721 lines
21 KiB
C
721 lines
21 KiB
C
|
/* $FreeBSD$ */
|
||
|
#include "if_em.h"
|
||
|
|
||
|
#ifdef RSS
|
||
|
#include <net/rss_config.h>
|
||
|
#include <netinet/in_rss.h>
|
||
|
#endif
|
||
|
|
||
|
#ifdef VERBOSE_DEBUG
|
||
|
#define DPRINTF device_printf
|
||
|
#else
|
||
|
#define DPRINTF(...)
|
||
|
#endif
|
||
|
|
||
|
/*********************************************************************
|
||
|
* Local Function prototypes
|
||
|
*********************************************************************/
|
||
|
static int em_tso_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower);
|
||
|
static int em_transmit_checksum_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower);
|
||
|
static int em_isc_txd_encap(void *arg, if_pkt_info_t pi);
|
||
|
static void em_isc_txd_flush(void *arg, uint16_t txqid, uint32_t pidx);
|
||
|
static int em_isc_txd_credits_update(void *arg, uint16_t txqid, uint32_t cidx_init, bool clear);
|
||
|
static void em_isc_rxd_refill(void *arg, uint16_t rxqid, uint8_t flid __unused,
|
||
|
uint32_t pidx, uint64_t *paddrs, caddr_t *vaddrs __unused, uint16_t count, uint16_t buflen __unused);
|
||
|
static void em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, uint32_t pidx);
|
||
|
static int em_isc_rxd_available(void *arg, uint16_t rxqid, uint32_t idx,
|
||
|
int budget);
|
||
|
static int em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
|
||
|
|
||
|
static void lem_isc_rxd_refill(void *arg, uint16_t rxqid, uint8_t flid __unused,
|
||
|
uint32_t pidx, uint64_t *paddrs, caddr_t *vaddrs __unused, uint16_t count, uint16_t buflen __unused);
|
||
|
|
||
|
static int lem_isc_rxd_available(void *arg, uint16_t rxqid, uint32_t idx,
|
||
|
int budget);
|
||
|
static int lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
|
||
|
|
||
|
static void lem_receive_checksum(int status, int errors, if_rxd_info_t ri);
|
||
|
static void em_receive_checksum(uint32_t status, if_rxd_info_t ri);
|
||
|
extern int em_intr(void *arg);
|
||
|
|
||
|
struct if_txrx em_txrx = {
|
||
|
em_isc_txd_encap,
|
||
|
em_isc_txd_flush,
|
||
|
em_isc_txd_credits_update,
|
||
|
em_isc_rxd_available,
|
||
|
em_isc_rxd_pkt_get,
|
||
|
em_isc_rxd_refill,
|
||
|
em_isc_rxd_flush,
|
||
|
em_intr
|
||
|
};
|
||
|
|
||
|
struct if_txrx lem_txrx = {
|
||
|
em_isc_txd_encap,
|
||
|
em_isc_txd_flush,
|
||
|
em_isc_txd_credits_update,
|
||
|
lem_isc_rxd_available,
|
||
|
lem_isc_rxd_pkt_get,
|
||
|
lem_isc_rxd_refill,
|
||
|
em_isc_rxd_flush,
|
||
|
em_intr
|
||
|
};
|
||
|
|
||
|
extern if_shared_ctx_t em_sctx;
|
||
|
|
||
|
/**********************************************************************
|
||
|
*
|
||
|
* Setup work for hardware segmentation offload (TSO) on
|
||
|
* adapters using advanced tx descriptors
|
||
|
*
|
||
|
**********************************************************************/
|
||
|
static int
|
||
|
em_tso_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower)
|
||
|
{
|
||
|
if_softc_ctx_t scctx = adapter->shared;
|
||
|
struct em_tx_queue *que = &adapter->tx_queues[pi->ipi_qsidx];
|
||
|
struct tx_ring *txr = &que->txr;
|
||
|
struct e1000_context_desc *TXD;
|
||
|
struct em_txbuffer *tx_buffer;
|
||
|
int cur, hdr_len;
|
||
|
|
||
|
hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen + pi->ipi_tcp_hlen;
|
||
|
*txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
|
||
|
E1000_TXD_DTYP_D | /* Data descr type */
|
||
|
E1000_TXD_CMD_TSE); /* Do TSE on this packet */
|
||
|
|
||
|
/* IP and/or TCP header checksum calculation and insertion. */
|
||
|
*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
|
||
|
|
||
|
cur = pi->ipi_pidx;
|
||
|
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
|
||
|
tx_buffer = &txr->tx_buffers[cur];
|
||
|
|
||
|
/*
|
||
|
* Start offset for header checksum calculation.
|
||
|
* End offset for header checksum calculation.
|
||
|
* Offset of place put the checksum.
|
||
|
*/
|
||
|
TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
|
||
|
TXD->lower_setup.ip_fields.ipcse =
|
||
|
htole16(pi->ipi_ehdrlen + pi->ipi_ip_hlen - 1);
|
||
|
TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum);
|
||
|
|
||
|
/*
|
||
|
* Start offset for payload checksum calculation.
|
||
|
* End offset for payload checksum calculation.
|
||
|
* Offset of place to put the checksum.
|
||
|
*/
|
||
|
TXD->upper_setup.tcp_fields.tucss = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
|
||
|
TXD->upper_setup.tcp_fields.tucse = 0;
|
||
|
TXD->upper_setup.tcp_fields.tucso =
|
||
|
pi->ipi_ehdrlen + pi->ipi_ip_hlen + offsetof(struct tcphdr, th_sum);
|
||
|
|
||
|
/*
|
||
|
* Payload size per packet w/o any headers.
|
||
|
* Length of all headers up to payload.
|
||
|
*/
|
||
|
TXD->tcp_seg_setup.fields.mss = htole16(pi->ipi_tso_segsz);
|
||
|
TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
|
||
|
|
||
|
TXD->cmd_and_length = htole32(adapter->txd_cmd |
|
||
|
E1000_TXD_CMD_DEXT | /* Extended descr */
|
||
|
E1000_TXD_CMD_TSE | /* TSE context */
|
||
|
E1000_TXD_CMD_IP | /* Do IP csum */
|
||
|
E1000_TXD_CMD_TCP | /* Do TCP checksum */
|
||
|
(pi->ipi_len - hdr_len)); /* Total len */
|
||
|
tx_buffer->eop = -1;
|
||
|
txr->tx_tso = TRUE;
|
||
|
|
||
|
if (++cur == scctx->isc_ntxd[0]) {
|
||
|
cur = 0;
|
||
|
}
|
||
|
DPRINTF(iflib_get_dev(adapter->ctx), "%s: pidx: %d cur: %d\n", __FUNCTION__, pi->ipi_pidx, cur);
|
||
|
return (cur);
|
||
|
}
|
||
|
|
||
|
#define TSO_WORKAROUND 4
|
||
|
#define DONT_FORCE_CTX 1
|
||
|
|
||
|
|
||
|
/*********************************************************************
|
||
|
* The offload context is protocol specific (TCP/UDP) and thus
|
||
|
* only needs to be set when the protocol changes. The occasion
|
||
|
* of a context change can be a performance detriment, and
|
||
|
* might be better just disabled. The reason arises in the way
|
||
|
* in which the controller supports pipelined requests from the
|
||
|
* Tx data DMA. Up to four requests can be pipelined, and they may
|
||
|
* belong to the same packet or to multiple packets. However all
|
||
|
* requests for one packet are issued before a request is issued
|
||
|
* for a subsequent packet and if a request for the next packet
|
||
|
* requires a context change, that request will be stalled
|
||
|
* until the previous request completes. This means setting up
|
||
|
* a new context effectively disables pipelined Tx data DMA which
|
||
|
* in turn greatly slow down performance to send small sized
|
||
|
* frames.
|
||
|
**********************************************************************/
|
||
|
|
||
|
static int
|
||
|
em_transmit_checksum_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower)
|
||
|
{
|
||
|
struct e1000_context_desc *TXD = NULL;
|
||
|
if_softc_ctx_t scctx = adapter->shared;
|
||
|
struct em_tx_queue *que = &adapter->tx_queues[pi->ipi_qsidx];
|
||
|
struct tx_ring *txr = &que->txr;
|
||
|
struct em_txbuffer *tx_buffer;
|
||
|
int csum_flags = pi->ipi_csum_flags;
|
||
|
int cur, hdr_len;
|
||
|
u32 cmd;
|
||
|
|
||
|
cur = pi->ipi_pidx;
|
||
|
hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
|
||
|
cmd = adapter->txd_cmd;
|
||
|
|
||
|
/*
|
||
|
* The 82574L can only remember the *last* context used
|
||
|
* regardless of queue that it was use for. We cannot reuse
|
||
|
* contexts on this hardware platform and must generate a new
|
||
|
* context every time. 82574L hardware spec, section 7.2.6,
|
||
|
* second note.
|
||
|
*/
|
||
|
if (DONT_FORCE_CTX &&
|
||
|
adapter->tx_num_queues == 1 &&
|
||
|
txr->csum_lhlen == pi->ipi_ehdrlen &&
|
||
|
txr->csum_iphlen == pi->ipi_ip_hlen &&
|
||
|
txr->csum_flags == csum_flags) {
|
||
|
/*
|
||
|
* Same csum offload context as the previous packets;
|
||
|
* just return.
|
||
|
*/
|
||
|
*txd_upper = txr->csum_txd_upper;
|
||
|
*txd_lower = txr->csum_txd_lower;
|
||
|
return (cur);
|
||
|
}
|
||
|
|
||
|
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
|
||
|
if (csum_flags & CSUM_IP) {
|
||
|
*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
||
|
/*
|
||
|
* Start offset for header checksum calculation.
|
||
|
* End offset for header checksum calculation.
|
||
|
* Offset of place to put the checksum.
|
||
|
*/
|
||
|
TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
|
||
|
TXD->lower_setup.ip_fields.ipcse = htole16(hdr_len);
|
||
|
TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum);
|
||
|
cmd |= E1000_TXD_CMD_IP;
|
||
|
}
|
||
|
|
||
|
if (csum_flags & (CSUM_TCP|CSUM_UDP)) {
|
||
|
uint8_t tucso;
|
||
|
|
||
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
||
|
*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
||
|
|
||
|
if (csum_flags & CSUM_TCP) {
|
||
|
tucso = hdr_len + offsetof(struct tcphdr, th_sum);
|
||
|
cmd |= E1000_TXD_CMD_TCP;
|
||
|
} else
|
||
|
tucso = hdr_len + offsetof(struct udphdr, uh_sum);
|
||
|
TXD->upper_setup.tcp_fields.tucss = hdr_len;
|
||
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
||
|
TXD->upper_setup.tcp_fields.tucso = tucso;
|
||
|
}
|
||
|
|
||
|
txr->csum_lhlen = pi->ipi_ehdrlen;
|
||
|
txr->csum_iphlen = pi->ipi_ip_hlen;
|
||
|
txr->csum_flags = csum_flags;
|
||
|
txr->csum_txd_upper = *txd_upper;
|
||
|
txr->csum_txd_lower = *txd_lower;
|
||
|
|
||
|
TXD->tcp_seg_setup.data = htole32(0);
|
||
|
TXD->cmd_and_length =
|
||
|
htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
|
||
|
|
||
|
tx_buffer = &txr->tx_buffers[cur];
|
||
|
tx_buffer->eop = -1;
|
||
|
|
||
|
if (++cur == scctx->isc_ntxd[0]) {
|
||
|
cur = 0;
|
||
|
}
|
||
|
DPRINTF(iflib_get_dev(adapter->ctx), "checksum_setup csum_flags=%x txd_upper=%x txd_lower=%x hdr_len=%d cmd=%x\n",
|
||
|
csum_flags, *txd_upper, *txd_lower, hdr_len, cmd);
|
||
|
return (cur);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
em_isc_txd_encap(void *arg, if_pkt_info_t pi)
|
||
|
{
|
||
|
struct adapter *sc = arg;
|
||
|
if_softc_ctx_t scctx = sc->shared;
|
||
|
struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
|
||
|
struct tx_ring *txr = &que->txr;
|
||
|
bus_dma_segment_t *segs = pi->ipi_segs;
|
||
|
int nsegs = pi->ipi_nsegs;
|
||
|
int csum_flags = pi->ipi_csum_flags;
|
||
|
int i, j, first, pidx_last;
|
||
|
u32 txd_upper = 0, txd_lower = 0;
|
||
|
|
||
|
struct em_txbuffer *tx_buffer;
|
||
|
struct e1000_tx_desc *ctxd = NULL;
|
||
|
bool do_tso, tso_desc;
|
||
|
|
||
|
i = first = pi->ipi_pidx;
|
||
|
do_tso = (csum_flags & CSUM_TSO);
|
||
|
tso_desc = FALSE;
|
||
|
/*
|
||
|
* TSO Hardware workaround, if this packet is not
|
||
|
* TSO, and is only a single descriptor long, and
|
||
|
* it follows a TSO burst, then we need to add a
|
||
|
* sentinel descriptor to prevent premature writeback.
|
||
|
*/
|
||
|
if ((!do_tso) && (txr->tx_tso == TRUE)) {
|
||
|
if (nsegs == 1)
|
||
|
tso_desc = TRUE;
|
||
|
txr->tx_tso = FALSE;
|
||
|
}
|
||
|
|
||
|
/* Do hardware assists */
|
||
|
if (do_tso) {
|
||
|
i = em_tso_setup(sc, pi, &txd_upper, &txd_lower);
|
||
|
tso_desc = TRUE;
|
||
|
} else if (csum_flags & CSUM_OFFLOAD) {
|
||
|
i = em_transmit_checksum_setup(sc, pi, &txd_upper, &txd_lower);
|
||
|
}
|
||
|
|
||
|
if (pi->ipi_mflags & M_VLANTAG) {
|
||
|
/* Set the vlan id. */
|
||
|
txd_upper |= htole16(pi->ipi_vtag) << 16;
|
||
|
/* Tell hardware to add tag */
|
||
|
txd_lower |= htole32(E1000_TXD_CMD_VLE);
|
||
|
}
|
||
|
|
||
|
DPRINTF(iflib_get_dev(sc->ctx), "encap: set up tx: nsegs=%d first=%d i=%d\n", nsegs, first, i);
|
||
|
/* XXX adapter->pcix_82544 -- lem_fill_descriptors */
|
||
|
|
||
|
/* Set up our transmit descriptors */
|
||
|
for (j = 0; j < nsegs; j++) {
|
||
|
bus_size_t seg_len;
|
||
|
bus_addr_t seg_addr;
|
||
|
uint32_t cmd;
|
||
|
|
||
|
ctxd = &txr->tx_base[i];
|
||
|
tx_buffer = &txr->tx_buffers[i];
|
||
|
seg_addr = segs[j].ds_addr;
|
||
|
seg_len = segs[j].ds_len;
|
||
|
cmd = E1000_TXD_CMD_IFCS | sc->txd_cmd;
|
||
|
|
||
|
/*
|
||
|
** TSO Workaround:
|
||
|
** If this is the last descriptor, we want to
|
||
|
** split it so we have a small final sentinel
|
||
|
*/
|
||
|
if (tso_desc && (j == (nsegs - 1)) && (seg_len > 8)) {
|
||
|
seg_len -= TSO_WORKAROUND;
|
||
|
ctxd->buffer_addr = htole64(seg_addr);
|
||
|
ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
|
||
|
ctxd->upper.data = htole32(txd_upper);
|
||
|
|
||
|
if (++i == scctx->isc_ntxd[0])
|
||
|
i = 0;
|
||
|
|
||
|
/* Now make the sentinel */
|
||
|
ctxd = &txr->tx_base[i];
|
||
|
tx_buffer = &txr->tx_buffers[i];
|
||
|
ctxd->buffer_addr = htole64(seg_addr + seg_len);
|
||
|
ctxd->lower.data = htole32(cmd | txd_lower | TSO_WORKAROUND);
|
||
|
ctxd->upper.data = htole32(txd_upper);
|
||
|
pidx_last = i;
|
||
|
if (++i == scctx->isc_ntxd[0])
|
||
|
i = 0;
|
||
|
DPRINTF(iflib_get_dev(sc->ctx), "TSO path pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]);
|
||
|
} else {
|
||
|
ctxd->buffer_addr = htole64(seg_addr);
|
||
|
ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
|
||
|
ctxd->upper.data = htole32(txd_upper);
|
||
|
pidx_last = i;
|
||
|
if (++i == scctx->isc_ntxd[0])
|
||
|
i = 0;
|
||
|
DPRINTF(iflib_get_dev(sc->ctx), "pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]);
|
||
|
}
|
||
|
tx_buffer->eop = -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Last Descriptor of Packet
|
||
|
* needs End Of Packet (EOP)
|
||
|
* and Report Status (RS)
|
||
|
*/
|
||
|
ctxd->lower.data |=
|
||
|
htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
|
||
|
|
||
|
tx_buffer = &txr->tx_buffers[first];
|
||
|
tx_buffer->eop = pidx_last;
|
||
|
DPRINTF(iflib_get_dev(sc->ctx), "tx_buffers[%d]->eop = %d ipi_new_pidx=%d\n", first, pidx_last, i);
|
||
|
pi->ipi_new_pidx = i;
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
em_isc_txd_flush(void *arg, uint16_t txqid, uint32_t pidx)
|
||
|
{
|
||
|
struct adapter *adapter = arg;
|
||
|
struct em_tx_queue *que = &adapter->tx_queues[txqid];
|
||
|
struct tx_ring *txr = &que->txr;
|
||
|
|
||
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), pidx);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
em_isc_txd_credits_update(void *arg, uint16_t txqid, uint32_t cidx_init, bool clear)
|
||
|
{
|
||
|
struct adapter *adapter = arg;
|
||
|
if_softc_ctx_t scctx = adapter->shared;
|
||
|
struct em_tx_queue *que = &adapter->tx_queues[txqid];
|
||
|
struct tx_ring *txr = &que->txr;
|
||
|
|
||
|
u32 cidx, processed = 0;
|
||
|
int last, done;
|
||
|
struct em_txbuffer *buf;
|
||
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
||
|
|
||
|
cidx = cidx_init;
|
||
|
buf = &txr->tx_buffers[cidx];
|
||
|
tx_desc = &txr->tx_base[cidx];
|
||
|
last = buf->eop;
|
||
|
eop_desc = &txr->tx_base[last];
|
||
|
|
||
|
DPRINTF(iflib_get_dev(adapter->ctx), "credits_update: cidx_init=%d clear=%d last=%d\n",
|
||
|
cidx_init, clear, last);
|
||
|
/*
|
||
|
* What this does is get the index of the
|
||
|
* first descriptor AFTER the EOP of the
|
||
|
* first packet, that way we can do the
|
||
|
* simple comparison on the inner while loop.
|
||
|
*/
|
||
|
if (++last == scctx->isc_ntxd[0])
|
||
|
last = 0;
|
||
|
done = last;
|
||
|
|
||
|
|
||
|
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
|
||
|
/* We clean the range of the packet */
|
||
|
while (cidx != done) {
|
||
|
if (clear) {
|
||
|
tx_desc->upper.data = 0;
|
||
|
tx_desc->lower.data = 0;
|
||
|
tx_desc->buffer_addr = 0;
|
||
|
buf->eop = -1;
|
||
|
}
|
||
|
tx_desc++;
|
||
|
buf++;
|
||
|
processed++;
|
||
|
|
||
|
/* wrap the ring ? */
|
||
|
if (++cidx == scctx->isc_ntxd[0]) {
|
||
|
cidx = 0;
|
||
|
}
|
||
|
buf = &txr->tx_buffers[cidx];
|
||
|
tx_desc = &txr->tx_base[cidx];
|
||
|
}
|
||
|
/* See if we can continue to the next packet */
|
||
|
last = buf->eop;
|
||
|
if (last == -1)
|
||
|
break;
|
||
|
eop_desc = &txr->tx_base[last];
|
||
|
/* Get new done point */
|
||
|
if (++last == scctx->isc_ntxd[0])
|
||
|
last = 0;
|
||
|
done = last;
|
||
|
}
|
||
|
|
||
|
DPRINTF(iflib_get_dev(adapter->ctx), "Processed %d credits update\n", processed);
|
||
|
return(processed);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
lem_isc_rxd_refill(void *arg, uint16_t rxqid, uint8_t flid __unused,
|
||
|
uint32_t pidx, uint64_t *paddrs, caddr_t *vaddrs __unused, uint16_t count, uint16_t buflen __unused)
|
||
|
{
|
||
|
struct adapter *sc = arg;
|
||
|
if_softc_ctx_t scctx = sc->shared;
|
||
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
||
|
struct rx_ring *rxr = &que->rxr;
|
||
|
struct e1000_rx_desc *rxd;
|
||
|
int i;
|
||
|
uint32_t next_pidx;
|
||
|
|
||
|
for (i = 0, next_pidx = pidx; i < count; i++) {
|
||
|
rxd = (struct e1000_rx_desc *)&rxr->rx_base[next_pidx];
|
||
|
rxd->buffer_addr = htole64(paddrs[i]);
|
||
|
/* status bits must be cleared */
|
||
|
rxd->status = 0;
|
||
|
|
||
|
if (++next_pidx == scctx->isc_nrxd[0])
|
||
|
next_pidx = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
em_isc_rxd_refill(void *arg, uint16_t rxqid, uint8_t flid __unused,
|
||
|
uint32_t pidx, uint64_t *paddrs, caddr_t *vaddrs __unused, uint16_t count, uint16_t buflen __unused)
|
||
|
{
|
||
|
struct adapter *sc = arg;
|
||
|
if_softc_ctx_t scctx = sc->shared;
|
||
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
||
|
struct rx_ring *rxr = &que->rxr;
|
||
|
union e1000_rx_desc_extended *rxd;
|
||
|
int i;
|
||
|
uint32_t next_pidx;
|
||
|
|
||
|
for (i = 0, next_pidx = pidx; i < count; i++) {
|
||
|
rxd = &rxr->rx_base[next_pidx];
|
||
|
rxd->read.buffer_addr = htole64(paddrs[i]);
|
||
|
/* DD bits must be cleared */
|
||
|
rxd->wb.upper.status_error = 0;
|
||
|
|
||
|
if (++next_pidx == scctx->isc_nrxd[0])
|
||
|
next_pidx = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, uint32_t pidx)
|
||
|
{
|
||
|
struct adapter *sc = arg;
|
||
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
||
|
struct rx_ring *rxr = &que->rxr;
|
||
|
|
||
|
E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
lem_isc_rxd_available(void *arg, uint16_t rxqid, uint32_t idx, int budget)
|
||
|
{
|
||
|
struct adapter *sc = arg;
|
||
|
if_softc_ctx_t scctx = sc->shared;
|
||
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
||
|
struct rx_ring *rxr = &que->rxr;
|
||
|
struct e1000_rx_desc *rxd;
|
||
|
u32 staterr = 0;
|
||
|
int cnt, i;
|
||
|
|
||
|
for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
|
||
|
rxd = (struct e1000_rx_desc *)&rxr->rx_base[i];
|
||
|
staterr = rxd->status;
|
||
|
|
||
|
if ((staterr & E1000_RXD_STAT_DD) == 0)
|
||
|
break;
|
||
|
|
||
|
if (++i == scctx->isc_nrxd[0])
|
||
|
i = 0;
|
||
|
|
||
|
if (staterr & E1000_RXD_STAT_EOP)
|
||
|
cnt++;
|
||
|
}
|
||
|
return (cnt);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
em_isc_rxd_available(void *arg, uint16_t rxqid, uint32_t idx, int budget)
|
||
|
{
|
||
|
struct adapter *sc = arg;
|
||
|
if_softc_ctx_t scctx = sc->shared;
|
||
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
||
|
struct rx_ring *rxr = &que->rxr;
|
||
|
union e1000_rx_desc_extended *rxd;
|
||
|
u32 staterr = 0;
|
||
|
int cnt, i;
|
||
|
|
||
|
for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
|
||
|
rxd = &rxr->rx_base[i];
|
||
|
staterr = le32toh(rxd->wb.upper.status_error);
|
||
|
|
||
|
if ((staterr & E1000_RXD_STAT_DD) == 0)
|
||
|
break;
|
||
|
|
||
|
if (++i == scctx->isc_nrxd[0]) {
|
||
|
i = 0;
|
||
|
}
|
||
|
|
||
|
if (staterr & E1000_RXD_STAT_EOP)
|
||
|
cnt++;
|
||
|
|
||
|
}
|
||
|
return (cnt);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
|
||
|
{
|
||
|
struct adapter *adapter = arg;
|
||
|
if_softc_ctx_t scctx = adapter->shared;
|
||
|
struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
|
||
|
struct rx_ring *rxr = &que->rxr;
|
||
|
struct e1000_rx_desc *rxd;
|
||
|
u16 len;
|
||
|
u32 status, errors;
|
||
|
bool eop;
|
||
|
int i, cidx;
|
||
|
|
||
|
status = errors = i = 0;
|
||
|
cidx = ri->iri_cidx;
|
||
|
|
||
|
do {
|
||
|
rxd = (struct e1000_rx_desc *)&rxr->rx_base[cidx];
|
||
|
status = rxd->status;
|
||
|
errors = rxd->errors;
|
||
|
|
||
|
/* Error Checking then decrement count */
|
||
|
MPASS ((status & E1000_RXD_STAT_DD) != 0);
|
||
|
|
||
|
len = le16toh(rxd->length);
|
||
|
ri->iri_len += len;
|
||
|
|
||
|
eop = (status & E1000_RXD_STAT_EOP) != 0;
|
||
|
|
||
|
/* Make sure bad packets are discarded */
|
||
|
if (errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
|
||
|
adapter->dropped_pkts++;
|
||
|
/* XXX fixup if common */
|
||
|
return (EBADMSG);
|
||
|
}
|
||
|
|
||
|
ri->iri_frags[i].irf_flid = 0;
|
||
|
ri->iri_frags[i].irf_idx = cidx;
|
||
|
ri->iri_frags[i].irf_len = len;
|
||
|
/* Zero out the receive descriptors status. */
|
||
|
rxd->status = 0;
|
||
|
|
||
|
if (++cidx == scctx->isc_nrxd[0])
|
||
|
cidx = 0;
|
||
|
i++;
|
||
|
} while (!eop);
|
||
|
|
||
|
/* XXX add a faster way to look this up */
|
||
|
if (adapter->hw.mac.type >= e1000_82543 && !(status & E1000_RXD_STAT_IXSM))
|
||
|
lem_receive_checksum(status, errors, ri);
|
||
|
|
||
|
if (status & E1000_RXD_STAT_VP) {
|
||
|
ri->iri_vtag = le16toh(rxd->special);
|
||
|
ri->iri_flags |= M_VLANTAG;
|
||
|
}
|
||
|
|
||
|
ri->iri_nfrags = i;
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
|
||
|
{
|
||
|
struct adapter *adapter = arg;
|
||
|
if_softc_ctx_t scctx = adapter->shared;
|
||
|
struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
|
||
|
struct rx_ring *rxr = &que->rxr;
|
||
|
union e1000_rx_desc_extended *rxd;
|
||
|
|
||
|
u16 len;
|
||
|
u32 staterr = 0;
|
||
|
bool eop;
|
||
|
int i, cidx, vtag;
|
||
|
|
||
|
i = vtag = 0;
|
||
|
cidx = ri->iri_cidx;
|
||
|
|
||
|
do {
|
||
|
rxd = &rxr->rx_base[cidx];
|
||
|
staterr = le32toh(rxd->wb.upper.status_error);
|
||
|
|
||
|
/* Error Checking then decrement count */
|
||
|
MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
|
||
|
|
||
|
len = le16toh(rxd->wb.upper.length);
|
||
|
ri->iri_len += len;
|
||
|
|
||
|
eop = (staterr & E1000_RXD_STAT_EOP) != 0;
|
||
|
|
||
|
/* Make sure bad packets are discarded */
|
||
|
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
|
||
|
adapter->dropped_pkts++;
|
||
|
return EBADMSG;
|
||
|
}
|
||
|
|
||
|
ri->iri_frags[i].irf_flid = 0;
|
||
|
ri->iri_frags[i].irf_idx = cidx;
|
||
|
ri->iri_frags[i].irf_len = len;
|
||
|
/* Zero out the receive descriptors status. */
|
||
|
rxd->wb.upper.status_error &= htole32(~0xFF);
|
||
|
|
||
|
if (++cidx == scctx->isc_nrxd[0])
|
||
|
cidx = 0;
|
||
|
i++;
|
||
|
} while (!eop);
|
||
|
|
||
|
/* XXX add a faster way to look this up */
|
||
|
if (adapter->hw.mac.type >= e1000_82543)
|
||
|
em_receive_checksum(staterr, ri);
|
||
|
|
||
|
if (staterr & E1000_RXD_STAT_VP) {
|
||
|
vtag = le16toh(rxd->wb.upper.vlan);
|
||
|
}
|
||
|
|
||
|
ri->iri_vtag = vtag;
|
||
|
ri->iri_nfrags = i;
|
||
|
if (vtag)
|
||
|
ri->iri_flags |= M_VLANTAG;
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*********************************************************************
|
||
|
*
|
||
|
* Verify that the hardware indicated that the checksum is valid.
|
||
|
* Inform the stack about the status of checksum so that stack
|
||
|
* doesn't spend time verifying the checksum.
|
||
|
*
|
||
|
*********************************************************************/
|
||
|
static void
|
||
|
lem_receive_checksum(int status, int errors, if_rxd_info_t ri)
|
||
|
{
|
||
|
/* Did it pass? */
|
||
|
if (status & E1000_RXD_STAT_IPCS && !(errors & E1000_RXD_ERR_IPE))
|
||
|
ri->iri_csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID);
|
||
|
|
||
|
if (status & E1000_RXD_STAT_TCPCS) {
|
||
|
/* Did it pass? */
|
||
|
if (!(errors & E1000_RXD_ERR_TCPE)) {
|
||
|
ri->iri_csum_flags |=
|
||
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
||
|
ri->iri_csum_data = htons(0xffff);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
em_receive_checksum(uint32_t status, if_rxd_info_t ri)
|
||
|
{
|
||
|
ri->iri_csum_flags = 0;
|
||
|
|
||
|
/* Ignore Checksum bit is set */
|
||
|
if (status & E1000_RXD_STAT_IXSM)
|
||
|
return;
|
||
|
|
||
|
/* If the IP checksum exists and there is no IP Checksum error */
|
||
|
if ((status & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
|
||
|
E1000_RXD_STAT_IPCS) {
|
||
|
ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
|
||
|
}
|
||
|
|
||
|
/* TCP or UDP checksum */
|
||
|
if ((status & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
|
||
|
E1000_RXD_STAT_TCPCS) {
|
||
|
ri->iri_csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
||
|
ri->iri_csum_data = htons(0xffff);
|
||
|
}
|
||
|
if (status & E1000_RXD_STAT_UDPCS) {
|
||
|
ri->iri_csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
||
|
ri->iri_csum_data = htons(0xffff);
|
||
|
}
|
||
|
}
|