268 lines
7.0 KiB
C
268 lines
7.0 KiB
C
|
/* mpz_and -- Logical and.
|
||
|
|
||
|
Copyright (C) 1991 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of the GNU MP Library.
|
||
|
|
||
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2, or (at your option)
|
||
|
any later version.
|
||
|
|
||
|
The GNU MP Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with the GNU MP Library; see the file COPYING. If not, write to
|
||
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
|
||
|
#include "gmp.h"
|
||
|
#include "gmp-impl.h"
|
||
|
|
||
|
#define min(l,o) ((l) < (o) ? (l) : (o))
|
||
|
#define max(h,i) ((h) > (i) ? (h) : (i))
|
||
|
|
||
|
void
|
||
|
#ifdef __STDC__
|
||
|
mpz_and (MP_INT *res, const MP_INT *op1, const MP_INT *op2)
|
||
|
#else
|
||
|
mpz_and (res, op1, op2)
|
||
|
MP_INT *res;
|
||
|
const MP_INT *op1;
|
||
|
const MP_INT *op2;
|
||
|
#endif
|
||
|
{
|
||
|
mp_srcptr op1_ptr, op2_ptr;
|
||
|
mp_size op1_size, op2_size;
|
||
|
mp_ptr res_ptr;
|
||
|
mp_size res_size;
|
||
|
mp_size i;
|
||
|
|
||
|
op1_size = op1->size;
|
||
|
op2_size = op2->size;
|
||
|
|
||
|
op1_ptr = op1->d;
|
||
|
op2_ptr = op2->d;
|
||
|
res_ptr = res->d;
|
||
|
|
||
|
if (op1_size >= 0)
|
||
|
{
|
||
|
if (op2_size >= 0)
|
||
|
{
|
||
|
res_size = min (op1_size, op2_size);
|
||
|
/* First loop finds the size of the result. */
|
||
|
for (i = res_size - 1; i >= 0; i--)
|
||
|
if ((op1_ptr[i] & op2_ptr[i]) != 0)
|
||
|
break;
|
||
|
res_size = i + 1;
|
||
|
|
||
|
/* Handle allocation, now when we know exactly how much space is
|
||
|
needed for the result. */
|
||
|
if (res->alloc < res_size)
|
||
|
{
|
||
|
_mpz_realloc (res, res_size);
|
||
|
op1_ptr = op1->d;
|
||
|
op2_ptr = op2->d;
|
||
|
res_ptr = res->d;
|
||
|
}
|
||
|
|
||
|
/* Second loop computes the real result. */
|
||
|
for (i = res_size - 1; i >= 0; i--)
|
||
|
res_ptr[i] = op1_ptr[i] & op2_ptr[i];
|
||
|
|
||
|
res->size = res_size;
|
||
|
return;
|
||
|
}
|
||
|
else /* op2_size < 0 */
|
||
|
/* Fall through to the code at the end of the function. */
|
||
|
;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (op2_size < 0)
|
||
|
{
|
||
|
mp_ptr opx;
|
||
|
mp_limb cy;
|
||
|
mp_limb one = 1;
|
||
|
mp_size res_alloc;
|
||
|
|
||
|
/* Both operands are negative, so will be the result.
|
||
|
-((-OP1) & (-OP2)) = -(~(OP1 - 1) & ~(OP2 - 1)) =
|
||
|
= ~(~(OP1 - 1) & ~(OP2 - 1)) + 1 =
|
||
|
= ((OP1 - 1) | (OP2 - 1)) + 1 */
|
||
|
|
||
|
op1_size = -op1_size;
|
||
|
op2_size = -op2_size;
|
||
|
|
||
|
res_alloc = 1 + max (op1_size, op2_size);
|
||
|
|
||
|
opx = (mp_ptr) alloca (op1_size * BYTES_PER_MP_LIMB);
|
||
|
op1_size += mpn_sub (opx, op1_ptr, op1_size, &one, 1);
|
||
|
op1_ptr = opx;
|
||
|
|
||
|
opx = (mp_ptr) alloca (op2_size * BYTES_PER_MP_LIMB);
|
||
|
op2_size += mpn_sub (opx, op2_ptr, op2_size, &one, 1);
|
||
|
op2_ptr = opx;
|
||
|
|
||
|
if (res->alloc < res_alloc)
|
||
|
{
|
||
|
_mpz_realloc (res, res_alloc);
|
||
|
res_ptr = res->d;
|
||
|
/* Don't re-read OP1_PTR and OP2_PTR. They point to
|
||
|
temporary space--never to the space RES->D used
|
||
|
to point to before reallocation. */
|
||
|
}
|
||
|
|
||
|
if (op1_size >= op2_size)
|
||
|
{
|
||
|
MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size,
|
||
|
op1_size - op2_size);
|
||
|
for (i = op2_size - 1; i >= 0; i--)
|
||
|
res_ptr[i] = op1_ptr[i] | op2_ptr[i];
|
||
|
res_size = op1_size;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size,
|
||
|
op2_size - op1_size);
|
||
|
for (i = op1_size - 1; i >= 0; i--)
|
||
|
res_ptr[i] = op1_ptr[i] | op2_ptr[i];
|
||
|
res_size = op2_size;
|
||
|
}
|
||
|
|
||
|
if (res_size != 0)
|
||
|
{
|
||
|
cy = mpn_add (res_ptr, res_ptr, res_size, &one, 1);
|
||
|
if (cy)
|
||
|
{
|
||
|
res_ptr[res_size] = cy;
|
||
|
res_size++;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
res_ptr[0] = 1;
|
||
|
res_size = 1;
|
||
|
}
|
||
|
|
||
|
res->size = -res_size;
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* We should compute -OP1 & OP2. Swap OP1 and OP2 and fall
|
||
|
through to the code that handles OP1 & -OP2. */
|
||
|
{const MP_INT *t = op1; op1 = op2; op2 = t;}
|
||
|
{mp_srcptr t = op1_ptr; op1_ptr = op2_ptr; op2_ptr = t;}
|
||
|
{mp_size t = op1_size; op1_size = op2_size; op2_size = t;}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
{
|
||
|
#if 0
|
||
|
mp_size op2_lim;
|
||
|
|
||
|
/* OP2 must be negated as with infinite precision.
|
||
|
|
||
|
Scan from the low end for a non-zero limb. The first non-zero
|
||
|
limb is simply negated (two's complement). Any subsequent
|
||
|
limbs are one's complemented. Of course, we don't need to
|
||
|
handle more limbs than there are limbs in the other, positive
|
||
|
operand as the result for those limbs is going to become zero
|
||
|
anyway. */
|
||
|
|
||
|
/* Scan for the least significant. non-zero OP2 limb, and zero the
|
||
|
result meanwhile for those limb positions. (We will surely
|
||
|
find a non-zero limb, so we can write the loop with one
|
||
|
termination condition only.) */
|
||
|
for (i = 0; op2_ptr[i] == 0; i++)
|
||
|
res_ptr[i] = 0;
|
||
|
op2_lim = i;
|
||
|
|
||
|
op2_size = -op2_size;
|
||
|
|
||
|
if (op1_size <= op2_size)
|
||
|
{
|
||
|
/* The ones-extended OP2 is >= than the zero-extended OP1.
|
||
|
RES_SIZE <= OP1_SIZE. Find the exact size. */
|
||
|
for (i = op1_size - 1; i > op2_lim; i--)
|
||
|
if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
|
||
|
break;
|
||
|
res_size = i + 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The ones-extended OP2 is < than the zero-extended OP1.
|
||
|
RES_SIZE == OP1_SIZE, since OP1 is normalized. */
|
||
|
res_size = op1_size;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* OP1 is positive and zero-extended,
|
||
|
OP2 is negative and ones-extended.
|
||
|
The result will be positive.
|
||
|
OP1 & -OP2 = OP1 & ~(OP2 - 1). */
|
||
|
|
||
|
mp_ptr opx;
|
||
|
const mp_limb one = 1;
|
||
|
|
||
|
op2_size = -op2_size;
|
||
|
opx = (mp_ptr) alloca (op2_size * BYTES_PER_MP_LIMB);
|
||
|
op2_size += mpn_sub (opx, op2_ptr, op2_size, &one, 1);
|
||
|
op2_ptr = opx;
|
||
|
|
||
|
if (op1_size > op2_size)
|
||
|
{
|
||
|
/* The result has the same size as OP1, since OP1 is normalized
|
||
|
and longer than the ones-extended OP2. */
|
||
|
res_size = op1_size;
|
||
|
|
||
|
/* Handle allocation, now when we know exactly how much space is
|
||
|
needed for the result. */
|
||
|
if (res->alloc < res_size)
|
||
|
{
|
||
|
_mpz_realloc (res, res_size);
|
||
|
res_ptr = res->d;
|
||
|
op1_ptr = op1->d;
|
||
|
/* Don't re-read OP2_PTR. It points to temporary space--never
|
||
|
to the space RES->D used to point to before reallocation. */
|
||
|
}
|
||
|
|
||
|
MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size,
|
||
|
res_size - op2_size);
|
||
|
for (i = op2_size - 1; i >= 0; i--)
|
||
|
res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
|
||
|
|
||
|
res->size = res_size;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Find out the exact result size. Ignore the high limbs of OP2,
|
||
|
OP1 is zero-extended and would make the result zero. */
|
||
|
for (i = op1_size - 1; i >= 0; i--)
|
||
|
if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
|
||
|
break;
|
||
|
res_size = i + 1;
|
||
|
|
||
|
/* Handle allocation, now when we know exactly how much space is
|
||
|
needed for the result. */
|
||
|
if (res->alloc < res_size)
|
||
|
{
|
||
|
_mpz_realloc (res, res_size);
|
||
|
res_ptr = res->d;
|
||
|
op1_ptr = op1->d;
|
||
|
/* Don't re-read OP2_PTR. It points to temporary space--never
|
||
|
to the space RES->D used to point to before reallocation. */
|
||
|
}
|
||
|
|
||
|
for (i = res_size - 1; i >= 0; i--)
|
||
|
res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
|
||
|
|
||
|
res->size = res_size;
|
||
|
}
|
||
|
}
|
||
|
}
|