2011-01-26 20:10:01 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
|
|
|
|
*
|
|
|
|
* Extended attributes (xattr) on Solaris are implemented as files
|
|
|
|
* which exist in a hidden xattr directory. These extended attributes
|
|
|
|
* can be accessed using the attropen() system call which opens
|
|
|
|
* the extended attribute. It can then be manipulated just like
|
|
|
|
* a standard file descriptor. This has a couple advantages such
|
|
|
|
* as practically no size limit on the file, and the extended
|
|
|
|
* attributes permissions may differ from those of the parent file.
|
|
|
|
* This interface is really quite clever, but it's also completely
|
2011-10-24 23:55:20 +00:00
|
|
|
* different than what is supported on Linux. It also comes with a
|
|
|
|
* steep performance penalty when accessing small xattrs because they
|
|
|
|
* are not stored with the parent file.
|
2011-01-26 20:10:01 +00:00
|
|
|
*
|
|
|
|
* Under Linux extended attributes are manipulated by the system
|
|
|
|
* calls getxattr(2), setxattr(2), and listxattr(2). They consider
|
|
|
|
* extended attributes to be name/value pairs where the name is a
|
|
|
|
* NULL terminated string. The name must also include one of the
|
2011-10-24 23:55:20 +00:00
|
|
|
* following namespace prefixes:
|
2011-01-26 20:10:01 +00:00
|
|
|
*
|
|
|
|
* user - No restrictions and is available to user applications.
|
|
|
|
* trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use.
|
|
|
|
* system - Used for access control lists (system.nfs4_acl, etc).
|
|
|
|
* security - Used by SELinux to store a files security context.
|
|
|
|
*
|
2011-10-24 23:55:20 +00:00
|
|
|
* The value under Linux to limited to 65536 bytes of binary data.
|
|
|
|
* In practice, individual xattrs tend to be much smaller than this
|
|
|
|
* and are typically less than 100 bytes. A good example of this
|
|
|
|
* are the security.selinux xattrs which are less than 100 bytes and
|
|
|
|
* exist for every file when xattr labeling is enabled.
|
2011-01-26 20:10:01 +00:00
|
|
|
*
|
2017-01-03 17:31:18 +00:00
|
|
|
* The Linux xattr implementation has been written to take advantage of
|
2011-10-24 23:55:20 +00:00
|
|
|
* this typical usage. When the dataset property 'xattr=sa' is set,
|
|
|
|
* then xattrs will be preferentially stored as System Attributes (SA).
|
|
|
|
* This allows tiny xattrs (~100 bytes) to be stored with the dnode and
|
|
|
|
* up to 64k of xattrs to be stored in the spill block. If additional
|
|
|
|
* xattr space is required, which is unlikely under Linux, they will
|
|
|
|
* be stored using the traditional directory approach.
|
2011-01-26 20:10:01 +00:00
|
|
|
*
|
2011-10-24 23:55:20 +00:00
|
|
|
* This optimization results in roughly a 3x performance improvement
|
|
|
|
* when accessing xattrs because it avoids the need to perform a seek
|
|
|
|
* for every xattr value. When multiple xattrs are stored per-file
|
|
|
|
* the performance improvements are even greater because all of the
|
|
|
|
* xattrs stored in the spill block will be cached.
|
|
|
|
*
|
|
|
|
* However, by default SA based xattrs are disabled in the Linux port
|
|
|
|
* to maximize compatibility with other implementations. If you do
|
|
|
|
* enable SA based xattrs then they will not be visible on platforms
|
|
|
|
* which do not support this feature.
|
|
|
|
*
|
|
|
|
* NOTE: One additional consequence of the xattr directory implementation
|
|
|
|
* is that when an extended attribute is manipulated an inode is created.
|
|
|
|
* This inode will exist in the Linux inode cache but there will be no
|
|
|
|
* associated entry in the dentry cache which references it. This is
|
|
|
|
* safe but it may result in some confusion. Enabling SA based xattrs
|
|
|
|
* largely avoids the issue except in the overflow case.
|
2011-01-26 20:10:01 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/zfs_vfsops.h>
|
|
|
|
#include <sys/zfs_vnops.h>
|
|
|
|
#include <sys/zfs_znode.h>
|
2013-08-07 12:53:45 +00:00
|
|
|
#include <sys/zap.h>
|
2011-01-26 20:10:01 +00:00
|
|
|
#include <sys/vfs.h>
|
|
|
|
#include <sys/zpl.h>
|
|
|
|
|
|
|
|
typedef struct xattr_filldir {
|
|
|
|
size_t size;
|
|
|
|
size_t offset;
|
|
|
|
char *buf;
|
2016-01-14 23:01:24 +00:00
|
|
|
struct dentry *dentry;
|
2011-01-26 20:10:01 +00:00
|
|
|
} xattr_filldir_t;
|
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
static const struct xattr_handler *zpl_xattr_handler(const char *);
|
|
|
|
|
2011-01-26 20:10:01 +00:00
|
|
|
static int
|
2016-01-14 23:01:24 +00:00
|
|
|
zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
2016-01-14 23:01:24 +00:00
|
|
|
static const struct xattr_handler *handler;
|
|
|
|
struct dentry *d = xf->dentry;
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
handler = zpl_xattr_handler(name);
|
|
|
|
if (!handler)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (handler->list) {
|
|
|
|
#if defined(HAVE_XATTR_LIST_SIMPLE)
|
|
|
|
if (!handler->list(d))
|
|
|
|
return (0);
|
|
|
|
#elif defined(HAVE_XATTR_LIST_DENTRY)
|
|
|
|
if (!handler->list(d, NULL, 0, name, name_len, 0))
|
2011-01-26 20:10:01 +00:00
|
|
|
return (0);
|
2016-01-14 23:01:24 +00:00
|
|
|
#elif defined(HAVE_XATTR_LIST_HANDLER)
|
|
|
|
if (!handler->list(handler, d, NULL, 0, name, name_len))
|
|
|
|
return (0);
|
|
|
|
#elif defined(HAVE_XATTR_LIST_INODE)
|
|
|
|
if (!handler->list(d->d_inode, NULL, 0, name, name_len))
|
|
|
|
return (0);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine is a given xattr name should be visible and if so copy it
|
|
|
|
* in to the provided buffer (xf->buf).
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len)
|
|
|
|
{
|
|
|
|
/* Check permissions using the per-namespace list xattr handler. */
|
|
|
|
if (!zpl_xattr_permission(xf, name, name_len))
|
|
|
|
return (0);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
/* When xf->buf is NULL only calculate the required size. */
|
|
|
|
if (xf->buf) {
|
|
|
|
if (xf->offset + name_len + 1 > xf->size)
|
|
|
|
return (-ERANGE);
|
|
|
|
|
|
|
|
memcpy(xf->buf + xf->offset, name, name_len);
|
|
|
|
xf->buf[xf->offset + name_len] = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
xf->offset += (name_len + 1);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2013-08-07 12:53:45 +00:00
|
|
|
/*
|
|
|
|
* Read as many directory entry names as will fit in to the provided buffer,
|
|
|
|
* or when no buffer is provided calculate the required buffer size.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t zap;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id);
|
|
|
|
|
|
|
|
while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) {
|
|
|
|
|
|
|
|
if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
|
|
|
|
error = -ENXIO;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name));
|
|
|
|
if (error)
|
|
|
|
break;
|
|
|
|
|
|
|
|
zap_cursor_advance(&zc);
|
|
|
|
}
|
|
|
|
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
|
|
|
|
if (error == -ENOENT)
|
|
|
|
error = 0;
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
static ssize_t
|
|
|
|
zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
2016-01-14 23:01:24 +00:00
|
|
|
struct inode *ip = xf->dentry->d_inode;
|
2011-01-26 20:10:01 +00:00
|
|
|
struct inode *dxip = NULL;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/* Lookup the xattr directory */
|
|
|
|
error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL);
|
|
|
|
if (error) {
|
|
|
|
if (error == -ENOENT)
|
|
|
|
error = 0;
|
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
return (error);
|
2011-01-26 20:10:01 +00:00
|
|
|
}
|
|
|
|
|
2013-08-07 12:53:45 +00:00
|
|
|
error = zpl_xattr_readdir(dxip, xf);
|
2011-10-24 23:55:20 +00:00
|
|
|
iput(dxip);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t
|
|
|
|
zpl_xattr_list_sa(xattr_filldir_t *xf)
|
|
|
|
{
|
2016-01-14 23:01:24 +00:00
|
|
|
znode_t *zp = ITOZ(xf->dentry->d_inode);
|
2011-10-24 23:55:20 +00:00
|
|
|
nvpair_t *nvp = NULL;
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
if (zp->z_xattr_cached == NULL)
|
|
|
|
error = -zfs_sa_get_xattr(zp);
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
ASSERT(zp->z_xattr_cached);
|
|
|
|
|
|
|
|
while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
|
|
|
|
ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
|
|
|
|
|
2013-08-07 12:53:45 +00:00
|
|
|
error = zpl_xattr_filldir(xf, nvpair_name(nvp),
|
2013-11-01 19:26:11 +00:00
|
|
|
strlen(nvpair_name(nvp)));
|
2011-10-24 23:55:20 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
ssize_t
|
|
|
|
zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(dentry->d_inode);
|
2017-03-08 00:21:37 +00:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2016-01-14 23:01:24 +00:00
|
|
|
xattr_filldir_t xf = { buffer_size, 0, buffer, dentry };
|
2011-10-24 23:55:20 +00:00
|
|
|
cred_t *cr = CRED();
|
2015-04-14 17:25:50 +00:00
|
|
|
fstrans_cookie_t cookie;
|
2011-10-24 23:55:20 +00:00
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
crhold(cr);
|
2015-04-14 17:25:50 +00:00
|
|
|
cookie = spl_fstrans_mark();
|
2017-03-08 00:21:37 +00:00
|
|
|
rrm_enter_read(&(zfsvfs)->z_teardown_lock, FTAG);
|
2011-10-24 23:55:20 +00:00
|
|
|
rw_enter(&zp->z_xattr_lock, RW_READER);
|
|
|
|
|
2017-03-08 00:21:37 +00:00
|
|
|
if (zfsvfs->z_use_sa && zp->z_is_sa) {
|
2011-10-24 23:55:20 +00:00
|
|
|
error = zpl_xattr_list_sa(&xf);
|
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = zpl_xattr_list_dir(&xf, cr);
|
2011-01-26 20:10:01 +00:00
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
error = xf.offset;
|
|
|
|
out:
|
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
rw_exit(&zp->z_xattr_lock);
|
2017-03-08 00:21:37 +00:00
|
|
|
rrm_exit(&(zfsvfs)->z_teardown_lock, FTAG);
|
2015-04-14 17:25:50 +00:00
|
|
|
spl_fstrans_unmark(cookie);
|
2011-03-22 18:13:41 +00:00
|
|
|
crfree(cr);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2011-10-24 23:55:20 +00:00
|
|
|
zpl_xattr_get_dir(struct inode *ip, const char *name, void *value,
|
|
|
|
size_t size, cred_t *cr)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
|
|
|
struct inode *dxip = NULL;
|
|
|
|
struct inode *xip = NULL;
|
Linux AIO Support
nfsd uses do_readv_writev() to implement fops->read and fops->write.
do_readv_writev() will attempt to read/write using fops->aio_read and
fops->aio_write, but it will fallback to fops->read and fops->write when
AIO is not available. However, the fallback will perform a call for each
individual data page. Since our default recordsize is 128KB, sequential
operations on NFS will generate 32 DMU transactions where only 1
transaction was needed. That was unnecessary overhead and we implement
fops->aio_read and fops->aio_write to eliminate it.
ZFS originated in OpenSolaris, where the AIO API is entirely implemented
in userland's libc by intelligently mapping them to VOP_WRITE, VOP_READ
and VOP_FSYNC. Linux implements AIO inside the kernel itself. Linux
filesystems therefore must implement their own AIO logic and nearly all
of them implement fops->aio_write synchronously. Consequently, they do
not implement aio_fsync(). However, since the ZPL works by mapping
Linux's VFS calls to the functions implementing Illumos' VFS operations,
we instead implement AIO in the kernel by mapping the operations to the
VOP_READ, VOP_WRITE and VOP_FSYNC equivalents. We therefore implement
fops->aio_fsync.
One might be inclined to make our fops->aio_write implementation
synchronous to make software that expects this behavior safe. However,
there are several reasons not to do this:
1. Other platforms do not implement aio_write() synchronously and since
the majority of userland software using AIO should be cross platform,
expectations of synchronous behavior should not be a problem.
2. We would hurt the performance of programs that use POSIX interfaces
properly while simultaneously encouraging the creation of more
non-compliant software.
3. The broader community concluded that userland software should be
patched to properly use POSIX interfaces instead of implementing hacks
in filesystems to cater to broken software. This concept is best
described as the O_PONIES debate.
4. Making an asynchronous write synchronous is non sequitur.
Any software dependent on synchronous aio_write behavior will suffer
data loss on ZFSOnLinux in a kernel panic / system failure of at most
zfs_txg_timeout seconds, which by default is 5 seconds. This seems like
a reasonable consequence of using non-compliant software.
It should be noted that this is also a problem in the kernel itself
where nfsd does not pass O_SYNC on files opened with it and instead
relies on a open()/write()/close() to enforce synchronous behavior when
the flush is only guarenteed on last close.
Exporting any filesystem that does not implement AIO via NFS risks data
loss in the event of a kernel panic / system failure when something else
is also accessing the file. Exporting any file system that implements
AIO the way this patch does bears similar risk. However, it seems
reasonable to forgo crippling our AIO implementation in favor of
developing patches to fix this problem in Linux's nfsd for the reasons
stated earlier. In the interim, the risk will remain. Failing to
implement AIO will not change the problem that nfsd created, so there is
no reason for nfsd's mistake to block our implementation of AIO.
It also should be noted that `aio_cancel()` will always return
`AIO_NOTCANCELED` under this implementation. It is possible to implement
aio_cancel by deferring work to taskqs and use `kiocb_set_cancel_fn()`
to set a callback function for cancelling work sent to taskqs, but the
simpler approach is allowed by the specification:
```
Which operations are cancelable is implementation-defined.
```
http://pubs.opengroup.org/onlinepubs/009695399/functions/aio_cancel.html
The only programs on my system that are capable of using `aio_cancel()`
are QEMU, beecrypt and fio use it according to a recursive grep of my
system's `/usr/src/debug`. That suggests that `aio_cancel()` users are
rare. Implementing aio_cancel() is left to a future date when it is
clear that there are consumers that benefit from its implementation to
justify the work.
Lastly, it is important to know that handling of the iovec updates differs
between Illumos and Linux in the implementation of read/write. On Linux,
it is the VFS' responsibility whle on Illumos, it is the filesystem's
responsibility. We take the intermediate solution of copying the iovec
so that the ZFS code can update it like on Solaris while leaving the
originals alone. This imposes some overhead. We could always revisit
this should profiling show that the allocations are a problem.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #223
Closes #2373
2014-08-04 11:09:32 +00:00
|
|
|
loff_t pos = 0;
|
2011-01-26 20:10:01 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
/* Lookup the xattr directory */
|
|
|
|
error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL);
|
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Lookup a specific xattr name in the directory */
|
|
|
|
error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL);
|
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (!size) {
|
|
|
|
error = i_size_read(xip);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2013-04-17 20:07:36 +00:00
|
|
|
if (size < i_size_read(xip)) {
|
|
|
|
error = -ERANGE;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
Linux AIO Support
nfsd uses do_readv_writev() to implement fops->read and fops->write.
do_readv_writev() will attempt to read/write using fops->aio_read and
fops->aio_write, but it will fallback to fops->read and fops->write when
AIO is not available. However, the fallback will perform a call for each
individual data page. Since our default recordsize is 128KB, sequential
operations on NFS will generate 32 DMU transactions where only 1
transaction was needed. That was unnecessary overhead and we implement
fops->aio_read and fops->aio_write to eliminate it.
ZFS originated in OpenSolaris, where the AIO API is entirely implemented
in userland's libc by intelligently mapping them to VOP_WRITE, VOP_READ
and VOP_FSYNC. Linux implements AIO inside the kernel itself. Linux
filesystems therefore must implement their own AIO logic and nearly all
of them implement fops->aio_write synchronously. Consequently, they do
not implement aio_fsync(). However, since the ZPL works by mapping
Linux's VFS calls to the functions implementing Illumos' VFS operations,
we instead implement AIO in the kernel by mapping the operations to the
VOP_READ, VOP_WRITE and VOP_FSYNC equivalents. We therefore implement
fops->aio_fsync.
One might be inclined to make our fops->aio_write implementation
synchronous to make software that expects this behavior safe. However,
there are several reasons not to do this:
1. Other platforms do not implement aio_write() synchronously and since
the majority of userland software using AIO should be cross platform,
expectations of synchronous behavior should not be a problem.
2. We would hurt the performance of programs that use POSIX interfaces
properly while simultaneously encouraging the creation of more
non-compliant software.
3. The broader community concluded that userland software should be
patched to properly use POSIX interfaces instead of implementing hacks
in filesystems to cater to broken software. This concept is best
described as the O_PONIES debate.
4. Making an asynchronous write synchronous is non sequitur.
Any software dependent on synchronous aio_write behavior will suffer
data loss on ZFSOnLinux in a kernel panic / system failure of at most
zfs_txg_timeout seconds, which by default is 5 seconds. This seems like
a reasonable consequence of using non-compliant software.
It should be noted that this is also a problem in the kernel itself
where nfsd does not pass O_SYNC on files opened with it and instead
relies on a open()/write()/close() to enforce synchronous behavior when
the flush is only guarenteed on last close.
Exporting any filesystem that does not implement AIO via NFS risks data
loss in the event of a kernel panic / system failure when something else
is also accessing the file. Exporting any file system that implements
AIO the way this patch does bears similar risk. However, it seems
reasonable to forgo crippling our AIO implementation in favor of
developing patches to fix this problem in Linux's nfsd for the reasons
stated earlier. In the interim, the risk will remain. Failing to
implement AIO will not change the problem that nfsd created, so there is
no reason for nfsd's mistake to block our implementation of AIO.
It also should be noted that `aio_cancel()` will always return
`AIO_NOTCANCELED` under this implementation. It is possible to implement
aio_cancel by deferring work to taskqs and use `kiocb_set_cancel_fn()`
to set a callback function for cancelling work sent to taskqs, but the
simpler approach is allowed by the specification:
```
Which operations are cancelable is implementation-defined.
```
http://pubs.opengroup.org/onlinepubs/009695399/functions/aio_cancel.html
The only programs on my system that are capable of using `aio_cancel()`
are QEMU, beecrypt and fio use it according to a recursive grep of my
system's `/usr/src/debug`. That suggests that `aio_cancel()` users are
rare. Implementing aio_cancel() is left to a future date when it is
clear that there are consumers that benefit from its implementation to
justify the work.
Lastly, it is important to know that handling of the iovec updates differs
between Illumos and Linux in the implementation of read/write. On Linux,
it is the VFS' responsibility whle on Illumos, it is the filesystem's
responsibility. We take the intermediate solution of copying the iovec
so that the ZFS code can update it like on Solaris while leaving the
originals alone. This imposes some overhead. We could always revisit
this should profiling show that the allocations are a problem.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #223
Closes #2373
2014-08-04 11:09:32 +00:00
|
|
|
error = zpl_read_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr);
|
2011-01-26 20:10:01 +00:00
|
|
|
out:
|
|
|
|
if (xip)
|
|
|
|
iput(xip);
|
|
|
|
|
|
|
|
if (dxip)
|
|
|
|
iput(dxip);
|
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(ip);
|
|
|
|
uchar_t *nv_value;
|
|
|
|
uint_t nv_size;
|
|
|
|
int error = 0;
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
|
|
|
|
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
if (zp->z_xattr_cached == NULL)
|
|
|
|
error = -zfs_sa_get_xattr(zp);
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
ASSERT(zp->z_xattr_cached);
|
|
|
|
error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name,
|
|
|
|
&nv_value, &nv_size);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
if (!size)
|
|
|
|
return (nv_size);
|
|
|
|
|
2013-04-17 20:07:36 +00:00
|
|
|
if (size < nv_size)
|
|
|
|
return (-ERANGE);
|
|
|
|
|
|
|
|
memcpy(value, nv_value, nv_size);
|
2011-10-24 23:55:20 +00:00
|
|
|
|
2013-04-17 20:07:36 +00:00
|
|
|
return (nv_size);
|
2011-10-24 23:55:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
__zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size,
|
|
|
|
cred_t *cr)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(ip);
|
2017-03-08 00:21:37 +00:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2011-10-24 23:55:20 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
|
|
|
|
|
2017-03-08 00:21:37 +00:00
|
|
|
if (zfsvfs->z_use_sa && zp->z_is_sa) {
|
2011-10-24 23:55:20 +00:00
|
|
|
error = zpl_xattr_get_sa(ip, name, value, size);
|
2013-05-08 16:20:04 +00:00
|
|
|
if (error != -ENOENT)
|
2011-10-24 23:55:20 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = zpl_xattr_get_dir(ip, name, value, size, cr);
|
|
|
|
out:
|
2011-01-26 20:10:01 +00:00
|
|
|
if (error == -ENOENT)
|
|
|
|
error = -ENODATA;
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
#define XATTR_NOENT 0x0
|
|
|
|
#define XATTR_IN_SA 0x1
|
|
|
|
#define XATTR_IN_DIR 0x2
|
|
|
|
/* check where the xattr resides */
|
|
|
|
static int
|
|
|
|
__zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(ip);
|
2017-03-08 00:21:37 +00:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
ASSERT(where);
|
|
|
|
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
|
|
|
|
|
|
|
|
*where = XATTR_NOENT;
|
2017-03-08 00:21:37 +00:00
|
|
|
if (zfsvfs->z_use_sa && zp->z_is_sa) {
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
error = zpl_xattr_get_sa(ip, name, NULL, 0);
|
|
|
|
if (error >= 0)
|
|
|
|
*where |= XATTR_IN_SA;
|
|
|
|
else if (error != -ENOENT)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
error = zpl_xattr_get_dir(ip, name, NULL, 0, cr);
|
|
|
|
if (error >= 0)
|
|
|
|
*where |= XATTR_IN_DIR;
|
|
|
|
else if (error != -ENOENT)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
if (*where == (XATTR_IN_SA|XATTR_IN_DIR))
|
|
|
|
cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\""
|
|
|
|
" in both SA and dir", ip, name);
|
|
|
|
if (*where == XATTR_NOENT)
|
|
|
|
error = -ENODATA;
|
|
|
|
else
|
|
|
|
error = 0;
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2011-01-26 20:10:01 +00:00
|
|
|
static int
|
2011-10-24 23:55:20 +00:00
|
|
|
zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(ip);
|
2017-03-08 00:21:37 +00:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2011-10-24 23:55:20 +00:00
|
|
|
cred_t *cr = CRED();
|
2015-04-14 17:25:50 +00:00
|
|
|
fstrans_cookie_t cookie;
|
2011-10-24 23:55:20 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
crhold(cr);
|
2015-04-14 17:25:50 +00:00
|
|
|
cookie = spl_fstrans_mark();
|
2017-03-08 00:21:37 +00:00
|
|
|
rrm_enter_read(&(zfsvfs)->z_teardown_lock, FTAG);
|
2011-10-24 23:55:20 +00:00
|
|
|
rw_enter(&zp->z_xattr_lock, RW_READER);
|
|
|
|
error = __zpl_xattr_get(ip, name, value, size, cr);
|
|
|
|
rw_exit(&zp->z_xattr_lock);
|
2017-03-08 00:21:37 +00:00
|
|
|
rrm_exit(&(zfsvfs)->z_teardown_lock, FTAG);
|
2015-04-14 17:25:50 +00:00
|
|
|
spl_fstrans_unmark(cookie);
|
2011-10-24 23:55:20 +00:00
|
|
|
crfree(cr);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value,
|
|
|
|
size_t size, int flags, cred_t *cr)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
|
|
|
struct inode *dxip = NULL;
|
|
|
|
struct inode *xip = NULL;
|
|
|
|
vattr_t *vap = NULL;
|
|
|
|
ssize_t wrote;
|
2013-10-28 16:07:00 +00:00
|
|
|
int lookup_flags, error;
|
2011-04-17 18:31:33 +00:00
|
|
|
const int xattr_mode = S_IFREG | 0644;
|
Linux AIO Support
nfsd uses do_readv_writev() to implement fops->read and fops->write.
do_readv_writev() will attempt to read/write using fops->aio_read and
fops->aio_write, but it will fallback to fops->read and fops->write when
AIO is not available. However, the fallback will perform a call for each
individual data page. Since our default recordsize is 128KB, sequential
operations on NFS will generate 32 DMU transactions where only 1
transaction was needed. That was unnecessary overhead and we implement
fops->aio_read and fops->aio_write to eliminate it.
ZFS originated in OpenSolaris, where the AIO API is entirely implemented
in userland's libc by intelligently mapping them to VOP_WRITE, VOP_READ
and VOP_FSYNC. Linux implements AIO inside the kernel itself. Linux
filesystems therefore must implement their own AIO logic and nearly all
of them implement fops->aio_write synchronously. Consequently, they do
not implement aio_fsync(). However, since the ZPL works by mapping
Linux's VFS calls to the functions implementing Illumos' VFS operations,
we instead implement AIO in the kernel by mapping the operations to the
VOP_READ, VOP_WRITE and VOP_FSYNC equivalents. We therefore implement
fops->aio_fsync.
One might be inclined to make our fops->aio_write implementation
synchronous to make software that expects this behavior safe. However,
there are several reasons not to do this:
1. Other platforms do not implement aio_write() synchronously and since
the majority of userland software using AIO should be cross platform,
expectations of synchronous behavior should not be a problem.
2. We would hurt the performance of programs that use POSIX interfaces
properly while simultaneously encouraging the creation of more
non-compliant software.
3. The broader community concluded that userland software should be
patched to properly use POSIX interfaces instead of implementing hacks
in filesystems to cater to broken software. This concept is best
described as the O_PONIES debate.
4. Making an asynchronous write synchronous is non sequitur.
Any software dependent on synchronous aio_write behavior will suffer
data loss on ZFSOnLinux in a kernel panic / system failure of at most
zfs_txg_timeout seconds, which by default is 5 seconds. This seems like
a reasonable consequence of using non-compliant software.
It should be noted that this is also a problem in the kernel itself
where nfsd does not pass O_SYNC on files opened with it and instead
relies on a open()/write()/close() to enforce synchronous behavior when
the flush is only guarenteed on last close.
Exporting any filesystem that does not implement AIO via NFS risks data
loss in the event of a kernel panic / system failure when something else
is also accessing the file. Exporting any file system that implements
AIO the way this patch does bears similar risk. However, it seems
reasonable to forgo crippling our AIO implementation in favor of
developing patches to fix this problem in Linux's nfsd for the reasons
stated earlier. In the interim, the risk will remain. Failing to
implement AIO will not change the problem that nfsd created, so there is
no reason for nfsd's mistake to block our implementation of AIO.
It also should be noted that `aio_cancel()` will always return
`AIO_NOTCANCELED` under this implementation. It is possible to implement
aio_cancel by deferring work to taskqs and use `kiocb_set_cancel_fn()`
to set a callback function for cancelling work sent to taskqs, but the
simpler approach is allowed by the specification:
```
Which operations are cancelable is implementation-defined.
```
http://pubs.opengroup.org/onlinepubs/009695399/functions/aio_cancel.html
The only programs on my system that are capable of using `aio_cancel()`
are QEMU, beecrypt and fio use it according to a recursive grep of my
system's `/usr/src/debug`. That suggests that `aio_cancel()` users are
rare. Implementing aio_cancel() is left to a future date when it is
clear that there are consumers that benefit from its implementation to
justify the work.
Lastly, it is important to know that handling of the iovec updates differs
between Illumos and Linux in the implementation of read/write. On Linux,
it is the VFS' responsibility whle on Illumos, it is the filesystem's
responsibility. We take the intermediate solution of copying the iovec
so that the ZFS code can update it like on Solaris while leaving the
originals alone. This imposes some overhead. We could always revisit
this should profiling show that the allocations are a problem.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #223
Closes #2373
2014-08-04 11:09:32 +00:00
|
|
|
loff_t pos = 0;
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2013-10-28 16:07:00 +00:00
|
|
|
/*
|
|
|
|
* Lookup the xattr directory. When we're adding an entry pass
|
|
|
|
* CREATE_XATTR_DIR to ensure the xattr directory is created.
|
|
|
|
* When removing an entry this flag is not passed to avoid
|
|
|
|
* unnecessarily creating a new xattr directory.
|
|
|
|
*/
|
|
|
|
lookup_flags = LOOKUP_XATTR;
|
|
|
|
if (value != NULL)
|
|
|
|
lookup_flags |= CREATE_XATTR_DIR;
|
|
|
|
|
|
|
|
error = -zfs_lookup(ip, NULL, &dxip, lookup_flags, cr, NULL, NULL);
|
2011-01-26 20:10:01 +00:00
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
/* Lookup a specific xattr name in the directory */
|
2011-01-26 20:10:01 +00:00
|
|
|
error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL);
|
2011-10-24 23:55:20 +00:00
|
|
|
if (error && (error != -ENOENT))
|
|
|
|
goto out;
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
error = 0;
|
|
|
|
|
|
|
|
/* Remove a specific name xattr when value is set to NULL. */
|
|
|
|
if (value == NULL) {
|
|
|
|
if (xip)
|
2016-04-13 15:55:35 +00:00
|
|
|
error = -zfs_remove(dxip, (char *)name, cr, 0);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Lookup failed create a new xattr. */
|
|
|
|
if (xip == NULL) {
|
2013-11-01 19:26:11 +00:00
|
|
|
vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP);
|
2011-04-17 18:31:33 +00:00
|
|
|
vap->va_mode = xattr_mode;
|
2011-01-26 20:10:01 +00:00
|
|
|
vap->va_mask = ATTR_MODE;
|
2011-03-22 18:13:41 +00:00
|
|
|
vap->va_uid = crgetfsuid(cr);
|
|
|
|
vap->va_gid = crgetfsgid(cr);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
error = -zfs_create(dxip, (char *)name, vap, 0, 0644, &xip,
|
|
|
|
cr, 0, NULL);
|
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(xip != NULL);
|
2011-04-17 18:31:33 +00:00
|
|
|
|
|
|
|
error = -zfs_freesp(ITOZ(xip), 0, 0, xattr_mode, TRUE);
|
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
|
Linux AIO Support
nfsd uses do_readv_writev() to implement fops->read and fops->write.
do_readv_writev() will attempt to read/write using fops->aio_read and
fops->aio_write, but it will fallback to fops->read and fops->write when
AIO is not available. However, the fallback will perform a call for each
individual data page. Since our default recordsize is 128KB, sequential
operations on NFS will generate 32 DMU transactions where only 1
transaction was needed. That was unnecessary overhead and we implement
fops->aio_read and fops->aio_write to eliminate it.
ZFS originated in OpenSolaris, where the AIO API is entirely implemented
in userland's libc by intelligently mapping them to VOP_WRITE, VOP_READ
and VOP_FSYNC. Linux implements AIO inside the kernel itself. Linux
filesystems therefore must implement their own AIO logic and nearly all
of them implement fops->aio_write synchronously. Consequently, they do
not implement aio_fsync(). However, since the ZPL works by mapping
Linux's VFS calls to the functions implementing Illumos' VFS operations,
we instead implement AIO in the kernel by mapping the operations to the
VOP_READ, VOP_WRITE and VOP_FSYNC equivalents. We therefore implement
fops->aio_fsync.
One might be inclined to make our fops->aio_write implementation
synchronous to make software that expects this behavior safe. However,
there are several reasons not to do this:
1. Other platforms do not implement aio_write() synchronously and since
the majority of userland software using AIO should be cross platform,
expectations of synchronous behavior should not be a problem.
2. We would hurt the performance of programs that use POSIX interfaces
properly while simultaneously encouraging the creation of more
non-compliant software.
3. The broader community concluded that userland software should be
patched to properly use POSIX interfaces instead of implementing hacks
in filesystems to cater to broken software. This concept is best
described as the O_PONIES debate.
4. Making an asynchronous write synchronous is non sequitur.
Any software dependent on synchronous aio_write behavior will suffer
data loss on ZFSOnLinux in a kernel panic / system failure of at most
zfs_txg_timeout seconds, which by default is 5 seconds. This seems like
a reasonable consequence of using non-compliant software.
It should be noted that this is also a problem in the kernel itself
where nfsd does not pass O_SYNC on files opened with it and instead
relies on a open()/write()/close() to enforce synchronous behavior when
the flush is only guarenteed on last close.
Exporting any filesystem that does not implement AIO via NFS risks data
loss in the event of a kernel panic / system failure when something else
is also accessing the file. Exporting any file system that implements
AIO the way this patch does bears similar risk. However, it seems
reasonable to forgo crippling our AIO implementation in favor of
developing patches to fix this problem in Linux's nfsd for the reasons
stated earlier. In the interim, the risk will remain. Failing to
implement AIO will not change the problem that nfsd created, so there is
no reason for nfsd's mistake to block our implementation of AIO.
It also should be noted that `aio_cancel()` will always return
`AIO_NOTCANCELED` under this implementation. It is possible to implement
aio_cancel by deferring work to taskqs and use `kiocb_set_cancel_fn()`
to set a callback function for cancelling work sent to taskqs, but the
simpler approach is allowed by the specification:
```
Which operations are cancelable is implementation-defined.
```
http://pubs.opengroup.org/onlinepubs/009695399/functions/aio_cancel.html
The only programs on my system that are capable of using `aio_cancel()`
are QEMU, beecrypt and fio use it according to a recursive grep of my
system's `/usr/src/debug`. That suggests that `aio_cancel()` users are
rare. Implementing aio_cancel() is left to a future date when it is
clear that there are consumers that benefit from its implementation to
justify the work.
Lastly, it is important to know that handling of the iovec updates differs
between Illumos and Linux in the implementation of read/write. On Linux,
it is the VFS' responsibility whle on Illumos, it is the filesystem's
responsibility. We take the intermediate solution of copying the iovec
so that the ZFS code can update it like on Solaris while leaving the
originals alone. This imposes some overhead. We could always revisit
this should profiling show that the allocations are a problem.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #223
Closes #2373
2014-08-04 11:09:32 +00:00
|
|
|
wrote = zpl_write_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr);
|
2011-01-26 20:10:01 +00:00
|
|
|
if (wrote < 0)
|
|
|
|
error = wrote;
|
|
|
|
|
|
|
|
out:
|
|
|
|
if (vap)
|
2013-11-01 19:26:11 +00:00
|
|
|
kmem_free(vap, sizeof (vattr_t));
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
if (xip)
|
|
|
|
iput(xip);
|
|
|
|
|
|
|
|
if (dxip)
|
|
|
|
iput(dxip);
|
|
|
|
|
|
|
|
if (error == -ENOENT)
|
|
|
|
error = -ENODATA;
|
|
|
|
|
|
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
static int
|
|
|
|
zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value,
|
|
|
|
size_t size, int flags, cred_t *cr)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(ip);
|
|
|
|
nvlist_t *nvl;
|
|
|
|
size_t sa_size;
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
if (zp->z_xattr_cached == NULL)
|
|
|
|
error = -zfs_sa_get_xattr(zp);
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
|
|
|
|
if (error)
|
|
|
|
return (error);
|
2011-10-24 23:55:20 +00:00
|
|
|
|
|
|
|
ASSERT(zp->z_xattr_cached);
|
|
|
|
nvl = zp->z_xattr_cached;
|
|
|
|
|
|
|
|
if (value == NULL) {
|
|
|
|
error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY);
|
|
|
|
if (error == -ENOENT)
|
|
|
|
error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr);
|
|
|
|
} else {
|
|
|
|
/* Limited to 32k to keep nvpair memory allocations small */
|
|
|
|
if (size > DXATTR_MAX_ENTRY_SIZE)
|
|
|
|
return (-EFBIG);
|
|
|
|
|
|
|
|
/* Prevent the DXATTR SA from consuming the entire SA region */
|
|
|
|
error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
if (sa_size > DXATTR_MAX_SA_SIZE)
|
|
|
|
return (-EFBIG);
|
|
|
|
|
|
|
|
error = -nvlist_add_byte_array(nvl, name,
|
|
|
|
(uchar_t *)value, size);
|
|
|
|
}
|
|
|
|
|
2015-12-30 02:41:22 +00:00
|
|
|
/*
|
|
|
|
* Update the SA for additions, modifications, and removals. On
|
|
|
|
* error drop the inconsistent cached version of the nvlist, it
|
|
|
|
* will be reconstructed from the ARC when next accessed.
|
|
|
|
*/
|
|
|
|
if (error == 0)
|
2011-10-24 23:55:20 +00:00
|
|
|
error = -zfs_sa_set_xattr(zp);
|
|
|
|
|
2015-12-30 02:41:22 +00:00
|
|
|
if (error) {
|
|
|
|
nvlist_free(nvl);
|
|
|
|
zp->z_xattr_cached = NULL;
|
|
|
|
}
|
|
|
|
|
2011-10-24 23:55:20 +00:00
|
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
zpl_xattr_set(struct inode *ip, const char *name, const void *value,
|
|
|
|
size_t size, int flags)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(ip);
|
2017-03-08 00:21:37 +00:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2011-10-24 23:55:20 +00:00
|
|
|
cred_t *cr = CRED();
|
2015-04-14 17:25:50 +00:00
|
|
|
fstrans_cookie_t cookie;
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
int where;
|
2011-10-24 23:55:20 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
crhold(cr);
|
2015-04-14 17:25:50 +00:00
|
|
|
cookie = spl_fstrans_mark();
|
2017-03-08 00:21:37 +00:00
|
|
|
rrm_enter_read(&(zfsvfs)->z_teardown_lock, FTAG);
|
2011-10-24 23:55:20 +00:00
|
|
|
rw_enter(&ITOZ(ip)->z_xattr_lock, RW_WRITER);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Before setting the xattr check to see if it already exists.
|
|
|
|
* This is done to ensure the following optional flags are honored.
|
|
|
|
*
|
|
|
|
* XATTR_CREATE: fail if xattr already exists
|
|
|
|
* XATTR_REPLACE: fail if xattr does not exist
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
*
|
|
|
|
* We also want to know if it resides in sa or dir, so we can make
|
|
|
|
* sure we don't end up with duplicate in both places.
|
2011-10-24 23:55:20 +00:00
|
|
|
*/
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
error = __zpl_xattr_where(ip, name, &where, cr);
|
2011-10-24 23:55:20 +00:00
|
|
|
if (error < 0) {
|
|
|
|
if (error != -ENODATA)
|
|
|
|
goto out;
|
2013-10-28 16:07:00 +00:00
|
|
|
if (flags & XATTR_REPLACE)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* The xattr to be removed already doesn't exist */
|
|
|
|
error = 0;
|
|
|
|
if (value == NULL)
|
2011-10-24 23:55:20 +00:00
|
|
|
goto out;
|
|
|
|
} else {
|
|
|
|
error = -EEXIST;
|
|
|
|
if (flags & XATTR_CREATE)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Preferentially store the xattr as a SA for better performance */
|
2017-03-08 00:21:37 +00:00
|
|
|
if (zfsvfs->z_use_sa && zp->z_is_sa &&
|
|
|
|
(zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) {
|
2011-10-24 23:55:20 +00:00
|
|
|
error = zpl_xattr_set_sa(ip, name, value, size, flags, cr);
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
if (error == 0) {
|
|
|
|
/*
|
|
|
|
* Successfully put into SA, we need to clear the one
|
|
|
|
* in dir.
|
|
|
|
*/
|
|
|
|
if (where & XATTR_IN_DIR)
|
|
|
|
zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr);
|
2011-10-24 23:55:20 +00:00
|
|
|
goto out;
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
}
|
2011-10-24 23:55:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
error = zpl_xattr_set_dir(ip, name, value, size, flags, cr);
|
Prevent duplicated xattr between SA and dir
When replacing an xattr would cause overflowing in SA, we would fallback
to xattr dir. However, current implementation don't clear the one in SA,
so we would end up with duplicated SA.
For example, running the following script on an xattr=sa filesystem
would cause duplicated "user.1".
-- dup_xattr.sh begin --
randbase64()
{
dd if=/dev/urandom bs=1 count=$1 2>/dev/null | openssl enc -a -A
}
file=$1
touch $file
setfattr -h -n user.1 -v `randbase64 5000` $file
setfattr -h -n user.2 -v `randbase64 20000` $file
setfattr -h -n user.3 -v `randbase64 20000` $file
setfattr -h -n user.1 -v `randbase64 20000` $file
getfattr -m. -d $file
-- dup_xattr.sh end --
Also, when a filesystem is switch from xattr=sa to xattr=on, it will
never modify those in SA. This would cause strange behavior like, you
cannot delete an xattr, or setxattr would cause duplicate and the result
would not match when you getxattr.
For example, the following shell sequence.
-- shell begin --
$ sudo zfs set xattr=sa pp/fs0
$ touch zzz
$ setfattr -n user.test -v asdf zzz
$ sudo zfs set xattr=on pp/fs0
$ setfattr -x user.test zzz
setfattr: zzz: No such attribute
$ getfattr -d zzz
user.test="asdf"
$ setfattr -n user.test -v zxcv zzz
$ getfattr -d zzz
user.test="asdf"
user.test="asdf"
-- shell end --
We fix this behavior, by first finding where the xattr resides before
setxattr. Then, after we successfully updated the xattr in one location,
we will clear the other location. Note that, because update and clear
are not in single tx, we could still end up with duplicated xattr. But
by doing setxattr again, it can be fixed.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes #3472
Closes #4153
2015-12-30 23:47:11 +00:00
|
|
|
/*
|
|
|
|
* Successfully put into dir, we need to clear the one in SA.
|
|
|
|
*/
|
|
|
|
if (error == 0 && (where & XATTR_IN_SA))
|
|
|
|
zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr);
|
2011-10-24 23:55:20 +00:00
|
|
|
out:
|
|
|
|
rw_exit(&ITOZ(ip)->z_xattr_lock);
|
2017-03-08 00:21:37 +00:00
|
|
|
rrm_exit(&(zfsvfs)->z_teardown_lock, FTAG);
|
2015-04-14 17:25:50 +00:00
|
|
|
spl_fstrans_unmark(cookie);
|
2011-10-24 23:55:20 +00:00
|
|
|
crfree(cr);
|
|
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
/*
|
|
|
|
* Extended user attributes
|
|
|
|
*
|
|
|
|
* "Extended user attributes may be assigned to files and directories for
|
|
|
|
* storing arbitrary additional information such as the mime type,
|
|
|
|
* character set or encoding of a file. The access permissions for user
|
|
|
|
* attributes are defined by the file permission bits: read permission
|
|
|
|
* is required to retrieve the attribute value, and writer permission is
|
|
|
|
* required to change it.
|
|
|
|
*
|
|
|
|
* The file permission bits of regular files and directories are
|
|
|
|
* interpreted differently from the file permission bits of special
|
|
|
|
* files and symbolic links. For regular files and directories the file
|
|
|
|
* permission bits define access to the file's contents, while for
|
|
|
|
* device special files they define access to the device described by
|
|
|
|
* the special file. The file permissions of symbolic links are not
|
|
|
|
* used in access checks. These differences would allow users to
|
|
|
|
* consume filesystem resources in a way not controllable by disk quotas
|
|
|
|
* for group or world writable special files and directories.
|
|
|
|
*
|
|
|
|
* For this reason, extended user attributes are allowed only for
|
|
|
|
* regular files and directories, and access to extended user attributes
|
|
|
|
* is restricted to the owner and to users with appropriate capabilities
|
|
|
|
* for directories with the sticky bit set (see the chmod(1) manual page
|
|
|
|
* for an explanation of the sticky bit)." - xattr(7)
|
|
|
|
*
|
|
|
|
* ZFS allows extended user attributes to be disabled administratively
|
|
|
|
* by setting the 'xattr=off' property on the dataset.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
__zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size,
|
|
|
|
const char *name, size_t name_len)
|
|
|
|
{
|
|
|
|
return (ITOZSB(ip)->z_flags & ZSB_XATTR);
|
|
|
|
}
|
|
|
|
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list);
|
|
|
|
|
2011-01-26 20:10:01 +00:00
|
|
|
static int
|
2011-02-11 18:33:01 +00:00
|
|
|
__zpl_xattr_user_get(struct inode *ip, const char *name,
|
2011-10-24 23:55:20 +00:00
|
|
|
void *value, size_t size)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
|
|
|
char *xattr_name;
|
|
|
|
int error;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2011-01-26 20:10:01 +00:00
|
|
|
if (strcmp(name, "") == 0)
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2011-05-19 18:44:07 +00:00
|
|
|
if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EOPNOTSUPP);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
|
2011-10-24 23:55:20 +00:00
|
|
|
error = zpl_xattr_get(ip, xattr_name, value, size);
|
2011-01-26 20:10:01 +00:00
|
|
|
strfree(xattr_name);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2011-02-11 18:33:01 +00:00
|
|
|
ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
static int
|
2011-02-11 18:33:01 +00:00
|
|
|
__zpl_xattr_user_set(struct inode *ip, const char *name,
|
2011-01-26 20:10:01 +00:00
|
|
|
const void *value, size_t size, int flags)
|
|
|
|
{
|
|
|
|
char *xattr_name;
|
|
|
|
int error;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2011-01-26 20:10:01 +00:00
|
|
|
if (strcmp(name, "") == 0)
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2011-05-19 18:44:07 +00:00
|
|
|
if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EOPNOTSUPP);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
|
|
|
|
error = zpl_xattr_set(ip, xattr_name, value, size, flags);
|
|
|
|
strfree(xattr_name);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2011-02-11 18:33:01 +00:00
|
|
|
ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
xattr_handler_t zpl_xattr_user_handler =
|
|
|
|
{
|
2011-01-26 20:10:01 +00:00
|
|
|
.prefix = XATTR_USER_PREFIX,
|
2016-01-14 23:01:24 +00:00
|
|
|
.list = zpl_xattr_user_list,
|
2011-01-26 20:10:01 +00:00
|
|
|
.get = zpl_xattr_user_get,
|
|
|
|
.set = zpl_xattr_user_set,
|
|
|
|
};
|
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
/*
|
|
|
|
* Trusted extended attributes
|
|
|
|
*
|
|
|
|
* "Trusted extended attributes are visible and accessible only to
|
|
|
|
* processes that have the CAP_SYS_ADMIN capability. Attributes in this
|
|
|
|
* class are used to implement mechanisms in user space (i.e., outside
|
|
|
|
* the kernel) which keep information in extended attributes to which
|
|
|
|
* ordinary processes should not have access." - xattr(7)
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
__zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size,
|
|
|
|
const char *name, size_t name_len)
|
|
|
|
{
|
|
|
|
return (capable(CAP_SYS_ADMIN));
|
|
|
|
}
|
|
|
|
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list);
|
|
|
|
|
2011-01-26 20:10:01 +00:00
|
|
|
static int
|
2011-02-11 18:33:01 +00:00
|
|
|
__zpl_xattr_trusted_get(struct inode *ip, const char *name,
|
2011-10-24 23:55:20 +00:00
|
|
|
void *value, size_t size)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
|
|
|
char *xattr_name;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EACCES);
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2011-01-26 20:10:01 +00:00
|
|
|
if (strcmp(name, "") == 0)
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2011-01-26 20:10:01 +00:00
|
|
|
xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
|
2011-10-24 23:55:20 +00:00
|
|
|
error = zpl_xattr_get(ip, xattr_name, value, size);
|
2011-01-26 20:10:01 +00:00
|
|
|
strfree(xattr_name);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2011-02-11 18:33:01 +00:00
|
|
|
ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
static int
|
2011-02-11 18:33:01 +00:00
|
|
|
__zpl_xattr_trusted_set(struct inode *ip, const char *name,
|
2011-01-26 20:10:01 +00:00
|
|
|
const void *value, size_t size, int flags)
|
|
|
|
{
|
|
|
|
char *xattr_name;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EACCES);
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2011-01-26 20:10:01 +00:00
|
|
|
if (strcmp(name, "") == 0)
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2011-01-26 20:10:01 +00:00
|
|
|
xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
|
|
|
|
error = zpl_xattr_set(ip, xattr_name, value, size, flags);
|
|
|
|
strfree(xattr_name);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2011-02-11 18:33:01 +00:00
|
|
|
ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
xattr_handler_t zpl_xattr_trusted_handler =
|
|
|
|
{
|
2011-01-26 20:10:01 +00:00
|
|
|
.prefix = XATTR_TRUSTED_PREFIX,
|
2016-01-14 23:01:24 +00:00
|
|
|
.list = zpl_xattr_trusted_list,
|
2011-01-26 20:10:01 +00:00
|
|
|
.get = zpl_xattr_trusted_get,
|
|
|
|
.set = zpl_xattr_trusted_set,
|
|
|
|
};
|
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
/*
|
|
|
|
* Extended security attributes
|
|
|
|
*
|
|
|
|
* "The security attribute namespace is used by kernel security modules,
|
|
|
|
* such as Security Enhanced Linux, and also to implement file
|
|
|
|
* capabilities (see capabilities(7)). Read and write access
|
|
|
|
* permissions to security attributes depend on the policy implemented
|
|
|
|
* for each security attribute by the security module. When no security
|
|
|
|
* module is loaded, all processes have read access to extended security
|
|
|
|
* attributes, and write access is limited to processes that have the
|
|
|
|
* CAP_SYS_ADMIN capability." - xattr(7)
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
__zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size,
|
|
|
|
const char *name, size_t name_len)
|
|
|
|
{
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list);
|
|
|
|
|
2011-01-26 20:10:01 +00:00
|
|
|
static int
|
2011-02-11 18:33:01 +00:00
|
|
|
__zpl_xattr_security_get(struct inode *ip, const char *name,
|
2011-10-24 23:55:20 +00:00
|
|
|
void *value, size_t size)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
|
|
|
char *xattr_name;
|
|
|
|
int error;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2011-01-26 20:10:01 +00:00
|
|
|
if (strcmp(name, "") == 0)
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2011-01-26 20:10:01 +00:00
|
|
|
xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
|
2011-10-24 23:55:20 +00:00
|
|
|
error = zpl_xattr_get(ip, xattr_name, value, size);
|
2011-01-26 20:10:01 +00:00
|
|
|
strfree(xattr_name);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2011-02-11 18:33:01 +00:00
|
|
|
ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
|
|
|
static int
|
2011-02-11 18:33:01 +00:00
|
|
|
__zpl_xattr_security_set(struct inode *ip, const char *name,
|
2011-01-26 20:10:01 +00:00
|
|
|
const void *value, size_t size, int flags)
|
|
|
|
{
|
|
|
|
char *xattr_name;
|
|
|
|
int error;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2011-01-26 20:10:01 +00:00
|
|
|
if (strcmp(name, "") == 0)
|
2013-11-01 19:26:11 +00:00
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2011-01-26 20:10:01 +00:00
|
|
|
xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
|
|
|
|
error = zpl_xattr_set(ip, xattr_name, value, size, flags);
|
|
|
|
strfree(xattr_name);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2011-02-11 18:33:01 +00:00
|
|
|
ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2012-01-12 21:59:44 +00:00
|
|
|
#ifdef HAVE_CALLBACK_SECURITY_INODE_INIT_SECURITY
|
|
|
|
static int
|
|
|
|
__zpl_xattr_security_init(struct inode *ip, const struct xattr *xattrs,
|
|
|
|
void *fs_info)
|
|
|
|
{
|
|
|
|
const struct xattr *xattr;
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
for (xattr = xattrs; xattr->name != NULL; xattr++) {
|
|
|
|
error = __zpl_xattr_security_set(ip,
|
|
|
|
xattr->name, xattr->value, xattr->value_len, 0);
|
|
|
|
|
|
|
|
if (error < 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-01-05 20:27:36 +00:00
|
|
|
return (error);
|
2012-01-12 21:59:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
zpl_xattr_security_init(struct inode *ip, struct inode *dip,
|
|
|
|
const struct qstr *qstr)
|
|
|
|
{
|
|
|
|
return security_inode_init_security(ip, dip, qstr,
|
|
|
|
&__zpl_xattr_security_init, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
2011-01-26 20:10:01 +00:00
|
|
|
int
|
2011-05-19 19:47:32 +00:00
|
|
|
zpl_xattr_security_init(struct inode *ip, struct inode *dip,
|
|
|
|
const struct qstr *qstr)
|
2011-01-26 20:10:01 +00:00
|
|
|
{
|
2012-01-05 20:27:36 +00:00
|
|
|
int error;
|
|
|
|
size_t len;
|
|
|
|
void *value;
|
|
|
|
char *name;
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2012-01-05 20:27:36 +00:00
|
|
|
error = zpl_security_inode_init_security(ip, dip, qstr,
|
2013-11-01 19:26:11 +00:00
|
|
|
&name, &value, &len);
|
2012-01-05 20:27:36 +00:00
|
|
|
if (error) {
|
|
|
|
if (error == -EOPNOTSUPP)
|
2013-11-01 19:26:11 +00:00
|
|
|
return (0);
|
|
|
|
|
2012-01-05 20:27:36 +00:00
|
|
|
return (error);
|
|
|
|
}
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2011-02-11 18:33:01 +00:00
|
|
|
error = __zpl_xattr_security_set(ip, name, value, len, 0);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2012-01-05 20:27:36 +00:00
|
|
|
kfree(name);
|
|
|
|
kfree(value);
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2012-01-05 20:27:36 +00:00
|
|
|
return (error);
|
2011-01-26 20:10:01 +00:00
|
|
|
}
|
2012-01-12 21:59:44 +00:00
|
|
|
#endif /* HAVE_CALLBACK_SECURITY_INODE_INIT_SECURITY */
|
2011-01-26 20:10:01 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
/*
|
|
|
|
* Security xattr namespace handlers.
|
|
|
|
*/
|
2011-02-11 00:16:52 +00:00
|
|
|
xattr_handler_t zpl_xattr_security_handler = {
|
2011-01-26 20:10:01 +00:00
|
|
|
.prefix = XATTR_SECURITY_PREFIX,
|
2016-01-14 23:01:24 +00:00
|
|
|
.list = zpl_xattr_security_list,
|
2011-01-26 20:10:01 +00:00
|
|
|
.get = zpl_xattr_security_get,
|
|
|
|
.set = zpl_xattr_security_set,
|
|
|
|
};
|
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
/*
|
|
|
|
* Extended system attributes
|
|
|
|
*
|
|
|
|
* "Extended system attributes are used by the kernel to store system
|
|
|
|
* objects such as Access Control Lists. Read and write access permissions
|
|
|
|
* to system attributes depend on the policy implemented for each system
|
|
|
|
* attribute implemented by filesystems in the kernel." - xattr(7)
|
|
|
|
*/
|
2013-11-02 23:40:26 +00:00
|
|
|
#ifdef CONFIG_FS_POSIX_ACL
|
2013-10-28 16:22:15 +00:00
|
|
|
int
|
2016-11-09 18:37:17 +00:00
|
|
|
zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type)
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
|
|
|
struct super_block *sb = ITOZSB(ip)->z_sb;
|
|
|
|
char *name, *value = NULL;
|
|
|
|
int error = 0;
|
|
|
|
size_t size = 0;
|
|
|
|
|
|
|
|
if (S_ISLNK(ip->i_mode))
|
|
|
|
return (-EOPNOTSUPP);
|
|
|
|
|
2013-11-01 19:26:11 +00:00
|
|
|
switch (type) {
|
2013-10-28 16:22:15 +00:00
|
|
|
case ACL_TYPE_ACCESS:
|
2016-01-14 23:01:24 +00:00
|
|
|
name = XATTR_NAME_POSIX_ACL_ACCESS;
|
2013-10-28 16:22:15 +00:00
|
|
|
if (acl) {
|
|
|
|
zpl_equivmode_t mode = ip->i_mode;
|
|
|
|
error = posix_acl_equiv_mode(acl, &mode);
|
|
|
|
if (error < 0) {
|
|
|
|
return (error);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* The mode bits will have been set by
|
|
|
|
* ->zfs_setattr()->zfs_acl_chmod_setattr()
|
|
|
|
* using the ZFS ACL conversion. If they
|
|
|
|
* differ from the Posix ACL conversion dirty
|
|
|
|
* the inode to write the Posix mode bits.
|
|
|
|
*/
|
|
|
|
if (ip->i_mode != mode) {
|
|
|
|
ip->i_mode = mode;
|
|
|
|
ip->i_ctime = current_fs_time(sb);
|
2014-07-15 20:29:57 +00:00
|
|
|
zfs_mark_inode_dirty(ip);
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (error == 0)
|
|
|
|
acl = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ACL_TYPE_DEFAULT:
|
2016-04-15 18:55:03 +00:00
|
|
|
name = XATTR_NAME_POSIX_ACL_DEFAULT;
|
2013-10-28 16:22:15 +00:00
|
|
|
if (!S_ISDIR(ip->i_mode))
|
|
|
|
return (acl ? -EACCES : 0);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (-EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (acl) {
|
|
|
|
size = posix_acl_xattr_size(acl->a_count);
|
|
|
|
value = kmem_alloc(size, KM_SLEEP);
|
|
|
|
|
|
|
|
error = zpl_acl_to_xattr(acl, value, size);
|
|
|
|
if (error < 0) {
|
|
|
|
kmem_free(value, size);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
error = zpl_xattr_set(ip, name, value, size, 0);
|
|
|
|
if (value)
|
|
|
|
kmem_free(value, size);
|
|
|
|
|
|
|
|
if (!error) {
|
|
|
|
if (acl)
|
|
|
|
zpl_set_cached_acl(ip, type, acl);
|
|
|
|
else
|
|
|
|
zpl_forget_cached_acl(ip, type);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct posix_acl *
|
|
|
|
zpl_get_acl(struct inode *ip, int type)
|
|
|
|
{
|
|
|
|
struct posix_acl *acl;
|
|
|
|
void *value = NULL;
|
|
|
|
char *name;
|
|
|
|
int size;
|
|
|
|
|
2016-08-09 00:26:21 +00:00
|
|
|
/*
|
|
|
|
* As of Linux 3.14, the kernel get_acl will check this for us.
|
|
|
|
* Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong
|
|
|
|
* as the kernel get_acl will set it to temporary sentinel value.
|
|
|
|
*/
|
|
|
|
#ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
|
2013-10-28 16:22:15 +00:00
|
|
|
acl = get_cached_acl(ip, type);
|
|
|
|
if (acl != ACL_NOT_CACHED)
|
|
|
|
return (acl);
|
2016-08-09 00:26:21 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case ACL_TYPE_ACCESS:
|
2016-01-14 23:01:24 +00:00
|
|
|
name = XATTR_NAME_POSIX_ACL_ACCESS;
|
2013-10-28 16:22:15 +00:00
|
|
|
break;
|
|
|
|
case ACL_TYPE_DEFAULT:
|
2016-01-14 23:01:24 +00:00
|
|
|
name = XATTR_NAME_POSIX_ACL_DEFAULT;
|
2013-10-28 16:22:15 +00:00
|
|
|
break;
|
|
|
|
default:
|
2013-11-01 19:26:11 +00:00
|
|
|
return (ERR_PTR(-EINVAL));
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
size = zpl_xattr_get(ip, name, NULL, 0);
|
|
|
|
if (size > 0) {
|
2014-11-21 00:09:39 +00:00
|
|
|
value = kmem_alloc(size, KM_SLEEP);
|
2013-10-28 16:22:15 +00:00
|
|
|
size = zpl_xattr_get(ip, name, value, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size > 0) {
|
|
|
|
acl = zpl_acl_from_xattr(value, size);
|
|
|
|
} else if (size == -ENODATA || size == -ENOSYS) {
|
|
|
|
acl = NULL;
|
|
|
|
} else {
|
|
|
|
acl = ERR_PTR(-EIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size > 0)
|
|
|
|
kmem_free(value, size);
|
|
|
|
|
2016-08-09 00:26:21 +00:00
|
|
|
/* As of Linux 4.7, the kernel get_acl will set this for us */
|
|
|
|
#ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
|
2013-10-28 16:22:15 +00:00
|
|
|
if (!IS_ERR(acl))
|
|
|
|
zpl_set_cached_acl(ip, type, acl);
|
2016-08-09 00:26:21 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
return (acl);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if !defined(HAVE_GET_ACL)
|
|
|
|
static int
|
|
|
|
__zpl_check_acl(struct inode *ip, int mask)
|
|
|
|
{
|
|
|
|
struct posix_acl *acl;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
acl = zpl_get_acl(ip, ACL_TYPE_ACCESS);
|
|
|
|
if (IS_ERR(acl))
|
|
|
|
return (PTR_ERR(acl));
|
|
|
|
|
|
|
|
if (acl) {
|
|
|
|
error = posix_acl_permission(ip, acl, mask);
|
|
|
|
zpl_posix_acl_release(acl);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (-EAGAIN);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(HAVE_CHECK_ACL_WITH_FLAGS)
|
|
|
|
int
|
|
|
|
zpl_check_acl(struct inode *ip, int mask, unsigned int flags)
|
|
|
|
{
|
2013-11-01 19:26:11 +00:00
|
|
|
return (__zpl_check_acl(ip, mask));
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
|
|
|
#elif defined(HAVE_CHECK_ACL)
|
|
|
|
int
|
|
|
|
zpl_check_acl(struct inode *ip, int mask)
|
|
|
|
{
|
2013-11-01 19:26:11 +00:00
|
|
|
return (__zpl_check_acl(ip, mask));
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
|
|
|
#elif defined(HAVE_PERMISSION_WITH_NAMEIDATA)
|
|
|
|
int
|
|
|
|
zpl_permission(struct inode *ip, int mask, struct nameidata *nd)
|
|
|
|
{
|
2013-11-01 19:26:11 +00:00
|
|
|
return (generic_permission(ip, mask, __zpl_check_acl));
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
|
|
|
#elif defined(HAVE_PERMISSION)
|
|
|
|
int
|
|
|
|
zpl_permission(struct inode *ip, int mask)
|
|
|
|
{
|
2013-11-01 19:26:11 +00:00
|
|
|
return (generic_permission(ip, mask, __zpl_check_acl));
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
|
|
|
#endif /* HAVE_CHECK_ACL | HAVE_PERMISSION */
|
|
|
|
#endif /* !HAVE_GET_ACL */
|
|
|
|
|
|
|
|
int
|
|
|
|
zpl_init_acl(struct inode *ip, struct inode *dir)
|
|
|
|
{
|
|
|
|
struct posix_acl *acl = NULL;
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (!S_ISLNK(ip->i_mode)) {
|
|
|
|
if (ITOZSB(ip)->z_acl_type == ZFS_ACLTYPE_POSIXACL) {
|
|
|
|
acl = zpl_get_acl(dir, ACL_TYPE_DEFAULT);
|
|
|
|
if (IS_ERR(acl))
|
|
|
|
return (PTR_ERR(acl));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!acl) {
|
|
|
|
ip->i_mode &= ~current_umask();
|
|
|
|
ip->i_ctime = current_fs_time(ITOZSB(ip)->z_sb);
|
2014-07-15 20:29:57 +00:00
|
|
|
zfs_mark_inode_dirty(ip);
|
2013-10-28 16:22:15 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((ITOZSB(ip)->z_acl_type == ZFS_ACLTYPE_POSIXACL) && acl) {
|
|
|
|
umode_t mode;
|
|
|
|
|
|
|
|
if (S_ISDIR(ip->i_mode)) {
|
2016-11-09 18:37:17 +00:00
|
|
|
error = zpl_set_acl(ip, acl, ACL_TYPE_DEFAULT);
|
2013-10-28 16:22:15 +00:00
|
|
|
if (error)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
mode = ip->i_mode;
|
2014-03-28 04:59:36 +00:00
|
|
|
error = __posix_acl_create(&acl, GFP_KERNEL, &mode);
|
2013-10-28 16:22:15 +00:00
|
|
|
if (error >= 0) {
|
|
|
|
ip->i_mode = mode;
|
2014-07-15 20:29:57 +00:00
|
|
|
zfs_mark_inode_dirty(ip);
|
2013-10-28 16:22:15 +00:00
|
|
|
if (error > 0)
|
2016-11-09 18:37:17 +00:00
|
|
|
error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
zpl_posix_acl_release(acl);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
zpl_chmod_acl(struct inode *ip)
|
|
|
|
{
|
|
|
|
struct posix_acl *acl;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (S_ISLNK(ip->i_mode))
|
|
|
|
return (-EOPNOTSUPP);
|
|
|
|
|
|
|
|
acl = zpl_get_acl(ip, ACL_TYPE_ACCESS);
|
|
|
|
if (IS_ERR(acl) || !acl)
|
|
|
|
return (PTR_ERR(acl));
|
|
|
|
|
2014-03-28 04:59:36 +00:00
|
|
|
error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode);
|
2013-10-28 16:22:15 +00:00
|
|
|
if (!error)
|
2016-11-09 18:37:17 +00:00
|
|
|
error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
zpl_posix_acl_release(acl);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
static int
|
|
|
|
__zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size,
|
|
|
|
const char *name, size_t name_len)
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
2016-01-14 23:01:24 +00:00
|
|
|
char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS;
|
|
|
|
size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (list && xattr_size <= list_size)
|
|
|
|
memcpy(list, xattr_name, xattr_size);
|
|
|
|
|
|
|
|
return (xattr_size);
|
|
|
|
}
|
2016-01-14 23:01:24 +00:00
|
|
|
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
static int
|
|
|
|
__zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size,
|
|
|
|
const char *name, size_t name_len)
|
2015-11-23 23:06:46 +00:00
|
|
|
{
|
2016-01-14 23:01:24 +00:00
|
|
|
char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT;
|
|
|
|
size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT);
|
2015-11-23 23:06:46 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (0);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
if (list && xattr_size <= list_size)
|
|
|
|
memcpy(list, xattr_name, xattr_size);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
return (xattr_size);
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
2016-01-14 23:01:24 +00:00
|
|
|
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
static int
|
2016-01-14 23:01:24 +00:00
|
|
|
__zpl_xattr_acl_get_access(struct inode *ip, const char *name,
|
|
|
|
void *buffer, size_t size)
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
|
|
|
struct posix_acl *acl;
|
2016-01-14 23:01:24 +00:00
|
|
|
int type = ACL_TYPE_ACCESS;
|
2013-10-28 16:22:15 +00:00
|
|
|
int error;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2013-10-28 16:22:15 +00:00
|
|
|
if (strcmp(name, "") != 0)
|
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (-EOPNOTSUPP);
|
|
|
|
|
|
|
|
acl = zpl_get_acl(ip, type);
|
|
|
|
if (IS_ERR(acl))
|
|
|
|
return (PTR_ERR(acl));
|
|
|
|
if (acl == NULL)
|
|
|
|
return (-ENODATA);
|
|
|
|
|
|
|
|
error = zpl_acl_to_xattr(acl, buffer, size);
|
|
|
|
zpl_posix_acl_release(acl);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2016-01-14 23:01:24 +00:00
|
|
|
ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
static int
|
2016-01-14 23:01:24 +00:00
|
|
|
__zpl_xattr_acl_get_default(struct inode *ip, const char *name,
|
|
|
|
void *buffer, size_t size)
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
2016-01-14 23:01:24 +00:00
|
|
|
struct posix_acl *acl;
|
|
|
|
int type = ACL_TYPE_DEFAULT;
|
|
|
|
int error;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2016-01-14 23:01:24 +00:00
|
|
|
if (strcmp(name, "") != 0)
|
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2016-01-14 23:01:24 +00:00
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (-EOPNOTSUPP);
|
2015-11-23 23:06:46 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
acl = zpl_get_acl(ip, type);
|
|
|
|
if (IS_ERR(acl))
|
|
|
|
return (PTR_ERR(acl));
|
|
|
|
if (acl == NULL)
|
|
|
|
return (-ENODATA);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
error = zpl_acl_to_xattr(acl, buffer, size);
|
|
|
|
zpl_posix_acl_release(acl);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
return (error);
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
2016-01-14 23:01:24 +00:00
|
|
|
ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
static int
|
2016-01-14 23:01:24 +00:00
|
|
|
__zpl_xattr_acl_set_access(struct inode *ip, const char *name,
|
|
|
|
const void *value, size_t size, int flags)
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
|
|
|
struct posix_acl *acl;
|
2016-01-14 23:01:24 +00:00
|
|
|
int type = ACL_TYPE_ACCESS;
|
2013-10-28 16:22:15 +00:00
|
|
|
int error = 0;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2013-10-28 16:22:15 +00:00
|
|
|
if (strcmp(name, "") != 0)
|
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (-EOPNOTSUPP);
|
|
|
|
|
|
|
|
if (!zpl_inode_owner_or_capable(ip))
|
|
|
|
return (-EPERM);
|
|
|
|
|
|
|
|
if (value) {
|
|
|
|
acl = zpl_acl_from_xattr(value, size);
|
|
|
|
if (IS_ERR(acl))
|
|
|
|
return (PTR_ERR(acl));
|
|
|
|
else if (acl) {
|
2016-08-02 18:11:45 +00:00
|
|
|
error = zpl_posix_acl_valid(ip, acl);
|
2013-10-28 16:22:15 +00:00
|
|
|
if (error) {
|
|
|
|
zpl_posix_acl_release(acl);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
acl = NULL;
|
|
|
|
}
|
|
|
|
|
2016-11-09 18:37:17 +00:00
|
|
|
error = zpl_set_acl(ip, acl, type);
|
2013-10-28 16:22:15 +00:00
|
|
|
zpl_posix_acl_release(acl);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
2016-01-14 23:01:24 +00:00
|
|
|
ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
|
|
|
static int
|
2016-01-14 23:01:24 +00:00
|
|
|
__zpl_xattr_acl_set_default(struct inode *ip, const char *name,
|
|
|
|
const void *value, size_t size, int flags)
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
2016-01-14 23:01:24 +00:00
|
|
|
struct posix_acl *acl;
|
|
|
|
int type = ACL_TYPE_DEFAULT;
|
|
|
|
int error = 0;
|
2016-04-22 00:19:07 +00:00
|
|
|
/* xattr_resolve_name will do this for us if this is defined */
|
|
|
|
#ifndef HAVE_XATTR_HANDLER_NAME
|
2016-01-14 23:01:24 +00:00
|
|
|
if (strcmp(name, "") != 0)
|
|
|
|
return (-EINVAL);
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2016-01-14 23:01:24 +00:00
|
|
|
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
|
|
|
|
return (-EOPNOTSUPP);
|
2015-11-23 23:06:46 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
if (!zpl_inode_owner_or_capable(ip))
|
|
|
|
return (-EPERM);
|
2015-11-23 23:06:46 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
if (value) {
|
|
|
|
acl = zpl_acl_from_xattr(value, size);
|
|
|
|
if (IS_ERR(acl))
|
|
|
|
return (PTR_ERR(acl));
|
|
|
|
else if (acl) {
|
2016-08-02 18:11:45 +00:00
|
|
|
error = zpl_posix_acl_valid(ip, acl);
|
2016-01-14 23:01:24 +00:00
|
|
|
if (error) {
|
|
|
|
zpl_posix_acl_release(acl);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
acl = NULL;
|
|
|
|
}
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-11-09 18:37:17 +00:00
|
|
|
error = zpl_set_acl(ip, acl, type);
|
2016-01-14 23:01:24 +00:00
|
|
|
zpl_posix_acl_release(acl);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
return (error);
|
2013-10-28 16:22:15 +00:00
|
|
|
}
|
2016-01-14 23:01:24 +00:00
|
|
|
ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default);
|
2013-10-28 16:22:15 +00:00
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
/*
|
|
|
|
* ACL access xattr namespace handlers.
|
2016-04-22 00:19:07 +00:00
|
|
|
*
|
|
|
|
* Use .name instead of .prefix when available. xattr_resolve_name will match
|
|
|
|
* whole name and reject anything that has .name only as prefix.
|
2016-01-14 23:01:24 +00:00
|
|
|
*/
|
|
|
|
xattr_handler_t zpl_xattr_acl_access_handler =
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
2016-04-22 00:19:07 +00:00
|
|
|
#ifdef HAVE_XATTR_HANDLER_NAME
|
|
|
|
.name = XATTR_NAME_POSIX_ACL_ACCESS,
|
|
|
|
#else
|
2016-01-14 23:01:24 +00:00
|
|
|
.prefix = XATTR_NAME_POSIX_ACL_ACCESS,
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
.list = zpl_xattr_acl_list_access,
|
|
|
|
.get = zpl_xattr_acl_get_access,
|
|
|
|
.set = zpl_xattr_acl_set_access,
|
2016-01-14 23:01:24 +00:00
|
|
|
#if defined(HAVE_XATTR_LIST_SIMPLE) || \
|
|
|
|
defined(HAVE_XATTR_LIST_DENTRY) || \
|
|
|
|
defined(HAVE_XATTR_LIST_HANDLER)
|
2013-10-28 16:22:15 +00:00
|
|
|
.flags = ACL_TYPE_ACCESS,
|
2016-01-14 23:01:24 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
};
|
|
|
|
|
2016-01-14 23:01:24 +00:00
|
|
|
/*
|
|
|
|
* ACL default xattr namespace handlers.
|
2016-04-22 00:19:07 +00:00
|
|
|
*
|
|
|
|
* Use .name instead of .prefix when available. xattr_resolve_name will match
|
|
|
|
* whole name and reject anything that has .name only as prefix.
|
2016-01-14 23:01:24 +00:00
|
|
|
*/
|
|
|
|
xattr_handler_t zpl_xattr_acl_default_handler =
|
2013-10-28 16:22:15 +00:00
|
|
|
{
|
2016-04-22 00:19:07 +00:00
|
|
|
#ifdef HAVE_XATTR_HANDLER_NAME
|
|
|
|
.name = XATTR_NAME_POSIX_ACL_DEFAULT,
|
|
|
|
#else
|
2016-01-14 23:01:24 +00:00
|
|
|
.prefix = XATTR_NAME_POSIX_ACL_DEFAULT,
|
2016-04-22 00:19:07 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
.list = zpl_xattr_acl_list_default,
|
|
|
|
.get = zpl_xattr_acl_get_default,
|
|
|
|
.set = zpl_xattr_acl_set_default,
|
2016-01-14 23:01:24 +00:00
|
|
|
#if defined(HAVE_XATTR_LIST_SIMPLE) || \
|
|
|
|
defined(HAVE_XATTR_LIST_DENTRY) || \
|
|
|
|
defined(HAVE_XATTR_LIST_HANDLER)
|
2013-10-28 16:22:15 +00:00
|
|
|
.flags = ACL_TYPE_DEFAULT,
|
2016-01-14 23:01:24 +00:00
|
|
|
#endif
|
2013-10-28 16:22:15 +00:00
|
|
|
};
|
|
|
|
|
2013-11-02 23:40:26 +00:00
|
|
|
#endif /* CONFIG_FS_POSIX_ACL */
|
|
|
|
|
2011-02-11 00:16:52 +00:00
|
|
|
xattr_handler_t *zpl_xattr_handlers[] = {
|
2011-01-26 20:10:01 +00:00
|
|
|
&zpl_xattr_security_handler,
|
|
|
|
&zpl_xattr_trusted_handler,
|
|
|
|
&zpl_xattr_user_handler,
|
2013-11-02 23:40:26 +00:00
|
|
|
#ifdef CONFIG_FS_POSIX_ACL
|
2011-01-26 20:10:01 +00:00
|
|
|
&zpl_xattr_acl_access_handler,
|
2012-01-05 20:27:36 +00:00
|
|
|
&zpl_xattr_acl_default_handler,
|
2013-11-02 23:40:26 +00:00
|
|
|
#endif /* CONFIG_FS_POSIX_ACL */
|
2012-03-14 19:36:49 +00:00
|
|
|
NULL
|
2011-01-26 20:10:01 +00:00
|
|
|
};
|
2016-01-14 23:01:24 +00:00
|
|
|
|
|
|
|
static const struct xattr_handler *
|
|
|
|
zpl_xattr_handler(const char *name)
|
|
|
|
{
|
|
|
|
if (strncmp(name, XATTR_USER_PREFIX,
|
|
|
|
XATTR_USER_PREFIX_LEN) == 0)
|
|
|
|
return (&zpl_xattr_user_handler);
|
|
|
|
|
|
|
|
if (strncmp(name, XATTR_TRUSTED_PREFIX,
|
|
|
|
XATTR_TRUSTED_PREFIX_LEN) == 0)
|
|
|
|
return (&zpl_xattr_trusted_handler);
|
|
|
|
|
|
|
|
if (strncmp(name, XATTR_SECURITY_PREFIX,
|
|
|
|
XATTR_SECURITY_PREFIX_LEN) == 0)
|
|
|
|
return (&zpl_xattr_security_handler);
|
|
|
|
|
|
|
|
#ifdef CONFIG_FS_POSIX_ACL
|
|
|
|
if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS,
|
|
|
|
sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0)
|
|
|
|
return (&zpl_xattr_acl_access_handler);
|
|
|
|
|
|
|
|
if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT,
|
|
|
|
sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0)
|
|
|
|
return (&zpl_xattr_acl_default_handler);
|
|
|
|
#endif /* CONFIG_FS_POSIX_ACL */
|
|
|
|
|
|
|
|
return (NULL);
|
|
|
|
}
|
2016-10-28 20:37:00 +00:00
|
|
|
|
|
|
|
#if !defined(HAVE_POSIX_ACL_RELEASE) || defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY)
|
|
|
|
struct acl_rel_struct {
|
|
|
|
struct acl_rel_struct *next;
|
|
|
|
struct posix_acl *acl;
|
|
|
|
clock_t time;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define ACL_REL_GRACE (60*HZ)
|
|
|
|
#define ACL_REL_WINDOW (1*HZ)
|
|
|
|
#define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Lockless multi-producer single-consumer fifo list.
|
|
|
|
* Nodes are added to tail and removed from head. Tail pointer is our
|
|
|
|
* synchronization point. It always points to the next pointer of the last
|
|
|
|
* node, or head if list is empty.
|
|
|
|
*/
|
|
|
|
static struct acl_rel_struct *acl_rel_head = NULL;
|
|
|
|
static struct acl_rel_struct **acl_rel_tail = &acl_rel_head;
|
|
|
|
|
|
|
|
static void
|
|
|
|
zpl_posix_acl_free(void *arg)
|
|
|
|
{
|
|
|
|
struct acl_rel_struct *freelist = NULL;
|
|
|
|
struct acl_rel_struct *a;
|
|
|
|
clock_t new_time;
|
|
|
|
boolean_t refire = B_FALSE;
|
|
|
|
|
|
|
|
ASSERT3P(acl_rel_head, !=, NULL);
|
|
|
|
while (acl_rel_head) {
|
|
|
|
a = acl_rel_head;
|
|
|
|
if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) {
|
|
|
|
/*
|
|
|
|
* If a is the last node we need to reset tail, but we
|
|
|
|
* need to use cmpxchg to make sure it is still the
|
|
|
|
* last node.
|
|
|
|
*/
|
|
|
|
if (acl_rel_tail == &a->next) {
|
|
|
|
acl_rel_head = NULL;
|
|
|
|
if (cmpxchg(&acl_rel_tail, &a->next,
|
|
|
|
&acl_rel_head) == &a->next) {
|
|
|
|
ASSERT3P(a->next, ==, NULL);
|
|
|
|
a->next = freelist;
|
|
|
|
freelist = a;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* a is not last node, make sure next pointer is set
|
|
|
|
* by the adder and advance the head.
|
|
|
|
*/
|
|
|
|
while (ACCESS_ONCE(a->next) == NULL)
|
|
|
|
cpu_relax();
|
|
|
|
acl_rel_head = a->next;
|
|
|
|
a->next = freelist;
|
|
|
|
freelist = a;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* a is still in grace period. We are responsible to
|
|
|
|
* reschedule the free task, since adder will only do
|
|
|
|
* so if list is empty.
|
|
|
|
*/
|
|
|
|
new_time = a->time + ACL_REL_SCHED;
|
|
|
|
refire = B_TRUE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (refire)
|
2016-11-30 21:56:50 +00:00
|
|
|
taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
|
|
|
|
NULL, TQ_SLEEP, new_time);
|
2016-10-28 20:37:00 +00:00
|
|
|
|
|
|
|
while (freelist) {
|
|
|
|
a = freelist;
|
|
|
|
freelist = a->next;
|
|
|
|
kfree(a->acl);
|
|
|
|
kmem_free(a, sizeof (struct acl_rel_struct));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zpl_posix_acl_release_impl(struct posix_acl *acl)
|
|
|
|
{
|
|
|
|
struct acl_rel_struct *a, **prev;
|
|
|
|
|
|
|
|
a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP);
|
|
|
|
a->next = NULL;
|
|
|
|
a->acl = acl;
|
|
|
|
a->time = ddi_get_lbolt();
|
|
|
|
/* atomically points tail to us and get the previous tail */
|
|
|
|
prev = xchg(&acl_rel_tail, &a->next);
|
|
|
|
ASSERT3P(*prev, ==, NULL);
|
|
|
|
*prev = a;
|
|
|
|
/* if it was empty before, schedule the free task */
|
|
|
|
if (prev == &acl_rel_head)
|
2016-11-30 21:56:50 +00:00
|
|
|
taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
|
|
|
|
NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED);
|
2016-10-28 20:37:00 +00:00
|
|
|
}
|
|
|
|
#endif
|