2000-10-14 16:16:42 +00:00
|
|
|
.\"
|
Huge cleanup of random(4) code.
* GENERAL
- Update copyright.
- Make kernel options for RANDOM_YARROW and RANDOM_DUMMY. Set
neither to ON, which means we want Fortuna
- If there is no 'device random' in the kernel, there will be NO
random(4) device in the kernel, and the KERN_ARND sysctl will
return nothing. With RANDOM_DUMMY there will be a random(4) that
always blocks.
- Repair kern.arandom (KERN_ARND sysctl). The old version went
through arc4random(9) and was a bit weird.
- Adjust arc4random stirring a bit - the existing code looks a little
suspect.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Redo read_random(9) so as to duplicate random(4)'s read internals.
This makes it a first-class citizen rather than a hack.
- Move stuff out of locked regions when it does not need to be
there.
- Trim RANDOM_DEBUG printfs. Some are excess to requirement, some
behind boot verbose.
- Use SYSINIT to sequence the startup.
- Fix init/deinit sysctl stuff.
- Make relevant sysctls also tunables.
- Add different harvesting "styles" to allow for different requirements
(direct, queue, fast).
- Add harvesting of FFS atime events. This needs to be checked for
weighing down the FS code.
- Add harvesting of slab allocator events. This needs to be checked for
weighing down the allocator code.
- Fix the random(9) manpage.
- Loadable modules are not present for now. These will be re-engineered
when the dust settles.
- Use macros for locks.
- Fix comments.
* src/share/man/...
- Update the man pages.
* src/etc/...
- The startup/shutdown work is done in D2924.
* src/UPDATING
- Add UPDATING announcement.
* src/sys/dev/random/build.sh
- Add copyright.
- Add libz for unit tests.
* src/sys/dev/random/dummy.c
- Remove; no longer needed. Functionality incorporated into randomdev.*.
* live_entropy_sources.c live_entropy_sources.h
- Remove; content moved.
- move content to randomdev.[ch] and optimise.
* src/sys/dev/random/random_adaptors.c src/sys/dev/random/random_adaptors.h
- Remove; plugability is no longer used. Compile-time algorithm
selection is the way to go.
* src/sys/dev/random/random_harvestq.c src/sys/dev/random/random_harvestq.h
- Add early (re)boot-time randomness caching.
* src/sys/dev/random/randomdev_soft.c src/sys/dev/random/randomdev_soft.h
- Remove; no longer needed.
* src/sys/dev/random/uint128.h
- Provide a fake uint128_t; if a real one ever arrived, we can use
that instead. All that is needed here is N=0, N++, N==0, and some
localised trickery is used to manufacture a 128-bit 0ULLL.
* src/sys/dev/random/unit_test.c src/sys/dev/random/unit_test.h
- Improve unit tests; previously the testing human needed clairvoyance;
now the test will do a basic check of compressibility. Clairvoyant
talent is still a good idea.
- This is still a long way off a proper unit test.
* src/sys/dev/random/fortuna.c src/sys/dev/random/fortuna.h
- Improve messy union to just uint128_t.
- Remove unneeded 'static struct fortuna_start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
* src/sys/dev/random/yarrow.c src/sys/dev/random/yarrow.h
- Improve messy union to just uint128_t.
- Remove unneeded 'staic struct start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
- Fix some magic numbers elsewhere used as FAST and SLOW.
Differential Revision: https://reviews.freebsd.org/D2025
Reviewed by: vsevolod,delphij,rwatson,trasz,jmg
Approved by: so (delphij)
2015-06-30 17:00:45 +00:00
|
|
|
.\" Copyright (c) 2015
|
|
|
|
.\" Mark R V Murray
|
2000-10-14 16:16:42 +00:00
|
|
|
.\" Copyright (c) 2000
|
|
|
|
.\" The Regents of the University of California. All rights reserved.
|
|
|
|
.\"
|
|
|
|
.\" Redistribution and use in source and binary forms, with or without
|
|
|
|
.\" modification, are permitted provided that the following conditions
|
|
|
|
.\" are met:
|
|
|
|
.\" 1. Redistributions of source code must retain the above copyright
|
|
|
|
.\" notice, this list of conditions and the following disclaimer.
|
|
|
|
.\" 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
.\" notice, this list of conditions and the following disclaimer in the
|
|
|
|
.\" documentation and/or other materials provided with the distribution.
|
|
|
|
.\"
|
|
|
|
.\" THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
.\" IN NO EVENT SHALL THE DEVELOPERS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
.\"
|
|
|
|
.\" $FreeBSD$
|
|
|
|
.\" "
|
2021-03-24 15:25:49 +11:00
|
|
|
.Dd March 22, 2021
|
2000-10-14 16:16:42 +00:00
|
|
|
.Dt RANDOM 9
|
2010-04-14 19:08:06 +00:00
|
|
|
.Os
|
2000-10-14 16:16:42 +00:00
|
|
|
.Sh NAME
|
2002-11-29 11:39:20 +00:00
|
|
|
.Nm arc4rand ,
|
2000-11-13 13:12:44 +00:00
|
|
|
.Nm arc4random ,
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Nm arc4random_buf ,
|
2019-04-16 17:12:17 +00:00
|
|
|
.Nm is_random_seeded ,
|
2000-11-13 13:12:44 +00:00
|
|
|
.Nm random ,
|
|
|
|
.Nm read_random ,
|
random(9): Deprecate random(9), remove meaningless srandom(9)
srandom(9) is meaningless on SMP systems or any system with, say,
interrupts. One could never rely on random(9) to produce a reproducible
sequence of outputs on the basis of a specific srandom() seed because the
global state was shared by all kernel contexts. As such, removing it is
literally indistinguishable to random(9) consumers (as compared with
retaining it).
Mark random(9) as deprecated and slated for quick removal. This is not to
say we intend to remove all fast, non-cryptographic PRNG(s) in the kernel.
It/they just won't be random(9), as it exists today, in either name or
implementation.
Before random(9) is removed, a replacement will be provided and in-tree
consumers will be converted.
Note that despite the name, the random(9) interface does not bear any
resemblance to random(3). Instead, it is the same crummy 1988 Park-Miller
LCG used in libc rand(3).
2019-12-26 19:41:09 +00:00
|
|
|
.Nm read_random_uio
|
2001-04-18 15:54:10 +00:00
|
|
|
.Nd supply pseudo-random numbers
|
2000-10-14 16:16:42 +00:00
|
|
|
.Sh SYNOPSIS
|
2001-10-01 16:09:29 +00:00
|
|
|
.In sys/libkern.h
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Ft uint32_t
|
|
|
|
.Fn arc4random "void"
|
2000-10-14 16:16:42 +00:00
|
|
|
.Ft void
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Fn arc4random_buf "void *ptr" "size_t len"
|
2002-10-11 13:13:08 +00:00
|
|
|
.Ft void
|
|
|
|
.Fn arc4rand "void *ptr" "u_int length" "int reseed"
|
2000-10-14 16:16:42 +00:00
|
|
|
.Pp
|
2001-10-01 16:09:29 +00:00
|
|
|
.In sys/random.h
|
2019-04-16 17:12:17 +00:00
|
|
|
.Ft bool
|
|
|
|
.Fn is_random_seeded "void"
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Ft void
|
2002-04-12 05:19:12 +00:00
|
|
|
.Fn read_random "void *buffer" "int count"
|
2015-07-14 18:45:15 +00:00
|
|
|
.Ft int
|
|
|
|
.Fn read_random_uio "struct uio *uio" "bool nonblock"
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Ss LEGACY ROUTINES
|
|
|
|
.In sys/libkern.h
|
|
|
|
.Ft u_long
|
|
|
|
.Fn random "void"
|
2000-10-14 16:16:42 +00:00
|
|
|
.Sh DESCRIPTION
|
|
|
|
The
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Fn arc4random
|
|
|
|
and
|
|
|
|
.Fn arc4random_buf
|
|
|
|
functions will return very good quality random numbers, suited for
|
|
|
|
security-related purposes.
|
|
|
|
Both are wrappers around the underlying
|
|
|
|
.Fn arc4rand
|
|
|
|
interface.
|
|
|
|
.Fn arc4random
|
|
|
|
returns a 32-bit random value, while
|
|
|
|
.Fn arc4random_buf
|
|
|
|
fills
|
|
|
|
.Fa ptr
|
|
|
|
with
|
|
|
|
.Fa len
|
|
|
|
bytes of random data.
|
2000-10-14 16:16:42 +00:00
|
|
|
.Pp
|
|
|
|
The
|
2002-10-11 13:13:08 +00:00
|
|
|
.Fn arc4rand
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
CSPRNG
|
|
|
|
is seeded from the
|
|
|
|
.Xr random 4
|
|
|
|
kernel abstract entropy device.
|
|
|
|
Automatic reseeding happens at unspecified time and bytes (of output)
|
|
|
|
intervals.
|
|
|
|
A reseed can be forced by passing a non-zero
|
2002-11-29 11:39:20 +00:00
|
|
|
.Fa reseed
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
value.
|
2000-10-14 16:16:42 +00:00
|
|
|
.Pp
|
|
|
|
The
|
|
|
|
.Fn read_random
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
function is used to read entropy directly from the kernel abstract entropy
|
|
|
|
device.
|
|
|
|
.Fn read_random
|
|
|
|
blocks if and until the entropy device is seeded.
|
|
|
|
The provided
|
2002-11-29 11:39:20 +00:00
|
|
|
.Fa buffer
|
2000-10-14 16:16:42 +00:00
|
|
|
is filled with no more than
|
2002-11-29 11:39:20 +00:00
|
|
|
.Fa count
|
2004-07-03 18:29:24 +00:00
|
|
|
bytes.
|
Huge cleanup of random(4) code.
* GENERAL
- Update copyright.
- Make kernel options for RANDOM_YARROW and RANDOM_DUMMY. Set
neither to ON, which means we want Fortuna
- If there is no 'device random' in the kernel, there will be NO
random(4) device in the kernel, and the KERN_ARND sysctl will
return nothing. With RANDOM_DUMMY there will be a random(4) that
always blocks.
- Repair kern.arandom (KERN_ARND sysctl). The old version went
through arc4random(9) and was a bit weird.
- Adjust arc4random stirring a bit - the existing code looks a little
suspect.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Redo read_random(9) so as to duplicate random(4)'s read internals.
This makes it a first-class citizen rather than a hack.
- Move stuff out of locked regions when it does not need to be
there.
- Trim RANDOM_DEBUG printfs. Some are excess to requirement, some
behind boot verbose.
- Use SYSINIT to sequence the startup.
- Fix init/deinit sysctl stuff.
- Make relevant sysctls also tunables.
- Add different harvesting "styles" to allow for different requirements
(direct, queue, fast).
- Add harvesting of FFS atime events. This needs to be checked for
weighing down the FS code.
- Add harvesting of slab allocator events. This needs to be checked for
weighing down the allocator code.
- Fix the random(9) manpage.
- Loadable modules are not present for now. These will be re-engineered
when the dust settles.
- Use macros for locks.
- Fix comments.
* src/share/man/...
- Update the man pages.
* src/etc/...
- The startup/shutdown work is done in D2924.
* src/UPDATING
- Add UPDATING announcement.
* src/sys/dev/random/build.sh
- Add copyright.
- Add libz for unit tests.
* src/sys/dev/random/dummy.c
- Remove; no longer needed. Functionality incorporated into randomdev.*.
* live_entropy_sources.c live_entropy_sources.h
- Remove; content moved.
- move content to randomdev.[ch] and optimise.
* src/sys/dev/random/random_adaptors.c src/sys/dev/random/random_adaptors.h
- Remove; plugability is no longer used. Compile-time algorithm
selection is the way to go.
* src/sys/dev/random/random_harvestq.c src/sys/dev/random/random_harvestq.h
- Add early (re)boot-time randomness caching.
* src/sys/dev/random/randomdev_soft.c src/sys/dev/random/randomdev_soft.h
- Remove; no longer needed.
* src/sys/dev/random/uint128.h
- Provide a fake uint128_t; if a real one ever arrived, we can use
that instead. All that is needed here is N=0, N++, N==0, and some
localised trickery is used to manufacture a 128-bit 0ULLL.
* src/sys/dev/random/unit_test.c src/sys/dev/random/unit_test.h
- Improve unit tests; previously the testing human needed clairvoyance;
now the test will do a basic check of compressibility. Clairvoyant
talent is still a good idea.
- This is still a long way off a proper unit test.
* src/sys/dev/random/fortuna.c src/sys/dev/random/fortuna.h
- Improve messy union to just uint128_t.
- Remove unneeded 'static struct fortuna_start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
* src/sys/dev/random/yarrow.c src/sys/dev/random/yarrow.h
- Improve messy union to just uint128_t.
- Remove unneeded 'staic struct start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
- Fix some magic numbers elsewhere used as FAST and SLOW.
Differential Revision: https://reviews.freebsd.org/D2025
Reviewed by: vsevolod,delphij,rwatson,trasz,jmg
Approved by: so (delphij)
2015-06-30 17:00:45 +00:00
|
|
|
It is strongly advised that
|
2000-10-14 16:16:42 +00:00
|
|
|
.Fn read_random
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
is not used directly;
|
|
|
|
instead, use the
|
2002-11-29 11:39:20 +00:00
|
|
|
.Fn arc4rand
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
family of functions.
|
2000-10-14 16:16:42 +00:00
|
|
|
.Pp
|
2015-07-14 18:45:15 +00:00
|
|
|
The
|
2019-04-16 17:12:17 +00:00
|
|
|
.Fn is_random_seeded
|
|
|
|
function can be used to check in advance if
|
|
|
|
.Fn read_random
|
|
|
|
will block.
|
|
|
|
(If random is seeded, it will not block.)
|
|
|
|
.Pp
|
|
|
|
The
|
2015-07-14 18:45:15 +00:00
|
|
|
.Fn read_random_uio
|
|
|
|
function behaves identically to
|
|
|
|
.Xr read 2
|
|
|
|
on
|
|
|
|
.Pa /dev/random .
|
|
|
|
The
|
|
|
|
.Fa uio
|
|
|
|
argument points to a buffer where random data should be stored.
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
If
|
2015-07-14 18:45:15 +00:00
|
|
|
.Fa nonblock
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
is true and the random device is not seeded, this function does not return any
|
|
|
|
data.
|
|
|
|
Otherwise, this function may block interruptibly until the random device is seeded.
|
|
|
|
If the function is interrupted before the random device is seeded, no data is
|
|
|
|
returned.
|
2015-07-14 18:45:15 +00:00
|
|
|
.Pp
|
random(9): Deprecate random(9), remove meaningless srandom(9)
srandom(9) is meaningless on SMP systems or any system with, say,
interrupts. One could never rely on random(9) to produce a reproducible
sequence of outputs on the basis of a specific srandom() seed because the
global state was shared by all kernel contexts. As such, removing it is
literally indistinguishable to random(9) consumers (as compared with
retaining it).
Mark random(9) as deprecated and slated for quick removal. This is not to
say we intend to remove all fast, non-cryptographic PRNG(s) in the kernel.
It/they just won't be random(9), as it exists today, in either name or
implementation.
Before random(9) is removed, a replacement will be provided and in-tree
consumers will be converted.
Note that despite the name, the random(9) interface does not bear any
resemblance to random(3). Instead, it is the same crummy 1988 Park-Miller
LCG used in libc rand(3).
2019-12-26 19:41:09 +00:00
|
|
|
The deprecated
|
2021-03-24 15:25:49 +11:00
|
|
|
.Fn random
|
|
|
|
function will return a 31-bit value.
|
random(9): Deprecate random(9), remove meaningless srandom(9)
srandom(9) is meaningless on SMP systems or any system with, say,
interrupts. One could never rely on random(9) to produce a reproducible
sequence of outputs on the basis of a specific srandom() seed because the
global state was shared by all kernel contexts. As such, removing it is
literally indistinguishable to random(9) consumers (as compared with
retaining it).
Mark random(9) as deprecated and slated for quick removal. This is not to
say we intend to remove all fast, non-cryptographic PRNG(s) in the kernel.
It/they just won't be random(9), as it exists today, in either name or
implementation.
Before random(9) is removed, a replacement will be provided and in-tree
consumers will be converted.
Note that despite the name, the random(9) interface does not bear any
resemblance to random(3). Instead, it is the same crummy 1988 Park-Miller
LCG used in libc rand(3).
2019-12-26 19:41:09 +00:00
|
|
|
It is obsolete and scheduled to be removed in
|
2021-03-24 15:25:49 +11:00
|
|
|
.Fx 14.0 .
|
|
|
|
Consider
|
|
|
|
.Xr prng 9
|
|
|
|
instead and see
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Sx SECURITY CONSIDERATIONS .
|
|
|
|
.Sh RETURN VALUES
|
2000-10-14 16:16:42 +00:00
|
|
|
The
|
2002-10-11 13:13:08 +00:00
|
|
|
.Fn arc4rand
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
function uses the Chacha20 algorithm to generate a pseudo-random sequence of
|
|
|
|
bytes.
|
2002-10-11 13:13:08 +00:00
|
|
|
The
|
2000-10-14 16:16:42 +00:00
|
|
|
.Fn arc4random
|
Huge cleanup of random(4) code.
* GENERAL
- Update copyright.
- Make kernel options for RANDOM_YARROW and RANDOM_DUMMY. Set
neither to ON, which means we want Fortuna
- If there is no 'device random' in the kernel, there will be NO
random(4) device in the kernel, and the KERN_ARND sysctl will
return nothing. With RANDOM_DUMMY there will be a random(4) that
always blocks.
- Repair kern.arandom (KERN_ARND sysctl). The old version went
through arc4random(9) and was a bit weird.
- Adjust arc4random stirring a bit - the existing code looks a little
suspect.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Redo read_random(9) so as to duplicate random(4)'s read internals.
This makes it a first-class citizen rather than a hack.
- Move stuff out of locked regions when it does not need to be
there.
- Trim RANDOM_DEBUG printfs. Some are excess to requirement, some
behind boot verbose.
- Use SYSINIT to sequence the startup.
- Fix init/deinit sysctl stuff.
- Make relevant sysctls also tunables.
- Add different harvesting "styles" to allow for different requirements
(direct, queue, fast).
- Add harvesting of FFS atime events. This needs to be checked for
weighing down the FS code.
- Add harvesting of slab allocator events. This needs to be checked for
weighing down the allocator code.
- Fix the random(9) manpage.
- Loadable modules are not present for now. These will be re-engineered
when the dust settles.
- Use macros for locks.
- Fix comments.
* src/share/man/...
- Update the man pages.
* src/etc/...
- The startup/shutdown work is done in D2924.
* src/UPDATING
- Add UPDATING announcement.
* src/sys/dev/random/build.sh
- Add copyright.
- Add libz for unit tests.
* src/sys/dev/random/dummy.c
- Remove; no longer needed. Functionality incorporated into randomdev.*.
* live_entropy_sources.c live_entropy_sources.h
- Remove; content moved.
- move content to randomdev.[ch] and optimise.
* src/sys/dev/random/random_adaptors.c src/sys/dev/random/random_adaptors.h
- Remove; plugability is no longer used. Compile-time algorithm
selection is the way to go.
* src/sys/dev/random/random_harvestq.c src/sys/dev/random/random_harvestq.h
- Add early (re)boot-time randomness caching.
* src/sys/dev/random/randomdev_soft.c src/sys/dev/random/randomdev_soft.h
- Remove; no longer needed.
* src/sys/dev/random/uint128.h
- Provide a fake uint128_t; if a real one ever arrived, we can use
that instead. All that is needed here is N=0, N++, N==0, and some
localised trickery is used to manufacture a 128-bit 0ULLL.
* src/sys/dev/random/unit_test.c src/sys/dev/random/unit_test.h
- Improve unit tests; previously the testing human needed clairvoyance;
now the test will do a basic check of compressibility. Clairvoyant
talent is still a good idea.
- This is still a long way off a proper unit test.
* src/sys/dev/random/fortuna.c src/sys/dev/random/fortuna.h
- Improve messy union to just uint128_t.
- Remove unneeded 'static struct fortuna_start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
* src/sys/dev/random/yarrow.c src/sys/dev/random/yarrow.h
- Improve messy union to just uint128_t.
- Remove unneeded 'staic struct start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
- Fix some magic numbers elsewhere used as FAST and SLOW.
Differential Revision: https://reviews.freebsd.org/D2025
Reviewed by: vsevolod,delphij,rwatson,trasz,jmg
Approved by: so (delphij)
2015-06-30 17:00:45 +00:00
|
|
|
function uses
|
2002-10-11 13:13:08 +00:00
|
|
|
.Fn arc4rand
|
Huge cleanup of random(4) code.
* GENERAL
- Update copyright.
- Make kernel options for RANDOM_YARROW and RANDOM_DUMMY. Set
neither to ON, which means we want Fortuna
- If there is no 'device random' in the kernel, there will be NO
random(4) device in the kernel, and the KERN_ARND sysctl will
return nothing. With RANDOM_DUMMY there will be a random(4) that
always blocks.
- Repair kern.arandom (KERN_ARND sysctl). The old version went
through arc4random(9) and was a bit weird.
- Adjust arc4random stirring a bit - the existing code looks a little
suspect.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Redo read_random(9) so as to duplicate random(4)'s read internals.
This makes it a first-class citizen rather than a hack.
- Move stuff out of locked regions when it does not need to be
there.
- Trim RANDOM_DEBUG printfs. Some are excess to requirement, some
behind boot verbose.
- Use SYSINIT to sequence the startup.
- Fix init/deinit sysctl stuff.
- Make relevant sysctls also tunables.
- Add different harvesting "styles" to allow for different requirements
(direct, queue, fast).
- Add harvesting of FFS atime events. This needs to be checked for
weighing down the FS code.
- Add harvesting of slab allocator events. This needs to be checked for
weighing down the allocator code.
- Fix the random(9) manpage.
- Loadable modules are not present for now. These will be re-engineered
when the dust settles.
- Use macros for locks.
- Fix comments.
* src/share/man/...
- Update the man pages.
* src/etc/...
- The startup/shutdown work is done in D2924.
* src/UPDATING
- Add UPDATING announcement.
* src/sys/dev/random/build.sh
- Add copyright.
- Add libz for unit tests.
* src/sys/dev/random/dummy.c
- Remove; no longer needed. Functionality incorporated into randomdev.*.
* live_entropy_sources.c live_entropy_sources.h
- Remove; content moved.
- move content to randomdev.[ch] and optimise.
* src/sys/dev/random/random_adaptors.c src/sys/dev/random/random_adaptors.h
- Remove; plugability is no longer used. Compile-time algorithm
selection is the way to go.
* src/sys/dev/random/random_harvestq.c src/sys/dev/random/random_harvestq.h
- Add early (re)boot-time randomness caching.
* src/sys/dev/random/randomdev_soft.c src/sys/dev/random/randomdev_soft.h
- Remove; no longer needed.
* src/sys/dev/random/uint128.h
- Provide a fake uint128_t; if a real one ever arrived, we can use
that instead. All that is needed here is N=0, N++, N==0, and some
localised trickery is used to manufacture a 128-bit 0ULLL.
* src/sys/dev/random/unit_test.c src/sys/dev/random/unit_test.h
- Improve unit tests; previously the testing human needed clairvoyance;
now the test will do a basic check of compressibility. Clairvoyant
talent is still a good idea.
- This is still a long way off a proper unit test.
* src/sys/dev/random/fortuna.c src/sys/dev/random/fortuna.h
- Improve messy union to just uint128_t.
- Remove unneeded 'static struct fortuna_start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
* src/sys/dev/random/yarrow.c src/sys/dev/random/yarrow.h
- Improve messy union to just uint128_t.
- Remove unneeded 'staic struct start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
- Fix some magic numbers elsewhere used as FAST and SLOW.
Differential Revision: https://reviews.freebsd.org/D2025
Reviewed by: vsevolod,delphij,rwatson,trasz,jmg
Approved by: so (delphij)
2015-06-30 17:00:45 +00:00
|
|
|
to generate pseudo-random numbers
|
|
|
|
in the range from 0 to
|
2000-10-14 16:16:42 +00:00
|
|
|
.if t 2\u\s732\s10\d\(mi1.
|
|
|
|
.if n (2**32)\(mi1.
|
|
|
|
.Pp
|
|
|
|
The
|
|
|
|
.Fn read_random
|
Huge cleanup of random(4) code.
* GENERAL
- Update copyright.
- Make kernel options for RANDOM_YARROW and RANDOM_DUMMY. Set
neither to ON, which means we want Fortuna
- If there is no 'device random' in the kernel, there will be NO
random(4) device in the kernel, and the KERN_ARND sysctl will
return nothing. With RANDOM_DUMMY there will be a random(4) that
always blocks.
- Repair kern.arandom (KERN_ARND sysctl). The old version went
through arc4random(9) and was a bit weird.
- Adjust arc4random stirring a bit - the existing code looks a little
suspect.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Redo read_random(9) so as to duplicate random(4)'s read internals.
This makes it a first-class citizen rather than a hack.
- Move stuff out of locked regions when it does not need to be
there.
- Trim RANDOM_DEBUG printfs. Some are excess to requirement, some
behind boot verbose.
- Use SYSINIT to sequence the startup.
- Fix init/deinit sysctl stuff.
- Make relevant sysctls also tunables.
- Add different harvesting "styles" to allow for different requirements
(direct, queue, fast).
- Add harvesting of FFS atime events. This needs to be checked for
weighing down the FS code.
- Add harvesting of slab allocator events. This needs to be checked for
weighing down the allocator code.
- Fix the random(9) manpage.
- Loadable modules are not present for now. These will be re-engineered
when the dust settles.
- Use macros for locks.
- Fix comments.
* src/share/man/...
- Update the man pages.
* src/etc/...
- The startup/shutdown work is done in D2924.
* src/UPDATING
- Add UPDATING announcement.
* src/sys/dev/random/build.sh
- Add copyright.
- Add libz for unit tests.
* src/sys/dev/random/dummy.c
- Remove; no longer needed. Functionality incorporated into randomdev.*.
* live_entropy_sources.c live_entropy_sources.h
- Remove; content moved.
- move content to randomdev.[ch] and optimise.
* src/sys/dev/random/random_adaptors.c src/sys/dev/random/random_adaptors.h
- Remove; plugability is no longer used. Compile-time algorithm
selection is the way to go.
* src/sys/dev/random/random_harvestq.c src/sys/dev/random/random_harvestq.h
- Add early (re)boot-time randomness caching.
* src/sys/dev/random/randomdev_soft.c src/sys/dev/random/randomdev_soft.h
- Remove; no longer needed.
* src/sys/dev/random/uint128.h
- Provide a fake uint128_t; if a real one ever arrived, we can use
that instead. All that is needed here is N=0, N++, N==0, and some
localised trickery is used to manufacture a 128-bit 0ULLL.
* src/sys/dev/random/unit_test.c src/sys/dev/random/unit_test.h
- Improve unit tests; previously the testing human needed clairvoyance;
now the test will do a basic check of compressibility. Clairvoyant
talent is still a good idea.
- This is still a long way off a proper unit test.
* src/sys/dev/random/fortuna.c src/sys/dev/random/fortuna.h
- Improve messy union to just uint128_t.
- Remove unneeded 'static struct fortuna_start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
* src/sys/dev/random/yarrow.c src/sys/dev/random/yarrow.h
- Improve messy union to just uint128_t.
- Remove unneeded 'staic struct start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
- Fix some magic numbers elsewhere used as FAST and SLOW.
Differential Revision: https://reviews.freebsd.org/D2025
Reviewed by: vsevolod,delphij,rwatson,trasz,jmg
Approved by: so (delphij)
2015-06-30 17:00:45 +00:00
|
|
|
function returns
|
|
|
|
the number of bytes placed in
|
2002-11-29 11:39:20 +00:00
|
|
|
.Fa buffer .
|
2015-07-14 18:45:15 +00:00
|
|
|
.Pp
|
|
|
|
.Fn read_random_uio
|
|
|
|
returns zero when successful,
|
|
|
|
otherwise an error code is returned.
|
2021-03-24 15:25:49 +11:00
|
|
|
.Pp
|
|
|
|
.Fn random
|
|
|
|
returns numbers
|
|
|
|
in the range from 0 to
|
|
|
|
.if t 2\u\s731\s10\d\(mi1.
|
|
|
|
.if n (2**31)\(mi1.
|
|
|
|
|
2015-07-14 18:45:15 +00:00
|
|
|
.Sh ERRORS
|
|
|
|
.Fn read_random_uio
|
|
|
|
may fail if:
|
|
|
|
.Bl -tag -width Er
|
|
|
|
.It Bq Er EFAULT
|
|
|
|
.Fa uio
|
|
|
|
points to an invalid memory region.
|
|
|
|
.It Bq Er EWOULDBLOCK
|
|
|
|
The random device is unseeded and
|
|
|
|
.Fa nonblock
|
|
|
|
is true.
|
|
|
|
.El
|
2000-10-14 16:16:42 +00:00
|
|
|
.Sh AUTHORS
|
|
|
|
.An Dan Moschuk
|
|
|
|
wrote
|
|
|
|
.Fn arc4random .
|
|
|
|
.An Mark R V Murray
|
|
|
|
wrote
|
|
|
|
.Fn read_random .
|
random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).
Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed. I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly). In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.
A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack. This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack. Additionally, the stack block is now safely zeroed if it was
used.
One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded. This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change. If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.
On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.
This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random". We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.' This default is safer, but may cause frustration. Embedded
system designers using FreeBSD have several options. The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems. Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot. Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna. A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy). Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.
To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added. When set to 1, it blocks the random device.
I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to. Sorry. I think
they're in a better state now.
PR: 230875
Reviewed by: delphij, markm (earlier version)
Approved by: secteam(delphij), devrandom(markm)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00
|
|
|
.Sh SECURITY CONSIDERATIONS
|
|
|
|
Do not use
|
|
|
|
.Fn random
|
|
|
|
in new code.
|
|
|
|
.Pp
|
|
|
|
It is important to remember that the
|
|
|
|
.Fn random
|
|
|
|
function is entirely predictable.
|
|
|
|
It is easy for attackers to predict future output of
|
|
|
|
.Fn random
|
|
|
|
by recording some generated values.
|
|
|
|
We cannot emphasize strongly enough that
|
|
|
|
.Fn random
|
|
|
|
must not be used to generate values that are intended to be unpredictable.
|