freebsd-nq/sys/dev/bhnd/nvram/bhnd_nvram_storevar.h

310 lines
10 KiB
C
Raw Normal View History

bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
/*-
* Copyright (c) 2015-2016 Landon Fuller <landonf@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*
* $FreeBSD$
*/
#ifndef _BHND_NVRAM_BHND_NVRAM_STOREVAR_H_
#define _BHND_NVRAM_BHND_NVRAM_STOREVAR_H_
#include <sys/types.h>
#ifndef _KERNEL
#include <pthread.h>
#endif
#include "bhnd_nvram_plist.h"
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
#include "bhnd_nvram_store.h"
/** Index is only generated if minimum variable count is met */
#define BHND_NV_IDX_VAR_THRESHOLD 15
#define BHND_NVSTORE_ROOT_PATH "/"
#define BHND_NVSTORE_ROOT_PATH_LEN sizeof(BHND_NVSTORE_ROOT_PATH)
#define BHND_NVSTORE_GET_FLAG(_value, _flag) \
(((_value) & BHND_NVSTORE_ ## _flag) != 0)
#define BHND_NVSTORE_GET_BITS(_value, _field) \
((_value) & BHND_NVSTORE_ ## _field ## _MASK)
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
/* Forward declarations */
typedef struct bhnd_nvstore_name_info bhnd_nvstore_name_info;
typedef struct bhnd_nvstore_index bhnd_nvstore_index;
typedef struct bhnd_nvstore_path bhnd_nvstore_path;
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
typedef struct bhnd_nvstore_alias bhnd_nvstore_alias;
typedef struct bhnd_nvstore_alias_list bhnd_nvstore_alias_list;
typedef struct bhnd_nvstore_update_list bhnd_nvstore_update_list;
typedef struct bhnd_nvstore_path_list bhnd_nvstore_path_list;
LIST_HEAD(bhnd_nvstore_alias_list, bhnd_nvstore_alias);
LIST_HEAD(bhnd_nvstore_update_list, bhnd_nvstore_update);
LIST_HEAD(bhnd_nvstore_path_list, bhnd_nvstore_path);
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
/**
* NVRAM store variable entry types.
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
*/
typedef enum {
BHND_NVSTORE_VAR = 0, /**< simple variable (var=...) */
BHND_NVSTORE_ALIAS_DECL = 1, /**< alias declaration ('devpath0=pci/1/1') */
} bhnd_nvstore_var_type;
/**
* NVRAM path descriptor types.
*/
typedef enum {
BHND_NVSTORE_PATH_STRING = 0, /**< path is a string value */
BHND_NVSTORE_PATH_ALIAS = 1 /**< path is an alias reference */
} bhnd_nvstore_path_type;
/**
* NVRAM variable namespaces.
*/
typedef enum {
BHND_NVSTORE_NAME_INTERNAL = 1, /**< internal namespace. permits
use of reserved devpath and
alias name prefixes. */
BHND_NVSTORE_NAME_EXTERNAL = 2, /**< external namespace. forbids
use of name prefixes used
for device path handling */
} bhnd_nvstore_name_type;
bhnd_nvstore_path *bhnd_nvstore_path_new(const char *path_str,
size_t path_len);
void bhnd_nvstore_path_free(struct bhnd_nvstore_path *path);
bhnd_nvstore_index *bhnd_nvstore_index_new(size_t capacity);
void bhnd_nvstore_index_free(bhnd_nvstore_index *index);
int bhnd_nvstore_index_append(struct bhnd_nvram_store *sc,
bhnd_nvstore_index *index,
void *cookiep);
int bhnd_nvstore_index_prepare(
struct bhnd_nvram_store *sc,
bhnd_nvstore_index *index);
void *bhnd_nvstore_index_lookup(struct bhnd_nvram_store *sc,
bhnd_nvstore_index *index, const char *name);
bhnd_nvstore_path *bhnd_nvstore_get_root_path(
struct bhnd_nvram_store *sc);
bool bhnd_nvstore_is_root_path(struct bhnd_nvram_store *sc,
bhnd_nvstore_path *path);
void *bhnd_nvstore_path_data_next(
struct bhnd_nvram_store *sc,
bhnd_nvstore_path *path, void **indexp);
void *bhnd_nvstore_path_data_lookup(
struct bhnd_nvram_store *sc,
bhnd_nvstore_path *path, const char *name);
bhnd_nvram_prop *bhnd_nvstore_path_get_update(
struct bhnd_nvram_store *sc,
bhnd_nvstore_path *path, const char *name);
int bhnd_nvstore_path_register_update(
struct bhnd_nvram_store *sc,
bhnd_nvstore_path *path, const char *name,
bhnd_nvram_val *value);
bhnd_nvstore_alias *bhnd_nvstore_find_alias(struct bhnd_nvram_store *sc,
const char *path);
bhnd_nvstore_alias *bhnd_nvstore_get_alias(struct bhnd_nvram_store *sc,
u_long alias_val);
bhnd_nvstore_path *bhnd_nvstore_get_path(struct bhnd_nvram_store *sc,
const char *path, size_t path_len);
bhnd_nvstore_path *bhnd_nvstore_resolve_path_alias(
struct bhnd_nvram_store *sc, u_long aval);
bhnd_nvstore_path *bhnd_nvstore_var_get_path(struct bhnd_nvram_store *sc,
bhnd_nvstore_name_info *info);
int bhnd_nvstore_var_register_path(
struct bhnd_nvram_store *sc,
bhnd_nvstore_name_info *info, void *cookiep);
int bhnd_nvstore_register_path(struct bhnd_nvram_store *sc,
const char *path, size_t path_len);
int bhnd_nvstore_register_alias(
struct bhnd_nvram_store *sc,
const bhnd_nvstore_name_info *info, void *cookiep);
const char *bhnd_nvstore_parse_relpath(const char *parent,
const char *child);
int bhnd_nvstore_parse_name_info(const char *name,
bhnd_nvstore_name_type name_type,
uint32_t data_caps, bhnd_nvstore_name_info *info);
/**
* NVRAM variable name descriptor.
*
* For NVRAM data instances supporting BHND_NVRAM_DATA_CAP_DEVPATHS, the
* NVRAM-vended variable name will be in one of four formats:
*
* - Simple Variable:
* 'variable'
* - Device Variable:
* 'pci/1/1/variable'
* - Device Alias Variable:
* '0:variable'
* - Device Path Alias Definition:
* 'devpath0=pci/1/1/variable'
*
* Device Paths:
*
* The device path format is device class-specific; the known supported device
* classes are:
* - sb: BCMA/SIBA SoC core device path.
* - pci: PCI device path (and PCIe on some earlier devices).
* - pcie: PCIe device path.
* - usb: USB device path.
*
* The device path format is loosely defined as '[class]/[domain]/[bus]/[slot]',
* with missing values either assumed to be zero, a value specific to the
* device class, or irrelevant to the device class in question.
*
* Examples:
* sb/1 BCMA/SIBA backplane 0, core 1.
* pc/1/1 PCMCIA bus 1, slot 1
* pci/1/1 PCI/PCIe domain 0, bus 1, device 1
* pcie/1/1 PCIe domain 0, bus 1, device 1
* usb/0xbd17 USB PID 0xbd17 (VID defaults to Broadcom 0x0a5c)
*
* Device Path Aliases:
*
* Device path aliases reduce duplication of device paths in the flash encoding
* of NVRAM data; a single devpath[alias]=[devpath] variable entry is defined,
* and then later variables may reference the device path via its alias:
* devpath1=usb/0xbd17
* 1:mcs5gpo0=0x1100
*
* Alias values are always positive, base 10 integers.
*/
struct bhnd_nvstore_name_info {
const char *name; /**< variable name */
bhnd_nvstore_var_type type; /**< variable type */
bhnd_nvstore_path_type path_type; /**< path type */
/** Path information */
union {
/* BHND_NVSTORE_PATH_STRING */
struct {
const char *value; /**< device path */
size_t value_len; /**< device path length */
} str;
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
/** BHND_NVSTORE_PATH_ALIAS */
struct {
u_long value; /**< device alias */
} alias;
} path;
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
};
/**
* NVRAM variable index.
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
*
* Provides effecient name-based lookup by maintaining an array of cached
* cookiep values, sorted lexicographically by relative variable name.
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
*/
struct bhnd_nvstore_index {
size_t count; /**< entry count */
size_t capacity; /**< entry capacity */
void *cookiep[]; /**< cookiep values */
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
};
/**
* NVRAM device path.
*/
struct bhnd_nvstore_path {
char *path_str; /**< canonical path string */
size_t num_vars; /**< per-path count of committed
(non-pending) variables */
bhnd_nvstore_index *index; /**< per-path index, or NULL if
this is a root path for
which the data source
may be queried directly. */
bhnd_nvram_plist *pending; /**< pending changes */
LIST_ENTRY(bhnd_nvstore_path) np_link;
};
/**
* NVRAM device path alias.
*/
struct bhnd_nvstore_alias {
bhnd_nvstore_path *path; /**< borrowed path reference */
void *cookiep; /**< NVRAM variable's cookiep value */
u_long alias; /**< alias value */
LIST_ENTRY(bhnd_nvstore_alias) na_link;
};
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
/** bhnd nvram store instance state */
struct bhnd_nvram_store {
#ifdef _KERNEL
struct mtx mtx;
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
#else
pthread_mutex_t mtx;
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
#endif
struct bhnd_nvram_data *data; /**< backing data */
uint32_t data_caps; /**< data capability flags */
bhnd_nvram_plist *data_opts; /**< data serialization options */
bhnd_nvstore_alias_list aliases[4]; /**< path alias hash table */
size_t num_aliases; /**< alias count */
bhnd_nvstore_path *root_path; /**< root path instance */
bhnd_nvstore_path_list paths[4]; /**< path hash table */
size_t num_paths; /**< path count */
bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding. - Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM parsing from the actual underlying NVRAM data provider (e.g. CFE firmware devices). - Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling higher-level NVRAM operations (indexed lookup, data conversion, etc) from the underlying NVRAM file format parsing/serialization. - Implemented a new high-level bhnd_nvram_store API, providing indexed variable lookup, pending write tracking, etc on top of an arbitrary bhnd_nvram_data instance. - Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store API. - Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM variable values, including applying format-specific behavior when converting to/from the NVRAM string representations. - Dropped the now unnecessary bhnd_nvram driver, and moved the broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom. - Implemented a new nvram_map file format: - Variable definitions are now defined separately from the SPROM layout. This will also allow us to define CIS tuple NVRAM mappings referencing the common NVRAM variable definitions. - Variables can now be defined within arbitrary named groups. - Textual descriptions and help information can be defined inline for both variables and variable groups. - Implemented a new, compact encoding of SPROM image layout offsets. - Source-level (but not build system) support for building the NVRAM file format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a userspace library. The new compact SPROM image layout encoding is loosely modeled on Apple dyld compressed LINKEDIT symbol binding opcodes; it provides a compact state-machine encoding of the mapping between NVRAM variables and the SPROM image offset, mask, and shift instructions necessary to decode or encode the SPROM variable data. The compact encoding reduces the size of the generated SPROM layout data from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables also simplify iteration of the SPROM variables, as it's no longer neccessary to iterate the full NVRAM variable definition table, but instead simply scan the SPROM revision's layout opcode table. Approved by: adrian (mentor) Differential Revision: https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00
};
#ifdef _KERNEL
#define BHND_NVSTORE_LOCK_INIT(sc) \
mtx_init(&(sc)->mtx, "BHND NVRAM store lock", NULL, MTX_DEF)
#define BHND_NVSTORE_LOCK(sc) mtx_lock(&(sc)->mtx)
#define BHND_NVSTORE_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
#define BHND_NVSTORE_LOCK_ASSERT(sc, what) mtx_assert(&(sc)->mtx, what)
#define BHND_NVSTORE_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx)
#else /* !_KERNEL */
#define BHND_NVSTORE_LOCK_INIT(sc) do { \
int error = pthread_mutex_init(&(sc)->mtx, NULL); \
if (error) \
BHND_NV_PANIC("pthread_mutex_init() failed: %d", \
error); \
} while(0)
#define BHND_NVSTORE_LOCK(sc) pthread_mutex_lock(&(sc)->mtx)
#define BHND_NVSTORE_UNLOCK(sc) pthread_mutex_unlock(&(sc)->mtx)
#define BHND_NVSTORE_LOCK_DESTROY(sc) pthread_mutex_destroy(&(sc)->mtx)
#define BHND_NVSTORE_LOCK_ASSERT(sc, what)
#endif /* _KERNEL */
#endif /* _BHND_NVRAM_BHND_NVRAM_STOREVAR_H_ */