35 -07:00
|
|
|
if (flags & ZIO_FLAG_DELEGATED) {
|
|
|
|
vsx->vsx_agg_histo[zio->io_priority]
|
|
|
|
[RQ_HISTO(zio->io_size)]++;
|
|
|
|
} else {
|
|
|
|
vsx->vsx_ind_histo[zio->io_priority]
|
|
|
|
[RQ_HISTO(zio->io_size)]++;
|
|
|
|
}
|
|
|
|
|
2016-02-29 10:05:23 -08:00
|
|
|
if (zio->io_delta && zio->io_delay) {
|
|
|
|
vsx->vsx_queue_histo[zio->io_priority]
|
2016-05-25 14:21:35 -07:00
|
|
|
[L_HISTO(zio->io_delta - zio->io_delay)]++;
|
2016-02-29 10:05:23 -08:00
|
|
|
vsx->vsx_disk_histo[type]
|
2016-05-25 14:21:35 -07:00
|
|
|
[L_HISTO(zio->io_delay)]++;
|
2016-02-29 10:05:23 -08:00
|
|
|
vsx->vsx_total_histo[type]
|
2016-05-25 14:21:35 -07:00
|
|
|
[L_HISTO(zio->io_delta)]++;
|
2016-02-29 10:05:23 -08:00
|
|
|
}
|
|
|
|
}
|
2009-01-15 13:59:39 -08:00
|
|
|
|
|
|
|
mutex_exit(&vd->vdev_stat_lock);
|
2008-11-20 12:01:55 -08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flags & ZIO_FLAG_SPECULATIVE)
|
|
|
|
return;
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
/*
|
|
|
|
* If this is an I/O error that is going to be retried, then ignore the
|
|
|
|
* error. Otherwise, the user may interpret B_FAILFAST I/O errors as
|
|
|
|
* hard errors, when in reality they can happen for any number of
|
|
|
|
* innocuous reasons (bus resets, MPxIO link failure, etc).
|
|
|
|
*/
|
|
|
|
if (zio->io_error == EIO &&
|
|
|
|
!(zio->io_flags & ZIO_FLAG_IO_RETRY))
|
|
|
|
return;
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
|
|
|
* Intent logs writes won't propagate their error to the root
|
|
|
|
* I/O so don't mark these types of failures as pool-level
|
|
|
|
* errors.
|
|
|
|
*/
|
|
|
|
if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
|
|
|
|
return;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (spa->spa_load_state == SPA_LOAD_NONE &&
|
|
|
|
type == ZIO_TYPE_WRITE && txg != 0 &&
|
2009-01-15 13:59:39 -08:00
|
|
|
(!(flags & ZIO_FLAG_IO_REPAIR) ||
|
2010-08-26 14:24:34 -07:00
|
|
|
(flags & ZIO_FLAG_SCAN_THREAD) ||
|
2010-05-28 13:45:14 -07:00
|
|
|
spa->spa_claiming)) {
|
2009-01-15 13:59:39 -08:00
|
|
|
/*
|
2010-05-28 13:45:14 -07:00
|
|
|
* This is either a normal write (not a repair), or it's
|
|
|
|
* a repair induced by the scrub thread, or it's a repair
|
|
|
|
* made by zil_claim() during spa_load() in the first txg.
|
|
|
|
* In the normal case, we commit the DTL change in the same
|
|
|
|
* txg as the block was born. In the scrub-induced repair
|
|
|
|
* case, we know that scrubs run in first-pass syncing context,
|
|
|
|
* so we commit the DTL change in spa_syncing_txg(spa).
|
|
|
|
* In the zil_claim() case, we commit in spa_first_txg(spa).
|
2009-01-15 13:59:39 -08:00
|
|
|
*
|
|
|
|
* We currently do not make DTL entries for failed spontaneous
|
|
|
|
* self-healing writes triggered by normal (non-scrubbing)
|
|
|
|
* reads, because we have no transactional context in which to
|
|
|
|
* do so -- and it's not clear that it'd be desirable anyway.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
|
|
uint64_t commit_txg = txg;
|
2010-08-26 14:24:34 -07:00
|
|
|
if (flags & ZIO_FLAG_SCAN_THREAD) {
|
2009-01-15 13:59:39 -08:00
|
|
|
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
|
|
|
|
ASSERT(spa_sync_pass(spa) == 1);
|
|
|
|
vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
|
2010-05-28 13:45:14 -07:00
|
|
|
commit_txg = spa_syncing_txg(spa);
|
|
|
|
} else if (spa->spa_claiming) {
|
|
|
|
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
|
|
|
|
commit_txg = spa_first_txg(spa);
|
2009-01-15 13:59:39 -08:00
|
|
|
}
|
2010-05-28 13:45:14 -07:00
|
|
|
ASSERT(commit_txg >= spa_syncing_txg(spa));
|
2009-01-15 13:59:39 -08:00
|
|
|
if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
|
2008-11-20 12:01:55 -08:00
|
|
|
return;
|
2009-01-15 13:59:39 -08:00
|
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
|
|
vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
|
|
|
|
vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2009-01-15 13:59:39 -08:00
|
|
|
if (vd != rvd)
|
|
|
|
vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
int64_t
|
|
|
|
vdev_deflated_space(vdev_t *vd, int64_t space)
|
|
|
|
{
|
|
|
|
ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
|
|
|
|
ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
|
|
|
|
|
|
|
|
return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2019-03-29 09:13:20 -07:00
|
|
|
* Update the in-core space usage stats for this vdev, its metaslab class,
|
|
|
|
* and the root vdev.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
|
|
|
void
|
2010-05-28 13:45:14 -07:00
|
|
|
vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
|
|
|
|
int64_t space_delta)
|
2008-11-20 12:01:55 -08:00
|
|
|
{
|
2018-09-05 19:33:36 -06:00
|
|
|
int64_t dspace_delta;
|
2008-11-20 12:01:55 -08:00
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
|
|
|
|
* factor. We must calculate this here and not at the root vdev
|
|
|
|
* because the root vdev's psize-to-asize is simply the max of its
|
|
|
|
* childrens', thus not accurate enough for us.
|
|
|
|
*/
|
2018-09-05 19:33:36 -06:00
|
|
|
dspace_delta = vdev_deflated_space(vd, space_delta);
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
2019-01-31 09:16:39 -08:00
|
|
|
/* ensure we won't underflow */
|
|
|
|
if (alloc_delta < 0) {
|
|
|
|
ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
|
|
|
|
}
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_stat.vs_alloc += alloc_delta;
|
2010-05-28 13:45:14 -07:00
|
|
|
vd->vdev_stat.vs_space += space_delta;
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_stat.vs_dspace += dspace_delta;
|
|
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
/* every class but log contributes to root space stats */
|
|
|
|
if (vd->vdev_mg != NULL && !vd->vdev_islog) {
|
2019-01-31 09:16:39 -08:00
|
|
|
ASSERT(!vd->vdev_isl2cache);
|
2008-11-20 12:01:55 -08:00
|
|
|
mutex_enter(&rvd->vdev_stat_lock);
|
|
|
|
rvd->vdev_stat.vs_alloc += alloc_delta;
|
2010-05-28 13:45:14 -07:00
|
|
|
rvd->vdev_stat.vs_space += space_delta;
|
2008-11-20 12:01:55 -08:00
|
|
|
rvd->vdev_stat.vs_dspace += dspace_delta;
|
|
|
|
mutex_exit(&rvd->vdev_stat_lock);
|
|
|
|
}
|
2018-09-05 19:33:36 -06:00
|
|
|
/* Note: metaslab_class_space_update moved to metaslab_space_update */
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark a top-level vdev's config as dirty, placing it on the dirty list
|
|
|
|
* so that it will be written out next time the vdev configuration is synced.
|
|
|
|
* If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_config_dirty(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
int c;
|
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
|
2008-11-20 12:01:55 -08:00
|
|
|
/*
|
2009-07-02 15:44:48 -07:00
|
|
|
* If this is an aux vdev (as with l2cache and spare devices), then we
|
|
|
|
* update the vdev config manually and set the sync flag.
|
2008-12-03 12:09:06 -08:00
|
|
|
*/
|
|
|
|
if (vd->vdev_aux != NULL) {
|
|
|
|
spa_aux_vdev_t *sav = vd->vdev_aux;
|
|
|
|
nvlist_t **aux;
|
|
|
|
uint_t naux;
|
|
|
|
|
|
|
|
for (c = 0; c < sav->sav_count; c++) {
|
|
|
|
if (sav->sav_vdevs[c] == vd)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (c == sav->sav_count) {
|
|
|
|
/*
|
|
|
|
* We're being removed. There's nothing more to do.
|
|
|
|
*/
|
|
|
|
ASSERT(sav->sav_sync == B_TRUE);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
sav->sav_sync = B_TRUE;
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
if (nvlist_lookup_nvlist_array(sav->sav_config,
|
|
|
|
ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
|
|
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
|
|
|
|
ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
|
|
|
|
}
|
2008-12-03 12:09:06 -08:00
|
|
|
|
|
|
|
ASSERT(c < naux);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setting the nvlist in the middle if the array is a little
|
|
|
|
* sketchy, but it will work.
|
|
|
|
*/
|
|
|
|
nvlist_free(aux[c]);
|
2010-05-28 13:45:14 -07:00
|
|
|
aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
|
2008-12-03 12:09:06 -08:00
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The dirty list is protected by the SCL_CONFIG lock. The caller
|
|
|
|
* must either hold SCL_CONFIG as writer, or must be the sync thread
|
|
|
|
* (which holds SCL_CONFIG as reader). There's only one sync thread,
|
2008-11-20 12:01:55 -08:00
|
|
|
* so this is sufficient to ensure mutual exclusion.
|
|
|
|
*/
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
|
|
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
|
|
spa_config_held(spa, SCL_CONFIG, RW_READER)));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (vd == rvd) {
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++)
|
|
|
|
vdev_config_dirty(rvd->vdev_child[c]);
|
|
|
|
} else {
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
if (!list_link_active(&vd->vdev_config_dirty_node) &&
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vdev_is_concrete(vd)) {
|
2008-12-03 12:09:06 -08:00
|
|
|
list_insert_head(&spa->spa_config_dirty_list, vd);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_config_clean(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
|
|
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
|
|
spa_config_held(spa, SCL_CONFIG, RW_READER)));
|
2008-11-20 12:01:55 -08:00
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(list_link_active(&vd->vdev_config_dirty_node));
|
|
|
|
list_remove(&spa->spa_config_dirty_list, vd);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
|
|
|
* Mark a top-level vdev's state as dirty, so that the next pass of
|
|
|
|
* spa_sync() can convert this into vdev_config_dirty(). We distinguish
|
|
|
|
* the state changes from larger config changes because they require
|
|
|
|
* much less locking, and are often needed for administrative actions.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_state_dirty(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
ASSERT(spa_writeable(spa));
|
2008-12-03 12:09:06 -08:00
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The state list is protected by the SCL_STATE lock. The caller
|
|
|
|
* must either hold SCL_STATE as writer, or must be the sync thread
|
|
|
|
* (which holds SCL_STATE as reader). There's only one sync thread,
|
|
|
|
* so this is sufficient to ensure mutual exclusion.
|
|
|
|
*/
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
|
|
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
|
|
spa_config_held(spa, SCL_STATE, RW_READER)));
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (!list_link_active(&vd->vdev_state_dirty_node) &&
|
|
|
|
vdev_is_concrete(vd))
|
2008-12-03 12:09:06 -08:00
|
|
|
list_insert_head(&spa->spa_state_dirty_list, vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_state_clean(vdev_t *vd)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
|
|
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
|
|
spa_config_held(spa, SCL_STATE, RW_READER)));
|
|
|
|
|
|
|
|
ASSERT(list_link_active(&vd->vdev_state_dirty_node));
|
|
|
|
list_remove(&spa->spa_state_dirty_list, vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Propagate vdev state up from children to parent.
|
|
|
|
*/
|
2008-11-20 12:01:55 -08:00
|
|
|
void
|
|
|
|
vdev_propagate_state(vdev_t *vd)
|
|
|
|
{
|
2009-01-15 13:59:39 -08:00
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
2008-11-20 12:01:55 -08:00
|
|
|
int degraded = 0, faulted = 0;
|
|
|
|
int corrupted = 0;
|
|
|
|
vdev_t *child;
|
|
|
|
|
|
|
|
if (vd->vdev_children > 0) {
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2008-11-20 12:01:55 -08:00
|
|
|
child = vd->vdev_child[c];
|
2008-12-03 12:09:06 -08:00
|
|
|
|
2010-05-28 13:45:14 -07:00
|
|
|
/*
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
* Don't factor holes or indirect vdevs into the
|
|
|
|
* decision.
|
2010-05-28 13:45:14 -07:00
|
|
|
*/
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (!vdev_is_concrete(child))
|
2010-05-28 13:45:14 -07:00
|
|
|
continue;
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (!vdev_readable(child) ||
|
2009-01-15 13:59:39 -08:00
|
|
|
(!vdev_writeable(child) && spa_writeable(spa))) {
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
|
|
|
* Root special: if there is a top-level log
|
|
|
|
* device, treat the root vdev as if it were
|
|
|
|
* degraded.
|
|
|
|
*/
|
|
|
|
if (child->vdev_islog && vd == rvd)
|
|
|
|
degraded++;
|
|
|
|
else
|
|
|
|
faulted++;
|
|
|
|
} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
|
2008-11-20 12:01:55 -08:00
|
|
|
degraded++;
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
|
|
|
|
corrupted++;
|
|
|
|
}
|
|
|
|
|
|
|
|
vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
|
|
|
|
|
|
|
|
/*
|
2008-12-03 12:09:06 -08:00
|
|
|
* Root special: if there is a top-level vdev that cannot be
|
2008-11-20 12:01:55 -08:00
|
|
|
* opened due to corrupted metadata, then propagate the root
|
|
|
|
* vdev's aux state as 'corrupt' rather than 'insufficient
|
|
|
|
* replicas'.
|
|
|
|
*/
|
|
|
|
if (corrupted && vd == rvd &&
|
|
|
|
rvd->vdev_state == VDEV_STATE_CANT_OPEN)
|
|
|
|
vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
if (vd->vdev_parent)
|
2008-11-20 12:01:55 -08:00
|
|
|
vdev_propagate_state(vd->vdev_parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set a vdev's state. If this is during an open, we don't update the parent
|
|
|
|
* state, because we're in the process of opening children depth-first.
|
|
|
|
* Otherwise, we propagate the change to the parent.
|
|
|
|
*
|
|
|
|
* If this routine places a device in a faulted state, an appropriate ereport is
|
|
|
|
* generated.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
|
|
|
|
{
|
|
|
|
uint64_t save_state;
|
2008-12-03 12:09:06 -08:00
|
|
|
spa_t *spa = vd->vdev_spa;
|
2008-11-20 12:01:55 -08:00
|
|
|
|
|
|
|
if (state == vd->vdev_state) {
|
2016-11-07 16:01:38 -07:00
|
|
|
/*
|
|
|
|
* Since vdev_offline() code path is already in an offline
|
|
|
|
* state we can miss a statechange event to OFFLINE. Check
|
|
|
|
* the previous state to catch this condition.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
|
|
(state == VDEV_STATE_OFFLINE) &&
|
|
|
|
(vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
|
|
|
|
/* post an offline state change */
|
|
|
|
zfs_post_state_change(spa, vd, vd->vdev_prevstate);
|
|
|
|
}
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_stat.vs_aux = aux;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
save_state = vd->vdev_state;
|
|
|
|
|
|
|
|
vd->vdev_state = state;
|
|
|
|
vd->vdev_stat.vs_aux = aux;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we are setting the vdev state to anything but an open state, then
|
2010-05-28 13:45:14 -07:00
|
|
|
* always close the underlying device unless the device has requested
|
|
|
|
* a delayed close (i.e. we're about to remove or fault the device).
|
|
|
|
* Otherwise, we keep accessible but invalid devices open forever.
|
|
|
|
* We don't call vdev_close() itself, because that implies some extra
|
|
|
|
* checks (offline, etc) that we don't want here. This is limited to
|
|
|
|
* leaf devices, because otherwise closing the device will affect other
|
|
|
|
* children.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2010-05-28 13:45:14 -07:00
|
|
|
if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
|
|
|
|
vd->vdev_ops->vdev_op_leaf)
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_ops->vdev_op_close(vd);
|
|
|
|
|
|
|
|
if (vd->vdev_removed &&
|
|
|
|
state == VDEV_STATE_CANT_OPEN &&
|
|
|
|
(aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
|
|
|
|
/*
|
|
|
|
* If the previous state is set to VDEV_STATE_REMOVED, then this
|
|
|
|
* device was previously marked removed and someone attempted to
|
|
|
|
* reopen it. If this failed due to a nonexistent device, then
|
|
|
|
* keep the device in the REMOVED state. We also let this be if
|
|
|
|
* it is one of our special test online cases, which is only
|
|
|
|
* attempting to online the device and shouldn't generate an FMA
|
|
|
|
* fault.
|
|
|
|
*/
|
|
|
|
vd->vdev_state = VDEV_STATE_REMOVED;
|
|
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
|
|
} else if (state == VDEV_STATE_REMOVED) {
|
|
|
|
vd->vdev_removed = B_TRUE;
|
|
|
|
} else if (state == VDEV_STATE_CANT_OPEN) {
|
|
|
|
/*
|
2010-08-26 14:24:34 -07:00
|
|
|
* If we fail to open a vdev during an import or recovery, we
|
|
|
|
* mark it as "not available", which signifies that it was
|
|
|
|
* never there to begin with. Failure to open such a device
|
|
|
|
* is not considered an error.
|
2008-11-20 12:01:55 -08:00
|
|
|
*/
|
2010-08-26 14:24:34 -07:00
|
|
|
if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
|
|
|
|
spa_load_state(spa) == SPA_LOAD_RECOVER) &&
|
2008-11-20 12:01:55 -08:00
|
|
|
vd->vdev_ops->vdev_op_leaf)
|
|
|
|
vd->vdev_not_present = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Post the appropriate ereport. If the 'prevstate' field is
|
|
|
|
* set to something other than VDEV_STATE_UNKNOWN, it indicates
|
|
|
|
* that this is part of a vdev_reopen(). In this case, we don't
|
|
|
|
* want to post the ereport if the device was already in the
|
|
|
|
* CANT_OPEN state beforehand.
|
|
|
|
*
|
|
|
|
* If the 'checkremove' flag is set, then this is an attempt to
|
|
|
|
* online the device in response to an insertion event. If we
|
|
|
|
* hit this case, then we have detected an insertion event for a
|
|
|
|
* faulted or offline device that wasn't in the removed state.
|
|
|
|
* In this scenario, we don't post an ereport because we are
|
|
|
|
* about to replace the device, or attempt an online with
|
|
|
|
* vdev_forcefault, which will generate the fault for us.
|
|
|
|
*/
|
|
|
|
if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
|
|
|
|
!vd->vdev_not_present && !vd->vdev_checkremove &&
|
2008-12-03 12:09:06 -08:00
|
|
|
vd != spa->spa_root_vdev) {
|
2008-11-20 12:01:55 -08:00
|
|
|
const char *class;
|
|
|
|
|
|
|
|
switch (aux) {
|
|
|
|
case VDEV_AUX_OPEN_FAILED:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
|
|
|
|
break;
|
|
|
|
case VDEV_AUX_CORRUPT_DATA:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
|
|
|
|
break;
|
|
|
|
case VDEV_AUX_NO_REPLICAS:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
|
|
|
|
break;
|
|
|
|
case VDEV_AUX_BAD_GUID_SUM:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
|
|
|
|
break;
|
|
|
|
case VDEV_AUX_TOO_SMALL:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
|
|
|
|
break;
|
|
|
|
case VDEV_AUX_BAD_LABEL:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
|
|
|
|
break;
|
2017-03-29 02:21:11 +02:00
|
|
|
case VDEV_AUX_BAD_ASHIFT:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
|
|
|
|
break;
|
2008-11-20 12:01:55 -08:00
|
|
|
default:
|
|
|
|
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
|
|
|
|
}
|
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 13:36:48 -04:00
|
|
|
zfs_ereport_post(class, spa, vd, NULL, NULL,
|
|
|
|
save_state, 0);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Erase any notion of persistent removed state */
|
|
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
} else {
|
|
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
}
|
|
|
|
|
2016-08-31 15:46:58 -06:00
|
|
|
/*
|
|
|
|
* Notify ZED of any significant state-change on a leaf vdev.
|
|
|
|
*
|
|
|
|
*/
|
2016-10-19 12:55:59 -07:00
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
|
|
/* preserve original state from a vdev_reopen() */
|
|
|
|
if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
|
|
|
|
(vd->vdev_prevstate != vd->vdev_state) &&
|
|
|
|
(save_state <= VDEV_STATE_CLOSED))
|
|
|
|
save_state = vd->vdev_prevstate;
|
|
|
|
|
|
|
|
/* filter out state change due to initial vdev_open */
|
|
|
|
if (save_state > VDEV_STATE_CLOSED)
|
|
|
|
zfs_post_state_change(spa, vd, save_state);
|
2016-08-31 15:46:58 -06:00
|
|
|
}
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
if (!isopen && vd->vdev_parent)
|
|
|
|
vdev_propagate_state(vd->vdev_parent);
|
2008-11-20 12:01:55 -08:00
|
|
|
}
|
2008-12-03 12:09:06 -08:00
|
|
|
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
boolean_t
|
|
|
|
vdev_children_are_offline(vdev_t *vd)
|
|
|
|
{
|
|
|
|
ASSERT(!vd->vdev_ops->vdev_op_leaf);
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
|
|
if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
|
|
|
|
return (B_FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
|
|
|
|
2008-12-03 12:09:06 -08:00
|
|
|
/*
|
|
|
|
* Check the vdev configuration to ensure that it's capable of supporting
|
2017-04-13 09:40:00 -07:00
|
|
|
* a root pool. We do not support partial configuration.
|
2008-12-03 12:09:06 -08:00
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vdev_is_bootable(vdev_t *vd)
|
|
|
|
{
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
2017-04-13 09:40:00 -07:00
|
|
|
const char *vdev_type = vd->vdev_ops->vdev_op_type;
|
2008-12-03 12:09:06 -08:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
|
|
|
|
strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
|
2008-12-03 12:09:06 -08:00
|
|
|
return (B_FALSE);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
}
|
2008-12-03 12:09:06 -08:00
|
|
|
}
|
|
|
|
|
2017-04-13 09:40:00 -07:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2008-12-03 12:09:06 -08:00
|
|
|
if (!vdev_is_bootable(vd->vdev_child[c]))
|
|
|
|
return (B_FALSE);
|
|
|
|
}
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
2009-07-02 15:44:48 -07:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
boolean_t
|
|
|
|
vdev_is_concrete(vdev_t *vd)
|
|
|
|
{
|
|
|
|
vdev_ops_t *ops = vd->vdev_ops;
|
|
|
|
if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
|
|
|
|
ops == &vdev_missing_ops || ops == &vdev_root_ops) {
|
|
|
|
return (B_FALSE);
|
|
|
|
} else {
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-08-26 14:24:34 -07:00
|
|
|
/*
|
|
|
|
* Determine if a log device has valid content. If the vdev was
|
|
|
|
* removed or faulted in the MOS config then we know that
|
|
|
|
* the content on the log device has already been written to the pool.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vdev_log_state_valid(vdev_t *vd)
|
|
|
|
{
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
|
|
|
|
!vd->vdev_removed)
|
|
|
|
return (B_TRUE);
|
|
|
|
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
2010-08-26 14:24:34 -07:00
|
|
|
if (vdev_log_state_valid(vd->vdev_child[c]))
|
|
|
|
return (B_TRUE);
|
|
|
|
|
|
|
|
return (B_FALSE);
|
|
|
|
}
|
|
|
|
|
2009-07-02 15:44:48 -07:00
|
|
|
/*
|
|
|
|
* Expand a vdev if possible.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_expand(vdev_t *vd, uint64_t txg)
|
|
|
|
{
|
|
|
|
ASSERT(vd->vdev_top == vd);
|
|
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
2018-06-12 15:34:20 -07:00
|
|
|
ASSERT(vdev_is_concrete(vd));
|
2009-07-02 15:44:48 -07:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 09:30:13 -07:00
|
|
|
vdev_set_deflate_ratio(vd);
|
|
|
|
|
2018-09-05 19:33:36 -06:00
|
|
|
if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
|
|
|
|
vdev_is_concrete(vd)) {
|
|
|
|
vdev_metaslab_group_create(vd);
|
2009-07-02 15:44:48 -07:00
|
|
|
VERIFY(vdev_metaslab_init(vd, txg) == 0);
|
|
|
|
vdev_config_dirty(vd);
|
|
|
|
}
|
|
|
|
}
|
2010-05-28 13:45:14 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Split a vdev.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_split(vdev_t *vd)
|
|
|
|
{
|
|
|
|
vdev_t *cvd, *pvd = vd->vdev_parent;
|
|
|
|
|
|
|
|
vdev_remove_child(pvd, vd);
|
|
|
|
vdev_compact_children(pvd);
|
|
|
|
|
|
|
|
cvd = pvd->vdev_child[0];
|
|
|
|
if (pvd->vdev_children == 1) {
|
|
|
|
vdev_remove_parent(cvd);
|
|
|
|
cvd->vdev_splitting = B_TRUE;
|
|
|
|
}
|
|
|
|
vdev_propagate_state(cvd);
|
|
|
|
}
|
2010-08-26 11:49:16 -07:00
|
|
|
|
2013-04-29 15:49:23 -07:00
|
|
|
void
|
2017-12-18 17:06:07 -05:00
|
|
|
vdev_deadman(vdev_t *vd, char *tag)
|
2013-04-29 15:49:23 -07:00
|
|
|
{
|
2017-11-04 14:25:13 -06:00
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
2013-04-29 15:49:23 -07:00
|
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
|
2017-12-18 17:06:07 -05:00
|
|
|
vdev_deadman(cvd, tag);
|
2013-04-29 15:49:23 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
|
|
|
|
|
|
mutex_enter(&vq->vq_lock);
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-28 20:01:20 -07:00
|
|
|
if (avl_numnodes(&vq->vq_active_tree) > 0) {
|
2013-04-29 15:49:23 -07:00
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
zio_t *fio;
|
|
|
|
uint64_t delta;
|
|
|
|
|
2017-12-18 17:06:07 -05:00
|
|
|
zfs_dbgmsg("slow vdev: %s has %d active IOs",
|
|
|
|
vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
|
|
|
|
|
2013-04-29 15:49:23 -07:00
|
|
|
/*
|
|
|
|
* Look at the head of all the pending queues,
|
|
|
|
* if any I/O has been outstanding for longer than
|
2017-12-18 17:06:07 -05:00
|
|
|
* the spa_deadman_synctime invoke the deadman logic.
|
2013-04-29 15:49:23 -07:00
|
|
|
*/
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-28 20:01:20 -07:00
|
|
|
fio = avl_first(&vq->vq_active_tree);
|
2013-03-21 14:47:36 -08:00
|
|
|
delta = gethrtime() - fio->io_timestamp;
|
2017-12-18 17:06:07 -05:00
|
|
|
if (delta > spa_deadman_synctime(spa))
|
|
|
|
zio_deadman(fio, tag);
|
2013-04-29 15:49:23 -07:00
|
|
|
}
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-10-19 00:06:18 -04:00
|
|
|
void
|
|
|
|
vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
|
|
|
|
{
|
2018-11-07 18:33:17 -05:00
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++)
|
|
|
|
vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
|
|
|
|
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
|
|
|
|
range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-10-19 00:06:18 -04:00
|
|
|
vd->vdev_resilver_deferred = B_TRUE;
|
|
|
|
spa->spa_resilver_deferred = B_TRUE;
|
|
|
|
}
|
|
|
|
|
2019-03-29 09:13:20 -07:00
|
|
|
/*
|
|
|
|
* Translate a logical range to the physical range for the specified vdev_t.
|
|
|
|
* This function is initially called with a leaf vdev and will walk each
|
|
|
|
* parent vdev until it reaches a top-level vdev. Once the top-level is
|
|
|
|
* reached the physical range is initialized and the recursive function
|
|
|
|
* begins to unwind. As it unwinds it calls the parent's vdev specific
|
|
|
|
* translation function to do the real conversion.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Walk up the vdev tree
|
|
|
|
*/
|
|
|
|
if (vd != vd->vdev_top) {
|
|
|
|
vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We've reached the top-level vdev, initialize the
|
|
|
|
* physical range to the logical range and start to
|
|
|
|
* unwind.
|
|
|
|
*/
|
|
|
|
physical_rs->rs_start = logical_rs->rs_start;
|
|
|
|
physical_rs->rs_end = logical_rs->rs_end;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vdev_t *pvd = vd->vdev_parent;
|
|
|
|
ASSERT3P(pvd, !=, NULL);
|
|
|
|
ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* As this recursive function unwinds, translate the logical
|
|
|
|
* range into its physical components by calling the
|
|
|
|
* vdev specific translate function.
|
|
|
|
*/
|
|
|
|
range_seg_t intermediate = { { { 0, 0 } } };
|
|
|
|
pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
|
|
|
|
|
|
|
|
physical_rs->rs_start = intermediate.rs_start;
|
|
|
|
physical_rs->rs_end = intermediate.rs_end;
|
|
|
|
}
|
|
|
|
|
2018-02-15 17:53:18 -08:00
|
|
|
#if defined(_KERNEL)
|
2010-08-26 11:49:16 -07:00
|
|
|
EXPORT_SYMBOL(vdev_fault);
|
|
|
|
EXPORT_SYMBOL(vdev_degrade);
|
|
|
|
EXPORT_SYMBOL(vdev_online);
|
|
|
|
EXPORT_SYMBOL(vdev_offline);
|
|
|
|
EXPORT_SYMBOL(vdev_clear);
|
2019-03-29 09:13:20 -07:00
|
|
|
|
2017-01-21 00:17:55 +03:00
|
|
|
/* BEGIN CSTYLED */
|
2019-01-25 16:38:27 -08:00
|
|
|
module_param(zfs_vdev_default_ms_count, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_vdev_default_ms_count,
|
2017-08-11 15:28:17 -06:00
|
|
|
"Target number of metaslabs per top-level vdev");
|
2018-03-04 17:34:51 -08:00
|
|
|
|
2019-01-25 16:38:27 -08:00
|
|
|
module_param(zfs_vdev_min_ms_count, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_vdev_min_ms_count,
|
2016-12-16 14:11:29 -08:00
|
|
|
"Minimum number of metaslabs per top-level vdev");
|
|
|
|
|
2019-01-25 16:38:27 -08:00
|
|
|
module_param(zfs_vdev_ms_count_limit, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_vdev_ms_count_limit,
|
2017-08-11 15:28:17 -06:00
|
|
|
"Practical upper limit of total metaslabs per top-level vdev");
|
|
|
|
|
2018-11-08 16:47:24 -08:00
|
|
|
module_param(zfs_slow_io_events_per_second, uint, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_slow_io_events_per_second,
|
|
|
|
"Rate limit slow IO (delay) events to this many per second");
|
2018-03-04 17:34:51 -08:00
|
|
|
|
2018-11-08 16:47:24 -08:00
|
|
|
module_param(zfs_checksum_events_per_second, uint, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
|
2018-03-04 17:34:51 -08:00
|
|
|
"to this many checksum errors per second (do not set below zed"
|
|
|
|
"threshold).");
|
2018-03-13 12:43:14 -05:00
|
|
|
|
|
|
|
module_param(zfs_scan_ignore_errors, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_scan_ignore_errors,
|
|
|
|
"Ignore errors during resilver/scrub");
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 10:39:36 -04:00
|
|
|
|
|
|
|
module_param(vdev_validate_skip, int, 0644);
|
|
|
|
MODULE_PARM_DESC(vdev_validate_skip,
|
|
|
|
"Bypass vdev_validate()");
|
2018-10-23 09:44:37 -07:00
|
|
|
|
|
|
|
module_param(zfs_nocacheflush, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
|
2017-01-21 00:17:55 +03:00
|
|
|
/* END CSTYLED */
|
2010-08-26 11:49:16 -07:00
|
|
|
#endif
|