2255 lines
49 KiB
C
Raw Normal View History

Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
/*-
* Copyright (c) 1999, 2000, 2001, 2002 Robert N. M. Watson
* Copyright (c) 2001, 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed by Robert Watson for the TrustedBSD Project.
*
* This software was developed for the FreeBSD Project in part by NAI Labs,
* the Security Research Division of Network Associates, Inc. under
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
* CHATS research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the authors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Developed by the TrustedBSD Project.
* MLS fixed label mandatory confidentiality policy.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/acl.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/mac.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/sysent.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/pipe.h>
#include <sys/sysctl.h>
#include <fs/devfs/devfs.h>
#include <net/bpfdesc.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <netinet/in.h>
#include <netinet/ip_var.h>
#include <vm/vm.h>
#include <sys/mac_policy.h>
#include <security/mac_mls/mac_mls.h>
SYSCTL_DECL(_security_mac);
SYSCTL_NODE(_security_mac, OID_AUTO, mls, CTLFLAG_RW, 0,
"TrustedBSD mac_mls policy controls");
static int mac_mls_enabled = 0;
SYSCTL_INT(_security_mac_mls, OID_AUTO, enabled, CTLFLAG_RW,
&mac_mls_enabled, 0, "Enforce MAC/MLS policy");
TUNABLE_INT("security.mac.mls.enabled", &mac_mls_enabled);
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int destroyed_not_inited;
SYSCTL_INT(_security_mac_mls, OID_AUTO, destroyed_not_inited, CTLFLAG_RD,
&destroyed_not_inited, 0, "Count of labels destroyed but not inited");
static int mac_mls_revocation_enabled = 0;
SYSCTL_INT(_security_mac_mls, OID_AUTO, revocation_enabled, CTLFLAG_RW,
&mac_mls_revocation_enabled, 0, "Revoke access to objects on relabel");
TUNABLE_INT("security.mac.mls.revocation_enabled",
&mac_mls_revocation_enabled);
static int mac_mls_slot;
#define SLOT(l) ((struct mac_mls *)LABEL_TO_SLOT((l), mac_mls_slot).l_ptr)
MALLOC_DEFINE(M_MACMLS, "mls label", "MAC/MLS labels");
static int mac_mls_check_vnode_open(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, mode_t acc_mode);
static struct mac_mls *
mls_alloc(int how)
{
struct mac_mls *mac_mls;
mac_mls = malloc(sizeof(struct mac_mls), M_MACMLS, M_ZERO | how);
return (mac_mls);
}
static void
mls_free(struct mac_mls *mac_mls)
{
if (mac_mls != NULL)
free(mac_mls, M_MACMLS);
else
atomic_add_int(&destroyed_not_inited, 1);
}
static int
mac_mls_dominate_element(struct mac_mls_element *a,
struct mac_mls_element *b)
{
switch(a->mme_type) {
case MAC_MLS_TYPE_EQUAL:
case MAC_MLS_TYPE_HIGH:
return (1);
case MAC_MLS_TYPE_LOW:
switch (b->mme_type) {
case MAC_MLS_TYPE_LEVEL:
case MAC_MLS_TYPE_HIGH:
return (0);
case MAC_MLS_TYPE_EQUAL:
case MAC_MLS_TYPE_LOW:
return (1);
default:
panic("mac_mls_dominate_element: b->mme_type invalid");
}
case MAC_MLS_TYPE_LEVEL:
switch (b->mme_type) {
case MAC_MLS_TYPE_EQUAL:
case MAC_MLS_TYPE_LOW:
return (1);
case MAC_MLS_TYPE_HIGH:
return (0);
case MAC_MLS_TYPE_LEVEL:
return (a->mme_level >= b->mme_level);
default:
panic("mac_mls_dominate_element: b->mme_type invalid");
}
default:
panic("mac_mls_dominate_element: a->mme_type invalid");
}
return (0);
}
static int
mac_mls_range_in_range(struct mac_mls *rangea, struct mac_mls *rangeb)
{
return (mac_mls_dominate_element(&rangeb->mm_rangehigh,
&rangea->mm_rangehigh) &&
mac_mls_dominate_element(&rangea->mm_rangelow,
&rangeb->mm_rangelow));
}
static int
mac_mls_single_in_range(struct mac_mls *single, struct mac_mls *range)
{
KASSERT((single->mm_flag & MAC_MLS_FLAG_SINGLE) != 0,
("mac_mls_single_in_range: a not single"));
KASSERT((range->mm_flag & MAC_MLS_FLAG_RANGE) != 0,
("mac_mls_single_in_range: b not range"));
return (mac_mls_dominate_element(&range->mm_rangehigh,
&single->mm_single) &&
mac_mls_dominate_element(&single->mm_single,
&range->mm_rangelow));
return (1);
}
static int
mac_mls_dominate_single(struct mac_mls *a, struct mac_mls *b)
{
KASSERT((a->mm_flags & MAC_MLS_FLAG_SINGLE) != 0,
("mac_mls_dominate_single: a not single"));
KASSERT((b->mm_flags & MAC_MLS_FLAG_SINGLE) != 0,
("mac_mls_dominate_single: b not single"));
return (mac_mls_dominate_element(&a->mm_single, &b->mm_single));
}
static int
mac_mls_equal_element(struct mac_mls_element *a, struct mac_mls_element *b)
{
if (a->mme_type == MAC_MLS_TYPE_EQUAL ||
b->mme_type == MAC_MLS_TYPE_EQUAL)
return (1);
return (a->mme_type == b->mme_type && a->mme_level == b->mme_level);
}
static int
mac_mls_equal_range(struct mac_mls *a, struct mac_mls *b)
{
KASSERT((a->mm_flags & MAC_MLS_FLAG_RANGE) != 0,
("mac_mls_equal_range: a not range"));
KASSERT((b->mm_flags & MAC_MLS_FLAG_RANGE) != 0,
("mac_mls_equal_range: b not range"));
return (mac_mls_equal_element(&a->mm_rangelow, &b->mm_rangelow) &&
mac_mls_equal_element(&a->mm_rangehigh, &b->mm_rangehigh));
}
static int
mac_mls_equal_single(struct mac_mls *a, struct mac_mls *b)
{
KASSERT((a->mm_flags & MAC_MLS_FLAG_SINGLE) != 0,
("mac_mls_equal_single: a not single"));
KASSERT((b->mm_flags & MAC_MLS_FLAG_SINGLE) != 0,
("mac_mls_equal_single: b not single"));
return (mac_mls_equal_element(&a->mm_single, &b->mm_single));
}
static int
mac_mls_valid(struct mac_mls *mac_mls)
{
if (mac_mls->mm_flags & MAC_MLS_FLAG_SINGLE) {
switch (mac_mls->mm_single.mme_type) {
case MAC_MLS_TYPE_LEVEL:
break;
case MAC_MLS_TYPE_EQUAL:
case MAC_MLS_TYPE_HIGH:
case MAC_MLS_TYPE_LOW:
if (mac_mls->mm_single.mme_level != 0)
return (EINVAL);
break;
default:
return (EINVAL);
}
} else {
if (mac_mls->mm_single.mme_type != MAC_MLS_TYPE_UNDEF)
return (EINVAL);
}
if (mac_mls->mm_flags & MAC_MLS_FLAG_RANGE) {
switch (mac_mls->mm_rangelow.mme_type) {
case MAC_MLS_TYPE_LEVEL:
break;
case MAC_MLS_TYPE_EQUAL:
case MAC_MLS_TYPE_HIGH:
case MAC_MLS_TYPE_LOW:
if (mac_mls->mm_rangelow.mme_level != 0)
return (EINVAL);
break;
default:
return (EINVAL);
}
switch (mac_mls->mm_rangehigh.mme_type) {
case MAC_MLS_TYPE_LEVEL:
break;
case MAC_MLS_TYPE_EQUAL:
case MAC_MLS_TYPE_HIGH:
case MAC_MLS_TYPE_LOW:
if (mac_mls->mm_rangehigh.mme_level != 0)
return (EINVAL);
break;
default:
return (EINVAL);
}
if (!mac_mls_dominate_element(&mac_mls->mm_rangehigh,
&mac_mls->mm_rangelow))
return (EINVAL);
} else {
if (mac_mls->mm_rangelow.mme_type != MAC_MLS_TYPE_UNDEF ||
mac_mls->mm_rangehigh.mme_type != MAC_MLS_TYPE_UNDEF)
return (EINVAL);
}
return (0);
}
static void
mac_mls_set_range(struct mac_mls *mac_mls, u_short typelow,
u_short levellow, u_short typehigh, u_short levelhigh)
{
mac_mls->mm_rangelow.mme_type = typelow;
mac_mls->mm_rangelow.mme_level = levellow;
mac_mls->mm_rangehigh.mme_type = typehigh;
mac_mls->mm_rangehigh.mme_level = levelhigh;
mac_mls->mm_flags |= MAC_MLS_FLAG_RANGE;
}
static void
mac_mls_set_single(struct mac_mls *mac_mls, u_short type, u_short level)
{
mac_mls->mm_single.mme_type = type;
mac_mls->mm_single.mme_level = level;
mac_mls->mm_flags |= MAC_MLS_FLAG_SINGLE;
}
static void
mac_mls_copy_range(struct mac_mls *labelfrom, struct mac_mls *labelto)
{
KASSERT((labelfrom->mm_flags & MAC_MLS_FLAG_RANGE) != 0,
("mac_mls_copy_range: labelfrom not range"));
labelto->mm_rangelow = labelfrom->mm_rangelow;
labelto->mm_rangehigh = labelfrom->mm_rangehigh;
labelto->mm_flags |= MAC_MLS_FLAG_RANGE;
}
static void
mac_mls_copy_single(struct mac_mls *labelfrom, struct mac_mls *labelto)
{
KASSERT((labelfrom->mm_flags & MAC_MLS_FLAG_SINGLE) != 0,
("mac_mls_copy_single: labelfrom not single"));
labelto->mm_single = labelfrom->mm_single;
labelto->mm_flags |= MAC_MLS_FLAG_SINGLE;
}
static void
mac_mls_copy_single_to_range(struct mac_mls *labelfrom,
struct mac_mls *labelto)
{
KASSERT((labelfrom->mm_flags & MAC_MLS_FLAG_SINGLE) != 0,
("mac_mls_copy_single_to_range: labelfrom not single"));
labelto->mm_rangelow = labelfrom->mm_single;
labelto->mm_rangehigh = labelfrom->mm_single;
labelto->mm_flags |= MAC_MLS_FLAG_RANGE;
}
/*
* Policy module operations.
*/
static void
mac_mls_destroy(struct mac_policy_conf *conf)
{
}
static void
mac_mls_init(struct mac_policy_conf *conf)
{
}
/*
* Label operations.
*/
static void
mac_mls_init_bpfdesc(struct bpf_d *bpf_d, struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_cred(struct ucred *ucred, struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_devfsdirent(struct devfs_dirent *devfs_dirent,
struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_ifnet(struct ifnet *ifnet, struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_ipq(struct ipq *ipq, struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static int
mac_mls_init_mbuf(struct mbuf *mbuf, int how, struct label *label)
{
SLOT(label) = mls_alloc(how);
if (SLOT(label) == NULL)
return (ENOMEM);
return (0);
}
static void
mac_mls_init_mount(struct mount *mount, struct label *mntlabel,
struct label *fslabel)
{
SLOT(mntlabel) = mls_alloc(M_WAITOK);
SLOT(fslabel) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_socket(struct socket *socket, struct label *label,
struct label *peerlabel)
{
SLOT(label) = mls_alloc(M_WAITOK);
SLOT(peerlabel) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_pipe(struct pipe *pipe, struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_temp(struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static void
mac_mls_init_vnode(struct vnode *vp, struct label *label)
{
SLOT(label) = mls_alloc(M_WAITOK);
}
static void
mac_mls_destroy_bpfdesc(struct bpf_d *bpf_d, struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_cred(struct ucred *ucred, struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_devfsdirent(struct devfs_dirent *devfs_dirent,
struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_ifnet(struct ifnet *ifnet, struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_ipq(struct ipq *ipq, struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_mbuf(struct mbuf *mbuf, struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_mount(struct mount *mount, struct label *mntlabel,
struct label *fslabel)
{
mls_free(SLOT(mntlabel));
SLOT(mntlabel) = NULL;
mls_free(SLOT(fslabel));
SLOT(fslabel) = NULL;
}
static void
mac_mls_destroy_socket(struct socket *socket, struct label *label,
struct label *peerlabel)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
mls_free(SLOT(peerlabel));
SLOT(peerlabel) = NULL;
}
static void
mac_mls_destroy_pipe(struct pipe *pipe, struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_temp(struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static void
mac_mls_destroy_vnode(struct vnode *vp, struct label *label)
{
mls_free(SLOT(label));
SLOT(label) = NULL;
}
static int
mac_mls_externalize(struct label *label, struct mac *extmac)
{
struct mac_mls *mac_mls;
mac_mls = SLOT(label);
if (mac_mls == NULL) {
printf("mac_mls_externalize: NULL pointer\n");
return (0);
}
extmac->m_mls = *mac_mls;
return (0);
}
static int
mac_mls_internalize(struct label *label, struct mac *extmac)
{
struct mac_mls *mac_mls;
int error;
mac_mls = SLOT(label);
error = mac_mls_valid(mac_mls);
if (error)
return (error);
*mac_mls = extmac->m_mls;
return (0);
}
/*
* Labeling event operations: file system objects, and things that look
* a lot like file system objects.
*/
static void
mac_mls_create_devfs_device(dev_t dev, struct devfs_dirent *devfs_dirent,
struct label *label)
{
struct mac_mls *mac_mls;
int mls_type;
mac_mls = SLOT(label);
if (strcmp(dev->si_name, "null") == 0 ||
strcmp(dev->si_name, "zero") == 0 ||
strcmp(dev->si_name, "random") == 0 ||
strncmp(dev->si_name, "fd/", strlen("fd/")) == 0)
mls_type = MAC_MLS_TYPE_EQUAL;
else if (strcmp(dev->si_name, "kmem") == 0 ||
strcmp(dev->si_name, "mem") == 0)
mls_type = MAC_MLS_TYPE_HIGH;
else
mls_type = MAC_MLS_TYPE_LOW;
mac_mls_set_single(mac_mls, mls_type, 0);
}
static void
mac_mls_create_devfs_directory(char *dirname, int dirnamelen,
struct devfs_dirent *devfs_dirent, struct label *label)
{
struct mac_mls *mac_mls;
mac_mls = SLOT(label);
mac_mls_set_single(mac_mls, MAC_MLS_TYPE_LOW, 0);
}
static void
mac_mls_create_devfs_vnode(struct devfs_dirent *devfs_dirent,
struct label *direntlabel, struct vnode *vp, struct label *vnodelabel)
{
struct mac_mls *source, *dest;
source = SLOT(direntlabel);
dest = SLOT(vnodelabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_vnode(struct ucred *cred, struct vnode *parent,
struct label *parentlabel, struct vnode *child, struct label *childlabel)
{
struct mac_mls *source, *dest;
source = SLOT(&cred->cr_label);
dest = SLOT(childlabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_mount(struct ucred *cred, struct mount *mp,
struct label *mntlabel, struct label *fslabel)
{
struct mac_mls *source, *dest;
source = SLOT(&cred->cr_label);
dest = SLOT(mntlabel);
mac_mls_copy_single(source, dest);
dest = SLOT(fslabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_root_mount(struct ucred *cred, struct mount *mp,
struct label *mntlabel, struct label *fslabel)
{
struct mac_mls *mac_mls;
/* Always mount root as high integrity. */
mac_mls = SLOT(fslabel);
mac_mls_set_single(mac_mls, MAC_MLS_TYPE_LOW, 0);
mac_mls = SLOT(mntlabel);
mac_mls_set_single(mac_mls, MAC_MLS_TYPE_LOW, 0);
}
static void
mac_mls_relabel_vnode(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, struct label *label)
{
struct mac_mls *source, *dest;
source = SLOT(label);
dest = SLOT(vnodelabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_update_devfsdirent(struct devfs_dirent *devfs_dirent,
struct label *direntlabel, struct vnode *vp, struct label *vnodelabel)
{
struct mac_mls *source, *dest;
source = SLOT(vnodelabel);
dest = SLOT(direntlabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_update_procfsvnode(struct vnode *vp, struct label *vnodelabel,
struct ucred *cred)
{
struct mac_mls *source, *dest;
source = SLOT(&cred->cr_label);
dest = SLOT(vnodelabel);
/*
* Only copy the single, not the range, since vnodes only have
* a single.
*/
mac_mls_copy_single(source, dest);
}
static int
mac_mls_update_vnode_from_externalized(struct vnode *vp,
struct label *vnodelabel, struct mac *extmac)
{
struct mac_mls *source, *dest;
int error;
source = &extmac->m_mls;
dest = SLOT(vnodelabel);
error = mac_mls_valid(source);
if (error)
return (error);
if ((source->mm_flags & MAC_MLS_FLAGS_BOTH) != MAC_MLS_FLAG_SINGLE)
return (EINVAL);
mac_mls_copy_single(source, dest);
return (0);
}
static void
mac_mls_update_vnode_from_mount(struct vnode *vp, struct label *vnodelabel,
struct mount *mp, struct label *fslabel)
{
struct mac_mls *source, *dest;
source = SLOT(fslabel);
dest = SLOT(vnodelabel);
mac_mls_copy_single(source, dest);
}
/*
* Labeling event operations: IPC object.
*/
static void
mac_mls_create_mbuf_from_socket(struct socket *so, struct label *socketlabel,
struct mbuf *m, struct label *mbuflabel)
{
struct mac_mls *source, *dest;
source = SLOT(socketlabel);
dest = SLOT(mbuflabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_socket(struct ucred *cred, struct socket *socket,
struct label *socketlabel)
{
struct mac_mls *source, *dest;
source = SLOT(&cred->cr_label);
dest = SLOT(socketlabel);
mac_mls_copy_single(source, dest);
mac_mls_copy_single_to_range(source, dest);
}
static void
mac_mls_create_pipe(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel)
{
struct mac_mls *source, *dest;
source = SLOT(&cred->cr_label);
dest = SLOT(pipelabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_socket_from_socket(struct socket *oldsocket,
struct label *oldsocketlabel, struct socket *newsocket,
struct label *newsocketlabel)
{
struct mac_mls *source, *dest;
source = SLOT(oldsocketlabel);
dest = SLOT(newsocketlabel);
mac_mls_copy_single(source, dest);
mac_mls_copy_range(source, dest);
}
static void
mac_mls_relabel_socket(struct ucred *cred, struct socket *socket,
struct label *socketlabel, struct label *newlabel)
{
struct mac_mls *source, *dest;
source = SLOT(newlabel);
dest = SLOT(socketlabel);
mac_mls_copy_single(source, dest);
mac_mls_copy_range(source, dest);
}
static void
mac_mls_relabel_pipe(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel, struct label *newlabel)
{
struct mac_mls *source, *dest;
source = SLOT(newlabel);
dest = SLOT(pipelabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_set_socket_peer_from_mbuf(struct mbuf *mbuf, struct label *mbuflabel,
struct socket *socket, struct label *socketpeerlabel)
{
struct mac_mls *source, *dest;
source = SLOT(mbuflabel);
dest = SLOT(socketpeerlabel);
mac_mls_copy_single(source, dest);
}
/*
* Labeling event operations: network objects.
*/
static void
mac_mls_set_socket_peer_from_socket(struct socket *oldsocket,
struct label *oldsocketlabel, struct socket *newsocket,
struct label *newsocketpeerlabel)
{
struct mac_mls *source, *dest;
source = SLOT(oldsocketlabel);
dest = SLOT(newsocketpeerlabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_bpfdesc(struct ucred *cred, struct bpf_d *bpf_d,
struct label *bpflabel)
{
struct mac_mls *source, *dest;
source = SLOT(&cred->cr_label);
dest = SLOT(bpflabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_ifnet(struct ifnet *ifnet, struct label *ifnetlabel)
{
struct mac_mls *dest;
int level;
dest = SLOT(ifnetlabel);
if (ifnet->if_type == IFT_LOOP)
level = MAC_MLS_TYPE_EQUAL;
else
level = MAC_MLS_TYPE_LOW;
mac_mls_set_single(dest, level, 0);
mac_mls_set_range(dest, level, 0, level, 0);
}
static void
mac_mls_create_ipq(struct mbuf *fragment, struct label *fragmentlabel,
struct ipq *ipq, struct label *ipqlabel)
{
struct mac_mls *source, *dest;
source = SLOT(fragmentlabel);
dest = SLOT(ipqlabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_datagram_from_ipq(struct ipq *ipq, struct label *ipqlabel,
struct mbuf *datagram, struct label *datagramlabel)
{
struct mac_mls *source, *dest;
source = SLOT(ipqlabel);
dest = SLOT(datagramlabel);
/* Just use the head, since we require them all to match. */
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_fragment(struct mbuf *datagram, struct label *datagramlabel,
struct mbuf *fragment, struct label *fragmentlabel)
{
struct mac_mls *source, *dest;
source = SLOT(datagramlabel);
dest = SLOT(fragmentlabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_mbuf_from_mbuf(struct mbuf *oldmbuf,
struct label *oldmbuflabel, struct mbuf *newmbuf,
struct label *newmbuflabel)
{
struct mac_mls *source, *dest;
source = SLOT(oldmbuflabel);
dest = SLOT(newmbuflabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_mbuf_linklayer(struct ifnet *ifnet, struct label *ifnetlabel,
struct mbuf *mbuf, struct label *mbuflabel)
{
struct mac_mls *dest;
dest = SLOT(mbuflabel);
mac_mls_set_single(dest, MAC_MLS_TYPE_EQUAL, 0);
}
static void
mac_mls_create_mbuf_from_bpfdesc(struct bpf_d *bpf_d, struct label *bpflabel,
struct mbuf *mbuf, struct label *mbuflabel)
{
struct mac_mls *source, *dest;
source = SLOT(bpflabel);
dest = SLOT(mbuflabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_mbuf_from_ifnet(struct ifnet *ifnet, struct label *ifnetlabel,
struct mbuf *m, struct label *mbuflabel)
{
struct mac_mls *source, *dest;
source = SLOT(ifnetlabel);
dest = SLOT(mbuflabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_mbuf_multicast_encap(struct mbuf *oldmbuf,
struct label *oldmbuflabel, struct ifnet *ifnet, struct label *ifnetlabel,
struct mbuf *newmbuf, struct label *newmbuflabel)
{
struct mac_mls *source, *dest;
source = SLOT(oldmbuflabel);
dest = SLOT(newmbuflabel);
mac_mls_copy_single(source, dest);
}
static void
mac_mls_create_mbuf_netlayer(struct mbuf *oldmbuf, struct label *oldmbuflabel,
struct mbuf *newmbuf, struct label *newmbuflabel)
{
struct mac_mls *source, *dest;
source = SLOT(oldmbuflabel);
dest = SLOT(newmbuflabel);
mac_mls_copy_single(source, dest);
}
static int
mac_mls_fragment_match(struct mbuf *fragment, struct label *fragmentlabel,
struct ipq *ipq, struct label *ipqlabel)
{
struct mac_mls *a, *b;
a = SLOT(ipqlabel);
b = SLOT(fragmentlabel);
return (mac_mls_equal_single(a, b));
}
static void
mac_mls_relabel_ifnet(struct ucred *cred, struct ifnet *ifnet,
struct label *ifnetlabel, struct label *newlabel)
{
struct mac_mls *source, *dest;
source = SLOT(newlabel);
dest = SLOT(ifnetlabel);
mac_mls_copy_single(source, dest);
mac_mls_copy_range(source, dest);
}
static void
mac_mls_update_ipq(struct mbuf *fragment, struct label *fragmentlabel,
struct ipq *ipq, struct label *ipqlabel)
{
/* NOOP: we only accept matching labels, so no need to update */
}
/*
* Labeling event operations: processes.
*/
static void
mac_mls_create_cred(struct ucred *cred_parent, struct ucred *cred_child)
{
struct mac_mls *source, *dest;
source = SLOT(&cred_parent->cr_label);
dest = SLOT(&cred_child->cr_label);
mac_mls_copy_single(source, dest);
mac_mls_copy_range(source, dest);
}
static void
mac_mls_execve_transition(struct ucred *old, struct ucred *new,
struct vnode *vp, struct mac *vnodelabel)
{
struct mac_mls *source, *dest;
source = SLOT(&old->cr_label);
dest = SLOT(&new->cr_label);
mac_mls_copy_single(source, dest);
mac_mls_copy_range(source, dest);
}
static int
mac_mls_execve_will_transition(struct ucred *old, struct vnode *vp,
struct mac *vnodelabel)
{
return (0);
}
static void
mac_mls_create_proc0(struct ucred *cred)
{
struct mac_mls *dest;
dest = SLOT(&cred->cr_label);
mac_mls_set_single(dest, MAC_MLS_TYPE_EQUAL, 0);
mac_mls_set_range(dest, MAC_MLS_TYPE_LOW, 0, MAC_MLS_TYPE_HIGH, 0);
}
static void
mac_mls_create_proc1(struct ucred *cred)
{
struct mac_mls *dest;
dest = SLOT(&cred->cr_label);
mac_mls_set_single(dest, MAC_MLS_TYPE_LOW, 0);
mac_mls_set_range(dest, MAC_MLS_TYPE_LOW, 0, MAC_MLS_TYPE_HIGH, 0);
}
static void
mac_mls_relabel_cred(struct ucred *cred, struct label *newlabel)
{
struct mac_mls *source, *dest;
source = SLOT(newlabel);
dest = SLOT(&cred->cr_label);
mac_mls_copy_single(source, dest);
mac_mls_copy_range(source, dest);
}
/*
* Access control checks.
*/
static int
mac_mls_check_bpfdesc_receive(struct bpf_d *bpf_d, struct label *bpflabel,
struct ifnet *ifnet, struct label *ifnetlabel)
{
struct mac_mls *a, *b;
if (!mac_mls_enabled)
return (0);
a = SLOT(bpflabel);
b = SLOT(ifnetlabel);
if (mac_mls_equal_single(a, b))
return (0);
return (EACCES);
}
static int
mac_mls_check_cred_relabel(struct ucred *cred, struct label *newlabel)
{
struct mac_mls *subj, *new;
subj = SLOT(&cred->cr_label);
new = SLOT(newlabel);
if ((new->mm_flags & MAC_MLS_FLAGS_BOTH) != MAC_MLS_FLAGS_BOTH)
return (EINVAL);
/*
* XXX: Allow processes with root privilege to set labels outside
* their range, so suid things like "su" work. This WILL go away
* when we figure out the 'correct' solution...
*/
if (!suser_cred(cred, 0))
return (0);
/*
* The new single must be in the old range.
*/
if (!mac_mls_single_in_range(new, subj))
return (EPERM);
/*
* The new range must be in the old range.
*/
if (!mac_mls_range_in_range(new, subj))
return (EPERM);
/*
* XXX: Don't permit EQUAL in a label unless the subject has EQUAL.
*/
return (0);
}
static int
mac_mls_check_cred_visible(struct ucred *u1, struct ucred *u2)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&u1->cr_label);
obj = SLOT(&u2->cr_label);
/* XXX: range */
if (!mac_mls_dominate_single(subj, obj))
return (ESRCH);
return (0);
}
static int
mac_mls_check_ifnet_relabel(struct ucred *cred, struct ifnet *ifnet,
struct label *ifnetlabel, struct label *newlabel)
{
struct mac_mls *subj, *new;
subj = SLOT(&cred->cr_label);
new = SLOT(newlabel);
if ((new->mm_flags & MAC_MLS_FLAGS_BOTH) != MAC_MLS_FLAGS_BOTH)
return (EINVAL);
/* XXX: privilege model here? */
return (suser_cred(cred, 0));
}
static int
mac_mls_check_ifnet_transmit(struct ifnet *ifnet, struct label *ifnetlabel,
struct mbuf *m, struct label *mbuflabel)
{
struct mac_mls *p, *i;
if (!mac_mls_enabled)
return (0);
p = SLOT(mbuflabel);
i = SLOT(ifnetlabel);
return (mac_mls_single_in_range(p, i) ? 0 : EACCES);
}
static int
mac_mls_check_mount_stat(struct ucred *cred, struct mount *mp,
struct label *mntlabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(mntlabel);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_pipe_ioctl(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel, unsigned long cmd, void /* caddr_t */ *data)
{
if(!mac_mls_enabled)
return (0);
/* XXX: This will be implemented soon... */
return (0);
}
static int
mac_mls_check_pipe_poll(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT((pipelabel));
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_pipe_read(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT((pipelabel));
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
return (0);
}
static int
mac_mls_check_pipe_relabel(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel, struct label *newlabel)
{
struct mac_mls *subj, *obj, *new;
new = SLOT(newlabel);
subj = SLOT(&cred->cr_label);
obj = SLOT(pipelabel);
if ((new->mm_flags & MAC_MLS_FLAGS_BOTH) != MAC_MLS_FLAG_SINGLE)
return (EINVAL);
/*
* To relabel a pipe, the old pipe label must be in the subject
* range.
*/
if (!mac_mls_single_in_range(obj, subj))
return (EPERM);
/*
* To relabel a pipe, the new pipe label must be in the subject
* range.
*/
if (!mac_mls_single_in_range(new, subj))
return (EPERM);
/*
* XXX: Don't permit EQUAL in a label unless the subject has EQUAL.
*/
return (0);
}
static int
mac_mls_check_pipe_stat(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT((pipelabel));
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_pipe_write(struct ucred *cred, struct pipe *pipe,
struct label *pipelabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT((pipelabel));
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
mac_mls_check_proc_debug(struct ucred *cred, struct proc *proc)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(&proc->p_ucred->cr_label);
/* XXX: range checks */
if (!mac_mls_dominate_single(subj, obj))
return (ESRCH);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_proc_sched(struct ucred *cred, struct proc *proc)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(&proc->p_ucred->cr_label);
/* XXX: range checks */
if (!mac_mls_dominate_single(subj, obj))
return (ESRCH);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_proc_signal(struct ucred *cred, struct proc *proc, int signum)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(&proc->p_ucred->cr_label);
/* XXX: range checks */
if (!mac_mls_dominate_single(subj, obj))
return (ESRCH);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_socket_deliver(struct socket *so, struct label *socketlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *m, struct label *mbuflabel)
{
struct mac_mls *p, *s;
if (!mac_mls_enabled)
return (0);
p = SLOT(mbuflabel);
s = SLOT(socketlabel);
return (mac_mls_equal_single(p, s) ? 0 : EACCES);
}
static int
mac_mls_check_socket_relabel(struct ucred *cred, struct socket *socket,
struct label *socketlabel, struct label *newlabel)
{
struct mac_mls *subj, *obj, *new;
new = SLOT(newlabel);
subj = SLOT(&cred->cr_label);
obj = SLOT(socketlabel);
if ((new->mm_flags & MAC_MLS_FLAGS_BOTH) != MAC_MLS_FLAG_SINGLE)
return (EINVAL);
/*
* To relabel a socket, the old socket label must be in the subject
* range.
*/
if (!mac_mls_single_in_range(obj, subj))
return (EPERM);
/*
* To relabel a socket, the new socket label must be in the subject
* range.
*/
if (!mac_mls_single_in_range(new, subj))
return (EPERM);
/*
* XXX: Don't permit EQUAL in a label unless the subject has EQUAL.
*/
return (0);
}
static int
mac_mls_check_socket_visible(struct ucred *cred, struct socket *socket,
struct label *socketlabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(socketlabel);
if (!mac_mls_dominate_single(subj, obj))
return (ENOENT);
return (0);
}
static int
mac_mls_check_vnode_access(struct ucred *cred, struct vnode *vp,
struct label *label, mode_t flags)
{
return (mac_mls_check_vnode_open(cred, vp, label, flags));
}
static int
mac_mls_check_vnode_chdir(struct ucred *cred, struct vnode *dvp,
struct label *dlabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_chroot(struct ucred *cred, struct vnode *dvp,
struct label *dlabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_create(struct ucred *cred, struct vnode *dvp,
struct label *dlabel, struct componentname *cnp, struct vattr *vap)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_delete(struct ucred *cred, struct vnode *dvp,
struct label *dlabel, struct vnode *vp, struct label *label,
struct componentname *cnp)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
obj = SLOT(label);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_deleteacl(struct ucred *cred, struct vnode *vp,
struct label *label, acl_type_t type)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_exec(struct ucred *cred, struct vnode *vp,
struct label *label)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_getacl(struct ucred *cred, struct vnode *vp,
struct label *label, acl_type_t type)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_getextattr(struct ucred *cred, struct vnode *vp,
struct label *label, int attrnamespace, const char *name, struct uio *uio)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_lookup(struct ucred *cred, struct vnode *dvp,
struct label *dlabel, struct componentname *cnp)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_open(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, mode_t acc_mode)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(vnodelabel);
/* XXX privilege override for admin? */
if (acc_mode & (VREAD | VEXEC | VSTAT)) {
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
}
if (acc_mode & (VWRITE | VAPPEND | VADMIN)) {
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
}
return (0);
}
static int
mac_mls_check_vnode_poll(struct ucred *active_cred, struct ucred *file_cred,
struct vnode *vp, struct label *label)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled || !mac_mls_revocation_enabled)
return (0);
subj = SLOT(&active_cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_read(struct ucred *active_cred, struct ucred *file_cred,
struct vnode *vp, struct label *label)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled || !mac_mls_revocation_enabled)
return (0);
subj = SLOT(&active_cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
mac_mls_check_vnode_readdir(struct ucred *cred, struct vnode *dvp,
struct label *dlabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_readlink(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(vnodelabel);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_relabel(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, struct label *newlabel)
{
struct mac_mls *old, *new, *subj;
old = SLOT(vnodelabel);
new = SLOT(newlabel);
subj = SLOT(&cred->cr_label);
if ((new->mm_flags & MAC_MLS_FLAGS_BOTH) != MAC_MLS_FLAG_SINGLE)
return (EINVAL);
/*
* To relabel a vnode, the old vnode label must be in the subject
* range.
*/
if (!mac_mls_single_in_range(old, subj))
return (EPERM);
/*
* To relabel a vnode, the new vnode label must be in the subject
* range.
*/
if (!mac_mls_single_in_range(new, subj))
return (EPERM);
/*
* XXX: Don't permit EQUAL in a label unless the subject has EQUAL.
*/
return (suser_cred(cred, 0));
}
static int
mac_mls_check_vnode_rename_from(struct ucred *cred, struct vnode *dvp,
struct label *dlabel, struct vnode *vp, struct label *label,
struct componentname *cnp)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
obj = SLOT(label);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_rename_to(struct ucred *cred, struct vnode *dvp,
struct label *dlabel, struct vnode *vp, struct label *label, int samedir,
struct componentname *cnp)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(dlabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
if (vp != NULL) {
obj = SLOT(label);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
}
return (0);
}
static int
mac_mls_check_vnode_revoke(struct ucred *cred, struct vnode *vp,
struct label *label)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_setacl(struct ucred *cred, struct vnode *vp,
struct label *label, acl_type_t type, struct acl *acl)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_setextattr(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, int attrnamespace, const char *name,
struct uio *uio)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(vnodelabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
/* XXX: protect the MAC EA in a special way? */
return (0);
}
static int
mac_mls_check_vnode_setflags(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, u_long flags)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(vnodelabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_setmode(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, mode_t mode)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(vnodelabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_setowner(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, uid_t uid, gid_t gid)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(vnodelabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_setutimes(struct ucred *cred, struct vnode *vp,
struct label *vnodelabel, struct timespec atime, struct timespec mtime)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&cred->cr_label);
obj = SLOT(vnodelabel);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_stat(struct ucred *active_cred, struct ucred *file_cred,
struct vnode *vp, struct label *vnodelabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled)
return (0);
subj = SLOT(&active_cred->cr_label);
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
obj = SLOT(vnodelabel);
if (!mac_mls_dominate_single(subj, obj))
return (EACCES);
return (0);
}
static int
mac_mls_check_vnode_write(struct ucred *active_cred, struct ucred *file_cred,
struct vnode *vp, struct label *label)
{
struct mac_mls *subj, *obj;
if (!mac_mls_enabled || !mac_mls_revocation_enabled)
return (0);
subj = SLOT(&active_cred->cr_label);
obj = SLOT(label);
if (!mac_mls_dominate_single(obj, subj))
return (EACCES);
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static vm_prot_t
mac_mls_check_vnode_mmap_perms(struct ucred *cred, struct vnode *vp,
struct label *label, int newmapping)
{
struct mac_mls *subj, *obj;
vm_prot_t prot = 0;
if (!mac_mls_enabled || (!mac_mls_revocation_enabled && !newmapping))
return (VM_PROT_ALL);
subj = SLOT(&cred->cr_label);
obj = SLOT(label);
if (mac_mls_dominate_single(subj, obj))
prot |= VM_PROT_READ | VM_PROT_EXECUTE;
if (mac_mls_dominate_single(obj, subj))
prot |= VM_PROT_WRITE;
return (prot);
}
static struct mac_policy_op_entry mac_mls_ops[] =
{
{ MAC_DESTROY,
(macop_t)mac_mls_destroy },
{ MAC_INIT,
(macop_t)mac_mls_init },
{ MAC_INIT_BPFDESC,
(macop_t)mac_mls_init_bpfdesc },
{ MAC_INIT_CRED,
(macop_t)mac_mls_init_cred },
{ MAC_INIT_DEVFSDIRENT,
(macop_t)mac_mls_init_devfsdirent },
{ MAC_INIT_IFNET,
(macop_t)mac_mls_init_ifnet },
{ MAC_INIT_IPQ,
(macop_t)mac_mls_init_ipq },
{ MAC_INIT_MBUF,
(macop_t)mac_mls_init_mbuf },
{ MAC_INIT_MOUNT,
(macop_t)mac_mls_init_mount },
{ MAC_INIT_PIPE,
(macop_t)mac_mls_init_pipe },
{ MAC_INIT_SOCKET,
(macop_t)mac_mls_init_socket },
{ MAC_INIT_TEMP,
(macop_t)mac_mls_init_temp },
{ MAC_INIT_VNODE,
(macop_t)mac_mls_init_vnode },
{ MAC_DESTROY_BPFDESC,
(macop_t)mac_mls_destroy_bpfdesc },
{ MAC_DESTROY_CRED,
(macop_t)mac_mls_destroy_cred },
{ MAC_DESTROY_DEVFSDIRENT,
(macop_t)mac_mls_destroy_devfsdirent },
{ MAC_DESTROY_IFNET,
(macop_t)mac_mls_destroy_ifnet },
{ MAC_DESTROY_IPQ,
(macop_t)mac_mls_destroy_ipq },
{ MAC_DESTROY_MBUF,
(macop_t)mac_mls_destroy_mbuf },
{ MAC_DESTROY_MOUNT,
(macop_t)mac_mls_destroy_mount },
{ MAC_DESTROY_PIPE,
(macop_t)mac_mls_destroy_pipe },
{ MAC_DESTROY_SOCKET,
(macop_t)mac_mls_destroy_socket },
{ MAC_DESTROY_TEMP,
(macop_t)mac_mls_destroy_temp },
{ MAC_DESTROY_VNODE,
(macop_t)mac_mls_destroy_vnode },
{ MAC_EXTERNALIZE,
(macop_t)mac_mls_externalize },
{ MAC_INTERNALIZE,
(macop_t)mac_mls_internalize },
{ MAC_CREATE_DEVFS_DEVICE,
(macop_t)mac_mls_create_devfs_device },
{ MAC_CREATE_DEVFS_DIRECTORY,
(macop_t)mac_mls_create_devfs_directory },
{ MAC_CREATE_DEVFS_VNODE,
(macop_t)mac_mls_create_devfs_vnode },
{ MAC_CREATE_VNODE,
(macop_t)mac_mls_create_vnode },
{ MAC_CREATE_MOUNT,
(macop_t)mac_mls_create_mount },
{ MAC_CREATE_ROOT_MOUNT,
(macop_t)mac_mls_create_root_mount },
{ MAC_RELABEL_VNODE,
(macop_t)mac_mls_relabel_vnode },
{ MAC_UPDATE_DEVFSDIRENT,
(macop_t)mac_mls_update_devfsdirent },
{ MAC_UPDATE_PROCFSVNODE,
(macop_t)mac_mls_update_procfsvnode },
{ MAC_UPDATE_VNODE_FROM_EXTERNALIZED,
(macop_t)mac_mls_update_vnode_from_externalized },
{ MAC_UPDATE_VNODE_FROM_MOUNT,
(macop_t)mac_mls_update_vnode_from_mount },
{ MAC_CREATE_MBUF_FROM_SOCKET,
(macop_t)mac_mls_create_mbuf_from_socket },
{ MAC_CREATE_PIPE,
(macop_t)mac_mls_create_pipe },
{ MAC_CREATE_SOCKET,
(macop_t)mac_mls_create_socket },
{ MAC_CREATE_SOCKET_FROM_SOCKET,
(macop_t)mac_mls_create_socket_from_socket },
{ MAC_RELABEL_PIPE,
(macop_t)mac_mls_relabel_pipe },
{ MAC_RELABEL_SOCKET,
(macop_t)mac_mls_relabel_socket },
{ MAC_SET_SOCKET_PEER_FROM_MBUF,
(macop_t)mac_mls_set_socket_peer_from_mbuf },
{ MAC_SET_SOCKET_PEER_FROM_SOCKET,
(macop_t)mac_mls_set_socket_peer_from_socket },
{ MAC_CREATE_BPFDESC,
(macop_t)mac_mls_create_bpfdesc },
{ MAC_CREATE_DATAGRAM_FROM_IPQ,
(macop_t)mac_mls_create_datagram_from_ipq },
{ MAC_CREATE_FRAGMENT,
(macop_t)mac_mls_create_fragment },
{ MAC_CREATE_IFNET,
(macop_t)mac_mls_create_ifnet },
{ MAC_CREATE_IPQ,
(macop_t)mac_mls_create_ipq },
{ MAC_CREATE_MBUF_FROM_MBUF,
(macop_t)mac_mls_create_mbuf_from_mbuf },
{ MAC_CREATE_MBUF_LINKLAYER,
(macop_t)mac_mls_create_mbuf_linklayer },
{ MAC_CREATE_MBUF_FROM_BPFDESC,
(macop_t)mac_mls_create_mbuf_from_bpfdesc },
{ MAC_CREATE_MBUF_FROM_IFNET,
(macop_t)mac_mls_create_mbuf_from_ifnet },
{ MAC_CREATE_MBUF_MULTICAST_ENCAP,
(macop_t)mac_mls_create_mbuf_multicast_encap },
{ MAC_CREATE_MBUF_NETLAYER,
(macop_t)mac_mls_create_mbuf_netlayer },
{ MAC_FRAGMENT_MATCH,
(macop_t)mac_mls_fragment_match },
{ MAC_RELABEL_IFNET,
(macop_t)mac_mls_relabel_ifnet },
{ MAC_UPDATE_IPQ,
(macop_t)mac_mls_update_ipq },
{ MAC_CREATE_CRED,
(macop_t)mac_mls_create_cred },
{ MAC_EXECVE_TRANSITION,
(macop_t)mac_mls_execve_transition },
{ MAC_EXECVE_WILL_TRANSITION,
(macop_t)mac_mls_execve_will_transition },
{ MAC_CREATE_PROC0,
(macop_t)mac_mls_create_proc0 },
{ MAC_CREATE_PROC1,
(macop_t)mac_mls_create_proc1 },
{ MAC_RELABEL_CRED,
(macop_t)mac_mls_relabel_cred },
{ MAC_CHECK_BPFDESC_RECEIVE,
(macop_t)mac_mls_check_bpfdesc_receive },
{ MAC_CHECK_CRED_RELABEL,
(macop_t)mac_mls_check_cred_relabel },
{ MAC_CHECK_CRED_VISIBLE,
(macop_t)mac_mls_check_cred_visible },
{ MAC_CHECK_IFNET_RELABEL,
(macop_t)mac_mls_check_ifnet_relabel },
{ MAC_CHECK_IFNET_TRANSMIT,
(macop_t)mac_mls_check_ifnet_transmit },
{ MAC_CHECK_MOUNT_STAT,
(macop_t)mac_mls_check_mount_stat },
{ MAC_CHECK_PIPE_IOCTL,
(macop_t)mac_mls_check_pipe_ioctl },
{ MAC_CHECK_PIPE_POLL,
(macop_t)mac_mls_check_pipe_poll },
{ MAC_CHECK_PIPE_READ,
(macop_t)mac_mls_check_pipe_read },
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{ MAC_CHECK_PIPE_RELABEL,
(macop_t)mac_mls_check_pipe_relabel },
{ MAC_CHECK_PIPE_STAT,
(macop_t)mac_mls_check_pipe_stat },
{ MAC_CHECK_PIPE_WRITE,
(macop_t)mac_mls_check_pipe_write },
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{ MAC_CHECK_PROC_DEBUG,
(macop_t)mac_mls_check_proc_debug },
{ MAC_CHECK_PROC_SCHED,
(macop_t)mac_mls_check_proc_sched },
{ MAC_CHECK_PROC_SIGNAL,
(macop_t)mac_mls_check_proc_signal },
{ MAC_CHECK_SOCKET_DELIVER,
(macop_t)mac_mls_check_socket_deliver },
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{ MAC_CHECK_SOCKET_RELABEL,
(macop_t)mac_mls_check_socket_relabel },
{ MAC_CHECK_SOCKET_VISIBLE,
(macop_t)mac_mls_check_socket_visible },
{ MAC_CHECK_VNODE_ACCESS,
(macop_t)mac_mls_check_vnode_access },
{ MAC_CHECK_VNODE_CHDIR,
(macop_t)mac_mls_check_vnode_chdir },
{ MAC_CHECK_VNODE_CHROOT,
(macop_t)mac_mls_check_vnode_chroot },
{ MAC_CHECK_VNODE_CREATE,
(macop_t)mac_mls_check_vnode_create },
{ MAC_CHECK_VNODE_DELETE,
(macop_t)mac_mls_check_vnode_delete },
{ MAC_CHECK_VNODE_DELETEACL,
(macop_t)mac_mls_check_vnode_deleteacl },
{ MAC_CHECK_VNODE_EXEC,
(macop_t)mac_mls_check_vnode_exec },
{ MAC_CHECK_VNODE_GETACL,
(macop_t)mac_mls_check_vnode_getacl },
{ MAC_CHECK_VNODE_GETEXTATTR,
(macop_t)mac_mls_check_vnode_getextattr },
{ MAC_CHECK_VNODE_LOOKUP,
(macop_t)mac_mls_check_vnode_lookup },
{ MAC_CHECK_VNODE_OPEN,
(macop_t)mac_mls_check_vnode_open },
{ MAC_CHECK_VNODE_POLL,
(macop_t)mac_mls_check_vnode_poll },
{ MAC_CHECK_VNODE_READ,
(macop_t)mac_mls_check_vnode_read },
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{ MAC_CHECK_VNODE_READDIR,
(macop_t)mac_mls_check_vnode_readdir },
{ MAC_CHECK_VNODE_READLINK,
(macop_t)mac_mls_check_vnode_readlink },
{ MAC_CHECK_VNODE_RELABEL,
(macop_t)mac_mls_check_vnode_relabel },
{ MAC_CHECK_VNODE_RENAME_FROM,
(macop_t)mac_mls_check_vnode_rename_from },
{ MAC_CHECK_VNODE_RENAME_TO,
(macop_t)mac_mls_check_vnode_rename_to },
{ MAC_CHECK_VNODE_REVOKE,
(macop_t)mac_mls_check_vnode_revoke },
{ MAC_CHECK_VNODE_SETACL,
(macop_t)mac_mls_check_vnode_setacl },
{ MAC_CHECK_VNODE_SETEXTATTR,
(macop_t)mac_mls_check_vnode_setextattr },
{ MAC_CHECK_VNODE_SETFLAGS,
(macop_t)mac_mls_check_vnode_setflags },
{ MAC_CHECK_VNODE_SETMODE,
(macop_t)mac_mls_check_vnode_setmode },
{ MAC_CHECK_VNODE_SETOWNER,
(macop_t)mac_mls_check_vnode_setowner },
{ MAC_CHECK_VNODE_SETUTIMES,
(macop_t)mac_mls_check_vnode_setutimes },
{ MAC_CHECK_VNODE_STAT,
(macop_t)mac_mls_check_vnode_stat },
{ MAC_CHECK_VNODE_WRITE,
(macop_t)mac_mls_check_vnode_write },
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{ MAC_CHECK_VNODE_MMAP_PERMS,
(macop_t)mac_mls_check_vnode_mmap_perms },
{ MAC_OP_LAST, NULL }
};
MAC_POLICY_SET(mac_mls_ops, trustedbsd_mac_mls, "TrustedBSD MAC/MLS",
MPC_LOADTIME_FLAG_NOTLATE, &mac_mls_slot);