1996-09-18 05:35:50 +00:00
|
|
|
|
/* Front-end tree definitions for GNU compiler.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
Copyright (C) 1989, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
2004-07-28 03:11:36 +00:00
|
|
|
|
2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
This file is part of GCC.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
|
|
|
the terms of the GNU General Public License as published by the Free
|
|
|
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
|
|
|
version.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
|
for more details.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
2002-02-01 18:16:02 +00:00
|
|
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
|
|
|
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
|
|
|
|
02111-1307, USA. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#ifndef GCC_TREE_H
|
|
|
|
|
#define GCC_TREE_H
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#include "machmode.h"
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#include "version.h"
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#include "input.h"
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Codes of tree nodes */
|
|
|
|
|
|
|
|
|
|
#define DEFTREECODE(SYM, STRING, TYPE, NARGS) SYM,
|
|
|
|
|
|
|
|
|
|
enum tree_code {
|
|
|
|
|
#include "tree.def"
|
|
|
|
|
|
|
|
|
|
LAST_AND_UNUSED_TREE_CODE /* A convenient way to get a value for
|
|
|
|
|
NUM_TREE_CODE. */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#undef DEFTREECODE
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Number of language-independent tree codes. */
|
|
|
|
|
#define NUM_TREE_CODES ((int) LAST_AND_UNUSED_TREE_CODE)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Indexed by enum tree_code, contains a character which is
|
|
|
|
|
`<' for a comparison expression, `1', for a unary arithmetic
|
|
|
|
|
expression, `2' for a binary arithmetic expression, `e' for
|
|
|
|
|
other types of expressions, `r' for a reference, `c' for a
|
|
|
|
|
constant, `d' for a decl, `t' for a type, `s' for a statement,
|
|
|
|
|
and `x' for anything else (TREE_LIST, IDENTIFIER, etc). */
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define MAX_TREE_CODES 256
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern const char tree_code_type[];
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TREE_CODE_CLASS(CODE) tree_code_type[(int) (CODE)]
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Returns nonzero iff CLASS is the tree-code class of an
|
1999-08-26 09:30:50 +00:00
|
|
|
|
expression. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define IS_EXPR_CODE_CLASS(CLASS) (strchr ("<12ers", (CLASS)) != 0)
|
|
|
|
|
|
|
|
|
|
/* Returns nonzero iff NODE is an expression of some kind. */
|
|
|
|
|
|
|
|
|
|
#define EXPR_P(NODE) IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (NODE)))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Number of argument-words in each kind of tree-node. */
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern const unsigned char tree_code_length[];
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TREE_CODE_LENGTH(CODE) tree_code_length[(int) (CODE)]
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Names of tree components. */
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern const char *const tree_code_name[];
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Classify which part of the compiler has defined a given builtin function.
|
|
|
|
|
Note that we assume below that this is no more than two bits. */
|
|
|
|
|
enum built_in_class
|
|
|
|
|
{
|
|
|
|
|
NOT_BUILT_IN = 0,
|
|
|
|
|
BUILT_IN_FRONTEND,
|
|
|
|
|
BUILT_IN_MD,
|
|
|
|
|
BUILT_IN_NORMAL
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Names for the above. */
|
|
|
|
|
extern const char *const built_in_class_names[4];
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Codes that identify the various built in functions
|
|
|
|
|
so that expand_call can identify them quickly. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define DEF_BUILTIN(ENUM, N, C, T, LT, B, F, NA, AT, IM) ENUM,
|
1996-09-18 05:35:50 +00:00
|
|
|
|
enum built_in_function
|
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#include "builtins.def"
|
|
|
|
|
|
|
|
|
|
/* Upper bound on non-language-specific builtins. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
END_BUILTINS
|
|
|
|
|
};
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#undef DEF_BUILTIN
|
|
|
|
|
|
|
|
|
|
/* Names for the above. */
|
|
|
|
|
extern const char *const built_in_names[(int) END_BUILTINS];
|
|
|
|
|
|
|
|
|
|
/* An array of _DECL trees for the above. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern GTY(()) tree built_in_decls[(int) END_BUILTINS];
|
|
|
|
|
extern GTY(()) tree implicit_built_in_decls[(int) END_BUILTINS];
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* The definition of tree nodes fills the next several pages. */
|
|
|
|
|
|
|
|
|
|
/* A tree node can represent a data type, a variable, an expression
|
|
|
|
|
or a statement. Each node has a TREE_CODE which says what kind of
|
|
|
|
|
thing it represents. Some common codes are:
|
|
|
|
|
INTEGER_TYPE -- represents a type of integers.
|
|
|
|
|
ARRAY_TYPE -- represents a type of pointer.
|
|
|
|
|
VAR_DECL -- represents a declared variable.
|
|
|
|
|
INTEGER_CST -- represents a constant integer value.
|
|
|
|
|
PLUS_EXPR -- represents a sum (an expression).
|
|
|
|
|
|
|
|
|
|
As for the contents of a tree node: there are some fields
|
|
|
|
|
that all nodes share. Each TREE_CODE has various special-purpose
|
|
|
|
|
fields as well. The fields of a node are never accessed directly,
|
|
|
|
|
always through accessor macros. */
|
|
|
|
|
|
|
|
|
|
/* Every kind of tree node starts with this structure,
|
|
|
|
|
so all nodes have these fields.
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
See the accessor macros, defined below, for documentation of the
|
|
|
|
|
fields. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_common GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree chain;
|
|
|
|
|
tree type;
|
2002-05-09 20:02:13 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
ENUM_BITFIELD(tree_code) code : 8;
|
2002-05-09 20:02:13 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
unsigned side_effects_flag : 1;
|
|
|
|
|
unsigned constant_flag : 1;
|
|
|
|
|
unsigned addressable_flag : 1;
|
|
|
|
|
unsigned volatile_flag : 1;
|
|
|
|
|
unsigned readonly_flag : 1;
|
|
|
|
|
unsigned unsigned_flag : 1;
|
|
|
|
|
unsigned asm_written_flag: 1;
|
2002-05-09 20:02:13 +00:00
|
|
|
|
unsigned unused_0 : 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
unsigned used_flag : 1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
unsigned nothrow_flag : 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
unsigned static_flag : 1;
|
|
|
|
|
unsigned public_flag : 1;
|
|
|
|
|
unsigned private_flag : 1;
|
|
|
|
|
unsigned protected_flag : 1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
unsigned deprecated_flag : 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned unused_1 : 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
unsigned lang_flag_0 : 1;
|
|
|
|
|
unsigned lang_flag_1 : 1;
|
|
|
|
|
unsigned lang_flag_2 : 1;
|
|
|
|
|
unsigned lang_flag_3 : 1;
|
|
|
|
|
unsigned lang_flag_4 : 1;
|
|
|
|
|
unsigned lang_flag_5 : 1;
|
|
|
|
|
unsigned lang_flag_6 : 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned unused_2 : 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* The following table lists the uses of each of the above flags and
|
|
|
|
|
for which types of nodes they are defined. Note that expressions
|
|
|
|
|
include decls.
|
|
|
|
|
|
|
|
|
|
addressable_flag:
|
|
|
|
|
|
|
|
|
|
TREE_ADDRESSABLE in
|
2004-07-28 03:11:36 +00:00
|
|
|
|
VAR_DECL, FUNCTION_DECL, FIELD_DECL, CONSTRUCTOR, LABEL_DECL,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
..._TYPE, IDENTIFIER_NODE.
|
|
|
|
|
In a STMT_EXPR, it means we want the result of the enclosed
|
|
|
|
|
expression.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
static_flag:
|
|
|
|
|
|
|
|
|
|
TREE_STATIC in
|
|
|
|
|
VAR_DECL, FUNCTION_DECL, CONSTRUCTOR, ADDR_EXPR
|
|
|
|
|
TREE_NO_UNUSED_WARNING in
|
2004-07-28 03:11:36 +00:00
|
|
|
|
CONVERT_EXPR, NOP_EXPR, COMPOUND_EXPR
|
1999-08-26 09:30:50 +00:00
|
|
|
|
TREE_VIA_VIRTUAL in
|
|
|
|
|
TREE_LIST or TREE_VEC
|
|
|
|
|
TREE_CONSTANT_OVERFLOW in
|
2002-05-09 20:02:13 +00:00
|
|
|
|
INTEGER_CST, REAL_CST, COMPLEX_CST, VECTOR_CST
|
1999-08-26 09:30:50 +00:00
|
|
|
|
TREE_SYMBOL_REFERENCED in
|
|
|
|
|
IDENTIFIER_NODE
|
2002-05-09 20:02:13 +00:00
|
|
|
|
CLEANUP_EH_ONLY in
|
|
|
|
|
TARGET_EXPR, WITH_CLEANUP_EXPR, CLEANUP_STMT,
|
|
|
|
|
TREE_LIST elements of a block's cleanup list.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
public_flag:
|
|
|
|
|
|
|
|
|
|
TREE_OVERFLOW in
|
2002-05-09 20:02:13 +00:00
|
|
|
|
INTEGER_CST, REAL_CST, COMPLEX_CST, VECTOR_CST
|
1999-08-26 09:30:50 +00:00
|
|
|
|
TREE_PUBLIC in
|
2002-02-01 18:16:02 +00:00
|
|
|
|
VAR_DECL or FUNCTION_DECL or IDENTIFIER_NODE
|
1999-10-16 06:09:09 +00:00
|
|
|
|
EXPR_WFL_EMIT_LINE_NOTE in
|
|
|
|
|
EXPR_WITH_FILE_LOCATION
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
private_flag:
|
|
|
|
|
|
|
|
|
|
TREE_PRIVATE in
|
2002-05-09 20:02:13 +00:00
|
|
|
|
..._DECL
|
2004-07-28 03:11:36 +00:00
|
|
|
|
CALL_EXPR_HAS_RETURN_SLOT_ADDR in
|
|
|
|
|
CALL_EXPR
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
protected_flag:
|
|
|
|
|
|
|
|
|
|
TREE_PROTECTED in
|
|
|
|
|
BLOCK
|
2002-05-09 20:02:13 +00:00
|
|
|
|
..._DECL
|
2004-07-28 03:11:36 +00:00
|
|
|
|
CALL_FROM_THUNK_P in
|
|
|
|
|
CALL_EXPR
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
side_effects_flag:
|
|
|
|
|
|
|
|
|
|
TREE_SIDE_EFFECTS in
|
|
|
|
|
all expressions
|
|
|
|
|
|
|
|
|
|
volatile_flag:
|
|
|
|
|
|
|
|
|
|
TREE_THIS_VOLATILE in
|
|
|
|
|
all expressions
|
|
|
|
|
TYPE_VOLATILE in
|
|
|
|
|
..._TYPE
|
|
|
|
|
|
|
|
|
|
readonly_flag:
|
|
|
|
|
|
|
|
|
|
TREE_READONLY in
|
|
|
|
|
all expressions
|
|
|
|
|
TYPE_READONLY in
|
|
|
|
|
..._TYPE
|
|
|
|
|
|
|
|
|
|
constant_flag:
|
|
|
|
|
|
|
|
|
|
TREE_CONSTANT in
|
|
|
|
|
all expressions
|
|
|
|
|
|
|
|
|
|
unsigned_flag:
|
|
|
|
|
|
|
|
|
|
TREE_UNSIGNED in
|
|
|
|
|
INTEGER_TYPE, ENUMERAL_TYPE, FIELD_DECL
|
|
|
|
|
SAVE_EXPR_NOPLACEHOLDER in
|
|
|
|
|
SAVE_EXPR
|
|
|
|
|
|
|
|
|
|
asm_written_flag:
|
|
|
|
|
|
|
|
|
|
TREE_ASM_WRITTEN in
|
|
|
|
|
VAR_DECL, FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE
|
|
|
|
|
BLOCK
|
|
|
|
|
|
|
|
|
|
used_flag:
|
|
|
|
|
|
|
|
|
|
TREE_USED in
|
|
|
|
|
expressions, IDENTIFIER_NODE
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
nothrow_flag:
|
|
|
|
|
|
|
|
|
|
TREE_NOTHROW in
|
|
|
|
|
CALL_EXPR, FUNCTION_DECL
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TYPE_ALIGN_OK in
|
2002-02-01 18:16:02 +00:00
|
|
|
|
..._TYPE
|
|
|
|
|
|
|
|
|
|
deprecated_flag:
|
|
|
|
|
|
|
|
|
|
TREE_DEPRECATED in
|
|
|
|
|
..._DECL
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
*/
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Define accessors for the fields that all tree nodes have
|
|
|
|
|
(though some fields are not used for all kinds of nodes). */
|
|
|
|
|
|
|
|
|
|
/* The tree-code says what kind of node it is.
|
|
|
|
|
Codes are defined in tree.def. */
|
|
|
|
|
#define TREE_CODE(NODE) ((enum tree_code) (NODE)->common.code)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define TREE_SET_CODE(NODE, VALUE) ((NODE)->common.code = (VALUE))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* When checking is enabled, errors will be generated if a tree node
|
2002-02-01 18:16:02 +00:00
|
|
|
|
is accessed incorrectly. The macros abort with a fatal error. */
|
|
|
|
|
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define TREE_CHECK(T, CODE) __extension__ \
|
|
|
|
|
({ const tree __t = (T); \
|
|
|
|
|
if (TREE_CODE (__t) != (CODE)) \
|
|
|
|
|
tree_check_failed (__t, (CODE), __FILE__, __LINE__, __FUNCTION__); \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
__t; })
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
#define TREE_CLASS_CHECK(T, CLASS) __extension__ \
|
|
|
|
|
({ const tree __t = (T); \
|
|
|
|
|
if (TREE_CODE_CLASS (TREE_CODE(__t)) != (CLASS)) \
|
|
|
|
|
tree_class_check_failed (__t, (CLASS), __FILE__, __LINE__, \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
__FUNCTION__); \
|
|
|
|
|
__t; })
|
|
|
|
|
|
|
|
|
|
/* These checks have to be special cased. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define EXPR_CHECK(T) __extension__ \
|
|
|
|
|
({ const tree __t = (T); \
|
|
|
|
|
char const __c = TREE_CODE_CLASS (TREE_CODE (__t)); \
|
|
|
|
|
if (!IS_EXPR_CODE_CLASS (__c)) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree_class_check_failed (__t, 'e', __FILE__, __LINE__, \
|
|
|
|
|
__FUNCTION__); \
|
|
|
|
|
__t; })
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define TREE_VEC_ELT_CHECK(T, I) __extension__ \
|
|
|
|
|
(*({const tree __t = (T); \
|
|
|
|
|
const int __i = (I); \
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TREE_CODE (__t) != TREE_VEC) \
|
|
|
|
|
tree_check_failed (__t, TREE_VEC, \
|
|
|
|
|
__FILE__, __LINE__, __FUNCTION__); \
|
|
|
|
|
if (__i < 0 || __i >= __t->vec.length) \
|
|
|
|
|
tree_vec_elt_check_failed (__i, __t->vec.length, \
|
|
|
|
|
__FILE__, __LINE__, __FUNCTION__); \
|
|
|
|
|
&__t->vec.a[__i]; }))
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Special checks for TREE_OPERANDs. */
|
|
|
|
|
#define TREE_OPERAND_CHECK(T, I) __extension__ \
|
|
|
|
|
(*({const tree __t = EXPR_CHECK (T); \
|
|
|
|
|
const int __i = (I); \
|
|
|
|
|
if (__i < 0 || __i >= TREE_CODE_LENGTH (TREE_CODE (__t))) \
|
|
|
|
|
tree_operand_check_failed (__i, TREE_CODE (__t), \
|
|
|
|
|
__FILE__, __LINE__, __FUNCTION__); \
|
|
|
|
|
&__t->exp.operands[__i]; }))
|
|
|
|
|
|
|
|
|
|
#define TREE_OPERAND_CHECK_CODE(T, CODE, I) __extension__ \
|
|
|
|
|
(*({const tree __t = (T); \
|
|
|
|
|
const int __i = (I); \
|
|
|
|
|
if (TREE_CODE (__t) != CODE) \
|
|
|
|
|
tree_check_failed (__t, CODE, __FILE__, __LINE__, __FUNCTION__); \
|
|
|
|
|
if (__i < 0 || __i >= TREE_CODE_LENGTH (CODE)) \
|
|
|
|
|
tree_operand_check_failed (__i, (CODE), \
|
|
|
|
|
__FILE__, __LINE__, __FUNCTION__); \
|
|
|
|
|
&__t->exp.operands[__i]; }))
|
|
|
|
|
|
|
|
|
|
#define TREE_RTL_OPERAND_CHECK(T, CODE, I) __extension__ \
|
|
|
|
|
(*(rtx *) \
|
|
|
|
|
({const tree __t = (T); \
|
|
|
|
|
const int __i = (I); \
|
|
|
|
|
if (TREE_CODE (__t) != (CODE)) \
|
|
|
|
|
tree_check_failed (__t, (CODE), __FILE__, __LINE__, __FUNCTION__); \
|
|
|
|
|
if (__i < 0 || __i >= TREE_CODE_LENGTH ((CODE))) \
|
|
|
|
|
tree_operand_check_failed (__i, (CODE), \
|
|
|
|
|
__FILE__, __LINE__, __FUNCTION__); \
|
|
|
|
|
&__t->exp.operands[__i]; }))
|
|
|
|
|
|
|
|
|
|
extern void tree_check_failed (const tree, enum tree_code,
|
|
|
|
|
const char *, int, const char *)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
ATTRIBUTE_NORETURN;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void tree_class_check_failed (const tree, int,
|
|
|
|
|
const char *, int, const char *)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
ATTRIBUTE_NORETURN;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void tree_vec_elt_check_failed (int, int, const char *,
|
|
|
|
|
int, const char *)
|
|
|
|
|
ATTRIBUTE_NORETURN;
|
|
|
|
|
|
|
|
|
|
extern void tree_operand_check_failed (int, enum tree_code,
|
|
|
|
|
const char *, int, const char *)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
ATTRIBUTE_NORETURN;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#else /* not ENABLE_TREE_CHECKING, or not gcc */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define TREE_CHECK(T, CODE) (T)
|
|
|
|
|
#define TREE_CLASS_CHECK(T, CODE) (T)
|
|
|
|
|
#define EXPR_CHECK(T) (T)
|
|
|
|
|
#define TREE_VEC_ELT_CHECK(T, I) ((T)->vec.a[I])
|
|
|
|
|
#define TREE_OPERAND_CHECK(T, I) ((T)->exp.operands[I])
|
|
|
|
|
#define TREE_OPERAND_CHECK_CODE(T, CODE, I) ((T)->exp.operands[I])
|
|
|
|
|
#define TREE_RTL_OPERAND_CHECK(T, CODE, I) (*(rtx *) &((T)->exp.operands[I]))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#endif
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
#include "tree-check.h"
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define TYPE_CHECK(T) TREE_CLASS_CHECK (T, 't')
|
|
|
|
|
#define DECL_CHECK(T) TREE_CLASS_CHECK (T, 'd')
|
|
|
|
|
#define CST_CHECK(T) TREE_CLASS_CHECK (T, 'c')
|
|
|
|
|
#define STMT_CHECK(T) TREE_CLASS_CHECK (T, 's')
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In all nodes that are expressions, this is the data type of the expression.
|
|
|
|
|
In POINTER_TYPE nodes, this is the type that the pointer points to.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
In ARRAY_TYPE nodes, this is the type of the elements.
|
|
|
|
|
In VECTOR_TYPE nodes, this is the type of the elements. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#define TREE_TYPE(NODE) ((NODE)->common.type)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Here is how primitive or already-canonicalized types' hash codes
|
|
|
|
|
are made. */
|
|
|
|
|
#define TYPE_HASH(TYPE) ((size_t) (TYPE) & 0777777)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Nodes are chained together for many purposes.
|
|
|
|
|
Types are chained together to record them for being output to the debugger
|
|
|
|
|
(see the function `chain_type').
|
|
|
|
|
Decls in the same scope are chained together to record the contents
|
|
|
|
|
of the scope.
|
|
|
|
|
Statement nodes for successive statements used to be chained together.
|
|
|
|
|
Often lists of things are represented by TREE_LIST nodes that
|
|
|
|
|
are chained together. */
|
|
|
|
|
|
|
|
|
|
#define TREE_CHAIN(NODE) ((NODE)->common.chain)
|
|
|
|
|
|
|
|
|
|
/* Given an expression as a tree, strip any NON_LVALUE_EXPRs and NOP_EXPRs
|
|
|
|
|
that don't change the machine mode. */
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define STRIP_NOPS(EXP) \
|
1996-09-18 05:35:50 +00:00
|
|
|
|
while ((TREE_CODE (EXP) == NOP_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == CONVERT_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == NON_LVALUE_EXPR) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& TREE_OPERAND (EXP, 0) != error_mark_node \
|
1996-09-18 05:35:50 +00:00
|
|
|
|
&& (TYPE_MODE (TREE_TYPE (EXP)) \
|
|
|
|
|
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (EXP, 0))))) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
(EXP) = TREE_OPERAND (EXP, 0)
|
|
|
|
|
|
|
|
|
|
/* Like STRIP_NOPS, but don't let the signedness change either. */
|
|
|
|
|
|
|
|
|
|
#define STRIP_SIGN_NOPS(EXP) \
|
|
|
|
|
while ((TREE_CODE (EXP) == NOP_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == CONVERT_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == NON_LVALUE_EXPR) \
|
|
|
|
|
&& TREE_OPERAND (EXP, 0) != error_mark_node \
|
|
|
|
|
&& (TYPE_MODE (TREE_TYPE (EXP)) \
|
|
|
|
|
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (EXP, 0)))) \
|
|
|
|
|
&& (TREE_UNSIGNED (TREE_TYPE (EXP)) \
|
|
|
|
|
== TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (EXP, 0))))) \
|
|
|
|
|
(EXP) = TREE_OPERAND (EXP, 0)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Like STRIP_NOPS, but don't alter the TREE_TYPE main variant either. */
|
|
|
|
|
|
|
|
|
|
#define STRIP_MAIN_TYPE_NOPS(EXP) \
|
|
|
|
|
while ((TREE_CODE (EXP) == NOP_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == CONVERT_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == NON_LVALUE_EXPR) \
|
|
|
|
|
&& TREE_OPERAND (EXP, 0) != error_mark_node \
|
|
|
|
|
&& (TYPE_MAIN_VARIANT (TREE_TYPE (EXP)) \
|
|
|
|
|
== TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (EXP, 0))))) \
|
|
|
|
|
(EXP) = TREE_OPERAND (EXP, 0)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Like STRIP_NOPS, but don't alter the TREE_TYPE either. */
|
|
|
|
|
|
|
|
|
|
#define STRIP_TYPE_NOPS(EXP) \
|
|
|
|
|
while ((TREE_CODE (EXP) == NOP_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == CONVERT_EXPR \
|
|
|
|
|
|| TREE_CODE (EXP) == NON_LVALUE_EXPR) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& TREE_OPERAND (EXP, 0) != error_mark_node \
|
1996-09-18 05:35:50 +00:00
|
|
|
|
&& (TREE_TYPE (EXP) \
|
|
|
|
|
== TREE_TYPE (TREE_OPERAND (EXP, 0)))) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
(EXP) = TREE_OPERAND (EXP, 0)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero if TYPE represents an integral type. Note that we do not
|
|
|
|
|
include COMPLEX types here. */
|
|
|
|
|
|
|
|
|
|
#define INTEGRAL_TYPE_P(TYPE) \
|
|
|
|
|
(TREE_CODE (TYPE) == INTEGER_TYPE || TREE_CODE (TYPE) == ENUMERAL_TYPE \
|
|
|
|
|
|| TREE_CODE (TYPE) == BOOLEAN_TYPE || TREE_CODE (TYPE) == CHAR_TYPE)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Nonzero if TYPE represents a scalar floating-point type. */
|
|
|
|
|
|
|
|
|
|
#define SCALAR_FLOAT_TYPE_P(TYPE) (TREE_CODE (TYPE) == REAL_TYPE)
|
|
|
|
|
|
|
|
|
|
/* Nonzero if TYPE represents a complex floating-point type. */
|
|
|
|
|
|
|
|
|
|
#define COMPLEX_FLOAT_TYPE_P(TYPE) \
|
|
|
|
|
(TREE_CODE (TYPE) == COMPLEX_TYPE \
|
|
|
|
|
&& TREE_CODE (TREE_TYPE (TYPE)) == REAL_TYPE)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Nonzero if TYPE represents a floating-point type, including complex
|
|
|
|
|
floating-point types. */
|
|
|
|
|
|
|
|
|
|
#define FLOAT_TYPE_P(TYPE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
(SCALAR_FLOAT_TYPE_P (TYPE) || COMPLEX_FLOAT_TYPE_P (TYPE))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Nonzero if TYPE represents an aggregate (multi-component) type. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
#define AGGREGATE_TYPE_P(TYPE) \
|
|
|
|
|
(TREE_CODE (TYPE) == ARRAY_TYPE || TREE_CODE (TYPE) == RECORD_TYPE \
|
|
|
|
|
|| TREE_CODE (TYPE) == UNION_TYPE || TREE_CODE (TYPE) == QUAL_UNION_TYPE \
|
|
|
|
|
|| TREE_CODE (TYPE) == SET_TYPE)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Nonzero if TYPE represents a pointer or reference type.
|
|
|
|
|
(It should be renamed to INDIRECT_TYPE_P.) */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
#define POINTER_TYPE_P(TYPE) \
|
|
|
|
|
(TREE_CODE (TYPE) == POINTER_TYPE || TREE_CODE (TYPE) == REFERENCE_TYPE)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Nonzero if this type is a complete type. */
|
|
|
|
|
#define COMPLETE_TYPE_P(NODE) (TYPE_SIZE (NODE) != NULL_TREE)
|
|
|
|
|
|
|
|
|
|
/* Nonzero if this type is the (possibly qualified) void type. */
|
|
|
|
|
#define VOID_TYPE_P(NODE) (TREE_CODE (NODE) == VOID_TYPE)
|
|
|
|
|
|
|
|
|
|
/* Nonzero if this type is complete or is cv void. */
|
|
|
|
|
#define COMPLETE_OR_VOID_TYPE_P(NODE) \
|
|
|
|
|
(COMPLETE_TYPE_P (NODE) || VOID_TYPE_P (NODE))
|
|
|
|
|
|
|
|
|
|
/* Nonzero if this type is complete or is an array with unspecified bound. */
|
|
|
|
|
#define COMPLETE_OR_UNBOUND_ARRAY_TYPE_P(NODE) \
|
|
|
|
|
(COMPLETE_TYPE_P (TREE_CODE (NODE) == ARRAY_TYPE ? TREE_TYPE (NODE) : (NODE)))
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Nonzero if TYPE represents a type. */
|
|
|
|
|
|
|
|
|
|
#define TYPE_P(TYPE) (TREE_CODE_CLASS (TREE_CODE (TYPE)) == 't')
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Define many boolean fields that all tree nodes have. */
|
|
|
|
|
|
|
|
|
|
/* In VAR_DECL nodes, nonzero means address of this is needed.
|
|
|
|
|
So it cannot be in a register.
|
|
|
|
|
In a FUNCTION_DECL, nonzero means its address is needed.
|
|
|
|
|
So it must be compiled even if it is an inline function.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
In a FIELD_DECL node, it means that the programmer is permitted to
|
|
|
|
|
construct the address of this field. This is used for aliasing
|
|
|
|
|
purposes: see record_component_aliases.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
In CONSTRUCTOR nodes, it means object constructed must be in memory.
|
2003-07-11 03:40:53 +00:00
|
|
|
|
In LABEL_DECL nodes, it means a goto for this label has been seen
|
1996-09-18 05:35:50 +00:00
|
|
|
|
from a place outside all binding contours that restore stack levels.
|
|
|
|
|
In ..._TYPE nodes, it means that objects of this type must
|
|
|
|
|
be fully addressable. This means that pieces of this
|
|
|
|
|
object cannot go into register parameters, for example.
|
|
|
|
|
In IDENTIFIER_NODEs, this means that some extern decl for this name
|
|
|
|
|
had its address taken. That matters for inline functions. */
|
|
|
|
|
#define TREE_ADDRESSABLE(NODE) ((NODE)->common.addressable_flag)
|
|
|
|
|
|
|
|
|
|
/* In a VAR_DECL, nonzero means allocate static storage.
|
|
|
|
|
In a FUNCTION_DECL, nonzero if function has been defined.
|
|
|
|
|
In a CONSTRUCTOR, nonzero means allocate static storage. */
|
|
|
|
|
#define TREE_STATIC(NODE) ((NODE)->common.static_flag)
|
|
|
|
|
|
2002-05-09 20:02:13 +00:00
|
|
|
|
/* In a TARGET_EXPR, WITH_CLEANUP_EXPR, CLEANUP_STMT, or element of a
|
|
|
|
|
block's cleanup list, means that the pertinent cleanup should only be
|
|
|
|
|
executed if an exception is thrown, not on normal exit of its scope. */
|
|
|
|
|
#define CLEANUP_EH_ONLY(NODE) ((NODE)->common.static_flag)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In a CONVERT_EXPR, NOP_EXPR or COMPOUND_EXPR, this means the node was
|
|
|
|
|
made implicitly and should not lead to an "unused value" warning. */
|
|
|
|
|
#define TREE_NO_UNUSED_WARNING(NODE) ((NODE)->common.static_flag)
|
|
|
|
|
|
|
|
|
|
/* Nonzero for a TREE_LIST or TREE_VEC node means that the derivation
|
|
|
|
|
chain is via a `virtual' declaration. */
|
|
|
|
|
#define TREE_VIA_VIRTUAL(NODE) ((NODE)->common.static_flag)
|
|
|
|
|
|
2002-05-09 20:02:13 +00:00
|
|
|
|
/* In an INTEGER_CST, REAL_CST, COMPLEX_CST, or VECTOR_CST this means
|
|
|
|
|
there was an overflow in folding. This is distinct from
|
|
|
|
|
TREE_OVERFLOW because ANSI C requires a diagnostic when overflows
|
|
|
|
|
occur in constant expressions. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#define TREE_CONSTANT_OVERFLOW(NODE) ((NODE)->common.static_flag)
|
|
|
|
|
|
|
|
|
|
/* In an IDENTIFIER_NODE, this means that assemble_name was called with
|
|
|
|
|
this string as an argument. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TREE_SYMBOL_REFERENCED(NODE) \
|
|
|
|
|
(IDENTIFIER_NODE_CHECK (NODE)->common.static_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-05-09 20:02:13 +00:00
|
|
|
|
/* In an INTEGER_CST, REAL_CST, COMPLEX_CST, or VECTOR_CST, this means
|
|
|
|
|
there was an overflow in folding, and no warning has been issued
|
|
|
|
|
for this subexpression. TREE_OVERFLOW implies
|
|
|
|
|
TREE_CONSTANT_OVERFLOW, but not vice versa. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#define TREE_OVERFLOW(NODE) ((NODE)->common.public_flag)
|
|
|
|
|
|
|
|
|
|
/* In a VAR_DECL or FUNCTION_DECL,
|
|
|
|
|
nonzero means name is to be accessible from outside this module.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
In an IDENTIFIER_NODE, nonzero means an external declaration
|
1996-09-18 05:35:50 +00:00
|
|
|
|
accessible from outside this module was previously seen
|
|
|
|
|
for this name in an inner scope. */
|
|
|
|
|
#define TREE_PUBLIC(NODE) ((NODE)->common.public_flag)
|
|
|
|
|
|
|
|
|
|
/* In any expression, nonzero means it has side effects or reevaluation
|
|
|
|
|
of the whole expression could produce a different value.
|
|
|
|
|
This is set if any subexpression is a function call, a side effect
|
|
|
|
|
or a reference to a volatile variable.
|
|
|
|
|
In a ..._DECL, this is set only if the declaration said `volatile'. */
|
|
|
|
|
#define TREE_SIDE_EFFECTS(NODE) ((NODE)->common.side_effects_flag)
|
|
|
|
|
|
|
|
|
|
/* Nonzero means this expression is volatile in the C sense:
|
|
|
|
|
its address should be of type `volatile WHATEVER *'.
|
|
|
|
|
In other words, the declared item is volatile qualified.
|
|
|
|
|
This is used in _DECL nodes and _REF nodes.
|
|
|
|
|
|
|
|
|
|
In a ..._TYPE node, means this type is volatile-qualified.
|
|
|
|
|
But use TYPE_VOLATILE instead of this macro when the node is a type,
|
|
|
|
|
because eventually we may make that a different bit.
|
|
|
|
|
|
|
|
|
|
If this bit is set in an expression, so is TREE_SIDE_EFFECTS. */
|
|
|
|
|
#define TREE_THIS_VOLATILE(NODE) ((NODE)->common.volatile_flag)
|
|
|
|
|
|
|
|
|
|
/* In a VAR_DECL, PARM_DECL or FIELD_DECL, or any kind of ..._REF node,
|
|
|
|
|
nonzero means it may not be the lhs of an assignment.
|
|
|
|
|
In a ..._TYPE node, means this type is const-qualified
|
|
|
|
|
(but the macro TYPE_READONLY should be used instead of this macro
|
|
|
|
|
when the node is a type). */
|
|
|
|
|
#define TREE_READONLY(NODE) ((NODE)->common.readonly_flag)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Nonzero if NODE is a _DECL with TREE_READONLY set. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TREE_READONLY_DECL_P(NODE) (TREE_READONLY (NODE) && DECL_P (NODE))
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Value of expression is constant.
|
|
|
|
|
Always appears in all ..._CST nodes.
|
|
|
|
|
May also appear in an arithmetic expression, an ADDR_EXPR or a CONSTRUCTOR
|
|
|
|
|
if the value is constant. */
|
|
|
|
|
#define TREE_CONSTANT(NODE) ((NODE)->common.constant_flag)
|
|
|
|
|
|
|
|
|
|
/* In INTEGER_TYPE or ENUMERAL_TYPE nodes, means an unsigned type.
|
2004-07-28 03:11:36 +00:00
|
|
|
|
In FIELD_DECL nodes, means an unsigned bit field. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#define TREE_UNSIGNED(NODE) ((NODE)->common.unsigned_flag)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_TRAP_SIGNED(NODE) \
|
|
|
|
|
(flag_trapv && ! TREE_UNSIGNED (TYPE_CHECK (NODE)))
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Nonzero in a VAR_DECL means assembler code has been written.
|
|
|
|
|
Nonzero in a FUNCTION_DECL means that the function has been compiled.
|
|
|
|
|
This is interesting in an inline function, since it might not need
|
|
|
|
|
to be compiled separately.
|
|
|
|
|
Nonzero in a RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
|
|
|
|
|
if the sdb debugging info for the type has been written.
|
|
|
|
|
In a BLOCK node, nonzero if reorder_blocks has already seen this block. */
|
|
|
|
|
#define TREE_ASM_WRITTEN(NODE) ((NODE)->common.asm_written_flag)
|
|
|
|
|
|
|
|
|
|
/* Nonzero in a _DECL if the name is used in its scope.
|
|
|
|
|
Nonzero in an expr node means inhibit warning if value is unused.
|
|
|
|
|
In IDENTIFIER_NODEs, this means that some extern decl for this name
|
|
|
|
|
was used. */
|
|
|
|
|
#define TREE_USED(NODE) ((NODE)->common.used_flag)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In a FUNCTION_DECL, nonzero means a call to the function cannot throw
|
|
|
|
|
an exception. In a CALL_EXPR, nonzero means the call cannot throw. */
|
|
|
|
|
#define TREE_NOTHROW(NODE) ((NODE)->common.nothrow_flag)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* In a CALL_EXPR, means that the address of the return slot is part of the
|
|
|
|
|
argument list. */
|
|
|
|
|
#define CALL_EXPR_HAS_RETURN_SLOT_ADDR(NODE) ((NODE)->common.private_flag)
|
|
|
|
|
|
|
|
|
|
/* In a CALL_EXPR, means that the call is the jump from a thunk to the
|
|
|
|
|
thunked-to function. */
|
|
|
|
|
#define CALL_FROM_THUNK_P(NODE) ((NODE)->common.protected_flag)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In a type, nonzero means that all objects of the type are guaranteed by the
|
|
|
|
|
language or front-end to be properly aligned, so we can indicate that a MEM
|
|
|
|
|
of this type is aligned at least to the alignment of the type, even if it
|
|
|
|
|
doesn't appear that it is. We see this, for example, in object-oriented
|
|
|
|
|
languages where a tag field may show this is an object of a more-aligned
|
|
|
|
|
variant of the more generic type. */
|
|
|
|
|
#define TYPE_ALIGN_OK(NODE) (TYPE_CHECK (NODE)->common.nothrow_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Used in classes in C++. */
|
|
|
|
|
#define TREE_PRIVATE(NODE) ((NODE)->common.private_flag)
|
|
|
|
|
/* Used in classes in C++.
|
|
|
|
|
In a BLOCK node, this is BLOCK_HANDLER_BLOCK. */
|
|
|
|
|
#define TREE_PROTECTED(NODE) ((NODE)->common.protected_flag)
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Nonzero in an IDENTIFIER_NODE if the use of the name is defined as a
|
2002-02-01 18:16:02 +00:00
|
|
|
|
deprecated feature by __attribute__((deprecated)). */
|
|
|
|
|
#define TREE_DEPRECATED(NODE) ((NODE)->common.deprecated_flag)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* These flags are available for each language front end to use internally. */
|
|
|
|
|
#define TREE_LANG_FLAG_0(NODE) ((NODE)->common.lang_flag_0)
|
|
|
|
|
#define TREE_LANG_FLAG_1(NODE) ((NODE)->common.lang_flag_1)
|
|
|
|
|
#define TREE_LANG_FLAG_2(NODE) ((NODE)->common.lang_flag_2)
|
|
|
|
|
#define TREE_LANG_FLAG_3(NODE) ((NODE)->common.lang_flag_3)
|
|
|
|
|
#define TREE_LANG_FLAG_4(NODE) ((NODE)->common.lang_flag_4)
|
|
|
|
|
#define TREE_LANG_FLAG_5(NODE) ((NODE)->common.lang_flag_5)
|
|
|
|
|
#define TREE_LANG_FLAG_6(NODE) ((NODE)->common.lang_flag_6)
|
|
|
|
|
|
|
|
|
|
/* Define additional fields and accessors for nodes representing constants. */
|
|
|
|
|
|
|
|
|
|
/* In an INTEGER_CST node. These two together make a 2-word integer.
|
|
|
|
|
If the data type is signed, the value is sign-extended to 2 words
|
|
|
|
|
even though not all of them may really be in use.
|
|
|
|
|
In an unsigned constant shorter than 2 words, the extra bits are 0. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TREE_INT_CST(NODE) (INTEGER_CST_CHECK (NODE)->int_cst.int_cst)
|
|
|
|
|
#define TREE_INT_CST_LOW(NODE) (TREE_INT_CST (NODE).low)
|
|
|
|
|
#define TREE_INT_CST_HIGH(NODE) (TREE_INT_CST (NODE).high)
|
|
|
|
|
|
|
|
|
|
#define INT_CST_LT(A, B) \
|
|
|
|
|
(TREE_INT_CST_HIGH (A) < TREE_INT_CST_HIGH (B) \
|
|
|
|
|
|| (TREE_INT_CST_HIGH (A) == TREE_INT_CST_HIGH (B) \
|
|
|
|
|
&& TREE_INT_CST_LOW (A) < TREE_INT_CST_LOW (B)))
|
|
|
|
|
|
|
|
|
|
#define INT_CST_LT_UNSIGNED(A, B) \
|
|
|
|
|
(((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (A) \
|
|
|
|
|
< (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (B)) \
|
|
|
|
|
|| (((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (A) \
|
2003-07-11 03:40:53 +00:00
|
|
|
|
== (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (B)) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& TREE_INT_CST_LOW (A) < TREE_INT_CST_LOW (B)))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_int_cst GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
|
|
|
|
/* A sub-struct is necessary here because the function `const_hash'
|
|
|
|
|
wants to scan both words as a unit and taking the address of the
|
|
|
|
|
sub-struct yields the properly inclusive bounded pointer. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_int_cst_lowhi {
|
2002-02-01 18:16:02 +00:00
|
|
|
|
unsigned HOST_WIDE_INT low;
|
|
|
|
|
HOST_WIDE_INT high;
|
|
|
|
|
} int_cst;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In a REAL_CST node. struct real_value is an opaque entity, with
|
|
|
|
|
manipulators defined in real.h. We don't want tree.h depending on
|
|
|
|
|
real.h and transitively on tm.h. */
|
|
|
|
|
struct real_value;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define TREE_REAL_CST_PTR(NODE) (REAL_CST_CHECK (NODE)->real_cst.real_cst_ptr)
|
|
|
|
|
#define TREE_REAL_CST(NODE) (*TREE_REAL_CST_PTR (NODE))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_real_cst GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct real_value * real_cst_ptr;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* In a STRING_CST */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TREE_STRING_LENGTH(NODE) (STRING_CST_CHECK (NODE)->string.length)
|
|
|
|
|
#define TREE_STRING_POINTER(NODE) (STRING_CST_CHECK (NODE)->string.pointer)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_string GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
int length;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
const char *pointer;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* In a COMPLEX_CST node. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TREE_REALPART(NODE) (COMPLEX_CST_CHECK (NODE)->complex.real)
|
|
|
|
|
#define TREE_IMAGPART(NODE) (COMPLEX_CST_CHECK (NODE)->complex.imag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_complex GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
|
|
|
|
tree real;
|
|
|
|
|
tree imag;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
2002-05-09 20:02:13 +00:00
|
|
|
|
|
|
|
|
|
/* In a VECTOR_CST node. */
|
|
|
|
|
#define TREE_VECTOR_CST_ELTS(NODE) (VECTOR_CST_CHECK (NODE)->vector.elements)
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_vector GTY(())
|
2002-05-09 20:02:13 +00:00
|
|
|
|
{
|
|
|
|
|
struct tree_common common;
|
|
|
|
|
tree elements;
|
|
|
|
|
};
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#include "hashtable.h"
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Define fields and accessors for some special-purpose tree nodes. */
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define IDENTIFIER_LENGTH(NODE) \
|
|
|
|
|
(IDENTIFIER_NODE_CHECK (NODE)->identifier.id.len)
|
|
|
|
|
#define IDENTIFIER_POINTER(NODE) \
|
|
|
|
|
((const char *) IDENTIFIER_NODE_CHECK (NODE)->identifier.id.str)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define IDENTIFIER_HASH_VALUE(NODE) \
|
|
|
|
|
(IDENTIFIER_NODE_CHECK (NODE)->identifier.id.hash_value)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Translate a hash table identifier pointer to a tree_identifier
|
|
|
|
|
pointer, and vice versa. */
|
|
|
|
|
|
|
|
|
|
#define HT_IDENT_TO_GCC_IDENT(NODE) \
|
|
|
|
|
((tree) ((char *) (NODE) - sizeof (struct tree_common)))
|
|
|
|
|
#define GCC_IDENT_TO_HT_IDENT(NODE) (&((struct tree_identifier *) (NODE))->id)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_identifier GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
|
|
|
|
struct ht_identifier id;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* In a TREE_LIST node. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TREE_PURPOSE(NODE) (TREE_LIST_CHECK (NODE)->list.purpose)
|
|
|
|
|
#define TREE_VALUE(NODE) (TREE_LIST_CHECK (NODE)->list.value)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_list GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
|
|
|
|
tree purpose;
|
|
|
|
|
tree value;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* In a TREE_VEC node. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TREE_VEC_LENGTH(NODE) (TREE_VEC_CHECK (NODE)->vec.length)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TREE_VEC_END(NODE) \
|
|
|
|
|
((void) TREE_VEC_CHECK (NODE), &((NODE)->vec.a[(NODE)->vec.length]))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define TREE_VEC_ELT(NODE,I) TREE_VEC_ELT_CHECK (NODE, I)
|
|
|
|
|
|
|
|
|
|
struct tree_vec GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
int length;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree GTY ((length ("TREE_VEC_LENGTH ((tree)&%h)"))) a[1];
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Define fields and accessors for some nodes that represent expressions. */
|
|
|
|
|
|
|
|
|
|
/* In a SAVE_EXPR node. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define SAVE_EXPR_CONTEXT(NODE) TREE_OPERAND_CHECK_CODE (NODE, SAVE_EXPR, 1)
|
|
|
|
|
#define SAVE_EXPR_RTL(NODE) TREE_RTL_OPERAND_CHECK (NODE, SAVE_EXPR, 2)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define SAVE_EXPR_NOPLACEHOLDER(NODE) TREE_UNSIGNED (SAVE_EXPR_CHECK (NODE))
|
|
|
|
|
/* Nonzero if the SAVE_EXPRs value should be kept, even if it occurs
|
|
|
|
|
both in normal code and in a handler. (Normally, in a handler, all
|
2004-07-28 03:11:36 +00:00
|
|
|
|
SAVE_EXPRs are unsaved, meaning that their values are
|
2002-02-01 18:16:02 +00:00
|
|
|
|
recalculated.) */
|
|
|
|
|
#define SAVE_EXPR_PERSISTENT_P(NODE) TREE_ASM_WRITTEN (SAVE_EXPR_CHECK (NODE))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In a RTL_EXPR node. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define RTL_EXPR_SEQUENCE(NODE) TREE_RTL_OPERAND_CHECK (NODE, RTL_EXPR, 0)
|
|
|
|
|
#define RTL_EXPR_RTL(NODE) TREE_RTL_OPERAND_CHECK (NODE, RTL_EXPR, 1)
|
|
|
|
|
#define RTL_EXPR_ALT_RTL(NODE) TREE_RTL_OPERAND_CHECK (NODE, RTL_EXPR, 2)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In a WITH_CLEANUP_EXPR node. */
|
|
|
|
|
#define WITH_CLEANUP_EXPR_RTL(NODE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_RTL_OPERAND_CHECK (NODE, WITH_CLEANUP_EXPR, 2)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In a CONSTRUCTOR node. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define CONSTRUCTOR_ELTS(NODE) TREE_OPERAND_CHECK_CODE (NODE, CONSTRUCTOR, 0)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In ordinary expression nodes. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define TREE_OPERAND(NODE, I) TREE_OPERAND_CHECK (NODE, I)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TREE_COMPLEXITY(NODE) (EXPR_CHECK (NODE)->exp.complexity)
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* In a LABELED_BLOCK_EXPR node. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define LABELED_BLOCK_LABEL(NODE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_OPERAND_CHECK_CODE (NODE, LABELED_BLOCK_EXPR, 0)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define LABELED_BLOCK_BODY(NODE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_OPERAND_CHECK_CODE (NODE, LABELED_BLOCK_EXPR, 1)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In an EXIT_BLOCK_EXPR node. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define EXIT_BLOCK_LABELED_BLOCK(NODE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_OPERAND_CHECK_CODE (NODE, EXIT_BLOCK_EXPR, 0)
|
|
|
|
|
#define EXIT_BLOCK_RETURN(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_BLOCK_EXPR, 1)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
|
|
|
|
/* In a LOOP_EXPR node. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define LOOP_EXPR_BODY(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_EXPR, 0)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In an EXPR_WITH_FILE_LOCATION node. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define EXPR_WFL_EMIT_LINE_NOTE(NODE) \
|
|
|
|
|
(EXPR_WITH_FILE_LOCATION_CHECK (NODE)->common.public_flag)
|
|
|
|
|
#define EXPR_WFL_NODE(NODE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_OPERAND_CHECK_CODE (NODE, EXPR_WITH_FILE_LOCATION, 0)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define EXPR_WFL_FILENAME_NODE(NODE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_OPERAND_CHECK_CODE (NODE, EXPR_WITH_FILE_LOCATION, 1)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define EXPR_WFL_FILENAME(NODE) \
|
|
|
|
|
IDENTIFIER_POINTER (EXPR_WFL_FILENAME_NODE (NODE))
|
|
|
|
|
/* ??? Java uses this in all expressions. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define EXPR_WFL_LINECOL(NODE) (EXPR_CHECK (NODE)->exp.complexity)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define EXPR_WFL_LINENO(NODE) (EXPR_WFL_LINECOL (NODE) >> 12)
|
|
|
|
|
#define EXPR_WFL_COLNO(NODE) (EXPR_WFL_LINECOL (NODE) & 0xfff)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define EXPR_WFL_SET_LINECOL(NODE, LINE, COL) \
|
|
|
|
|
(EXPR_WFL_LINECOL(NODE) = ((LINE) << 12) | ((COL) & 0xfff))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In a TARGET_EXPR node. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define TARGET_EXPR_SLOT(NODE) TREE_OPERAND_CHECK_CODE (NODE, TARGET_EXPR, 0)
|
|
|
|
|
#define TARGET_EXPR_INITIAL(NODE) TREE_OPERAND_CHECK_CODE (NODE, TARGET_EXPR, 1)
|
|
|
|
|
#define TARGET_EXPR_CLEANUP(NODE) TREE_OPERAND_CHECK_CODE (NODE, TARGET_EXPR, 2)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
|
|
|
|
struct tree_exp GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
int complexity;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree GTY ((special ("tree_exp"),
|
|
|
|
|
desc ("TREE_CODE ((tree) &%0)")))
|
2003-07-11 03:40:53 +00:00
|
|
|
|
operands[1];
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* In a BLOCK node. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define BLOCK_VARS(NODE) (BLOCK_CHECK (NODE)->block.vars)
|
|
|
|
|
#define BLOCK_SUBBLOCKS(NODE) (BLOCK_CHECK (NODE)->block.subblocks)
|
|
|
|
|
#define BLOCK_SUPERCONTEXT(NODE) (BLOCK_CHECK (NODE)->block.supercontext)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Note: when changing this, make sure to find the places
|
|
|
|
|
that use chainon or nreverse. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define BLOCK_CHAIN(NODE) TREE_CHAIN (BLOCK_CHECK (NODE))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define BLOCK_ABSTRACT_ORIGIN(NODE) (BLOCK_CHECK (NODE)->block.abstract_origin)
|
|
|
|
|
#define BLOCK_ABSTRACT(NODE) (BLOCK_CHECK (NODE)->block.abstract_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero means that this block is prepared to handle exceptions
|
|
|
|
|
listed in the BLOCK_VARS slot. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define BLOCK_HANDLER_BLOCK(NODE) \
|
|
|
|
|
(BLOCK_CHECK (NODE)->block.handler_block_flag)
|
|
|
|
|
|
|
|
|
|
/* An index number for this block. These values are not guaranteed to
|
|
|
|
|
be unique across functions -- whether or not they are depends on
|
|
|
|
|
the debugging output format in use. */
|
|
|
|
|
#define BLOCK_NUMBER(NODE) (BLOCK_CHECK (NODE)->block.block_num)
|
|
|
|
|
|
|
|
|
|
/* If block reordering splits a lexical block into discontiguous
|
|
|
|
|
address ranges, we'll make a copy of the original block.
|
|
|
|
|
|
|
|
|
|
Note that this is logically distinct from BLOCK_ABSTRACT_ORIGIN.
|
|
|
|
|
In that case, we have one source block that has been replicated
|
|
|
|
|
(through inlining or unrolling) into many logical blocks, and that
|
|
|
|
|
these logical blocks have different physical variables in them.
|
|
|
|
|
|
|
|
|
|
In this case, we have one logical block split into several
|
|
|
|
|
non-contiguous address ranges. Most debug formats can't actually
|
|
|
|
|
represent this idea directly, so we fake it by creating multiple
|
|
|
|
|
logical blocks with the same variables in them. However, for those
|
|
|
|
|
that do support non-contiguous regions, these allow the original
|
|
|
|
|
logical block to be reconstructed, along with the set of address
|
|
|
|
|
ranges.
|
|
|
|
|
|
|
|
|
|
One of the logical block fragments is arbitrarily chosen to be
|
|
|
|
|
the ORIGIN. The other fragments will point to the origin via
|
|
|
|
|
BLOCK_FRAGMENT_ORIGIN; the origin itself will have this pointer
|
2003-07-11 03:40:53 +00:00
|
|
|
|
be null. The list of fragments will be chained through
|
2002-02-01 18:16:02 +00:00
|
|
|
|
BLOCK_FRAGMENT_CHAIN from the origin. */
|
|
|
|
|
|
|
|
|
|
#define BLOCK_FRAGMENT_ORIGIN(NODE) (BLOCK_CHECK (NODE)->block.fragment_origin)
|
|
|
|
|
#define BLOCK_FRAGMENT_CHAIN(NODE) (BLOCK_CHECK (NODE)->block.fragment_chain)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_block GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
unsigned handler_block_flag : 1;
|
|
|
|
|
unsigned abstract_flag : 1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
unsigned block_num : 30;
|
|
|
|
|
|
|
|
|
|
tree vars;
|
|
|
|
|
tree subblocks;
|
|
|
|
|
tree supercontext;
|
|
|
|
|
tree abstract_origin;
|
|
|
|
|
tree fragment_origin;
|
|
|
|
|
tree fragment_chain;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Define fields and accessors for nodes representing data types. */
|
|
|
|
|
|
|
|
|
|
/* See tree.def for documentation of the use of these fields.
|
|
|
|
|
Look at the documentation of the various ..._TYPE tree codes. */
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_UID(NODE) (TYPE_CHECK (NODE)->type.uid)
|
|
|
|
|
#define TYPE_SIZE(NODE) (TYPE_CHECK (NODE)->type.size)
|
|
|
|
|
#define TYPE_SIZE_UNIT(NODE) (TYPE_CHECK (NODE)->type.size_unit)
|
|
|
|
|
#define TYPE_MODE(NODE) (TYPE_CHECK (NODE)->type.mode)
|
|
|
|
|
#define TYPE_VALUES(NODE) (TYPE_CHECK (NODE)->type.values)
|
|
|
|
|
#define TYPE_DOMAIN(NODE) (TYPE_CHECK (NODE)->type.values)
|
|
|
|
|
#define TYPE_FIELDS(NODE) (TYPE_CHECK (NODE)->type.values)
|
|
|
|
|
#define TYPE_METHODS(NODE) (TYPE_CHECK (NODE)->type.maxval)
|
|
|
|
|
#define TYPE_VFIELD(NODE) (TYPE_CHECK (NODE)->type.minval)
|
|
|
|
|
#define TYPE_ARG_TYPES(NODE) (TYPE_CHECK (NODE)->type.values)
|
|
|
|
|
#define TYPE_METHOD_BASETYPE(NODE) (TYPE_CHECK (NODE)->type.maxval)
|
|
|
|
|
#define TYPE_OFFSET_BASETYPE(NODE) (TYPE_CHECK (NODE)->type.maxval)
|
|
|
|
|
#define TYPE_POINTER_TO(NODE) (TYPE_CHECK (NODE)->type.pointer_to)
|
|
|
|
|
#define TYPE_REFERENCE_TO(NODE) (TYPE_CHECK (NODE)->type.reference_to)
|
|
|
|
|
#define TYPE_MIN_VALUE(NODE) (TYPE_CHECK (NODE)->type.minval)
|
|
|
|
|
#define TYPE_MAX_VALUE(NODE) (TYPE_CHECK (NODE)->type.maxval)
|
|
|
|
|
#define TYPE_PRECISION(NODE) (TYPE_CHECK (NODE)->type.precision)
|
|
|
|
|
#define TYPE_SYMTAB_ADDRESS(NODE) (TYPE_CHECK (NODE)->type.symtab.address)
|
|
|
|
|
#define TYPE_SYMTAB_POINTER(NODE) (TYPE_CHECK (NODE)->type.symtab.pointer)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define TYPE_SYMTAB_DIE(NODE) (TYPE_CHECK (NODE)->type.symtab.die)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_NAME(NODE) (TYPE_CHECK (NODE)->type.name)
|
|
|
|
|
#define TYPE_NEXT_VARIANT(NODE) (TYPE_CHECK (NODE)->type.next_variant)
|
|
|
|
|
#define TYPE_MAIN_VARIANT(NODE) (TYPE_CHECK (NODE)->type.main_variant)
|
|
|
|
|
#define TYPE_CONTEXT(NODE) (TYPE_CHECK (NODE)->type.context)
|
|
|
|
|
#define TYPE_LANG_SPECIFIC(NODE) (TYPE_CHECK (NODE)->type.lang_specific)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* For a VECTOR_TYPE node, this describes a different type which is emitted
|
|
|
|
|
in the debugging output. We use this to describe a vector as a
|
|
|
|
|
structure containing an array. */
|
|
|
|
|
#define TYPE_DEBUG_REPRESENTATION_TYPE(NODE) (TYPE_CHECK (NODE)->type.values)
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* For aggregate types, information about this type, as a base type
|
|
|
|
|
for itself. Used in a language-dependent way for types that are
|
|
|
|
|
neither a RECORD_TYPE, QUAL_UNION_TYPE, nor a UNION_TYPE. */
|
|
|
|
|
#define TYPE_BINFO(NODE) (TYPE_CHECK (NODE)->type.binfo)
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* The (language-specific) typed-based alias set for this type.
|
|
|
|
|
Objects whose TYPE_ALIAS_SETs are different cannot alias each
|
|
|
|
|
other. If the TYPE_ALIAS_SET is -1, no alias set has yet been
|
|
|
|
|
assigned to this type. If the TYPE_ALIAS_SET is 0, objects of this
|
|
|
|
|
type can alias objects of any type. */
|
|
|
|
|
#define TYPE_ALIAS_SET(NODE) (TYPE_CHECK (NODE)->type.alias_set)
|
|
|
|
|
|
|
|
|
|
/* Nonzero iff the typed-based alias set for this type has been
|
|
|
|
|
calculated. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_ALIAS_SET_KNOWN_P(NODE) (TYPE_CHECK (NODE)->type.alias_set != -1)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* A TREE_LIST of IDENTIFIER nodes of the attributes that apply
|
|
|
|
|
to this type. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_ATTRIBUTES(NODE) (TYPE_CHECK (NODE)->type.attributes)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* The alignment necessary for objects of this type.
|
|
|
|
|
The value is an int, measured in bits. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_ALIGN(NODE) (TYPE_CHECK (NODE)->type.align)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* 1 if the alignment for this type was requested by "aligned" attribute,
|
|
|
|
|
0 if it is the default for this type. */
|
|
|
|
|
#define TYPE_USER_ALIGN(NODE) (TYPE_CHECK (NODE)->type.user_align)
|
|
|
|
|
|
|
|
|
|
/* The alignment for NODE, in bytes. */
|
|
|
|
|
#define TYPE_ALIGN_UNIT(NODE) (TYPE_ALIGN (NODE) / BITS_PER_UNIT)
|
|
|
|
|
|
|
|
|
|
/* If your language allows you to declare types, and you want debug info
|
|
|
|
|
for them, then you need to generate corresponding TYPE_DECL nodes.
|
|
|
|
|
These "stub" TYPE_DECL nodes have no name, and simply point at the
|
|
|
|
|
type node. You then set the TYPE_STUB_DECL field of the type node
|
|
|
|
|
to point back at the TYPE_DECL node. This allows the debug routines
|
|
|
|
|
to know that the two nodes represent the same type, so that we only
|
|
|
|
|
get one debug info record for them. */
|
|
|
|
|
#define TYPE_STUB_DECL(NODE) TREE_CHAIN (NODE)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, it means the type
|
|
|
|
|
has BLKmode only because it lacks the alignment requirement for
|
|
|
|
|
its size. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_NO_FORCE_BLK(NODE) (TYPE_CHECK (NODE)->type.no_force_blk_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In an INTEGER_TYPE, it means the type represents a size. We use
|
|
|
|
|
this both for validity checking and to permit optimizations that
|
|
|
|
|
are unsafe for other types. Note that the C `size_t' type should
|
|
|
|
|
*not* have this flag set. The `size_t' type is simply a typedef
|
|
|
|
|
for an ordinary integer type that happens to be the type of an
|
|
|
|
|
expression returned by `sizeof'; `size_t' has no special
|
|
|
|
|
properties. Expressions whose type have TYPE_IS_SIZETYPE set are
|
|
|
|
|
always actual sizes. */
|
|
|
|
|
#define TYPE_IS_SIZETYPE(NODE) \
|
|
|
|
|
(INTEGER_TYPE_CHECK (NODE)->type.no_force_blk_flag)
|
|
|
|
|
|
|
|
|
|
/* In a FUNCTION_TYPE, indicates that the function returns with the stack
|
|
|
|
|
pointer depressed. */
|
|
|
|
|
#define TYPE_RETURNS_STACK_DEPRESSED(NODE) \
|
|
|
|
|
(FUNCTION_TYPE_CHECK (NODE)->type.no_force_blk_flag)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Nonzero in a type considered volatile as a whole. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_VOLATILE(NODE) (TYPE_CHECK (NODE)->common.volatile_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Means this type is const-qualified. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_READONLY(NODE) (TYPE_CHECK (NODE)->common.readonly_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* If nonzero, this type is `restrict'-qualified, in the C sense of
|
|
|
|
|
the term. */
|
|
|
|
|
#define TYPE_RESTRICT(NODE) (TYPE_CHECK (NODE)->type.restrict_flag)
|
|
|
|
|
|
|
|
|
|
/* There is a TYPE_QUAL value for each type qualifier. They can be
|
|
|
|
|
combined by bitwise-or to form the complete set of qualifiers for a
|
|
|
|
|
type. */
|
|
|
|
|
|
|
|
|
|
#define TYPE_UNQUALIFIED 0x0
|
|
|
|
|
#define TYPE_QUAL_CONST 0x1
|
|
|
|
|
#define TYPE_QUAL_VOLATILE 0x2
|
|
|
|
|
#define TYPE_QUAL_RESTRICT 0x4
|
|
|
|
|
|
|
|
|
|
/* The set of type qualifiers for this type. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_QUALS(NODE) \
|
|
|
|
|
((TYPE_READONLY (NODE) * TYPE_QUAL_CONST) \
|
|
|
|
|
| (TYPE_VOLATILE (NODE) * TYPE_QUAL_VOLATILE) \
|
2004-07-28 03:11:36 +00:00
|
|
|
|
| (TYPE_RESTRICT (NODE) * TYPE_QUAL_RESTRICT))
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* These flags are available for each language front end to use internally. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_LANG_FLAG_0(NODE) (TYPE_CHECK (NODE)->type.lang_flag_0)
|
|
|
|
|
#define TYPE_LANG_FLAG_1(NODE) (TYPE_CHECK (NODE)->type.lang_flag_1)
|
|
|
|
|
#define TYPE_LANG_FLAG_2(NODE) (TYPE_CHECK (NODE)->type.lang_flag_2)
|
|
|
|
|
#define TYPE_LANG_FLAG_3(NODE) (TYPE_CHECK (NODE)->type.lang_flag_3)
|
|
|
|
|
#define TYPE_LANG_FLAG_4(NODE) (TYPE_CHECK (NODE)->type.lang_flag_4)
|
|
|
|
|
#define TYPE_LANG_FLAG_5(NODE) (TYPE_CHECK (NODE)->type.lang_flag_5)
|
|
|
|
|
#define TYPE_LANG_FLAG_6(NODE) (TYPE_CHECK (NODE)->type.lang_flag_6)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* If set in an ARRAY_TYPE, indicates a string type (for languages
|
|
|
|
|
that distinguish string from array of char).
|
2002-02-01 18:16:02 +00:00
|
|
|
|
If set in a SET_TYPE, indicates a bitstring type. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_STRING_FLAG(NODE) (TYPE_CHECK (NODE)->type.string_flag)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* If non-NULL, this is an upper bound of the size (in bytes) of an
|
|
|
|
|
object of the given ARRAY_TYPE. This allows temporaries to be
|
|
|
|
|
allocated. */
|
|
|
|
|
#define TYPE_ARRAY_MAX_SIZE(ARRAY_TYPE) \
|
|
|
|
|
TYPE_MAX_VALUE (ARRAY_TYPE_CHECK (ARRAY_TYPE))
|
|
|
|
|
|
|
|
|
|
/* For a VECTOR_TYPE, this is the number of sub-parts of the vector. */
|
|
|
|
|
#define TYPE_VECTOR_SUBPARTS(VECTOR_TYPE) \
|
|
|
|
|
GET_MODE_NUNITS (VECTOR_TYPE_CHECK (VECTOR_TYPE)->type.mode)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Indicates that objects of this type must be initialized by calling a
|
1996-09-18 05:35:50 +00:00
|
|
|
|
function when they are created. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_NEEDS_CONSTRUCTING(NODE) \
|
|
|
|
|
(TYPE_CHECK (NODE)->type.needs_constructing_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Indicates that objects of this type (a UNION_TYPE), should be passed
|
|
|
|
|
the same way that the first union alternative would be passed. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_TRANSPARENT_UNION(NODE) \
|
|
|
|
|
(UNION_TYPE_CHECK (NODE)->type.transparent_union_flag)
|
|
|
|
|
|
|
|
|
|
/* For an ARRAY_TYPE, indicates that it is not permitted to
|
|
|
|
|
take the address of a component of the type. */
|
|
|
|
|
#define TYPE_NONALIASED_COMPONENT(NODE) \
|
|
|
|
|
(ARRAY_TYPE_CHECK (NODE)->type.transparent_union_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Indicated that objects of this type should be laid out in as
|
1996-09-18 05:35:50 +00:00
|
|
|
|
compact a way as possible. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define TYPE_PACKED(NODE) (TYPE_CHECK (NODE)->type.packed_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct die_struct;
|
|
|
|
|
|
|
|
|
|
struct tree_type GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
|
|
|
|
tree values;
|
|
|
|
|
tree size;
|
|
|
|
|
tree size_unit;
|
|
|
|
|
tree attributes;
|
|
|
|
|
unsigned int uid;
|
|
|
|
|
|
|
|
|
|
unsigned int precision : 9;
|
|
|
|
|
ENUM_BITFIELD(machine_mode) mode : 7;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
unsigned string_flag : 1;
|
|
|
|
|
unsigned no_force_blk_flag : 1;
|
|
|
|
|
unsigned needs_constructing_flag : 1;
|
|
|
|
|
unsigned transparent_union_flag : 1;
|
|
|
|
|
unsigned packed_flag : 1;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
unsigned restrict_flag : 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned spare : 2;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
unsigned lang_flag_0 : 1;
|
|
|
|
|
unsigned lang_flag_1 : 1;
|
|
|
|
|
unsigned lang_flag_2 : 1;
|
|
|
|
|
unsigned lang_flag_3 : 1;
|
|
|
|
|
unsigned lang_flag_4 : 1;
|
|
|
|
|
unsigned lang_flag_5 : 1;
|
|
|
|
|
unsigned lang_flag_6 : 1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
unsigned user_align : 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
unsigned int align;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree pointer_to;
|
|
|
|
|
tree reference_to;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
union tree_type_symtab {
|
2004-07-28 03:11:36 +00:00
|
|
|
|
int GTY ((tag ("0"))) address;
|
|
|
|
|
char * GTY ((tag ("1"))) pointer;
|
|
|
|
|
struct die_struct * GTY ((tag ("2"))) die;
|
|
|
|
|
} GTY ((desc ("debug_hooks == &sdb_debug_hooks ? 1 : debug_hooks == &dwarf2_debug_hooks ? 2 : 0"),
|
2003-07-11 03:40:53 +00:00
|
|
|
|
descbits ("2"))) symtab;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree name;
|
|
|
|
|
tree minval;
|
|
|
|
|
tree maxval;
|
|
|
|
|
tree next_variant;
|
|
|
|
|
tree main_variant;
|
|
|
|
|
tree binfo;
|
|
|
|
|
tree context;
|
|
|
|
|
HOST_WIDE_INT alias_set;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Points to a structure whose details depend on the language in use. */
|
|
|
|
|
struct lang_type *lang_specific;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Define accessor macros for information about type inheritance
|
|
|
|
|
and basetypes.
|
|
|
|
|
|
|
|
|
|
A "basetype" means a particular usage of a data type for inheritance
|
|
|
|
|
in another type. Each such basetype usage has its own "binfo"
|
|
|
|
|
object to describe it. The binfo object is a TREE_VEC node.
|
|
|
|
|
|
|
|
|
|
Inheritance is represented by the binfo nodes allocated for a
|
|
|
|
|
given type. For example, given types C and D, such that D is
|
|
|
|
|
inherited by C, 3 binfo nodes will be allocated: one for describing
|
|
|
|
|
the binfo properties of C, similarly one for D, and one for
|
|
|
|
|
describing the binfo properties of D as a base type for C.
|
|
|
|
|
Thus, given a pointer to class C, one can get a pointer to the binfo
|
|
|
|
|
of D acting as a basetype for C by looking at C's binfo's basetypes. */
|
|
|
|
|
|
|
|
|
|
/* The actual data type node being inherited in this basetype. */
|
|
|
|
|
#define BINFO_TYPE(NODE) TREE_TYPE (NODE)
|
|
|
|
|
|
|
|
|
|
/* The offset where this basetype appears in its containing type.
|
|
|
|
|
BINFO_OFFSET slot holds the offset (in bytes)
|
|
|
|
|
from the base of the complete object to the base of the part of the
|
|
|
|
|
object that is allocated on behalf of this `type'.
|
|
|
|
|
This is always 0 except when there is multiple inheritance. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#define BINFO_OFFSET(NODE) TREE_VEC_ELT ((NODE), 1)
|
|
|
|
|
#define TYPE_BINFO_OFFSET(NODE) BINFO_OFFSET (TYPE_BINFO (NODE))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define BINFO_OFFSET_ZEROP(NODE) (integer_zerop (BINFO_OFFSET (NODE)))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* The virtual function table belonging to this basetype. Virtual
|
|
|
|
|
function tables provide a mechanism for run-time method dispatching.
|
|
|
|
|
The entries of a virtual function table are language-dependent. */
|
|
|
|
|
|
|
|
|
|
#define BINFO_VTABLE(NODE) TREE_VEC_ELT ((NODE), 2)
|
|
|
|
|
#define TYPE_BINFO_VTABLE(NODE) BINFO_VTABLE (TYPE_BINFO (NODE))
|
|
|
|
|
|
|
|
|
|
/* The virtual functions in the virtual function table. This is
|
|
|
|
|
a TREE_LIST that is used as an initial approximation for building
|
|
|
|
|
a virtual function table for this basetype. */
|
|
|
|
|
#define BINFO_VIRTUALS(NODE) TREE_VEC_ELT ((NODE), 3)
|
|
|
|
|
#define TYPE_BINFO_VIRTUALS(NODE) BINFO_VIRTUALS (TYPE_BINFO (NODE))
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* A vector of binfos for the direct basetypes inherited by this
|
|
|
|
|
basetype.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
If this basetype describes type D as inherited in C, and if the
|
|
|
|
|
basetypes of D are E and F, then this vector contains binfos for
|
|
|
|
|
inheritance of E and F by C.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
??? This could probably be done by just allocating the
|
|
|
|
|
base types at the end of this TREE_VEC (instead of using
|
|
|
|
|
another TREE_VEC). This would simplify the calculation
|
|
|
|
|
of how many basetypes a given type had. */
|
|
|
|
|
#define BINFO_BASETYPES(NODE) TREE_VEC_ELT ((NODE), 4)
|
|
|
|
|
#define TYPE_BINFO_BASETYPES(NODE) TREE_VEC_ELT (TYPE_BINFO (NODE), 4)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The number of basetypes for NODE. */
|
|
|
|
|
#define BINFO_N_BASETYPES(NODE) \
|
|
|
|
|
(BINFO_BASETYPES (NODE) ? TREE_VEC_LENGTH (BINFO_BASETYPES (NODE)) : 0)
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Accessor macro to get to the Nth basetype of this basetype. */
|
|
|
|
|
#define BINFO_BASETYPE(NODE,N) TREE_VEC_ELT (BINFO_BASETYPES (NODE), (N))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define TYPE_BINFO_BASETYPE(NODE,N) \
|
|
|
|
|
BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (TYPE_BINFO (NODE)), (N)))
|
|
|
|
|
|
|
|
|
|
/* For a BINFO record describing a virtual base class, i.e., one where
|
|
|
|
|
TREE_VIA_VIRTUAL is set, this field assists in locating the virtual
|
2004-07-28 03:11:36 +00:00
|
|
|
|
base. The actual contents are language-dependent. In the C++
|
|
|
|
|
front-end this field is an INTEGER_CST giving an offset into the
|
|
|
|
|
vtable where the offset to the virtual base can be found. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define BINFO_VPTR_FIELD(NODE) TREE_VEC_ELT (NODE, 5)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Indicates the accesses this binfo has to its bases. The values are
|
|
|
|
|
access_public_node, access_protected_node or access_private_node.
|
|
|
|
|
If this array is not present, public access is implied. */
|
|
|
|
|
#define BINFO_BASEACCESSES(NODE) TREE_VEC_ELT ((NODE), 6)
|
|
|
|
|
#define BINFO_BASEACCESS(NODE,N) TREE_VEC_ELT (BINFO_BASEACCESSES(NODE), (N))
|
|
|
|
|
|
|
|
|
|
/* Number of language independent elements in a binfo. Languages may
|
|
|
|
|
add additional trailing elements. */
|
|
|
|
|
|
|
|
|
|
#define BINFO_ELTS 7
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Slot used to build a chain that represents a use of inheritance.
|
|
|
|
|
For example, if X is derived from Y, and Y is derived from Z,
|
|
|
|
|
then this field can be used to link the binfo node for X to
|
|
|
|
|
the binfo node for X's Y to represent the use of inheritance
|
|
|
|
|
from X to Y. Similarly, this slot of the binfo node for X's Y
|
|
|
|
|
can point to the Z from which Y is inherited (in X's inheritance
|
|
|
|
|
hierarchy). In this fashion, one can represent and traverse specific
|
|
|
|
|
uses of inheritance using the binfo nodes themselves (instead of
|
|
|
|
|
consing new space pointing to binfo nodes).
|
|
|
|
|
It is up to the language-dependent front-ends to maintain
|
|
|
|
|
this information as necessary. */
|
|
|
|
|
#define BINFO_INHERITANCE_CHAIN(NODE) TREE_VEC_ELT ((NODE), 0)
|
|
|
|
|
|
|
|
|
|
/* Define fields and accessors for nodes representing declared names. */
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Nonzero if DECL represents a decl. */
|
|
|
|
|
#define DECL_P(DECL) (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd')
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* This is the name of the object as written by the user.
|
|
|
|
|
It is an IDENTIFIER_NODE. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_NAME(NODE) (DECL_CHECK (NODE)->decl.name)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* The name of the object as the assembler will see it (but before any
|
|
|
|
|
translations made by ASM_OUTPUT_LABELREF). Often this is the same
|
|
|
|
|
as DECL_NAME. It is an IDENTIFIER_NODE. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define DECL_ASSEMBLER_NAME(NODE) decl_assembler_name (NODE)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Returns nonzero if the DECL_ASSEMBLER_NAME for NODE has been set. If zero,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
the NODE might still have a DECL_ASSEMBLER_NAME -- it just hasn't been set
|
|
|
|
|
yet. */
|
|
|
|
|
#define DECL_ASSEMBLER_NAME_SET_P(NODE) \
|
|
|
|
|
(DECL_CHECK (NODE)->decl.assembler_name != NULL_TREE)
|
|
|
|
|
|
|
|
|
|
/* Set the DECL_ASSEMBLER_NAME for NODE to NAME. */
|
|
|
|
|
#define SET_DECL_ASSEMBLER_NAME(NODE, NAME) \
|
|
|
|
|
(DECL_CHECK (NODE)->decl.assembler_name = (NAME))
|
|
|
|
|
|
|
|
|
|
/* Copy the DECL_ASSEMBLER_NAME from DECL1 to DECL2. Note that if DECL1's
|
|
|
|
|
DECL_ASSEMBLER_NAME has not yet been set, using this macro will not cause
|
|
|
|
|
the DECL_ASSEMBLER_NAME of either DECL to be set. In other words, the
|
|
|
|
|
semantics of using this macro, are different than saying:
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
SET_DECL_ASSEMBLER_NAME(DECL2, DECL_ASSEMBLER_NAME (DECL1))
|
|
|
|
|
|
|
|
|
|
which will try to set the DECL_ASSEMBLER_NAME for DECL1. */
|
|
|
|
|
|
|
|
|
|
#define COPY_DECL_ASSEMBLER_NAME(DECL1, DECL2) \
|
|
|
|
|
(DECL_ASSEMBLER_NAME_SET_P (DECL1) \
|
2003-07-11 03:40:53 +00:00
|
|
|
|
? (void) SET_DECL_ASSEMBLER_NAME (DECL2, \
|
|
|
|
|
DECL_ASSEMBLER_NAME (DECL1)) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
: (void) 0)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Records the section name in a section attribute. Used to pass
|
|
|
|
|
the name from decl_attributes to make_function_rtl and make_decl_rtl. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_SECTION_NAME(NODE) (DECL_CHECK (NODE)->decl.section_name)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* For FIELD_DECLs, this is the RECORD_TYPE, UNION_TYPE, or
|
|
|
|
|
QUAL_UNION_TYPE node that the field is a member of. For VAR_DECL,
|
|
|
|
|
PARM_DECL, FUNCTION_DECL, LABEL_DECL, and CONST_DECL nodes, this
|
|
|
|
|
points to either the FUNCTION_DECL for the containing function,
|
|
|
|
|
the RECORD_TYPE or UNION_TYPE for the containing type, or
|
|
|
|
|
NULL_TREE or a TRANSLATION_UNIT_DECL if the given decl has "file
|
|
|
|
|
scope". */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_CONTEXT(NODE) (DECL_CHECK (NODE)->decl.context)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_FIELD_CONTEXT(NODE) (FIELD_DECL_CHECK (NODE)->decl.context)
|
|
|
|
|
/* In a DECL this is the field where attributes are stored. */
|
|
|
|
|
#define DECL_ATTRIBUTES(NODE) (DECL_CHECK (NODE)->decl.attributes)
|
|
|
|
|
/* In a FIELD_DECL, this is the field position, counting in bytes, of the
|
|
|
|
|
byte containing the bit closest to the beginning of the structure. */
|
|
|
|
|
#define DECL_FIELD_OFFSET(NODE) (FIELD_DECL_CHECK (NODE)->decl.arguments)
|
|
|
|
|
/* In a FIELD_DECL, this is the offset, in bits, of the first bit of the
|
|
|
|
|
field from DECL_FIELD_OFFSET. */
|
|
|
|
|
#define DECL_FIELD_BIT_OFFSET(NODE) (FIELD_DECL_CHECK (NODE)->decl.u2.t)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In a FIELD_DECL, this indicates whether the field was a bit-field and
|
|
|
|
|
if so, the type that was originally specified for it.
|
|
|
|
|
TREE_TYPE may have been modified (in finish_struct). */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_BIT_FIELD_TYPE(NODE) (FIELD_DECL_CHECK (NODE)->decl.result)
|
|
|
|
|
/* In FUNCTION_DECL, a chain of ..._DECL nodes.
|
|
|
|
|
VAR_DECL and PARM_DECL reserve the arguments slot for language-specific
|
|
|
|
|
uses. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_ARGUMENTS(NODE) (DECL_CHECK (NODE)->decl.arguments)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* This field is used to reference anything in decl.result and is meant only
|
|
|
|
|
for use by the garbage collector. */
|
|
|
|
|
#define DECL_RESULT_FLD(NODE) (DECL_CHECK (NODE)->decl.result)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In FUNCTION_DECL, holds the decl for the return value. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_RESULT(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.result)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* For a TYPE_DECL, holds the "original" type. (TREE_TYPE has the copy.) */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_ORIGINAL_TYPE(NODE) (TYPE_DECL_CHECK (NODE)->decl.result)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In PARM_DECL, holds the type as written (perhaps a function or array). */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_ARG_TYPE_AS_WRITTEN(NODE) (PARM_DECL_CHECK (NODE)->decl.result)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* For a FUNCTION_DECL, holds the tree of BINDINGs.
|
2004-07-28 03:11:36 +00:00
|
|
|
|
For a TRANSLATION_UNIT_DECL, holds the namespace's BLOCK.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
For a VAR_DECL, holds the initial value.
|
|
|
|
|
For a PARM_DECL, not used--default
|
|
|
|
|
values for parameters are encoded in the type of the function,
|
|
|
|
|
not in the PARM_DECL slot. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_INITIAL(NODE) (DECL_CHECK (NODE)->decl.initial)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* For a PARM_DECL, records the data type used to pass the argument,
|
|
|
|
|
which may be different from the type seen in the program. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_ARG_TYPE(NODE) (PARM_DECL_CHECK (NODE)->decl.initial)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* For a FIELD_DECL in a QUAL_UNION_TYPE, records the expression, which
|
|
|
|
|
if nonzero, indicates that the field occupies the type. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_QUALIFIER(NODE) (FIELD_DECL_CHECK (NODE)->decl.initial)
|
|
|
|
|
/* These two fields describe where in the source code the declaration
|
|
|
|
|
was. If the declaration appears in several places (as for a C
|
|
|
|
|
function that is declared first and then defined later), this
|
|
|
|
|
information should refer to the definition. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define DECL_SOURCE_LOCATION(NODE) (DECL_CHECK (NODE)->decl.locus)
|
|
|
|
|
#define DECL_SOURCE_FILE(NODE) (DECL_SOURCE_LOCATION (NODE).file)
|
|
|
|
|
#define DECL_SOURCE_LINE(NODE) (DECL_SOURCE_LOCATION (NODE).line)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Holds the size of the datum, in bits, as a tree expression.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
Need not be constant. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_SIZE(NODE) (DECL_CHECK (NODE)->decl.size)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Likewise for the size in bytes. */
|
|
|
|
|
#define DECL_SIZE_UNIT(NODE) (DECL_CHECK (NODE)->decl.size_unit)
|
|
|
|
|
/* Holds the alignment required for the datum, in bits. */
|
|
|
|
|
#define DECL_ALIGN(NODE) (DECL_CHECK (NODE)->decl.u1.a.align)
|
|
|
|
|
/* The alignment of NODE, in bytes. */
|
|
|
|
|
#define DECL_ALIGN_UNIT(NODE) (DECL_ALIGN (NODE) / BITS_PER_UNIT)
|
|
|
|
|
/* For FIELD_DECLs, off_align holds the number of low-order bits of
|
|
|
|
|
DECL_FIELD_OFFSET which are known to be always zero.
|
|
|
|
|
DECL_OFFSET_ALIGN thus returns the alignment that DECL_FIELD_OFFSET
|
|
|
|
|
has. */
|
|
|
|
|
#define DECL_OFFSET_ALIGN(NODE) \
|
|
|
|
|
(((unsigned HOST_WIDE_INT)1) << FIELD_DECL_CHECK (NODE)->decl.u1.a.off_align)
|
|
|
|
|
/* Specify that DECL_ALIGN(NODE) is a multiple of X. */
|
|
|
|
|
#define SET_DECL_OFFSET_ALIGN(NODE, X) \
|
|
|
|
|
(FIELD_DECL_CHECK (NODE)->decl.u1.a.off_align = exact_log2 ((X) & -(X)))
|
|
|
|
|
/* 1 if the alignment for this type was requested by "aligned" attribute,
|
|
|
|
|
0 if it is the default for this type. */
|
|
|
|
|
#define DECL_USER_ALIGN(NODE) (DECL_CHECK (NODE)->decl.user_align)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Holds the machine mode corresponding to the declaration of a variable or
|
|
|
|
|
field. Always equal to TYPE_MODE (TREE_TYPE (decl)) except for a
|
|
|
|
|
FIELD_DECL. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_MODE(NODE) (DECL_CHECK (NODE)->decl.mode)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Holds the RTL expression for the value of a variable or function.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
This value can be evaluated lazily for functions, variables with
|
|
|
|
|
static storage duration, and labels. */
|
|
|
|
|
#define DECL_RTL(NODE) \
|
|
|
|
|
(DECL_CHECK (NODE)->decl.rtl \
|
|
|
|
|
? (NODE)->decl.rtl \
|
|
|
|
|
: (make_decl_rtl (NODE, NULL), (NODE)->decl.rtl))
|
|
|
|
|
/* Set the DECL_RTL for NODE to RTL. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define SET_DECL_RTL(NODE, RTL) set_decl_rtl (NODE, RTL)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Returns nonzero if the DECL_RTL for NODE has already been set. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_RTL_SET_P(NODE) (DECL_CHECK (NODE)->decl.rtl != NULL)
|
|
|
|
|
/* Copy the RTL from NODE1 to NODE2. If the RTL was not set for
|
|
|
|
|
NODE1, it will not be set for NODE2; this is a lazy copy. */
|
|
|
|
|
#define COPY_DECL_RTL(NODE1, NODE2) \
|
|
|
|
|
(DECL_CHECK (NODE2)->decl.rtl = DECL_CHECK (NODE1)->decl.rtl)
|
|
|
|
|
/* The DECL_RTL for NODE, if it is set, or NULL, if it is not set. */
|
|
|
|
|
#define DECL_RTL_IF_SET(NODE) (DECL_RTL_SET_P (NODE) ? DECL_RTL (NODE) : NULL)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* For PARM_DECL, holds an RTL for the stack slot or register
|
|
|
|
|
where the data was actually passed. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_INCOMING_RTL(NODE) (PARM_DECL_CHECK (NODE)->decl.u2.r)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* For FUNCTION_DECL, if it is inline, holds the saved insn chain. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_SAVED_INSNS(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.u2.f)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* For FUNCTION_DECL, if it is built-in,
|
|
|
|
|
this identifies which built-in operation it is. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_FUNCTION_CODE(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.u1.f)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* The DECL_VINDEX is used for FUNCTION_DECLS in two different ways.
|
|
|
|
|
Before the struct containing the FUNCTION_DECL is laid out,
|
|
|
|
|
DECL_VINDEX may point to a FUNCTION_DECL in a base class which
|
|
|
|
|
is the FUNCTION_DECL which this FUNCTION_DECL will replace as a virtual
|
|
|
|
|
function. When the class is laid out, this pointer is changed
|
|
|
|
|
to an INTEGER_CST node which is suitable for use as an index
|
|
|
|
|
into the virtual function table. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_VINDEX(NODE) (DECL_CHECK (NODE)->decl.vindex)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* For FIELD_DECLS, DECL_FCONTEXT is the *first* baseclass in
|
|
|
|
|
which this FIELD_DECL is defined. This information is needed when
|
|
|
|
|
writing debugging information about vfield and vbase decls for C++. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_FCONTEXT(NODE) (FIELD_DECL_CHECK (NODE)->decl.vindex)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Every ..._DECL node gets a unique number. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_UID(NODE) (DECL_CHECK (NODE)->decl.uid)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* For any sort of a ..._DECL node, this points to the original (abstract)
|
|
|
|
|
decl node which this decl is an instance of, or else it is NULL indicating
|
1999-08-26 09:30:50 +00:00
|
|
|
|
that this decl is not an instance of some other decl. For example,
|
|
|
|
|
in a nested declaration of an inline function, this points back to the
|
|
|
|
|
definition. */
|
|
|
|
|
#define DECL_ABSTRACT_ORIGIN(NODE) (DECL_CHECK (NODE)->decl.abstract_origin)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Like DECL_ABSTRACT_ORIGIN, but returns NODE if there's no abstract
|
|
|
|
|
origin. This is useful when setting the DECL_ABSTRACT_ORIGIN. */
|
|
|
|
|
#define DECL_ORIGIN(NODE) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
(DECL_ABSTRACT_ORIGIN (NODE) ? DECL_ABSTRACT_ORIGIN (NODE) : (NODE))
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Nonzero for any sort of ..._DECL node means this decl node represents an
|
|
|
|
|
inline instance of some original (abstract) decl from an inline function;
|
|
|
|
|
suppress any warnings about shadowing some other variable. FUNCTION_DECL
|
|
|
|
|
nodes can also have their abstract origin set to themselves. */
|
|
|
|
|
#define DECL_FROM_INLINE(NODE) (DECL_ABSTRACT_ORIGIN (NODE) != NULL_TREE \
|
|
|
|
|
&& DECL_ABSTRACT_ORIGIN (NODE) != (NODE))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero if a _DECL means that the name of this decl should be ignored
|
|
|
|
|
for symbolic debug purposes. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_IGNORED_P(NODE) (DECL_CHECK (NODE)->decl.ignored_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero for a given ..._DECL node means that this node represents an
|
|
|
|
|
"abstract instance" of the given declaration (e.g. in the original
|
|
|
|
|
declaration of an inline function). When generating symbolic debugging
|
|
|
|
|
information, we mustn't try to generate any address information for nodes
|
|
|
|
|
marked as "abstract instances" because we don't actually generate
|
|
|
|
|
any code or allocate any data space for such instances. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_ABSTRACT(NODE) (DECL_CHECK (NODE)->decl.abstract_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero if a _DECL means that no warnings should be generated just
|
|
|
|
|
because this decl is unused. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_IN_SYSTEM_HEADER(NODE) \
|
|
|
|
|
(DECL_CHECK (NODE)->decl.in_system_header_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero for a given ..._DECL node means that this node should be
|
|
|
|
|
put in .common, if possible. If a DECL_INITIAL is given, and it
|
|
|
|
|
is not error_mark_node, then the decl cannot be put in .common. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_COMMON(NODE) (DECL_CHECK (NODE)->decl.common_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Language-specific decl information. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_LANG_SPECIFIC(NODE) (DECL_CHECK (NODE)->decl.lang_specific)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In a VAR_DECL or FUNCTION_DECL,
|
|
|
|
|
nonzero means external reference:
|
|
|
|
|
do not allocate storage, and refer to a definition elsewhere. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_EXTERNAL(NODE) (DECL_CHECK (NODE)->decl.external_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* In a VAR_DECL for a RECORD_TYPE, sets number for non-init_priority
|
2004-07-28 03:11:36 +00:00
|
|
|
|
initializations. */
|
1999-10-16 06:09:09 +00:00
|
|
|
|
#define DEFAULT_INIT_PRIORITY 65535
|
|
|
|
|
#define MAX_INIT_PRIORITY 65535
|
|
|
|
|
#define MAX_RESERVED_INIT_PRIORITY 100
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In a TYPE_DECL
|
|
|
|
|
nonzero means the detail info about this type is not dumped into stabs.
|
2003-07-11 03:40:53 +00:00
|
|
|
|
Instead it will generate cross reference ('x') of names.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
This uses the same flag as DECL_EXTERNAL. */
|
|
|
|
|
#define TYPE_DECL_SUPPRESS_DEBUG(NODE) \
|
|
|
|
|
(TYPE_DECL_CHECK (NODE)->decl.external_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* In VAR_DECL and PARM_DECL nodes, nonzero means declared `register'. */
|
|
|
|
|
#define DECL_REGISTER(NODE) (DECL_CHECK (NODE)->decl.regdecl_flag)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* In LABEL_DECL nodes, nonzero means that an error message about
|
1996-09-18 05:35:50 +00:00
|
|
|
|
jumping into such a binding contour has been printed for this label. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_ERROR_ISSUED(NODE) (LABEL_DECL_CHECK (NODE)->decl.regdecl_flag)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In a FIELD_DECL, indicates this field should be bit-packed. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_PACKED(NODE) (FIELD_DECL_CHECK (NODE)->decl.regdecl_flag)
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In a FUNCTION_DECL with a nonzero DECL_CONTEXT, indicates that a
|
1999-08-26 09:30:50 +00:00
|
|
|
|
static chain is not needed. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_NO_STATIC_CHAIN(NODE) \
|
|
|
|
|
(FUNCTION_DECL_CHECK (NODE)->decl.regdecl_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero in a ..._DECL means this variable is ref'd from a nested function.
|
|
|
|
|
For VAR_DECL nodes, PARM_DECL nodes, and FUNCTION_DECL nodes.
|
|
|
|
|
|
|
|
|
|
For LABEL_DECL nodes, nonzero if nonlocal gotos to the label are permitted.
|
|
|
|
|
|
|
|
|
|
Also set in some languages for variables, etc., outside the normal
|
|
|
|
|
lexical scope, such as class instance variables. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_NONLOCAL(NODE) (DECL_CHECK (NODE)->decl.nonlocal_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero in a FUNCTION_DECL means this function can be substituted
|
|
|
|
|
where it is called. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_INLINE(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.inline_flag)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Nonzero in a FUNCTION_DECL means that this function was declared inline,
|
|
|
|
|
such as via the `inline' keyword in C/C++. This flag controls the linkage
|
|
|
|
|
semantics of 'inline'; whether or not the function is inlined is
|
|
|
|
|
controlled by DECL_INLINE. */
|
|
|
|
|
#define DECL_DECLARED_INLINE_P(NODE) \
|
|
|
|
|
(FUNCTION_DECL_CHECK (NODE)->decl.declared_inline_flag)
|
|
|
|
|
|
|
|
|
|
/* Value of the decls's visibility attribute */
|
|
|
|
|
#define DECL_VISIBILITY(NODE) (DECL_CHECK (NODE)->decl.visibility)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In a FUNCTION_DECL, nonzero if the function cannot be inlined. */
|
|
|
|
|
#define DECL_UNINLINABLE(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.uninlinable)
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In a VAR_DECL, nonzero if the data should be allocated from
|
|
|
|
|
thread-local storage. */
|
|
|
|
|
#define DECL_THREAD_LOCAL(NODE) (VAR_DECL_CHECK (NODE)->decl.thread_local_flag)
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In a FUNCTION_DECL, the saved representation of the body of the
|
|
|
|
|
entire function. Usually a COMPOUND_STMT, but in C++ this may also
|
|
|
|
|
be a RETURN_INIT, CTOR_INITIALIZER, or TRY_BLOCK. */
|
|
|
|
|
#define DECL_SAVED_TREE(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.saved_tree)
|
|
|
|
|
|
|
|
|
|
/* List of FUNCTION_DECLs inlined into this function's body. */
|
|
|
|
|
#define DECL_INLINED_FNS(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.inlined_fns)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Nonzero in a FUNCTION_DECL means this function should be treated
|
|
|
|
|
as if it were a malloc, meaning it returns a pointer that is
|
|
|
|
|
not an alias. */
|
|
|
|
|
#define DECL_IS_MALLOC(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.malloc_flag)
|
|
|
|
|
|
|
|
|
|
/* Nonzero in a FUNCTION_DECL means this function should be treated
|
|
|
|
|
as "pure" function (like const function, but may read global memory). */
|
|
|
|
|
#define DECL_IS_PURE(NODE) (FUNCTION_DECL_CHECK (NODE)->decl.pure_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero in a FIELD_DECL means it is a bit field, and must be accessed
|
|
|
|
|
specially. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_BIT_FIELD(NODE) (FIELD_DECL_CHECK (NODE)->decl.bit_field_flag)
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In a LABEL_DECL, nonzero means label was defined inside a binding
|
|
|
|
|
contour that restored a stack level and which is now exited. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_TOO_LATE(NODE) (LABEL_DECL_CHECK (NODE)->decl.bit_field_flag)
|
|
|
|
|
|
|
|
|
|
/* Unused in FUNCTION_DECL. */
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* In a VAR_DECL that's static,
|
|
|
|
|
nonzero if the space is in the text section. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_IN_TEXT_SECTION(NODE) (VAR_DECL_CHECK (NODE)->decl.bit_field_flag)
|
|
|
|
|
|
|
|
|
|
/* In a FUNCTION_DECL, nonzero means a built in function. */
|
|
|
|
|
#define DECL_BUILT_IN(NODE) (DECL_BUILT_IN_CLASS (NODE) != NOT_BUILT_IN)
|
|
|
|
|
|
|
|
|
|
/* For a builtin function, identify which part of the compiler defined it. */
|
|
|
|
|
#define DECL_BUILT_IN_CLASS(NODE) \
|
|
|
|
|
(FUNCTION_DECL_CHECK (NODE)->decl.built_in_class)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Used in VAR_DECLs to indicate that the variable is a vtable.
|
|
|
|
|
Used in FIELD_DECLs for vtable pointers.
|
|
|
|
|
Used in FUNCTION_DECLs to indicate that the function is virtual. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_VIRTUAL_P(NODE) (DECL_CHECK (NODE)->decl.virtual_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Used to indicate that the linkage status of this DECL is not yet known,
|
|
|
|
|
so it should not be output now. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_DEFER_OUTPUT(NODE) (DECL_CHECK (NODE)->decl.defer_output)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Used in PARM_DECLs whose type are unions to indicate that the
|
|
|
|
|
argument should be passed in the same way that the first union
|
|
|
|
|
alternative would be passed. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_TRANSPARENT_UNION(NODE) \
|
|
|
|
|
(PARM_DECL_CHECK (NODE)->decl.transparent_union)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Used in FUNCTION_DECLs to indicate that they should be run automatically
|
|
|
|
|
at the beginning or end of execution. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_STATIC_CONSTRUCTOR(NODE) \
|
|
|
|
|
(FUNCTION_DECL_CHECK (NODE)->decl.static_ctor_flag)
|
|
|
|
|
|
|
|
|
|
#define DECL_STATIC_DESTRUCTOR(NODE) \
|
|
|
|
|
(FUNCTION_DECL_CHECK (NODE)->decl.static_dtor_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Used to indicate that this DECL represents a compiler-generated entity. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_ARTIFICIAL(NODE) (DECL_CHECK (NODE)->decl.artificial_flag)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Used to indicate that this DECL has weak linkage. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_WEAK(NODE) (DECL_CHECK (NODE)->decl.weak_flag)
|
|
|
|
|
|
|
|
|
|
/* Used in TREE_PUBLIC decls to indicate that copies of this DECL in
|
|
|
|
|
multiple translation units should be merged. */
|
|
|
|
|
#define DECL_ONE_ONLY(NODE) (DECL_CHECK (NODE)->decl.transparent_union)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Used in a DECL to indicate that, even if it TREE_PUBLIC, it need
|
|
|
|
|
not be put out unless it is needed in this translation unit.
|
|
|
|
|
Entities like this are shared across translation units (like weak
|
|
|
|
|
entities), but are guaranteed to be generated by any translation
|
|
|
|
|
unit that needs them, and therefore need not be put out anywhere
|
|
|
|
|
where they are not needed. DECL_COMDAT is just a hint to the
|
|
|
|
|
back-end; it is up to front-ends which set this flag to ensure
|
|
|
|
|
that there will never be any harm, other than bloat, in putting out
|
|
|
|
|
something which is DECL_COMDAT. */
|
|
|
|
|
#define DECL_COMDAT(NODE) (DECL_CHECK (NODE)->decl.comdat_flag)
|
|
|
|
|
|
|
|
|
|
/* Used in FUNCTION_DECLs to indicate that function entry and exit should
|
|
|
|
|
be instrumented with calls to support routines. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT(NODE) \
|
|
|
|
|
(FUNCTION_DECL_CHECK (NODE)->decl.no_instrument_function_entry_exit)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Used in FUNCTION_DECLs to indicate that limit-stack-* should be
|
|
|
|
|
disabled in this function. */
|
|
|
|
|
#define DECL_NO_LIMIT_STACK(NODE) \
|
|
|
|
|
(FUNCTION_DECL_CHECK (NODE)->decl.no_limit_stack)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Additional flags for language-specific uses. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define DECL_LANG_FLAG_0(NODE) (DECL_CHECK (NODE)->decl.lang_flag_0)
|
|
|
|
|
#define DECL_LANG_FLAG_1(NODE) (DECL_CHECK (NODE)->decl.lang_flag_1)
|
|
|
|
|
#define DECL_LANG_FLAG_2(NODE) (DECL_CHECK (NODE)->decl.lang_flag_2)
|
|
|
|
|
#define DECL_LANG_FLAG_3(NODE) (DECL_CHECK (NODE)->decl.lang_flag_3)
|
|
|
|
|
#define DECL_LANG_FLAG_4(NODE) (DECL_CHECK (NODE)->decl.lang_flag_4)
|
|
|
|
|
#define DECL_LANG_FLAG_5(NODE) (DECL_CHECK (NODE)->decl.lang_flag_5)
|
|
|
|
|
#define DECL_LANG_FLAG_6(NODE) (DECL_CHECK (NODE)->decl.lang_flag_6)
|
|
|
|
|
#define DECL_LANG_FLAG_7(NODE) (DECL_CHECK (NODE)->decl.lang_flag_7)
|
|
|
|
|
|
|
|
|
|
/* Used to indicate that the pointer to this DECL cannot be treated as
|
|
|
|
|
an address constant. */
|
|
|
|
|
#define DECL_NON_ADDR_CONST_P(NODE) (DECL_CHECK (NODE)->decl.non_addr_const_p)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Used in a FIELD_DECL to indicate that we cannot form the address of
|
|
|
|
|
this component. */
|
|
|
|
|
#define DECL_NONADDRESSABLE_P(NODE) \
|
|
|
|
|
(FIELD_DECL_CHECK (NODE)->decl.non_addressable)
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Used to indicate an alias set for the memory pointed to by this
|
|
|
|
|
particular FIELD_DECL, PARM_DECL, or VAR_DECL, which must have
|
|
|
|
|
pointer (or reference) type. */
|
|
|
|
|
#define DECL_POINTER_ALIAS_SET(NODE) \
|
|
|
|
|
(DECL_CHECK (NODE)->decl.pointer_alias_set)
|
|
|
|
|
|
|
|
|
|
/* Nonzero if an alias set has been assigned to this declaration. */
|
|
|
|
|
#define DECL_POINTER_ALIAS_SET_KNOWN_P(NODE) \
|
|
|
|
|
(DECL_POINTER_ALIAS_SET (NODE) != - 1)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Nonzero for a decl which is at file scope. */
|
|
|
|
|
#define DECL_FILE_SCOPE_P(EXP) \
|
|
|
|
|
(! DECL_CONTEXT (EXP) \
|
|
|
|
|
|| TREE_CODE (DECL_CONTEXT (EXP)) == TRANSLATION_UNIT_DECL)
|
|
|
|
|
|
|
|
|
|
/* Enumerate visibility settings. */
|
|
|
|
|
|
|
|
|
|
enum symbol_visibility
|
|
|
|
|
{
|
|
|
|
|
VISIBILITY_DEFAULT,
|
|
|
|
|
VISIBILITY_INTERNAL,
|
|
|
|
|
VISIBILITY_HIDDEN,
|
|
|
|
|
VISIBILITY_PROTECTED
|
|
|
|
|
};
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
struct function;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_decl GTY(())
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct tree_common common;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
location_t locus;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
unsigned int uid;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree size;
|
|
|
|
|
ENUM_BITFIELD(machine_mode) mode : 8;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
unsigned external_flag : 1;
|
|
|
|
|
unsigned nonlocal_flag : 1;
|
|
|
|
|
unsigned regdecl_flag : 1;
|
|
|
|
|
unsigned inline_flag : 1;
|
|
|
|
|
unsigned bit_field_flag : 1;
|
|
|
|
|
unsigned virtual_flag : 1;
|
|
|
|
|
unsigned ignored_flag : 1;
|
|
|
|
|
unsigned abstract_flag : 1;
|
|
|
|
|
|
|
|
|
|
unsigned in_system_header_flag : 1;
|
|
|
|
|
unsigned common_flag : 1;
|
|
|
|
|
unsigned defer_output : 1;
|
|
|
|
|
unsigned transparent_union : 1;
|
|
|
|
|
unsigned static_ctor_flag : 1;
|
|
|
|
|
unsigned static_dtor_flag : 1;
|
|
|
|
|
unsigned artificial_flag : 1;
|
|
|
|
|
unsigned weak_flag : 1;
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
unsigned non_addr_const_p : 1;
|
|
|
|
|
unsigned no_instrument_function_entry_exit : 1;
|
|
|
|
|
unsigned comdat_flag : 1;
|
|
|
|
|
unsigned malloc_flag : 1;
|
|
|
|
|
unsigned no_limit_stack : 1;
|
|
|
|
|
ENUM_BITFIELD(built_in_class) built_in_class : 2;
|
|
|
|
|
unsigned pure_flag : 1;
|
|
|
|
|
|
|
|
|
|
unsigned non_addressable : 1;
|
|
|
|
|
unsigned user_align : 1;
|
|
|
|
|
unsigned uninlinable : 1;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
unsigned thread_local_flag : 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned declared_inline_flag : 1;
|
|
|
|
|
ENUM_BITFIELD(symbol_visibility) visibility : 2;
|
|
|
|
|
unsigned unused : 1;
|
|
|
|
|
/* one unused bit. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
unsigned lang_flag_0 : 1;
|
|
|
|
|
unsigned lang_flag_1 : 1;
|
|
|
|
|
unsigned lang_flag_2 : 1;
|
|
|
|
|
unsigned lang_flag_3 : 1;
|
|
|
|
|
unsigned lang_flag_4 : 1;
|
|
|
|
|
unsigned lang_flag_5 : 1;
|
|
|
|
|
unsigned lang_flag_6 : 1;
|
|
|
|
|
unsigned lang_flag_7 : 1;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
union tree_decl_u1 {
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In a FUNCTION_DECL for which DECL_BUILT_IN holds, this is
|
|
|
|
|
DECL_FUNCTION_CODE. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
enum built_in_function f;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In a FUNCTION_DECL for which DECL_BUILT_IN does not hold, this
|
2002-02-01 18:16:02 +00:00
|
|
|
|
is used by language-dependent code. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
HOST_WIDE_INT i;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* DECL_ALIGN and DECL_OFFSET_ALIGN. (These are not used for
|
|
|
|
|
FUNCTION_DECLs). */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_decl_u1_a {
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned int align : 24;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
unsigned int off_align : 8;
|
|
|
|
|
} a;
|
|
|
|
|
} GTY ((skip (""))) u1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
tree size_unit;
|
|
|
|
|
tree name;
|
|
|
|
|
tree context;
|
|
|
|
|
tree arguments; /* Also used for DECL_FIELD_OFFSET */
|
|
|
|
|
tree result; /* Also used for DECL_BIT_FIELD_TYPE */
|
|
|
|
|
tree initial; /* Also used for DECL_QUALIFIER */
|
|
|
|
|
tree abstract_origin;
|
|
|
|
|
tree assembler_name;
|
|
|
|
|
tree section_name;
|
|
|
|
|
tree attributes;
|
|
|
|
|
rtx rtl; /* RTL representation for object. */
|
|
|
|
|
|
|
|
|
|
/* In FUNCTION_DECL, if it is inline, holds the saved insn chain.
|
|
|
|
|
In FIELD_DECL, is DECL_FIELD_BIT_OFFSET.
|
|
|
|
|
In PARM_DECL, holds an RTL for the stack slot
|
|
|
|
|
of register where the data was actually passed.
|
|
|
|
|
Used by Chill and Java in LABEL_DECL and by C++ and Java in VAR_DECL. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
union tree_decl_u2 {
|
|
|
|
|
struct function * GTY ((tag ("FUNCTION_DECL"))) f;
|
|
|
|
|
rtx GTY ((tag ("PARM_DECL"))) r;
|
|
|
|
|
tree GTY ((tag ("FIELD_DECL"))) t;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
int GTY ((tag ("VAR_DECL"))) i;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
} GTY ((desc ("TREE_CODE((tree) &(%0))"))) u2;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* In a FUNCTION_DECL, this is DECL_SAVED_TREE. */
|
|
|
|
|
tree saved_tree;
|
|
|
|
|
|
|
|
|
|
/* In a FUNCTION_DECL, these are function data which is to be kept
|
|
|
|
|
as long as FUNCTION_DECL is kept. */
|
|
|
|
|
tree inlined_fns;
|
|
|
|
|
|
|
|
|
|
tree vindex;
|
|
|
|
|
HOST_WIDE_INT pointer_alias_set;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Points to a structure whose details depend on the language in use. */
|
|
|
|
|
struct lang_decl *lang_specific;
|
|
|
|
|
};
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
enum tree_node_structure_enum {
|
|
|
|
|
TS_COMMON,
|
|
|
|
|
TS_INT_CST,
|
|
|
|
|
TS_REAL_CST,
|
|
|
|
|
TS_VECTOR,
|
|
|
|
|
TS_STRING,
|
|
|
|
|
TS_COMPLEX,
|
|
|
|
|
TS_IDENTIFIER,
|
|
|
|
|
TS_DECL,
|
|
|
|
|
TS_TYPE,
|
|
|
|
|
TS_LIST,
|
|
|
|
|
TS_VEC,
|
|
|
|
|
TS_EXP,
|
|
|
|
|
TS_BLOCK,
|
|
|
|
|
LAST_TS_ENUM
|
|
|
|
|
};
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Define the overall contents of a tree node.
|
|
|
|
|
It may be any of the structures declared above
|
|
|
|
|
for various types of node. */
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
union tree_node GTY ((ptr_alias (union lang_tree_node),
|
|
|
|
|
desc ("tree_node_structure (&%h)")))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct tree_common GTY ((tag ("TS_COMMON"))) common;
|
|
|
|
|
struct tree_int_cst GTY ((tag ("TS_INT_CST"))) int_cst;
|
|
|
|
|
struct tree_real_cst GTY ((tag ("TS_REAL_CST"))) real_cst;
|
|
|
|
|
struct tree_vector GTY ((tag ("TS_VECTOR"))) vector;
|
|
|
|
|
struct tree_string GTY ((tag ("TS_STRING"))) string;
|
|
|
|
|
struct tree_complex GTY ((tag ("TS_COMPLEX"))) complex;
|
|
|
|
|
struct tree_identifier GTY ((tag ("TS_IDENTIFIER"))) identifier;
|
|
|
|
|
struct tree_decl GTY ((tag ("TS_DECL"))) decl;
|
|
|
|
|
struct tree_type GTY ((tag ("TS_TYPE"))) type;
|
|
|
|
|
struct tree_list GTY ((tag ("TS_LIST"))) list;
|
|
|
|
|
struct tree_vec GTY ((tag ("TS_VEC"))) vec;
|
|
|
|
|
struct tree_exp GTY ((tag ("TS_EXP"))) exp;
|
|
|
|
|
struct tree_block GTY ((tag ("TS_BLOCK"))) block;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
};
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Standard named or nameless data types of the C compiler. */
|
|
|
|
|
|
|
|
|
|
enum tree_index
|
|
|
|
|
{
|
|
|
|
|
TI_ERROR_MARK,
|
|
|
|
|
TI_INTQI_TYPE,
|
|
|
|
|
TI_INTHI_TYPE,
|
|
|
|
|
TI_INTSI_TYPE,
|
|
|
|
|
TI_INTDI_TYPE,
|
|
|
|
|
TI_INTTI_TYPE,
|
|
|
|
|
|
|
|
|
|
TI_UINTQI_TYPE,
|
|
|
|
|
TI_UINTHI_TYPE,
|
|
|
|
|
TI_UINTSI_TYPE,
|
|
|
|
|
TI_UINTDI_TYPE,
|
|
|
|
|
TI_UINTTI_TYPE,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_INTEGER_ZERO,
|
|
|
|
|
TI_INTEGER_ONE,
|
|
|
|
|
TI_INTEGER_MINUS_ONE,
|
|
|
|
|
TI_NULL_POINTER,
|
|
|
|
|
|
|
|
|
|
TI_SIZE_ZERO,
|
|
|
|
|
TI_SIZE_ONE,
|
|
|
|
|
|
|
|
|
|
TI_BITSIZE_ZERO,
|
|
|
|
|
TI_BITSIZE_ONE,
|
|
|
|
|
TI_BITSIZE_UNIT,
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TI_PUBLIC,
|
|
|
|
|
TI_PROTECTED,
|
|
|
|
|
TI_PRIVATE,
|
|
|
|
|
|
|
|
|
|
TI_BOOLEAN_FALSE,
|
|
|
|
|
TI_BOOLEAN_TRUE,
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_COMPLEX_INTEGER_TYPE,
|
|
|
|
|
TI_COMPLEX_FLOAT_TYPE,
|
|
|
|
|
TI_COMPLEX_DOUBLE_TYPE,
|
|
|
|
|
TI_COMPLEX_LONG_DOUBLE_TYPE,
|
|
|
|
|
|
|
|
|
|
TI_FLOAT_TYPE,
|
|
|
|
|
TI_DOUBLE_TYPE,
|
|
|
|
|
TI_LONG_DOUBLE_TYPE,
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TI_FLOAT_PTR_TYPE,
|
|
|
|
|
TI_DOUBLE_PTR_TYPE,
|
|
|
|
|
TI_LONG_DOUBLE_PTR_TYPE,
|
|
|
|
|
TI_INTEGER_PTR_TYPE,
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_VOID_TYPE,
|
|
|
|
|
TI_PTR_TYPE,
|
|
|
|
|
TI_CONST_PTR_TYPE,
|
2003-02-10 05:41:50 +00:00
|
|
|
|
TI_SIZE_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_PTRDIFF_TYPE,
|
|
|
|
|
TI_VA_LIST_TYPE,
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TI_BOOLEAN_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
TI_VOID_LIST_NODE,
|
|
|
|
|
|
|
|
|
|
TI_UV4SF_TYPE,
|
|
|
|
|
TI_UV4SI_TYPE,
|
|
|
|
|
TI_UV8HI_TYPE,
|
|
|
|
|
TI_UV8QI_TYPE,
|
|
|
|
|
TI_UV4HI_TYPE,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
TI_UV2HI_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_UV2SI_TYPE,
|
|
|
|
|
TI_UV2SF_TYPE,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
TI_UV2DI_TYPE,
|
|
|
|
|
TI_UV1DI_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_UV16QI_TYPE,
|
|
|
|
|
|
|
|
|
|
TI_V4SF_TYPE,
|
2002-05-09 20:02:13 +00:00
|
|
|
|
TI_V16SF_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_V4SI_TYPE,
|
|
|
|
|
TI_V8HI_TYPE,
|
|
|
|
|
TI_V8QI_TYPE,
|
|
|
|
|
TI_V4HI_TYPE,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
TI_V2HI_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_V2SI_TYPE,
|
|
|
|
|
TI_V2SF_TYPE,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
TI_V2DF_TYPE,
|
|
|
|
|
TI_V2DI_TYPE,
|
|
|
|
|
TI_V1DI_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TI_V16QI_TYPE,
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TI_V4DF_TYPE,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
TI_MAIN_IDENTIFIER,
|
|
|
|
|
|
|
|
|
|
TI_MAX
|
|
|
|
|
};
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern GTY(()) tree global_trees[TI_MAX];
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#define error_mark_node global_trees[TI_ERROR_MARK]
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define intQI_type_node global_trees[TI_INTQI_TYPE]
|
|
|
|
|
#define intHI_type_node global_trees[TI_INTHI_TYPE]
|
|
|
|
|
#define intSI_type_node global_trees[TI_INTSI_TYPE]
|
|
|
|
|
#define intDI_type_node global_trees[TI_INTDI_TYPE]
|
|
|
|
|
#define intTI_type_node global_trees[TI_INTTI_TYPE]
|
|
|
|
|
|
|
|
|
|
#define unsigned_intQI_type_node global_trees[TI_UINTQI_TYPE]
|
|
|
|
|
#define unsigned_intHI_type_node global_trees[TI_UINTHI_TYPE]
|
|
|
|
|
#define unsigned_intSI_type_node global_trees[TI_UINTSI_TYPE]
|
|
|
|
|
#define unsigned_intDI_type_node global_trees[TI_UINTDI_TYPE]
|
|
|
|
|
#define unsigned_intTI_type_node global_trees[TI_UINTTI_TYPE]
|
|
|
|
|
|
|
|
|
|
#define integer_zero_node global_trees[TI_INTEGER_ZERO]
|
|
|
|
|
#define integer_one_node global_trees[TI_INTEGER_ONE]
|
|
|
|
|
#define integer_minus_one_node global_trees[TI_INTEGER_MINUS_ONE]
|
|
|
|
|
#define size_zero_node global_trees[TI_SIZE_ZERO]
|
|
|
|
|
#define size_one_node global_trees[TI_SIZE_ONE]
|
|
|
|
|
#define bitsize_zero_node global_trees[TI_BITSIZE_ZERO]
|
|
|
|
|
#define bitsize_one_node global_trees[TI_BITSIZE_ONE]
|
|
|
|
|
#define bitsize_unit_node global_trees[TI_BITSIZE_UNIT]
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Base access nodes. */
|
|
|
|
|
#define access_public_node global_trees[TI_PUBLIC]
|
|
|
|
|
#define access_protected_node global_trees[TI_PROTECTED]
|
|
|
|
|
#define access_private_node global_trees[TI_PRIVATE]
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define null_pointer_node global_trees[TI_NULL_POINTER]
|
|
|
|
|
|
|
|
|
|
#define float_type_node global_trees[TI_FLOAT_TYPE]
|
|
|
|
|
#define double_type_node global_trees[TI_DOUBLE_TYPE]
|
|
|
|
|
#define long_double_type_node global_trees[TI_LONG_DOUBLE_TYPE]
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define float_ptr_type_node global_trees[TI_FLOAT_PTR_TYPE]
|
|
|
|
|
#define double_ptr_type_node global_trees[TI_DOUBLE_PTR_TYPE]
|
|
|
|
|
#define long_double_ptr_type_node global_trees[TI_LONG_DOUBLE_PTR_TYPE]
|
|
|
|
|
#define integer_ptr_type_node global_trees[TI_INTEGER_PTR_TYPE]
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define complex_integer_type_node global_trees[TI_COMPLEX_INTEGER_TYPE]
|
|
|
|
|
#define complex_float_type_node global_trees[TI_COMPLEX_FLOAT_TYPE]
|
|
|
|
|
#define complex_double_type_node global_trees[TI_COMPLEX_DOUBLE_TYPE]
|
|
|
|
|
#define complex_long_double_type_node global_trees[TI_COMPLEX_LONG_DOUBLE_TYPE]
|
|
|
|
|
|
|
|
|
|
#define void_type_node global_trees[TI_VOID_TYPE]
|
|
|
|
|
/* The C type `void *'. */
|
|
|
|
|
#define ptr_type_node global_trees[TI_PTR_TYPE]
|
|
|
|
|
/* The C type `const void *'. */
|
|
|
|
|
#define const_ptr_type_node global_trees[TI_CONST_PTR_TYPE]
|
2003-02-10 05:41:50 +00:00
|
|
|
|
/* The C type `size_t'. */
|
|
|
|
|
#define size_type_node global_trees[TI_SIZE_TYPE]
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define ptrdiff_type_node global_trees[TI_PTRDIFF_TYPE]
|
|
|
|
|
#define va_list_type_node global_trees[TI_VA_LIST_TYPE]
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define boolean_type_node global_trees[TI_BOOLEAN_TYPE]
|
|
|
|
|
#define boolean_false_node global_trees[TI_BOOLEAN_FALSE]
|
|
|
|
|
#define boolean_true_node global_trees[TI_BOOLEAN_TRUE]
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The node that should be placed at the end of a parameter list to
|
|
|
|
|
indicate that the function does not take a variable number of
|
|
|
|
|
arguments. The TREE_VALUE will be void_type_node and there will be
|
|
|
|
|
no TREE_CHAIN. Language-independent code should not assume
|
|
|
|
|
anything else about this node. */
|
|
|
|
|
#define void_list_node global_trees[TI_VOID_LIST_NODE]
|
|
|
|
|
|
|
|
|
|
#define main_identifier_node global_trees[TI_MAIN_IDENTIFIER]
|
|
|
|
|
#define MAIN_NAME_P(NODE) (IDENTIFIER_NODE_CHECK (NODE) == main_identifier_node)
|
|
|
|
|
|
|
|
|
|
#define unsigned_V16QI_type_node global_trees[TI_UV16QI_TYPE]
|
|
|
|
|
#define unsigned_V4SI_type_node global_trees[TI_UV4SI_TYPE]
|
|
|
|
|
#define unsigned_V8QI_type_node global_trees[TI_UV8QI_TYPE]
|
|
|
|
|
#define unsigned_V8HI_type_node global_trees[TI_UV8HI_TYPE]
|
|
|
|
|
#define unsigned_V4HI_type_node global_trees[TI_UV4HI_TYPE]
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define unsigned_V2HI_type_node global_trees[TI_UV2HI_TYPE]
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define unsigned_V2SI_type_node global_trees[TI_UV2SI_TYPE]
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define unsigned_V2DI_type_node global_trees[TI_UV2DI_TYPE]
|
|
|
|
|
#define unsigned_V1DI_type_node global_trees[TI_UV1DI_TYPE]
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#define V16QI_type_node global_trees[TI_V16QI_TYPE]
|
|
|
|
|
#define V4SF_type_node global_trees[TI_V4SF_TYPE]
|
|
|
|
|
#define V4SI_type_node global_trees[TI_V4SI_TYPE]
|
|
|
|
|
#define V8QI_type_node global_trees[TI_V8QI_TYPE]
|
|
|
|
|
#define V8HI_type_node global_trees[TI_V8HI_TYPE]
|
|
|
|
|
#define V4HI_type_node global_trees[TI_V4HI_TYPE]
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define V2HI_type_node global_trees[TI_V2HI_TYPE]
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define V2SI_type_node global_trees[TI_V2SI_TYPE]
|
|
|
|
|
#define V2SF_type_node global_trees[TI_V2SF_TYPE]
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define V2DI_type_node global_trees[TI_V2DI_TYPE]
|
|
|
|
|
#define V2DF_type_node global_trees[TI_V2DF_TYPE]
|
2002-05-09 20:02:13 +00:00
|
|
|
|
#define V16SF_type_node global_trees[TI_V16SF_TYPE]
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#define V1DI_type_node global_trees[TI_V1DI_TYPE]
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#define V4DF_type_node global_trees[TI_V4DF_TYPE]
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* An enumeration of the standard C integer types. These must be
|
2003-07-11 03:40:53 +00:00
|
|
|
|
ordered so that shorter types appear before longer ones, and so
|
|
|
|
|
that signed types appear before unsigned ones, for the correct
|
|
|
|
|
functioning of interpret_integer() in c-lex.c. */
|
|
|
|
|
enum integer_type_kind
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
itk_char,
|
|
|
|
|
itk_signed_char,
|
|
|
|
|
itk_unsigned_char,
|
|
|
|
|
itk_short,
|
|
|
|
|
itk_unsigned_short,
|
|
|
|
|
itk_int,
|
|
|
|
|
itk_unsigned_int,
|
|
|
|
|
itk_long,
|
|
|
|
|
itk_unsigned_long,
|
|
|
|
|
itk_long_long,
|
|
|
|
|
itk_unsigned_long_long,
|
|
|
|
|
itk_none
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
typedef enum integer_type_kind integer_type_kind;
|
|
|
|
|
|
|
|
|
|
/* The standard C integer types. Use integer_type_kind to index into
|
|
|
|
|
this array. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern GTY(()) tree integer_types[itk_none];
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#define char_type_node integer_types[itk_char]
|
|
|
|
|
#define signed_char_type_node integer_types[itk_signed_char]
|
|
|
|
|
#define unsigned_char_type_node integer_types[itk_unsigned_char]
|
|
|
|
|
#define short_integer_type_node integer_types[itk_short]
|
|
|
|
|
#define short_unsigned_type_node integer_types[itk_unsigned_short]
|
|
|
|
|
#define integer_type_node integer_types[itk_int]
|
|
|
|
|
#define unsigned_type_node integer_types[itk_unsigned_int]
|
|
|
|
|
#define long_integer_type_node integer_types[itk_long]
|
|
|
|
|
#define long_unsigned_type_node integer_types[itk_unsigned_long]
|
|
|
|
|
#define long_long_integer_type_node integer_types[itk_long_long]
|
|
|
|
|
#define long_long_unsigned_type_node integer_types[itk_unsigned_long_long]
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
|
|
|
|
/* Set to the default thread-local storage (tls) model to use. */
|
|
|
|
|
|
|
|
|
|
enum tls_model {
|
|
|
|
|
TLS_MODEL_GLOBAL_DYNAMIC = 1,
|
|
|
|
|
TLS_MODEL_LOCAL_DYNAMIC,
|
|
|
|
|
TLS_MODEL_INITIAL_EXEC,
|
|
|
|
|
TLS_MODEL_LOCAL_EXEC
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
extern enum tls_model flag_tls_default;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2002-10-10 04:40:18 +00:00
|
|
|
|
|
|
|
|
|
/* A pointer-to-function member type looks like:
|
|
|
|
|
|
|
|
|
|
struct {
|
|
|
|
|
__P __pfn;
|
|
|
|
|
ptrdiff_t __delta;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
If __pfn is NULL, it is a NULL pointer-to-member-function.
|
|
|
|
|
|
|
|
|
|
(Because the vtable is always the first thing in the object, we
|
|
|
|
|
don't need its offset.) If the function is virtual, then PFN is
|
|
|
|
|
one plus twice the index into the vtable; otherwise, it is just a
|
|
|
|
|
pointer to the function.
|
|
|
|
|
|
|
|
|
|
Unfortunately, using the lowest bit of PFN doesn't work in
|
|
|
|
|
architectures that don't impose alignment requirements on function
|
|
|
|
|
addresses, or that use the lowest bit to tell one ISA from another,
|
|
|
|
|
for example. For such architectures, we use the lowest bit of
|
|
|
|
|
DELTA instead of the lowest bit of the PFN, and DELTA will be
|
|
|
|
|
multiplied by 2. */
|
|
|
|
|
|
|
|
|
|
enum ptrmemfunc_vbit_where_t
|
|
|
|
|
{
|
|
|
|
|
ptrmemfunc_vbit_in_pfn,
|
|
|
|
|
ptrmemfunc_vbit_in_delta
|
|
|
|
|
};
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#define NULL_TREE (tree) NULL
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree decl_assembler_name (tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Compute the number of bytes occupied by 'node'. This routine only
|
|
|
|
|
looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern size_t tree_size (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Lowest level primitive for allocating a node.
|
|
|
|
|
The TREE_CODE is the only argument. Contents are initialized
|
|
|
|
|
to zero except for a few of the common fields. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree make_node (enum tree_code);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Make a copy of a node, with all the same contents. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree copy_node (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Make a copy of a chain of TREE_LIST nodes. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree copy_list (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Make a TREE_VEC. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree make_tree_vec (int);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return the (unique) IDENTIFIER_NODE node for a given name.
|
|
|
|
|
The name is supplied as a char *. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_identifier (const char *);
|
|
|
|
|
|
|
|
|
|
#if GCC_VERSION >= 3000
|
|
|
|
|
#define get_identifier(str) \
|
|
|
|
|
(__builtin_constant_p (str) \
|
|
|
|
|
? get_identifier_with_length ((str), strlen (str)) \
|
|
|
|
|
: get_identifier (str))
|
|
|
|
|
#endif
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Identical to get_identifier, except that the length is assumed
|
|
|
|
|
known. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_identifier_with_length (const char *, size_t);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* If an identifier with the name TEXT (a null-terminated string) has
|
|
|
|
|
previously been referred to, return that node; otherwise return
|
|
|
|
|
NULL_TREE. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree maybe_get_identifier (const char *);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Construct various types of nodes. */
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define build_int_2(LO, HI) \
|
|
|
|
|
build_int_2_wide ((unsigned HOST_WIDE_INT) (LO), (HOST_WIDE_INT) (HI))
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree build (enum tree_code, tree, ...);
|
|
|
|
|
extern tree build_nt (enum tree_code, ...);
|
|
|
|
|
|
|
|
|
|
extern tree build_int_2_wide (unsigned HOST_WIDE_INT, HOST_WIDE_INT);
|
|
|
|
|
extern tree build_vector (tree, tree);
|
|
|
|
|
extern tree build_constructor (tree, tree);
|
|
|
|
|
extern tree build_real_from_int_cst (tree, tree);
|
|
|
|
|
extern tree build_complex (tree, tree, tree);
|
|
|
|
|
extern tree build_string (int, const char *);
|
|
|
|
|
extern tree build1 (enum tree_code, tree, tree);
|
|
|
|
|
extern tree build_tree_list (tree, tree);
|
|
|
|
|
extern tree build_decl (enum tree_code, tree, tree);
|
|
|
|
|
extern tree build_block (tree, tree, tree, tree, tree);
|
|
|
|
|
extern tree build_expr_wfl (tree, const char *, int, int);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Construct various nodes representing data types. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree make_signed_type (int);
|
|
|
|
|
extern tree make_unsigned_type (int);
|
|
|
|
|
extern void initialize_sizetypes (void);
|
|
|
|
|
extern void set_sizetype (tree);
|
|
|
|
|
extern void fixup_unsigned_type (tree);
|
|
|
|
|
extern tree build_pointer_type_for_mode (tree, enum machine_mode);
|
|
|
|
|
extern tree build_pointer_type (tree);
|
|
|
|
|
extern tree build_reference_type_for_mode (tree, enum machine_mode);
|
|
|
|
|
extern tree build_reference_type (tree);
|
|
|
|
|
extern tree build_type_no_quals (tree);
|
|
|
|
|
extern tree build_index_type (tree);
|
|
|
|
|
extern tree build_index_2_type (tree, tree);
|
|
|
|
|
extern tree build_array_type (tree, tree);
|
|
|
|
|
extern tree build_function_type (tree, tree);
|
|
|
|
|
extern tree build_function_type_list (tree, ...);
|
|
|
|
|
extern tree build_method_type_directly (tree, tree, tree);
|
|
|
|
|
extern tree build_method_type (tree, tree);
|
|
|
|
|
extern tree build_offset_type (tree, tree);
|
|
|
|
|
extern tree build_complex_type (tree);
|
|
|
|
|
extern tree array_type_nelts (tree);
|
|
|
|
|
|
|
|
|
|
extern tree value_member (tree, tree);
|
|
|
|
|
extern tree purpose_member (tree, tree);
|
|
|
|
|
extern tree binfo_member (tree, tree);
|
|
|
|
|
extern unsigned int attribute_hash_list (tree);
|
|
|
|
|
extern int attribute_list_equal (tree, tree);
|
|
|
|
|
extern int attribute_list_contained (tree, tree);
|
|
|
|
|
extern int tree_int_cst_equal (tree, tree);
|
|
|
|
|
extern int tree_int_cst_lt (tree, tree);
|
|
|
|
|
extern int tree_int_cst_compare (tree, tree);
|
|
|
|
|
extern int host_integerp (tree, int);
|
|
|
|
|
extern HOST_WIDE_INT tree_low_cst (tree, int);
|
|
|
|
|
extern int tree_int_cst_msb (tree);
|
|
|
|
|
extern int tree_int_cst_sgn (tree);
|
|
|
|
|
extern int tree_expr_nonnegative_p (tree);
|
|
|
|
|
extern int rtl_expr_nonnegative_p (rtx);
|
|
|
|
|
extern tree get_inner_array_type (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* From expmed.c. Since rtl.h is included after tree.h, we can't
|
|
|
|
|
put the prototype here. Rtl.h does declare the prototype if
|
|
|
|
|
tree.h had been included. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree make_tree (tree, rtx);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return a type like TTYPE except that its TYPE_ATTRIBUTES
|
|
|
|
|
is ATTRIBUTE.
|
|
|
|
|
|
|
|
|
|
Such modified types already made are recorded so that duplicates
|
2002-02-01 18:16:02 +00:00
|
|
|
|
are not made. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree build_type_attribute_variant (tree, tree);
|
|
|
|
|
extern tree build_decl_attribute_variant (tree, tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Structure describing an attribute and a function to handle it. */
|
|
|
|
|
struct attribute_spec
|
|
|
|
|
{
|
|
|
|
|
/* The name of the attribute (without any leading or trailing __),
|
|
|
|
|
or NULL to mark the end of a table of attributes. */
|
|
|
|
|
const char *const name;
|
|
|
|
|
/* The minimum length of the list of arguments of the attribute. */
|
|
|
|
|
const int min_length;
|
|
|
|
|
/* The maximum length of the list of arguments of the attribute
|
|
|
|
|
(-1 for no maximum). */
|
|
|
|
|
const int max_length;
|
|
|
|
|
/* Whether this attribute requires a DECL. If it does, it will be passed
|
|
|
|
|
from types of DECLs, function return types and array element types to
|
|
|
|
|
the DECLs, function types and array types respectively; but when
|
|
|
|
|
applied to a type in any other circumstances, it will be ignored with
|
|
|
|
|
a warning. (If greater control is desired for a given attribute,
|
|
|
|
|
this should be false, and the flags argument to the handler may be
|
|
|
|
|
used to gain greater control in that case.) */
|
|
|
|
|
const bool decl_required;
|
|
|
|
|
/* Whether this attribute requires a type. If it does, it will be passed
|
|
|
|
|
from a DECL to the type of that DECL. */
|
|
|
|
|
const bool type_required;
|
|
|
|
|
/* Whether this attribute requires a function (or method) type. If it does,
|
|
|
|
|
it will be passed from a function pointer type to the target type,
|
|
|
|
|
and from a function return type (which is not itself a function
|
|
|
|
|
pointer type) to the function type. */
|
|
|
|
|
const bool function_type_required;
|
|
|
|
|
/* Function to handle this attribute. NODE points to the node to which
|
|
|
|
|
the attribute is to be applied. If a DECL, it should be modified in
|
|
|
|
|
place; if a TYPE, a copy should be created. NAME is the name of the
|
|
|
|
|
attribute (possibly with leading or trailing __). ARGS is the TREE_LIST
|
|
|
|
|
of the arguments (which may be NULL). FLAGS gives further information
|
|
|
|
|
about the context of the attribute. Afterwards, the attributes will
|
|
|
|
|
be added to the DECL_ATTRIBUTES or TYPE_ATTRIBUTES, as appropriate,
|
|
|
|
|
unless *NO_ADD_ATTRS is set to true (which should be done on error,
|
|
|
|
|
as well as in any other cases when the attributes should not be added
|
|
|
|
|
to the DECL or TYPE). Depending on FLAGS, any attributes to be
|
|
|
|
|
applied to another type or DECL later may be returned;
|
|
|
|
|
otherwise the return value should be NULL_TREE. This pointer may be
|
|
|
|
|
NULL if no special handling is required beyond the checks implied
|
|
|
|
|
by the rest of this structure. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree (*const handler) (tree *node, tree name, tree args,
|
|
|
|
|
int flags, bool *no_add_attrs);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Flags that may be passed in the third argument of decl_attributes, and
|
|
|
|
|
to handler functions for attributes. */
|
|
|
|
|
enum attribute_flags
|
|
|
|
|
{
|
|
|
|
|
/* The type passed in is the type of a DECL, and any attributes that
|
|
|
|
|
should be passed in again to be applied to the DECL rather than the
|
|
|
|
|
type should be returned. */
|
|
|
|
|
ATTR_FLAG_DECL_NEXT = 1,
|
|
|
|
|
/* The type passed in is a function return type, and any attributes that
|
|
|
|
|
should be passed in again to be applied to the function type rather
|
|
|
|
|
than the return type should be returned. */
|
|
|
|
|
ATTR_FLAG_FUNCTION_NEXT = 2,
|
|
|
|
|
/* The type passed in is an array element type, and any attributes that
|
|
|
|
|
should be passed in again to be applied to the array type rather
|
|
|
|
|
than the element type should be returned. */
|
|
|
|
|
ATTR_FLAG_ARRAY_NEXT = 4,
|
|
|
|
|
/* The type passed in is a structure, union or enumeration type being
|
|
|
|
|
created, and should be modified in place. */
|
|
|
|
|
ATTR_FLAG_TYPE_IN_PLACE = 8,
|
|
|
|
|
/* The attributes are being applied by default to a library function whose
|
|
|
|
|
name indicates known behavior, and should be silently ignored if they
|
|
|
|
|
are not in fact compatible with the function type. */
|
|
|
|
|
ATTR_FLAG_BUILT_IN = 16
|
|
|
|
|
};
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Default versions of target-overridable functions. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree merge_decl_attributes (tree, tree);
|
|
|
|
|
extern tree merge_type_attributes (tree, tree);
|
|
|
|
|
extern void default_register_cpp_builtins (struct cpp_reader *);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Split a list of declspecs and attributes into two. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void split_specs_attrs (tree, tree *, tree *);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Strip attributes from a list of combined specs and attrs. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree strip_attrs (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Return 1 if an attribute and its arguments are valid for a decl or type. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int valid_machine_attribute (tree, tree, tree, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Given a tree node and a string, return nonzero if the tree node is
|
1996-09-18 05:35:50 +00:00
|
|
|
|
a valid attribute name for the string. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int is_attribute_p (const char *, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Given an attribute name and a list of attributes, return the list element
|
|
|
|
|
of the attribute or NULL_TREE if not found. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree lookup_attribute (const char *, tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Given two attributes lists, return a list of their union. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree merge_attributes (tree, tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
|
|
|
|
/* Given two Windows decl attributes lists, possibly including
|
|
|
|
|
dllimport, return a list of their union . */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree merge_dllimport_decl_attributes (tree, tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Return a version of the TYPE, qualified as indicated by the
|
|
|
|
|
TYPE_QUALS, if one exists. If no qualified version exists yet,
|
|
|
|
|
return NULL_TREE. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_qualified_type (tree, int);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Like get_qualified_type, but creates the type if it does not
|
|
|
|
|
exist. This function never returns NULL_TREE. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree build_qualified_type (tree, int);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
|
|
|
|
/* Like build_qualified_type, but only deals with the `const' and
|
|
|
|
|
`volatile' qualifiers. This interface is retained for backwards
|
2004-07-28 03:11:36 +00:00
|
|
|
|
compatibility with the various front-ends; new code should use
|
1999-10-16 06:09:09 +00:00
|
|
|
|
build_qualified_type instead. */
|
|
|
|
|
|
|
|
|
|
#define build_type_variant(TYPE, CONST_P, VOLATILE_P) \
|
2002-02-01 18:16:02 +00:00
|
|
|
|
build_qualified_type ((TYPE), \
|
1999-10-16 06:09:09 +00:00
|
|
|
|
((CONST_P) ? TYPE_QUAL_CONST : 0) \
|
|
|
|
|
| ((VOLATILE_P) ? TYPE_QUAL_VOLATILE : 0))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Make a copy of a type node. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree build_type_copy (tree);
|
|
|
|
|
|
|
|
|
|
/* Finish up a builtin RECORD_TYPE. Give it a name and provide its
|
|
|
|
|
fields. Optionally specify an alignment, and then lsy it out. */
|
|
|
|
|
|
|
|
|
|
extern void finish_builtin_struct (tree, const char *,
|
|
|
|
|
tree, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Given a ..._TYPE node, calculate the TYPE_SIZE, TYPE_SIZE_UNIT,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TYPE_ALIGN and TYPE_MODE fields. If called more than once on one
|
|
|
|
|
node, does nothing except for the first time. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void layout_type (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* These functions allow a front-end to perform a manual layout of a
|
|
|
|
|
RECORD_TYPE. (For instance, if the placement of subsequent fields
|
|
|
|
|
depends on the placement of fields so far.) Begin by calling
|
|
|
|
|
start_record_layout. Then, call place_field for each of the
|
|
|
|
|
fields. Then, call finish_record_layout. See layout_type for the
|
|
|
|
|
default way in which these functions are used. */
|
|
|
|
|
|
|
|
|
|
typedef struct record_layout_info_s
|
|
|
|
|
{
|
|
|
|
|
/* The RECORD_TYPE that we are laying out. */
|
|
|
|
|
tree t;
|
|
|
|
|
/* The offset into the record so far, in bytes, not including bits in
|
|
|
|
|
BITPOS. */
|
|
|
|
|
tree offset;
|
|
|
|
|
/* The last known alignment of SIZE. */
|
|
|
|
|
unsigned int offset_align;
|
|
|
|
|
/* The bit position within the last OFFSET_ALIGN bits, in bits. */
|
|
|
|
|
tree bitpos;
|
|
|
|
|
/* The alignment of the record so far, in bits. */
|
|
|
|
|
unsigned int record_align;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* The alignment of the record so far, ignoring #pragma pack and
|
|
|
|
|
__attribute__ ((packed)), in bits. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
unsigned int unpacked_align;
|
2002-05-09 20:02:13 +00:00
|
|
|
|
/* The previous field layed out. */
|
|
|
|
|
tree prev_field;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The static variables (i.e., class variables, as opposed to
|
|
|
|
|
instance variables) encountered in T. */
|
|
|
|
|
tree pending_statics;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Bits remaining in the current alignment group */
|
|
|
|
|
int remaining_in_alignment;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* True if we've seen a packed field that didn't have normal
|
|
|
|
|
alignment anyway. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
int packed_maybe_necessary;
|
|
|
|
|
} *record_layout_info;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void set_lang_adjust_rli (void (*) (record_layout_info));
|
|
|
|
|
extern record_layout_info start_record_layout (tree);
|
|
|
|
|
extern tree bit_from_pos (tree, tree);
|
|
|
|
|
extern tree byte_from_pos (tree, tree);
|
|
|
|
|
extern void pos_from_bit (tree *, tree *, unsigned int, tree);
|
|
|
|
|
extern void normalize_offset (tree *, tree *, unsigned int);
|
|
|
|
|
extern tree rli_size_unit_so_far (record_layout_info);
|
|
|
|
|
extern tree rli_size_so_far (record_layout_info);
|
|
|
|
|
extern void normalize_rli (record_layout_info);
|
|
|
|
|
extern void place_field (record_layout_info, tree);
|
|
|
|
|
extern void compute_record_mode (tree);
|
|
|
|
|
extern void finish_record_layout (record_layout_info, int);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Given a hashcode and a ..._TYPE node (for which the hashcode was made),
|
|
|
|
|
return a canonicalized ..._TYPE node, so that duplicates are not made.
|
|
|
|
|
How the hash code is computed is up to the caller, as long as any two
|
|
|
|
|
callers that could hash identical-looking type nodes agree. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree type_hash_canon (unsigned int, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Given a VAR_DECL, PARM_DECL, RESULT_DECL or FIELD_DECL node,
|
|
|
|
|
calculates the DECL_SIZE, DECL_SIZE_UNIT, DECL_ALIGN and DECL_MODE
|
|
|
|
|
fields. Call this only once for any given decl node.
|
|
|
|
|
|
|
|
|
|
Second argument is the boundary that this field can be assumed to
|
|
|
|
|
be starting at (in bits). Zero means it can be assumed aligned
|
|
|
|
|
on any boundary that may be needed. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void layout_decl (tree, unsigned);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Return the mode for data of a given size SIZE and mode class CLASS.
|
|
|
|
|
If LIMIT is nonzero, then don't use modes bigger than MAX_FIXED_MODE_SIZE.
|
|
|
|
|
The value is BLKmode if no other mode is found. This is like
|
|
|
|
|
mode_for_size, but is passed a tree. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern enum machine_mode mode_for_size_tree (tree, enum mode_class, int);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return an expr equal to X but certainly not valid as an lvalue. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree non_lvalue (tree);
|
|
|
|
|
extern tree pedantic_non_lvalue (tree);
|
|
|
|
|
|
|
|
|
|
extern tree convert (tree, tree);
|
|
|
|
|
extern unsigned int expr_align (tree);
|
|
|
|
|
extern tree expr_first (tree);
|
|
|
|
|
extern tree expr_last (tree);
|
|
|
|
|
extern int expr_length (tree);
|
|
|
|
|
extern tree size_in_bytes (tree);
|
|
|
|
|
extern HOST_WIDE_INT int_size_in_bytes (tree);
|
|
|
|
|
extern tree bit_position (tree);
|
|
|
|
|
extern HOST_WIDE_INT int_bit_position (tree);
|
|
|
|
|
extern tree byte_position (tree);
|
|
|
|
|
extern HOST_WIDE_INT int_byte_position (tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Define data structures, macros, and functions for handling sizes
|
|
|
|
|
and the various types used to represent sizes. */
|
|
|
|
|
|
|
|
|
|
enum size_type_kind
|
|
|
|
|
{
|
|
|
|
|
SIZETYPE, /* Normal representation of sizes in bytes. */
|
|
|
|
|
SSIZETYPE, /* Signed representation of sizes in bytes. */
|
|
|
|
|
USIZETYPE, /* Unsigned representation of sizes in bytes. */
|
|
|
|
|
BITSIZETYPE, /* Normal representation of sizes in bits. */
|
|
|
|
|
SBITSIZETYPE, /* Signed representation of sizes in bits. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
UBITSIZETYPE, /* Unsigned representation of sizes in bits. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
TYPE_KIND_LAST};
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern GTY(()) tree sizetype_tab[(int) TYPE_KIND_LAST];
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#define sizetype sizetype_tab[(int) SIZETYPE]
|
|
|
|
|
#define bitsizetype sizetype_tab[(int) BITSIZETYPE]
|
|
|
|
|
#define ssizetype sizetype_tab[(int) SSIZETYPE]
|
|
|
|
|
#define usizetype sizetype_tab[(int) USIZETYPE]
|
|
|
|
|
#define sbitsizetype sizetype_tab[(int) SBITSIZETYPE]
|
|
|
|
|
#define ubitsizetype sizetype_tab[(int) UBITSIZETYPE]
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree size_binop (enum tree_code, tree, tree);
|
|
|
|
|
extern tree size_diffop (tree, tree);
|
|
|
|
|
extern tree size_int_wide (HOST_WIDE_INT, enum size_type_kind);
|
|
|
|
|
extern tree size_int_type_wide (HOST_WIDE_INT, tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#define size_int_type(L, T) size_int_type_wide ((HOST_WIDE_INT) (L), T)
|
|
|
|
|
#define size_int(L) size_int_wide ((HOST_WIDE_INT) (L), SIZETYPE)
|
|
|
|
|
#define ssize_int(L) size_int_wide ((HOST_WIDE_INT) (L), SSIZETYPE)
|
|
|
|
|
#define bitsize_int(L) size_int_wide ((HOST_WIDE_INT) (L), BITSIZETYPE)
|
|
|
|
|
#define sbitsize_int(L) size_int_wide ((HOST_WIDE_INT) (L), SBITSIZETYPE)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree round_up (tree, int);
|
|
|
|
|
extern tree round_down (tree, int);
|
|
|
|
|
extern tree get_pending_sizes (void);
|
|
|
|
|
extern int is_pending_size (tree);
|
|
|
|
|
extern void put_pending_size (tree);
|
|
|
|
|
extern void put_pending_sizes (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Type for sizes of data-type. */
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#define BITS_PER_UNIT_LOG \
|
|
|
|
|
((BITS_PER_UNIT > 1) + (BITS_PER_UNIT > 2) + (BITS_PER_UNIT > 4) \
|
|
|
|
|
+ (BITS_PER_UNIT > 8) + (BITS_PER_UNIT > 16) + (BITS_PER_UNIT > 32) \
|
|
|
|
|
+ (BITS_PER_UNIT > 64) + (BITS_PER_UNIT > 128) + (BITS_PER_UNIT > 256))
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* If nonzero, an upper limit on alignment of structure fields, in bits. */
|
|
|
|
|
extern unsigned int maximum_field_alignment;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* If nonzero, the alignment of a bitstring or (power-)set value, in bits. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
extern unsigned int set_alignment;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Concatenate two lists (chains of TREE_LIST nodes) X and Y
|
|
|
|
|
by making the last node in X point to Y.
|
|
|
|
|
Returns X, except if X is 0 returns Y. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree chainon (tree, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Make a new TREE_LIST node from specified PURPOSE, VALUE and CHAIN. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree tree_cons (tree, tree, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return the last tree node in a chain. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree tree_last (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Reverse the order of elements in a chain, and return the new head. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree nreverse (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Returns the length of a chain of nodes
|
|
|
|
|
(number of chain pointers to follow before reaching a null pointer). */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int list_length (tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Returns the number of FIELD_DECLs in a type. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int fields_length (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Given an initializer INIT, return TRUE if INIT is zero or some
|
|
|
|
|
aggregate of zeros. Otherwise return FALSE. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern bool initializer_zerop (tree);
|
|
|
|
|
|
|
|
|
|
/* Given an initializer INIT, return TRUE if INIT is at least 3/4 zeros.
|
|
|
|
|
Otherwise return FALSE. */
|
|
|
|
|
|
|
|
|
|
extern int mostly_zeros_p (tree);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* integer_zerop (tree x) is nonzero if X is an integer constant of value 0 */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int integer_zerop (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* integer_onep (tree x) is nonzero if X is an integer constant of value 1 */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int integer_onep (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* integer_all_onesp (tree x) is nonzero if X is an integer constant
|
|
|
|
|
all of whose significant bits are 1. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int integer_all_onesp (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* integer_pow2p (tree x) is nonzero is X is an integer constant with
|
|
|
|
|
exactly one bit 1. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int integer_pow2p (tree);
|
|
|
|
|
|
|
|
|
|
/* integer_nonzerop (tree x) is nonzero if X is an integer constant
|
|
|
|
|
with a nonzero value. */
|
|
|
|
|
|
|
|
|
|
extern int integer_nonzerop (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* staticp (tree x) is nonzero if X is a reference to data allocated
|
|
|
|
|
at a fixed address in memory. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int staticp (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Gets an error if argument X is not an lvalue.
|
|
|
|
|
Also returns 1 if X is an lvalue, 0 if not. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int lvalue_or_else (tree, const char *);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* save_expr (EXP) returns an expression equivalent to EXP
|
|
|
|
|
but it can be used multiple times within context CTX
|
|
|
|
|
and only evaluate EXP once. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree save_expr (tree);
|
|
|
|
|
|
|
|
|
|
/* Look inside EXPR and into any simple arithmetic operations. Return
|
|
|
|
|
the innermost non-arithmetic node. */
|
|
|
|
|
|
|
|
|
|
extern tree skip_simple_arithmetic (tree);
|
|
|
|
|
|
|
|
|
|
/* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
|
|
|
|
|
SAVE_EXPR. Return FALSE otherwise. */
|
|
|
|
|
|
|
|
|
|
extern bool saved_expr_p (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Returns the index of the first non-tree operand for CODE, or the number
|
|
|
|
|
of operands if all are trees. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int first_rtl_op (enum tree_code);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Return which tree structure is used by T. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
enum tree_node_structure_enum tree_node_structure (tree);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* unsave_expr (EXP) returns an expression equivalent to EXP but it
|
2002-02-01 18:16:02 +00:00
|
|
|
|
can be used multiple times and will evaluate EXP in its entirety
|
1999-08-26 09:30:50 +00:00
|
|
|
|
each time. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree unsave_expr (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Reset EXP in place so that it can be expanded again. Does not
|
2002-02-01 18:16:02 +00:00
|
|
|
|
recurse into subtrees. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void unsave_expr_1 (tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Return 0 if it is safe to evaluate EXPR multiple times,
|
|
|
|
|
return 1 if it is safe if EXPR is unsaved afterward, or
|
|
|
|
|
return 2 if it is completely unsafe. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int unsafe_for_reeval (tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
|
|
|
|
|
or offset that depends on a field within a record.
|
|
|
|
|
|
|
|
|
|
Note that we only allow such expressions within simple arithmetic
|
|
|
|
|
or a COND_EXPR. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern bool contains_placeholder_p (tree);
|
|
|
|
|
|
|
|
|
|
/* This macro calls the above function but short-circuits the common
|
|
|
|
|
case of a constant to save time. Also check for null. */
|
|
|
|
|
|
|
|
|
|
#define CONTAINS_PLACEHOLDER_P(EXP) \
|
|
|
|
|
((EXP) != 0 && ! TREE_CONSTANT (EXP) && contains_placeholder_p (EXP))
|
|
|
|
|
|
|
|
|
|
/* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
|
|
|
|
|
This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
|
|
|
|
|
positions. */
|
|
|
|
|
|
|
|
|
|
extern bool type_contains_placeholder_p (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Return 1 if EXP contains any expressions that produce cleanups for an
|
|
|
|
|
outer scope to deal with. Used by fold. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int has_cleanups (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
|
|
|
|
|
return a tree with all occurrences of references to F in a
|
|
|
|
|
PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
|
|
|
|
|
contains only arithmetic expressions. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree substitute_in_expr (tree, tree, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* variable_size (EXP) is like save_expr (EXP) except that it
|
|
|
|
|
is for the special case of something that is part of a
|
|
|
|
|
variable size for a data type. It makes special arrangements
|
|
|
|
|
to compute the value at the right time when the data type
|
|
|
|
|
belongs to a function parameter. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree variable_size (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* stabilize_reference (EXP) returns a reference equivalent to EXP
|
1996-09-18 05:35:50 +00:00
|
|
|
|
but it can be used multiple times
|
|
|
|
|
and only evaluate the subexpressions once. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree stabilize_reference (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Subroutine of stabilize_reference; this is called for subtrees of
|
|
|
|
|
references. Any expression with side-effects must be put in a SAVE_EXPR
|
|
|
|
|
to ensure that it is only evaluated once. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree stabilize_reference_1 (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return EXP, stripped of any conversions to wider types
|
|
|
|
|
in such a way that the result of converting to type FOR_TYPE
|
|
|
|
|
is the same as if EXP were converted to FOR_TYPE.
|
|
|
|
|
If FOR_TYPE is 0, it signifies EXP's type. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_unwidened (tree, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return OP or a simpler expression for a narrower value
|
|
|
|
|
which can be sign-extended or zero-extended to give back OP.
|
|
|
|
|
Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
|
|
|
|
|
or 0 if the value should be sign-extended. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_narrower (tree, int *);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
|
|
|
|
|
look for nested component-refs or array-refs at constant positions
|
|
|
|
|
and find the ultimate containing object, which is returned. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_inner_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
|
|
|
|
|
tree *, enum machine_mode *, int *, int *);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Return 1 if T is an expression that get_inner_reference handles. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int handled_component_p (tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Given a DECL or TYPE, return the scope in which it was declared, or
|
|
|
|
|
NUL_TREE if there is no containing scope. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_containing_scope (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return the FUNCTION_DECL which provides this _DECL with its context,
|
|
|
|
|
or zero if none. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree decl_function_context (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return the RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE which provides
|
|
|
|
|
this _DECL with its context, or zero if none. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree decl_type_context (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Given the FUNCTION_DECL for the current function,
|
|
|
|
|
return zero if it is ok for this function to be inline.
|
|
|
|
|
Otherwise return a warning message with a single %s
|
|
|
|
|
for the function's name. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern const char *function_cannot_inline_p (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Return 1 if EXPR is the real constant zero. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int real_zerop (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Declare commonly used variables for tree structure. */
|
|
|
|
|
|
|
|
|
|
/* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
|
|
|
|
|
Zero means allow extended lvalues. */
|
|
|
|
|
|
|
|
|
|
extern int pedantic_lvalues;
|
|
|
|
|
|
|
|
|
|
/* Nonzero means can safely call expand_expr now;
|
|
|
|
|
otherwise layout_type puts variable sizes onto `pending_sizes' instead. */
|
|
|
|
|
|
|
|
|
|
extern int immediate_size_expand;
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Points to the FUNCTION_DECL of the function whose body we are reading. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern GTY(()) tree current_function_decl;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Nonzero means a FUNC_BEGIN label was emitted. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
extern GTY(()) tree current_function_func_begin_label;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Nonzero means all ..._TYPE nodes should be allocated permanently. */
|
|
|
|
|
|
|
|
|
|
extern int all_types_permanent;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Exit a binding level. This function is provided by each language
|
|
|
|
|
frontend. */
|
|
|
|
|
extern tree poplevel (int, int, int);
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Declare a predefined function. Return the declaration. This function is
|
|
|
|
|
provided by each language frontend. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree builtin_function (const char *, tree, int, enum built_in_class,
|
|
|
|
|
const char *, tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In tree.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern unsigned crc32_string (unsigned, const char *);
|
|
|
|
|
extern void clean_symbol_name (char *);
|
|
|
|
|
extern tree get_file_function_name_long (const char *);
|
|
|
|
|
extern tree get_set_constructor_bits (tree, char *, int);
|
|
|
|
|
extern tree get_set_constructor_bytes (tree, unsigned char *, int);
|
|
|
|
|
extern tree get_callee_fndecl (tree);
|
|
|
|
|
extern void change_decl_assembler_name (tree, tree);
|
|
|
|
|
extern int type_num_arguments (tree);
|
|
|
|
|
extern tree lhd_unsave_expr_now (tree);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In stmt.c */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void expand_fixups (rtx);
|
|
|
|
|
extern tree expand_start_stmt_expr (int);
|
|
|
|
|
extern tree expand_end_stmt_expr (tree);
|
|
|
|
|
extern void expand_expr_stmt (tree);
|
|
|
|
|
extern void expand_expr_stmt_value (tree, int, int);
|
|
|
|
|
extern int warn_if_unused_value (tree);
|
|
|
|
|
extern void expand_decl_init (tree);
|
|
|
|
|
extern void clear_last_expr (void);
|
|
|
|
|
extern void expand_label (tree);
|
|
|
|
|
extern void expand_goto (tree);
|
|
|
|
|
extern void expand_asm (tree, int);
|
|
|
|
|
extern void expand_start_cond (tree, int);
|
|
|
|
|
extern void expand_end_cond (void);
|
|
|
|
|
extern void expand_start_else (void);
|
|
|
|
|
extern void expand_start_elseif (tree);
|
|
|
|
|
extern struct nesting *expand_start_loop (int);
|
|
|
|
|
extern struct nesting *expand_start_loop_continue_elsewhere (int);
|
|
|
|
|
extern struct nesting *expand_start_null_loop (void);
|
|
|
|
|
extern void expand_loop_continue_here (void);
|
|
|
|
|
extern void expand_end_loop (void);
|
|
|
|
|
extern void expand_end_null_loop (void);
|
|
|
|
|
extern int expand_continue_loop (struct nesting *);
|
|
|
|
|
extern int expand_exit_loop (struct nesting *);
|
|
|
|
|
extern int expand_exit_loop_if_false (struct nesting *,tree);
|
|
|
|
|
extern int expand_exit_loop_top_cond (struct nesting *, tree);
|
|
|
|
|
extern int expand_exit_something (void);
|
|
|
|
|
|
|
|
|
|
extern void expand_return (tree);
|
|
|
|
|
extern int optimize_tail_recursion (tree, rtx);
|
|
|
|
|
extern void expand_start_bindings_and_block (int, tree);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#define expand_start_bindings(flags) \
|
|
|
|
|
expand_start_bindings_and_block(flags, NULL_TREE)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void expand_end_bindings (tree, int, int);
|
|
|
|
|
extern void warn_about_unused_variables (tree);
|
|
|
|
|
extern void start_cleanup_deferral (void);
|
|
|
|
|
extern void end_cleanup_deferral (void);
|
|
|
|
|
extern int is_body_block (tree);
|
|
|
|
|
|
|
|
|
|
extern int conditional_context (void);
|
|
|
|
|
extern struct nesting * current_nesting_level (void);
|
|
|
|
|
extern tree last_cleanup_this_contour (void);
|
|
|
|
|
extern void expand_start_case (int, tree, tree, const char *);
|
|
|
|
|
extern void expand_end_case_type (tree, tree);
|
2002-05-09 20:02:13 +00:00
|
|
|
|
#define expand_end_case(cond) expand_end_case_type (cond, NULL)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int add_case_node (tree, tree, tree, tree *);
|
|
|
|
|
extern int pushcase (tree, tree (*) (tree, tree), tree, tree *);
|
|
|
|
|
extern int pushcase_range (tree, tree, tree (*) (tree, tree), tree, tree *);
|
|
|
|
|
extern void using_eh_for_cleanups (void);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* In fold-const.c */
|
|
|
|
|
|
|
|
|
|
/* Fold constants as much as possible in an expression.
|
|
|
|
|
Returns the simplified expression.
|
|
|
|
|
Acts only on the top level of the expression;
|
|
|
|
|
if the argument itself cannot be simplified, its
|
|
|
|
|
subexpressions are not changed. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree fold (tree);
|
|
|
|
|
extern tree fold_initializer (tree);
|
|
|
|
|
extern tree fold_single_bit_test (enum tree_code, tree, tree, tree);
|
|
|
|
|
|
|
|
|
|
extern int force_fit_type (tree, int);
|
|
|
|
|
extern int add_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
|
|
|
|
|
extern int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
|
|
|
|
|
extern int mul_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
|
|
|
|
|
extern void lshift_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
HOST_WIDE_INT, unsigned int,
|
|
|
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *, int);
|
|
|
|
|
extern void rshift_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
HOST_WIDE_INT, unsigned int,
|
|
|
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *, int);
|
|
|
|
|
extern void lrotate_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
HOST_WIDE_INT, unsigned int,
|
|
|
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
|
|
|
|
|
extern void rrotate_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
|
|
|
HOST_WIDE_INT, unsigned int,
|
|
|
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
|
|
|
|
|
|
|
|
|
|
extern int div_and_round_double (enum tree_code, int, unsigned HOST_WIDE_INT,
|
|
|
|
|
HOST_WIDE_INT, unsigned HOST_WIDE_INT,
|
|
|
|
|
HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
|
|
|
|
|
HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
|
|
|
|
|
HOST_WIDE_INT *);
|
|
|
|
|
|
|
|
|
|
extern int operand_equal_p (tree, tree, int);
|
|
|
|
|
extern tree omit_one_operand (tree, tree, tree);
|
|
|
|
|
extern tree invert_truthvalue (tree);
|
|
|
|
|
|
|
|
|
|
/* In builtins.c */
|
|
|
|
|
extern tree fold_builtin (tree);
|
|
|
|
|
extern enum built_in_function builtin_mathfn_code (tree);
|
|
|
|
|
extern tree build_function_call_expr (tree, tree);
|
|
|
|
|
extern tree mathfn_built_in (tree, enum built_in_function fn);
|
|
|
|
|
|
|
|
|
|
/* In convert.c */
|
|
|
|
|
extern tree strip_float_extensions (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In alias.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void record_component_aliases (tree);
|
|
|
|
|
extern HOST_WIDE_INT get_alias_set (tree);
|
|
|
|
|
extern int alias_sets_conflict_p (HOST_WIDE_INT, HOST_WIDE_INT);
|
|
|
|
|
extern int readonly_fields_p (tree);
|
|
|
|
|
extern int objects_must_conflict_p (tree, tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* In tree.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int really_constant_p (tree);
|
|
|
|
|
extern int int_fits_type_p (tree, tree);
|
|
|
|
|
extern bool variably_modified_type_p (tree);
|
|
|
|
|
extern int tree_log2 (tree);
|
|
|
|
|
extern int tree_floor_log2 (tree);
|
|
|
|
|
extern int simple_cst_equal (tree, tree);
|
|
|
|
|
extern unsigned int iterative_hash_expr (tree, unsigned int);
|
|
|
|
|
extern int compare_tree_int (tree, unsigned HOST_WIDE_INT);
|
|
|
|
|
extern int type_list_equal (tree, tree);
|
|
|
|
|
extern int chain_member (tree, tree);
|
|
|
|
|
extern tree type_hash_lookup (unsigned int, tree);
|
|
|
|
|
extern void type_hash_add (unsigned int, tree);
|
|
|
|
|
extern unsigned int type_hash_list (tree);
|
|
|
|
|
extern int simple_cst_list_equal (tree, tree);
|
|
|
|
|
extern void dump_tree_statistics (void);
|
|
|
|
|
extern void expand_function_end (void);
|
|
|
|
|
extern void expand_function_start (tree, int);
|
|
|
|
|
extern void expand_pending_sizes (tree);
|
2005-06-03 03:28:44 +00:00
|
|
|
|
extern tree make_vector (enum machine_mode, tree, int);
|
|
|
|
|
extern tree reconstruct_complex_type (tree, tree);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
extern int real_onep (tree);
|
|
|
|
|
extern int real_twop (tree);
|
|
|
|
|
extern int real_minus_onep (tree);
|
|
|
|
|
extern void init_ttree (void);
|
|
|
|
|
extern void build_common_tree_nodes (int);
|
|
|
|
|
extern void build_common_tree_nodes_2 (int);
|
|
|
|
|
extern tree build_range_type (tree, tree, tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* In function.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void setjmp_protect_args (void);
|
|
|
|
|
extern void setjmp_protect (tree);
|
|
|
|
|
extern void expand_main_function (void);
|
|
|
|
|
extern void init_dummy_function_start (void);
|
|
|
|
|
extern void expand_dummy_function_end (void);
|
|
|
|
|
extern void init_function_for_compilation (void);
|
|
|
|
|
extern void allocate_struct_function (tree);
|
|
|
|
|
extern void init_function_start (tree);
|
|
|
|
|
extern void assign_parms (tree);
|
|
|
|
|
extern void put_var_into_stack (tree, int);
|
|
|
|
|
extern void flush_addressof (tree);
|
|
|
|
|
extern void uninitialized_vars_warning (tree);
|
|
|
|
|
extern void setjmp_args_warning (void);
|
|
|
|
|
extern void mark_all_temps_used (void);
|
|
|
|
|
extern void init_temp_slots (void);
|
|
|
|
|
extern void combine_temp_slots (void);
|
|
|
|
|
extern void free_temp_slots (void);
|
|
|
|
|
extern void pop_temp_slots (void);
|
|
|
|
|
extern void push_temp_slots (void);
|
|
|
|
|
extern void preserve_temp_slots (rtx);
|
|
|
|
|
extern void preserve_rtl_expr_temps (tree);
|
|
|
|
|
extern int aggregate_value_p (tree, tree);
|
|
|
|
|
extern void free_temps_for_rtl_expr (tree);
|
|
|
|
|
extern void instantiate_virtual_regs (tree, rtx);
|
|
|
|
|
extern void unshare_all_rtl (tree, rtx);
|
|
|
|
|
extern void push_function_context (void);
|
|
|
|
|
extern void pop_function_context (void);
|
|
|
|
|
extern void push_function_context_to (tree);
|
|
|
|
|
extern void pop_function_context_from (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* In print-rtl.c */
|
|
|
|
|
#ifdef BUFSIZ
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void print_rtl (FILE *, rtx);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* In print-tree.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void debug_tree (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#ifdef BUFSIZ
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void print_node (FILE *, const char *, tree, int);
|
|
|
|
|
extern void print_node_brief (FILE *, const char *, tree, int);
|
|
|
|
|
extern void indent_to (FILE *, int);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* In expr.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int apply_args_register_offset (int);
|
|
|
|
|
extern rtx expand_builtin_return_addr (enum built_in_function, int, rtx);
|
|
|
|
|
extern void check_max_integer_computation_mode (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* In emit-rtl.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void start_sequence_for_rtl_expr (tree);
|
|
|
|
|
extern rtx emit_line_note (location_t);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In calls.c */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Nonzero if this is a call to a `const' function. */
|
|
|
|
|
#define ECF_CONST 1
|
|
|
|
|
/* Nonzero if this is a call to a `volatile' function. */
|
|
|
|
|
#define ECF_NORETURN 2
|
|
|
|
|
/* Nonzero if this is a call to malloc or a related function. */
|
|
|
|
|
#define ECF_MALLOC 4
|
|
|
|
|
/* Nonzero if it is plausible that this is a call to alloca. */
|
|
|
|
|
#define ECF_MAY_BE_ALLOCA 8
|
|
|
|
|
/* Nonzero if this is a call to a function that won't throw an exception. */
|
|
|
|
|
#define ECF_NOTHROW 16
|
|
|
|
|
/* Nonzero if this is a call to setjmp or a related function. */
|
|
|
|
|
#define ECF_RETURNS_TWICE 32
|
|
|
|
|
/* Nonzero if this is a call to `longjmp'. */
|
|
|
|
|
#define ECF_LONGJMP 64
|
|
|
|
|
/* Nonzero if this is a syscall that makes a new process in the image of
|
|
|
|
|
the current one. */
|
|
|
|
|
#define ECF_FORK_OR_EXEC 128
|
|
|
|
|
#define ECF_SIBCALL 256
|
|
|
|
|
/* Nonzero if this is a call to "pure" function (like const function,
|
|
|
|
|
but may read memory. */
|
|
|
|
|
#define ECF_PURE 512
|
|
|
|
|
/* Nonzero if this is a call to a function that returns with the stack
|
|
|
|
|
pointer depressed. */
|
|
|
|
|
#define ECF_SP_DEPRESSED 1024
|
|
|
|
|
/* Nonzero if this call is known to always return. */
|
|
|
|
|
#define ECF_ALWAYS_RETURN 2048
|
|
|
|
|
/* Create libcall block around the call. */
|
|
|
|
|
#define ECF_LIBCALL_BLOCK 4096
|
|
|
|
|
|
|
|
|
|
extern int flags_from_decl_or_type (tree);
|
|
|
|
|
extern int call_expr_flags (tree);
|
|
|
|
|
|
|
|
|
|
extern int setjmp_call_p (tree);
|
|
|
|
|
extern bool alloca_call_p (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In attribs.c. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Process the attributes listed in ATTRIBUTES and install them in *NODE,
|
|
|
|
|
which is either a DECL (including a TYPE_DECL) or a TYPE. If a DECL,
|
|
|
|
|
it should be modified in place; if a TYPE, a copy should be created
|
|
|
|
|
unless ATTR_FLAG_TYPE_IN_PLACE is set in FLAGS. FLAGS gives further
|
|
|
|
|
information, in the form of a bitwise OR of flags in enum attribute_flags
|
|
|
|
|
from tree.h. Depending on these flags, some attributes may be
|
|
|
|
|
returned to be applied at a later stage (for example, to apply
|
|
|
|
|
a decl attribute to the declaration rather than to its type). */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree decl_attributes (tree *, tree, int);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* In integrate.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void save_for_inline (tree);
|
|
|
|
|
extern void set_decl_abstract_flags (tree, int);
|
|
|
|
|
extern void output_inline_function (tree);
|
|
|
|
|
extern void set_decl_origin_self (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* In stor-layout.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void set_min_and_max_values_for_integral_type (tree, int, bool);
|
|
|
|
|
extern void fixup_signed_type (tree);
|
|
|
|
|
extern void internal_reference_types (void);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* varasm.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void make_decl_rtl (tree, const char *);
|
|
|
|
|
extern void make_decl_one_only (tree);
|
|
|
|
|
extern int supports_one_only (void);
|
|
|
|
|
extern void variable_section (tree, int);
|
|
|
|
|
enum tls_model decl_tls_model (tree);
|
|
|
|
|
extern void resolve_unique_section (tree, int, int);
|
|
|
|
|
extern void mark_referenced (tree);
|
|
|
|
|
extern void notice_global_symbol (tree);
|
2005-06-03 03:28:44 +00:00
|
|
|
|
extern void process_pending_assemble_output_defs (void);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* In stmt.c */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void emit_nop (void);
|
|
|
|
|
extern void expand_computed_goto (tree);
|
|
|
|
|
extern bool parse_output_constraint (const char **, int, int, int,
|
|
|
|
|
bool *, bool *, bool *);
|
|
|
|
|
extern bool parse_input_constraint (const char **, int, int, int, int,
|
|
|
|
|
const char * const *, bool *, bool *);
|
|
|
|
|
extern void expand_asm_operands (tree, tree, tree, tree, int, location_t);
|
|
|
|
|
extern tree resolve_asm_operand_names (tree, tree, tree);
|
|
|
|
|
extern int any_pending_cleanups (void);
|
|
|
|
|
extern void init_stmt_for_function (void);
|
|
|
|
|
extern void expand_start_target_temps (void);
|
|
|
|
|
extern void expand_end_target_temps (void);
|
|
|
|
|
extern void expand_elseif (tree);
|
|
|
|
|
extern void save_stack_pointer (void);
|
|
|
|
|
extern void expand_decl (tree);
|
|
|
|
|
extern int expand_decl_cleanup (tree, tree);
|
|
|
|
|
extern int expand_decl_cleanup_eh (tree, tree, int);
|
|
|
|
|
extern void expand_anon_union_decl (tree, tree, tree);
|
|
|
|
|
extern void expand_start_case_dummy (void);
|
|
|
|
|
extern HOST_WIDE_INT all_cases_count (tree, int *);
|
|
|
|
|
extern void check_for_full_enumeration_handling (tree);
|
|
|
|
|
extern void declare_nonlocal_label (tree);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* If KIND=='I', return a suitable global initializer (constructor) name.
|
|
|
|
|
If KIND=='D', return a suitable global clean-up (destructor) name. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern tree get_file_function_name (int);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Interface of the DWARF2 unwind info support. */
|
|
|
|
|
|
|
|
|
|
/* Generate a new label for the CFI info to refer to. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern char *dwarf2out_cfi_label (void);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Entry point to update the canonical frame address (CFA). */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void dwarf2out_def_cfa (const char *, unsigned, HOST_WIDE_INT);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Add the CFI for saving a register window. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void dwarf2out_window_save (const char *);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Add a CFI to update the running total of the size of arguments pushed
|
|
|
|
|
onto the stack. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void dwarf2out_args_size (const char *, HOST_WIDE_INT);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Entry point for saving a register to the stack. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void dwarf2out_reg_save (const char *, unsigned, HOST_WIDE_INT);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Entry point for saving the return address in the stack. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void dwarf2out_return_save (const char *, HOST_WIDE_INT);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Entry point for saving the return address in a register. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void dwarf2out_return_reg (const char *, unsigned);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* The type of a function that walks over tree structure. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
typedef tree (*walk_tree_fn) (tree *, int *, void *);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* In tree-dump.c */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Different tree dump places. When you add new tree dump places,
|
|
|
|
|
extend the DUMP_FILES array in tree-dump.c */
|
|
|
|
|
enum tree_dump_index
|
|
|
|
|
{
|
|
|
|
|
TDI_all, /* dump the whole translation unit */
|
|
|
|
|
TDI_class, /* dump class hierarchy */
|
|
|
|
|
TDI_original, /* dump each function before optimizing it */
|
|
|
|
|
TDI_optimized, /* dump each function after optimizing it */
|
|
|
|
|
TDI_inlined, /* dump each function after inlining
|
|
|
|
|
within it. */
|
|
|
|
|
TDI_end
|
|
|
|
|
};
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Bit masks to control tree dumping. Not all values are applicable to
|
|
|
|
|
all tree dumps. Add new ones at the end. When you define new
|
|
|
|
|
values, extend the DUMP_OPTIONS array in tree-dump.c */
|
|
|
|
|
#define TDF_ADDRESS (1 << 0) /* dump node addresses */
|
|
|
|
|
#define TDF_SLIM (1 << 1) /* don't go wild following links */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
typedef struct dump_info *dump_info_p;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern int dump_flag (dump_info_p, int, tree);
|
|
|
|
|
extern int dump_enabled_p (enum tree_dump_index);
|
|
|
|
|
extern FILE *dump_begin (enum tree_dump_index, int *);
|
|
|
|
|
extern void dump_end (enum tree_dump_index, FILE *);
|
|
|
|
|
extern void dump_node (tree, int, FILE *);
|
|
|
|
|
extern int dump_switch_p (const char *);
|
|
|
|
|
extern const char *dump_flag_name (enum tree_dump_index);
|
|
|
|
|
/* Assign the RTX to declaration. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void set_decl_rtl (tree, rtx);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Redefine abort to report an internal error w/o coredump, and
|
|
|
|
|
reporting the location of the error in the source file. This logic
|
|
|
|
|
is duplicated in rtl.h and tree.h because every file that needs the
|
|
|
|
|
special abort includes one or both. toplev.h gets too few files,
|
|
|
|
|
system.h gets too many. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
extern void fancy_abort (const char *, int, const char *)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
ATTRIBUTE_NORETURN;
|
|
|
|
|
#define abort() fancy_abort (__FILE__, __LINE__, __FUNCTION__)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Enum and arrays used for tree allocation stats.
|
|
|
|
|
Keep in sync with tree.c:tree_node_kind_names. */
|
|
|
|
|
typedef enum
|
|
|
|
|
{
|
|
|
|
|
d_kind,
|
|
|
|
|
t_kind,
|
|
|
|
|
b_kind,
|
|
|
|
|
s_kind,
|
|
|
|
|
r_kind,
|
|
|
|
|
e_kind,
|
|
|
|
|
c_kind,
|
|
|
|
|
id_kind,
|
|
|
|
|
perm_list_kind,
|
|
|
|
|
temp_list_kind,
|
|
|
|
|
vec_kind,
|
|
|
|
|
x_kind,
|
|
|
|
|
lang_decl,
|
|
|
|
|
lang_type,
|
|
|
|
|
all_kinds
|
|
|
|
|
} tree_node_kind;
|
|
|
|
|
|
|
|
|
|
extern int tree_node_counts[];
|
|
|
|
|
extern int tree_node_sizes[];
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
#endif /* GCC_TREE_H */
|