freebsd-nq/sys/cam/ata/ata_da.c

3631 lines
98 KiB
C
Raw Normal View History

Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
* Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ada.h"
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/conf.h>
#include <sys/devicestat.h>
#include <sys/eventhandler.h>
#include <sys/malloc.h>
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
#include <sys/endian.h>
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#include <sys/cons.h>
#include <sys/proc.h>
#include <sys/reboot.h>
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
#include <sys/sbuf.h>
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#include <geom/geom_disk.h>
#endif /* _KERNEL */
#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#endif /* _KERNEL */
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_da.h>
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#include <cam/cam_sim.h>
#include <cam/cam_iosched.h>
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#include <cam/ata/ata_all.h>
#include <machine/md_var.h> /* geometry translation */
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#ifdef _KERNEL
#define ATA_MAX_28BIT_LBA 268435455UL
extern int iosched_debug;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
typedef enum {
ADA_STATE_RAHEAD,
ADA_STATE_WCACHE,
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
ADA_STATE_LOGDIR,
ADA_STATE_IDDIR,
ADA_STATE_SUP_CAP,
ADA_STATE_ZONE,
ADA_STATE_NORMAL
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
} ada_state;
typedef enum {
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
ADA_FLAG_CAN_48BIT = 0x00000002,
ADA_FLAG_CAN_FLUSHCACHE = 0x00000004,
ADA_FLAG_CAN_NCQ = 0x00000008,
ADA_FLAG_CAN_DMA = 0x00000010,
ADA_FLAG_NEED_OTAG = 0x00000020,
ADA_FLAG_WAS_OTAG = 0x00000040,
ADA_FLAG_CAN_TRIM = 0x00000080,
ADA_FLAG_OPEN = 0x00000100,
ADA_FLAG_SCTX_INIT = 0x00000200,
ADA_FLAG_CAN_CFA = 0x00000400,
ADA_FLAG_CAN_POWERMGT = 0x00000800,
ADA_FLAG_CAN_DMA48 = 0x00001000,
ADA_FLAG_CAN_LOG = 0x00002000,
ADA_FLAG_CAN_IDLOG = 0x00004000,
ADA_FLAG_CAN_SUPCAP = 0x00008000,
ADA_FLAG_CAN_ZONE = 0x00010000,
ADA_FLAG_CAN_WCACHE = 0x00020000,
ADA_FLAG_CAN_RAHEAD = 0x00040000,
ADA_FLAG_PROBED = 0x00080000,
ADA_FLAG_ANNOUNCED = 0x00100000,
ADA_FLAG_DIRTY = 0x00200000,
ADA_FLAG_CAN_NCQ_TRIM = 0x00400000, /* CAN_TRIM also set */
ADA_FLAG_PIM_ATA_EXT = 0x00800000
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
} ada_flags;
typedef enum {
ADA_Q_NONE = 0x00,
ADA_Q_4K = 0x01,
ADA_Q_NCQ_TRIM_BROKEN = 0x02,
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
ADA_Q_LOG_BROKEN = 0x04,
ADA_Q_SMR_DM = 0x08,
ADA_Q_NO_TRIM = 0x10,
ADA_Q_128KB = 0x20
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
} ada_quirks;
#define ADA_Q_BIT_STRING \
"\020" \
"\0014K" \
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
"\002NCQ_TRIM_BROKEN" \
"\003LOG_BROKEN" \
"\004SMR_DM" \
"\005NO_TRIM" \
"\006128KB"
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
typedef enum {
ADA_CCB_RAHEAD = 0x01,
ADA_CCB_WCACHE = 0x02,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
ADA_CCB_BUFFER_IO = 0x03,
ADA_CCB_DUMP = 0x05,
ADA_CCB_TRIM = 0x06,
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
ADA_CCB_LOGDIR = 0x07,
ADA_CCB_IDDIR = 0x08,
ADA_CCB_SUP_CAP = 0x09,
ADA_CCB_ZONE = 0x0a,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
ADA_CCB_TYPE_MASK = 0x0F,
} ada_ccb_state;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
typedef enum {
ADA_ZONE_NONE = 0x00,
ADA_ZONE_DRIVE_MANAGED = 0x01,
ADA_ZONE_HOST_AWARE = 0x02,
ADA_ZONE_HOST_MANAGED = 0x03
} ada_zone_mode;
typedef enum {
ADA_ZONE_FLAG_RZ_SUP = 0x0001,
ADA_ZONE_FLAG_OPEN_SUP = 0x0002,
ADA_ZONE_FLAG_CLOSE_SUP = 0x0004,
ADA_ZONE_FLAG_FINISH_SUP = 0x0008,
ADA_ZONE_FLAG_RWP_SUP = 0x0010,
ADA_ZONE_FLAG_SUP_MASK = (ADA_ZONE_FLAG_RZ_SUP |
ADA_ZONE_FLAG_OPEN_SUP |
ADA_ZONE_FLAG_CLOSE_SUP |
ADA_ZONE_FLAG_FINISH_SUP |
ADA_ZONE_FLAG_RWP_SUP),
ADA_ZONE_FLAG_URSWRZ = 0x0020,
ADA_ZONE_FLAG_OPT_SEQ_SET = 0x0040,
ADA_ZONE_FLAG_OPT_NONSEQ_SET = 0x0080,
ADA_ZONE_FLAG_MAX_SEQ_SET = 0x0100,
ADA_ZONE_FLAG_SET_MASK = (ADA_ZONE_FLAG_OPT_SEQ_SET |
ADA_ZONE_FLAG_OPT_NONSEQ_SET |
ADA_ZONE_FLAG_MAX_SEQ_SET)
} ada_zone_flags;
static struct ada_zone_desc {
ada_zone_flags value;
const char *desc;
} ada_zone_desc_table[] = {
{ADA_ZONE_FLAG_RZ_SUP, "Report Zones" },
{ADA_ZONE_FLAG_OPEN_SUP, "Open" },
{ADA_ZONE_FLAG_CLOSE_SUP, "Close" },
{ADA_ZONE_FLAG_FINISH_SUP, "Finish" },
{ADA_ZONE_FLAG_RWP_SUP, "Reset Write Pointer" },
};
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/* Offsets into our private area for storing information */
#define ccb_state ppriv_field0
#define ccb_bp ppriv_ptr1
typedef enum {
ADA_DELETE_NONE,
ADA_DELETE_DISABLE,
ADA_DELETE_CFA_ERASE,
ADA_DELETE_DSM_TRIM,
ADA_DELETE_NCQ_DSM_TRIM,
ADA_DELETE_MIN = ADA_DELETE_CFA_ERASE,
ADA_DELETE_MAX = ADA_DELETE_NCQ_DSM_TRIM,
} ada_delete_methods;
static const char *ada_delete_method_names[] =
{ "NONE", "DISABLE", "CFA_ERASE", "DSM_TRIM", "NCQ_DSM_TRIM" };
#if 0
static const char *ada_delete_method_desc[] =
{ "NONE", "DISABLED", "CFA Erase", "DSM Trim", "DSM Trim via NCQ" };
#endif
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
struct disk_params {
u_int8_t heads;
u_int8_t secs_per_track;
u_int32_t cylinders;
u_int32_t secsize; /* Number of bytes/logical sector */
u_int64_t sectors; /* Total number sectors */
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
};
#define TRIM_MAX_BLOCKS 8
#define TRIM_MAX_RANGES (TRIM_MAX_BLOCKS * ATA_DSM_BLK_RANGES)
struct trim_request {
uint8_t data[TRIM_MAX_RANGES * ATA_DSM_RANGE_SIZE];
TAILQ_HEAD(, bio) bps;
};
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
struct ada_softc {
struct cam_iosched_softc *cam_iosched;
int outstanding_cmds; /* Number of active commands */
int refcount; /* Active xpt_action() calls */
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
ada_state state;
ada_flags flags;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
ada_zone_mode zone_mode;
ada_zone_flags zone_flags;
struct ata_gp_log_dir ata_logdir;
int valid_logdir_len;
struct ata_identify_log_pages ata_iddir;
int valid_iddir_len;
uint64_t optimal_seq_zones;
uint64_t optimal_nonseq_zones;
uint64_t max_seq_zones;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
ada_quirks quirks;
ada_delete_methods delete_method;
int trim_max_ranges;
int read_ahead;
int write_cache;
int unmappedio;
int rotating;
#ifdef CAM_TEST_FAILURE
int force_read_error;
int force_write_error;
int periodic_read_error;
int periodic_read_count;
#endif
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
struct disk_params params;
struct disk *disk;
struct task sysctl_task;
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
struct callout sendordered_c;
struct trim_request trim_req;
uint64_t trim_count;
uint64_t trim_ranges;
uint64_t trim_lbas;
#ifdef CAM_IO_STATS
struct sysctl_ctx_list sysctl_stats_ctx;
struct sysctl_oid *sysctl_stats_tree;
u_int timeouts;
u_int errors;
u_int invalidations;
#endif
#define ADA_ANNOUNCETMP_SZ 80
char announce_temp[ADA_ANNOUNCETMP_SZ];
#define ADA_ANNOUNCE_SZ 400
char announce_buffer[ADA_ANNOUNCE_SZ];
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
};
struct ada_quirk_entry {
struct scsi_inquiry_pattern inq_pat;
ada_quirks quirks;
};
static struct ada_quirk_entry ada_quirk_table[] =
{
{
/* Sandisk X400 */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SanDisk?SD8SB8U1T00*", "X4162000*" },
/*quirks*/ADA_Q_128KB
},
{
/* Hitachi Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Hitachi H??????????E3*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Samsung Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG HD155UI*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Samsung Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG HD204UI*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Barracuda Green Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST????DL*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Barracuda Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST???DM*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Barracuda Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST????DM*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9500423AS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9500424AS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9640423AS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9640424AS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9750420AS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9750422AS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9750423AS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* Seagate Momentus Thin Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST???LT*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Red Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD????CX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Green Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD????RS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Green/Red Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD????RX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Red Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD??????CX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Black Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD????AZEX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Black Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD????FZEX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Green Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD??????RS*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Caviar Green Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD??????RX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Scorpio Black Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD???PKT*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Scorpio Black Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD?????PKT*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Scorpio Blue Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD???PVT*", "*" },
/*quirks*/ADA_Q_4K
},
{
/* WDC Scorpio Blue Advanced Format (4k) drives */
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD?????PVT*", "*" },
/*quirks*/ADA_Q_4K
},
/* SSDs */
{
/*
* Corsair Force 2 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Corsair CSSD-F*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Corsair Force 3 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Corsair Force 3*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Corsair Neutron GTX SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Corsair Neutron GTX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Corsair Force GT & GS SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Corsair Force G*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Crucial M4 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "M4-CT???M4SSD2*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Crucial M500 SSDs MU07 firmware
* NCQ Trim works
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Crucial CT*M500*", "MU07" },
/*quirks*/0
},
{
/*
* Crucial M500 SSDs all other firmware
* NCQ Trim doesn't work
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Crucial CT*M500*", "*" },
/*quirks*/ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Crucial M550 SSDs
* NCQ Trim doesn't work, but only on MU01 firmware
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Crucial CT*M550*", "MU01" },
/*quirks*/ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Crucial MX100 SSDs
* NCQ Trim doesn't work, but only on MU01 firmware
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Crucial CT*MX100*", "MU01" },
/*quirks*/ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Crucial RealSSD C300 SSDs
* 4k optimised
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "C300-CTFDDAC???MAG*",
"*" }, /*quirks*/ADA_Q_4K
},
{
/*
* FCCT M500 SSDs
* NCQ Trim doesn't work
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "FCCT*M500*", "*" },
/*quirks*/ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Intel 320 Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "INTEL SSDSA2CW*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Intel 330 Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "INTEL SSDSC2CT*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Intel 510 Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "INTEL SSDSC2MH*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Intel 520 Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "INTEL SSDSC2BW*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Intel S3610 Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "INTEL SSDSC2BX*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Intel X25-M Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "INTEL SSDSA2M*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* KingDian S200 60GB P0921B
* Trimming crash the SSD
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "KingDian S200 *", "*" },
/*quirks*/ADA_Q_NO_TRIM
},
{
/*
* Kingston E100 Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "KINGSTON SE100S3*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Kingston HyperX 3k SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "KINGSTON SH103S3*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Marvell SSDs (entry taken from OpenSolaris)
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "MARVELL SD88SA02*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Micron M500 SSDs firmware MU07
* NCQ Trim works?
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Micron M500*", "MU07" },
/*quirks*/0
},
{
/*
* Micron M500 SSDs all other firmware
* NCQ Trim doesn't work
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Micron M500*", "*" },
/*quirks*/ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Micron M5[15]0 SSDs
* NCQ Trim doesn't work, but only MU01 firmware
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Micron M5[15]0*", "MU01" },
/*quirks*/ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Micron 5100 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Micron 5100 MTFDDAK*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* OCZ Agility 2 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ-AGILITY2*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* OCZ Agility 3 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ-AGILITY3*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* OCZ Deneva R Series SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "DENRSTE251M45*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* OCZ Vertex 2 SSDs (inc pro series)
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ?VERTEX2*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* OCZ Vertex 3 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ-VERTEX3*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* OCZ Vertex 4 SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ-VERTEX4*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Samsung 750 SSDs
* 4k optimised, NCQ TRIM seems to work
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Samsung SSD 750*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Samsung 830 Series SSDs
* 4k optimised, NCQ TRIM Broken (normal TRIM is fine)
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG SSD 830 Series*", "*" },
/*quirks*/ADA_Q_4K | ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Samsung 840 SSDs
* 4k optimised, NCQ TRIM Broken (normal TRIM is fine)
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Samsung SSD 840*", "*" },
/*quirks*/ADA_Q_4K | ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Samsung 845 SSDs
* 4k optimised, NCQ TRIM Broken (normal TRIM is fine)
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Samsung SSD 845*", "*" },
/*quirks*/ADA_Q_4K | ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Samsung 850 SSDs
* 4k optimised, NCQ TRIM broken (normal TRIM fine)
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "Samsung SSD 850*", "*" },
/*quirks*/ADA_Q_4K | ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Samsung SM863 Series SSDs (MZ7KM*)
* 4k optimised, NCQ believed to be working
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG MZ7KM*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* Samsung 843T Series SSDs (MZ7WD*)
* Samsung PM851 Series SSDs (MZ7TE*)
* Samsung PM853T Series SSDs (MZ7GE*)
* 4k optimised, NCQ believed to be broken since these are
* appear to be built with the same controllers as the 840/850.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG MZ7*", "*" },
/*quirks*/ADA_Q_4K | ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Same as for SAMSUNG MZ7* but enable the quirks for SSD
* starting with MZ7* too
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "MZ7*", "*" },
/*quirks*/ADA_Q_4K | ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* Samsung PM851 Series SSDs Dell OEM
* device model "SAMSUNG SSD PM851 mSATA 256GB"
* 4k optimised, NCQ broken
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG SSD PM851*", "*" },
/*quirks*/ADA_Q_4K | ADA_Q_NCQ_TRIM_BROKEN
},
{
/*
* SuperTalent TeraDrive CT SSDs
* 4k optimised & trim only works in 4k requests + 4k aligned
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "FTM??CT25H*", "*" },
/*quirks*/ADA_Q_4K
},
{
/*
* XceedIOPS SATA SSDs
* 4k optimised
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SG9XCS2D*", "*" },
/*quirks*/ADA_Q_4K
},
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
{
/*
* Samsung drive that doesn't support READ LOG EXT or
* READ LOG DMA EXT, despite reporting that it does in
* ATA identify data:
* SAMSUNG HD200HJ KF100-06
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG HD200*", "*" },
/*quirks*/ADA_Q_LOG_BROKEN
},
{
/*
* Samsung drive that doesn't support READ LOG EXT or
* READ LOG DMA EXT, despite reporting that it does in
* ATA identify data:
* SAMSUNG HD501LJ CR100-10
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG HD501*", "*" },
/*quirks*/ADA_Q_LOG_BROKEN
},
{
/*
* Seagate Lamarr 8TB Shingled Magnetic Recording (SMR)
* Drive Managed SATA hard drive. This drive doesn't report
* in firmware that it is a drive managed SMR drive.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "*", "ST8000AS000[23]*", "*" },
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
/*quirks*/ADA_Q_SMR_DM
},
{
/* Default */
{
T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
/*vendor*/"*", /*product*/"*", /*revision*/"*"
},
/*quirks*/0
},
};
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static disk_strategy_t adastrategy;
static dumper_t adadump;
static periph_init_t adainit;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static void adadiskgonecb(struct disk *dp);
static periph_oninv_t adaoninvalidate;
static periph_dtor_t adacleanup;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void adaasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static int adazonemodesysctl(SYSCTL_HANDLER_ARGS);
static int adazonesupsysctl(SYSCTL_HANDLER_ARGS);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void adasysctlinit(void *context, int pending);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static int adagetattr(struct bio *bp);
static void adasetflags(struct ada_softc *softc,
struct ccb_getdev *cgd);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static periph_ctor_t adaregister;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static void ada_dsmtrim(struct ada_softc *softc, struct bio *bp,
struct ccb_ataio *ataio);
static void ada_cfaerase(struct ada_softc *softc, struct bio *bp,
struct ccb_ataio *ataio);
static int ada_zone_bio_to_ata(int disk_zone_cmd);
static int ada_zone_cmd(struct cam_periph *periph, union ccb *ccb,
struct bio *bp, int *queue_ccb);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static periph_start_t adastart;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static void adaprobedone(struct cam_periph *periph, union ccb *ccb);
static void adazonedone(struct cam_periph *periph, union ccb *ccb);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void adadone(struct cam_periph *periph,
union ccb *done_ccb);
static int adaerror(union ccb *ccb, u_int32_t cam_flags,
u_int32_t sense_flags);
static void adagetparams(struct cam_periph *periph,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
struct ccb_getdev *cgd);
static timeout_t adasendorderedtag;
static void adashutdown(void *arg, int howto);
static void adasuspend(void *arg);
static void adaresume(void *arg);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#ifndef ADA_DEFAULT_TIMEOUT
#define ADA_DEFAULT_TIMEOUT 30 /* Timeout in seconds */
#endif
#ifndef ADA_DEFAULT_RETRY
#define ADA_DEFAULT_RETRY 4
#endif
#ifndef ADA_DEFAULT_SEND_ORDERED
#define ADA_DEFAULT_SEND_ORDERED 1
#endif
#ifndef ADA_DEFAULT_SPINDOWN_SHUTDOWN
#define ADA_DEFAULT_SPINDOWN_SHUTDOWN 1
#endif
#ifndef ADA_DEFAULT_SPINDOWN_SUSPEND
#define ADA_DEFAULT_SPINDOWN_SUSPEND 1
#endif
#ifndef ADA_DEFAULT_READ_AHEAD
#define ADA_DEFAULT_READ_AHEAD 1
#endif
#ifndef ADA_DEFAULT_WRITE_CACHE
#define ADA_DEFAULT_WRITE_CACHE 1
#endif
#define ADA_RA (softc->read_ahead >= 0 ? \
softc->read_ahead : ada_read_ahead)
#define ADA_WC (softc->write_cache >= 0 ? \
softc->write_cache : ada_write_cache)
/*
* Most platforms map firmware geometry to actual, but some don't. If
* not overridden, default to nothing.
*/
#ifndef ata_disk_firmware_geom_adjust
#define ata_disk_firmware_geom_adjust(disk)
#endif
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static int ada_retry_count = ADA_DEFAULT_RETRY;
static int ada_default_timeout = ADA_DEFAULT_TIMEOUT;
static int ada_send_ordered = ADA_DEFAULT_SEND_ORDERED;
static int ada_spindown_shutdown = ADA_DEFAULT_SPINDOWN_SHUTDOWN;
static int ada_spindown_suspend = ADA_DEFAULT_SPINDOWN_SUSPEND;
static int ada_read_ahead = ADA_DEFAULT_READ_AHEAD;
static int ada_write_cache = ADA_DEFAULT_WRITE_CACHE;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static SYSCTL_NODE(_kern_cam, OID_AUTO, ada, CTLFLAG_RD, 0,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
"CAM Direct Access Disk driver");
SYSCTL_INT(_kern_cam_ada, OID_AUTO, retry_count, CTLFLAG_RWTUN,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
&ada_retry_count, 0, "Normal I/O retry count");
SYSCTL_INT(_kern_cam_ada, OID_AUTO, default_timeout, CTLFLAG_RWTUN,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
&ada_default_timeout, 0, "Normal I/O timeout (in seconds)");
SYSCTL_INT(_kern_cam_ada, OID_AUTO, send_ordered, CTLFLAG_RWTUN,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
&ada_send_ordered, 0, "Send Ordered Tags");
SYSCTL_INT(_kern_cam_ada, OID_AUTO, spindown_shutdown, CTLFLAG_RWTUN,
&ada_spindown_shutdown, 0, "Spin down upon shutdown");
SYSCTL_INT(_kern_cam_ada, OID_AUTO, spindown_suspend, CTLFLAG_RWTUN,
&ada_spindown_suspend, 0, "Spin down upon suspend");
SYSCTL_INT(_kern_cam_ada, OID_AUTO, read_ahead, CTLFLAG_RWTUN,
&ada_read_ahead, 0, "Enable disk read-ahead");
SYSCTL_INT(_kern_cam_ada, OID_AUTO, write_cache, CTLFLAG_RWTUN,
&ada_write_cache, 0, "Enable disk write cache");
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* ADA_ORDEREDTAG_INTERVAL determines how often, relative
* to the default timeout, we check to see whether an ordered
* tagged transaction is appropriate to prevent simple tag
* starvation. Since we'd like to ensure that there is at least
* 1/2 of the timeout length left for a starved transaction to
* complete after we've sent an ordered tag, we must poll at least
* four times in every timeout period. This takes care of the worst
* case where a starved transaction starts during an interval that
* meets the requirement "don't send an ordered tag" test so it takes
* us two intervals to determine that a tag must be sent.
*/
#ifndef ADA_ORDEREDTAG_INTERVAL
#define ADA_ORDEREDTAG_INTERVAL 4
#endif
static struct periph_driver adadriver =
{
adainit, "ada",
TAILQ_HEAD_INITIALIZER(adadriver.units), /* generation */ 0
};
static int adadeletemethodsysctl(SYSCTL_HANDLER_ARGS);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
PERIPHDRIVER_DECLARE(ada, adadriver);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static MALLOC_DEFINE(M_ATADA, "ata_da", "ata_da buffers");
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static int
adaopen(struct disk *dp)
{
struct cam_periph *periph;
struct ada_softc *softc;
int error;
periph = (struct cam_periph *)dp->d_drv1;
if (cam_periph_acquire(periph) != 0) {
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
return(ENXIO);
}
cam_periph_lock(periph);
if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) {
cam_periph_unlock(periph);
cam_periph_release(periph);
return (error);
}
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH,
("adaopen\n"));
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc = (struct ada_softc *)periph->softc;
softc->flags |= ADA_FLAG_OPEN;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_periph_unhold(periph);
cam_periph_unlock(periph);
return (0);
}
static int
adaclose(struct disk *dp)
{
struct cam_periph *periph;
struct ada_softc *softc;
union ccb *ccb;
int error;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
periph = (struct cam_periph *)dp->d_drv1;
softc = (struct ada_softc *)periph->softc;
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
cam_periph_lock(periph);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH,
("adaclose\n"));
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/* We only sync the cache if the drive is capable of it. */
if ((softc->flags & ADA_FLAG_DIRTY) != 0 &&
(softc->flags & ADA_FLAG_CAN_FLUSHCACHE) != 0 &&
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
(periph->flags & CAM_PERIPH_INVALID) == 0 &&
cam_periph_hold(periph, PRIBIO) == 0) {
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_fill_ataio(&ccb->ataio,
1,
NULL,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
CAM_DIR_NONE,
0,
NULL,
0,
ada_default_timeout*1000);
if (softc->flags & ADA_FLAG_CAN_48BIT)
ata_48bit_cmd(&ccb->ataio, ATA_FLUSHCACHE48, 0, 0, 0);
else
ata_28bit_cmd(&ccb->ataio, ATA_FLUSHCACHE, 0, 0, 0);
error = cam_periph_runccb(ccb, adaerror, /*cam_flags*/0,
/*sense_flags*/0, softc->disk->d_devstat);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (error != 0)
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
xpt_print(periph->path, "Synchronize cache failed\n");
softc->flags &= ~ADA_FLAG_DIRTY;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
xpt_release_ccb(ccb);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
cam_periph_unhold(periph);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
softc->flags &= ~ADA_FLAG_OPEN;
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
while (softc->refcount != 0)
cam_periph_sleep(periph, &softc->refcount, PRIBIO, "adaclose", 1);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_periph_unlock(periph);
cam_periph_release(periph);
return (0);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
static void
adaschedule(struct cam_periph *periph)
{
struct ada_softc *softc = (struct ada_softc *)periph->softc;
if (softc->state != ADA_STATE_NORMAL)
return;
cam_iosched_schedule(softc->cam_iosched, periph);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Actually translate the requested transfer into one the physical driver
* can understand. The transfer is described by a buf and will include
* only one physical transfer.
*/
static void
adastrategy(struct bio *bp)
{
struct cam_periph *periph;
struct ada_softc *softc;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
periph = (struct cam_periph *)bp->bio_disk->d_drv1;
softc = (struct ada_softc *)periph->softc;
cam_periph_lock(periph);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("adastrategy(%p)\n", bp));
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* If the device has been made invalid, error out
*/
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_periph_unlock(periph);
biofinish(bp, NULL, ENXIO);
return;
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
/*
* Zone commands must be ordered, because they can depend on the
* effects of previously issued commands, and they may affect
* commands after them.
*/
if (bp->bio_cmd == BIO_ZONE)
bp->bio_flags |= BIO_ORDERED;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Place it in the queue of disk activities for this disk
*/
cam_iosched_queue_work(softc->cam_iosched, bp);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Schedule ourselves for performing the work.
*/
adaschedule(periph);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_periph_unlock(periph);
return;
}
static int
adadump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length)
{
struct cam_periph *periph;
struct ada_softc *softc;
u_int secsize;
struct ccb_ataio ataio;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
struct disk *dp;
uint64_t lba;
uint16_t count;
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
int error = 0;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
dp = arg;
periph = dp->d_drv1;
softc = (struct ada_softc *)periph->softc;
secsize = softc->params.secsize;
lba = offset / secsize;
count = length / secsize;
if ((periph->flags & CAM_PERIPH_INVALID) != 0)
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
return (ENXIO);
memset(&ataio, 0, sizeof(ataio));
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (length > 0) {
xpt_setup_ccb(&ataio.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
ataio.ccb_h.ccb_state = ADA_CCB_DUMP;
cam_fill_ataio(&ataio,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
0,
NULL,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
CAM_DIR_OUT,
0,
(u_int8_t *) virtual,
length,
ada_default_timeout*1000);
if ((softc->flags & ADA_FLAG_CAN_48BIT) &&
(lba + count >= ATA_MAX_28BIT_LBA ||
count >= 256)) {
ata_48bit_cmd(&ataio, ATA_WRITE_DMA48,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
0, lba, count);
} else {
ata_28bit_cmd(&ataio, ATA_WRITE_DMA,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
0, lba, count);
}
error = cam_periph_runccb((union ccb *)&ataio, adaerror,
0, SF_NO_RECOVERY | SF_NO_RETRY, NULL);
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
if (error != 0)
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
printf("Aborting dump due to I/O error.\n");
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
return (error);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
if (softc->flags & ADA_FLAG_CAN_FLUSHCACHE) {
xpt_setup_ccb(&ataio.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Tell the drive to flush its internal cache. if we
* can't flush in 5s we have big problems. No need to
* wait the default 60s to detect problems.
*/
ataio.ccb_h.ccb_state = ADA_CCB_DUMP;
cam_fill_ataio(&ataio,
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
0,
NULL,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
CAM_DIR_NONE,
0,
NULL,
0,
5*1000);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (softc->flags & ADA_FLAG_CAN_48BIT)
ata_48bit_cmd(&ataio, ATA_FLUSHCACHE48, 0, 0, 0);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
else
ata_28bit_cmd(&ataio, ATA_FLUSHCACHE, 0, 0, 0);
error = cam_periph_runccb((union ccb *)&ataio, adaerror,
0, SF_NO_RECOVERY | SF_NO_RETRY, NULL);
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
if (error != 0)
xpt_print(periph->path, "Synchronize cache failed\n");
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
return (error);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
static void
adainit(void)
{
cam_status status;
/*
* Install a global async callback. This callback will
* receive async callbacks like "new device found".
*/
status = xpt_register_async(AC_FOUND_DEVICE, adaasync, NULL, NULL);
if (status != CAM_REQ_CMP) {
printf("ada: Failed to attach master async callback "
"due to status 0x%x!\n", status);
} else if (ada_send_ordered) {
/* Register our event handlers */
if ((EVENTHANDLER_REGISTER(power_suspend, adasuspend,
NULL, EVENTHANDLER_PRI_LAST)) == NULL)
printf("adainit: power event registration failed!\n");
if ((EVENTHANDLER_REGISTER(power_resume, adaresume,
NULL, EVENTHANDLER_PRI_LAST)) == NULL)
printf("adainit: power event registration failed!\n");
if ((EVENTHANDLER_REGISTER(shutdown_post_sync, adashutdown,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
NULL, SHUTDOWN_PRI_DEFAULT)) == NULL)
printf("adainit: shutdown event registration failed!\n");
}
}
/*
* Callback from GEOM, called when it has finished cleaning up its
* resources.
*/
static void
adadiskgonecb(struct disk *dp)
{
struct cam_periph *periph;
periph = (struct cam_periph *)dp->d_drv1;
cam_periph_release(periph);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void
adaoninvalidate(struct cam_periph *periph)
{
struct ada_softc *softc;
softc = (struct ada_softc *)periph->softc;
/*
* De-register any async callbacks.
*/
xpt_register_async(0, adaasync, periph, periph->path);
#ifdef CAM_IO_STATS
softc->invalidations++;
#endif
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Return all queued I/O with ENXIO.
* XXX Handle any transactions queued to the card
* with XPT_ABORT_CCB.
*/
cam_iosched_flush(softc->cam_iosched, NULL, ENXIO);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
disk_gone(softc->disk);
}
static void
adacleanup(struct cam_periph *periph)
{
struct ada_softc *softc;
softc = (struct ada_softc *)periph->softc;
cam_periph_unlock(periph);
cam_iosched_fini(softc->cam_iosched);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* If we can't free the sysctl tree, oh well...
*/
if ((softc->flags & ADA_FLAG_SCTX_INIT) != 0) {
#ifdef CAM_IO_STATS
if (sysctl_ctx_free(&softc->sysctl_stats_ctx) != 0)
xpt_print(periph->path,
"can't remove sysctl stats context\n");
#endif
if (sysctl_ctx_free(&softc->sysctl_ctx) != 0)
xpt_print(periph->path,
"can't remove sysctl context\n");
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
disk_destroy(softc->disk);
callout_drain(&softc->sendordered_c);
free(softc, M_DEVBUF);
cam_periph_lock(periph);
}
static void
adasetdeletemethod(struct ada_softc *softc)
{
if (softc->flags & ADA_FLAG_CAN_NCQ_TRIM)
softc->delete_method = ADA_DELETE_NCQ_DSM_TRIM;
else if (softc->flags & ADA_FLAG_CAN_TRIM)
softc->delete_method = ADA_DELETE_DSM_TRIM;
else if ((softc->flags & ADA_FLAG_CAN_CFA) && !(softc->flags & ADA_FLAG_CAN_48BIT))
softc->delete_method = ADA_DELETE_CFA_ERASE;
else
softc->delete_method = ADA_DELETE_NONE;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void
adaasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg)
{
struct ccb_getdev cgd;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
struct cam_periph *periph;
struct ada_softc *softc;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
periph = (struct cam_periph *)callback_arg;
switch (code) {
case AC_FOUND_DEVICE:
{
struct ccb_getdev *cgd;
cam_status status;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL)
break;
if (cgd->protocol != PROTO_ATA)
break;
/*
* Allocate a peripheral instance for
* this device and start the probe
* process.
*/
status = cam_periph_alloc(adaregister, adaoninvalidate,
adacleanup, adastart,
"ada", CAM_PERIPH_BIO,
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
path, adaasync,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP
&& status != CAM_REQ_INPROG)
printf("adaasync: Unable to attach to new device "
"due to status 0x%x\n", status);
break;
}
case AC_GETDEV_CHANGED:
{
softc = (struct ada_softc *)periph->softc;
xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
/*
* Set/clear support flags based on the new Identify data.
*/
adasetflags(softc, &cgd);
cam_periph_async(periph, code, path, arg);
break;
}
case AC_ADVINFO_CHANGED:
{
uintptr_t buftype;
buftype = (uintptr_t)arg;
if (buftype == CDAI_TYPE_PHYS_PATH) {
struct ada_softc *softc;
softc = periph->softc;
disk_attr_changed(softc->disk, "GEOM::physpath",
M_NOWAIT);
}
break;
}
case AC_SENT_BDR:
case AC_BUS_RESET:
{
softc = (struct ada_softc *)periph->softc;
cam_periph_async(periph, code, path, arg);
if (softc->state != ADA_STATE_NORMAL)
break;
xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
if (ADA_RA >= 0 && softc->flags & ADA_FLAG_CAN_RAHEAD)
softc->state = ADA_STATE_RAHEAD;
else if (ADA_WC >= 0 && softc->flags & ADA_FLAG_CAN_WCACHE)
softc->state = ADA_STATE_WCACHE;
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
else if ((softc->flags & ADA_FLAG_CAN_LOG)
&& (softc->zone_mode != ADA_ZONE_NONE))
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->state = ADA_STATE_LOGDIR;
else
break;
if (cam_periph_acquire(periph) != 0)
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
softc->state = ADA_STATE_NORMAL;
else
xpt_schedule(periph, CAM_PRIORITY_DEV);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
default:
cam_periph_async(periph, code, path, arg);
break;
}
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static int
adazonemodesysctl(SYSCTL_HANDLER_ARGS)
{
char tmpbuf[40];
struct ada_softc *softc;
int error;
softc = (struct ada_softc *)arg1;
switch (softc->zone_mode) {
case ADA_ZONE_DRIVE_MANAGED:
snprintf(tmpbuf, sizeof(tmpbuf), "Drive Managed");
break;
case ADA_ZONE_HOST_AWARE:
snprintf(tmpbuf, sizeof(tmpbuf), "Host Aware");
break;
case ADA_ZONE_HOST_MANAGED:
snprintf(tmpbuf, sizeof(tmpbuf), "Host Managed");
break;
case ADA_ZONE_NONE:
default:
snprintf(tmpbuf, sizeof(tmpbuf), "Not Zoned");
break;
}
error = sysctl_handle_string(oidp, tmpbuf, sizeof(tmpbuf), req);
return (error);
}
static int
adazonesupsysctl(SYSCTL_HANDLER_ARGS)
{
char tmpbuf[180];
struct ada_softc *softc;
struct sbuf sb;
int error, first;
unsigned int i;
softc = (struct ada_softc *)arg1;
error = 0;
first = 1;
sbuf_new(&sb, tmpbuf, sizeof(tmpbuf), 0);
for (i = 0; i < sizeof(ada_zone_desc_table) /
sizeof(ada_zone_desc_table[0]); i++) {
if (softc->zone_flags & ada_zone_desc_table[i].value) {
if (first == 0)
sbuf_printf(&sb, ", ");
else
first = 0;
sbuf_cat(&sb, ada_zone_desc_table[i].desc);
}
}
if (first == 1)
sbuf_printf(&sb, "None");
sbuf_finish(&sb);
error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
return (error);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void
adasysctlinit(void *context, int pending)
{
struct cam_periph *periph;
struct ada_softc *softc;
char tmpstr[32], tmpstr2[16];
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
periph = (struct cam_periph *)context;
/* periph was held for us when this task was enqueued */
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
cam_periph_release(periph);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
return;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc = (struct ada_softc *)periph->softc;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
snprintf(tmpstr, sizeof(tmpstr), "CAM ADA unit %d",periph->unit_number);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
snprintf(tmpstr2, sizeof(tmpstr2), "%d", periph->unit_number);
sysctl_ctx_init(&softc->sysctl_ctx);
softc->flags |= ADA_FLAG_SCTX_INIT;
softc->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&softc->sysctl_ctx,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
SYSCTL_STATIC_CHILDREN(_kern_cam_ada), OID_AUTO, tmpstr2,
CTLFLAG_RD, 0, tmpstr, "device_index");
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (softc->sysctl_tree == NULL) {
printf("adasysctlinit: unable to allocate sysctl tree\n");
cam_periph_release(periph);
return;
}
SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "delete_method", CTLTYPE_STRING | CTLFLAG_RW,
softc, 0, adadeletemethodsysctl, "A",
"BIO_DELETE execution method");
SYSCTL_ADD_UQUAD(&softc->sysctl_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
"trim_count", CTLFLAG_RD, &softc->trim_count,
"Total number of dsm commands sent");
SYSCTL_ADD_UQUAD(&softc->sysctl_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
"trim_ranges", CTLFLAG_RD, &softc->trim_ranges,
"Total number of ranges in dsm commands");
SYSCTL_ADD_UQUAD(&softc->sysctl_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
"trim_lbas", CTLFLAG_RD, &softc->trim_lbas,
"Total lbas in the dsm commands sent");
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "read_ahead", CTLFLAG_RW | CTLFLAG_MPSAFE,
&softc->read_ahead, 0, "Enable disk read ahead.");
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "write_cache", CTLFLAG_RW | CTLFLAG_MPSAFE,
&softc->write_cache, 0, "Enable disk write cache.");
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "unmapped_io", CTLFLAG_RD | CTLFLAG_MPSAFE,
&softc->unmappedio, 0, "Unmapped I/O leaf");
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "rotating", CTLFLAG_RD | CTLFLAG_MPSAFE,
&softc->rotating, 0, "Rotating media");
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "zone_mode", CTLTYPE_STRING | CTLFLAG_RD,
softc, 0, adazonemodesysctl, "A",
"Zone Mode");
SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "zone_support", CTLTYPE_STRING | CTLFLAG_RD,
softc, 0, adazonesupsysctl, "A",
"Zone Support");
SYSCTL_ADD_UQUAD(&softc->sysctl_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
"optimal_seq_zones", CTLFLAG_RD, &softc->optimal_seq_zones,
"Optimal Number of Open Sequential Write Preferred Zones");
SYSCTL_ADD_UQUAD(&softc->sysctl_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
"optimal_nonseq_zones", CTLFLAG_RD,
&softc->optimal_nonseq_zones,
"Optimal Number of Non-Sequentially Written Sequential Write "
"Preferred Zones");
SYSCTL_ADD_UQUAD(&softc->sysctl_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
"max_seq_zones", CTLFLAG_RD, &softc->max_seq_zones,
"Maximum Number of Open Sequential Write Required Zones");
#ifdef CAM_TEST_FAILURE
/*
* Add a 'door bell' sysctl which allows one to set it from userland
* and cause something bad to happen. For the moment, we only allow
* whacking the next read or write.
*/
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "force_read_error", CTLFLAG_RW | CTLFLAG_MPSAFE,
&softc->force_read_error, 0,
"Force a read error for the next N reads.");
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "force_write_error", CTLFLAG_RW | CTLFLAG_MPSAFE,
&softc->force_write_error, 0,
"Force a write error for the next N writes.");
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "periodic_read_error", CTLFLAG_RW | CTLFLAG_MPSAFE,
&softc->periodic_read_error, 0,
"Force a read error every N reads (don't set too low).");
SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "invalidate", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE,
periph, 0, cam_periph_invalidate_sysctl, "I",
"Write 1 to invalidate the drive immediately");
#endif
#ifdef CAM_IO_STATS
softc->sysctl_stats_tree = SYSCTL_ADD_NODE(&softc->sysctl_stats_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "stats",
CTLFLAG_RD, 0, "Statistics");
SYSCTL_ADD_INT(&softc->sysctl_stats_ctx,
SYSCTL_CHILDREN(softc->sysctl_stats_tree),
OID_AUTO, "timeouts", CTLFLAG_RD | CTLFLAG_MPSAFE,
&softc->timeouts, 0,
"Device timeouts reported by the SIM");
SYSCTL_ADD_INT(&softc->sysctl_stats_ctx,
SYSCTL_CHILDREN(softc->sysctl_stats_tree),
OID_AUTO, "errors", CTLFLAG_RD | CTLFLAG_MPSAFE,
&softc->errors, 0,
"Transport errors reported by the SIM.");
SYSCTL_ADD_INT(&softc->sysctl_stats_ctx,
SYSCTL_CHILDREN(softc->sysctl_stats_tree),
OID_AUTO, "pack_invalidations", CTLFLAG_RD | CTLFLAG_MPSAFE,
&softc->invalidations, 0,
"Device pack invalidations.");
#endif
cam_iosched_sysctl_init(softc->cam_iosched, &softc->sysctl_ctx,
softc->sysctl_tree);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_periph_release(periph);
}
Plumb device physical path reporting from CAM devices, through GEOM and DEVFS, and make it accessible via the diskinfo utility. Extend GEOM's generic attribute query mechanism into generic disk consumers. sys/geom/geom_disk.c: sys/geom/geom_disk.h: sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Allow disk providers to implement a new method which can override the default BIO_GETATTR response, d_getattr(struct bio *). This function returns -1 if not handled, otherwise it returns 0 or an errno to be passed to g_io_deliver(). sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Don't copy the serial number to dp->d_ident anymore, as the CAM XPT is now responsible for returning this information via d_getattr()->(a)dagetattr()->xpt_getatr(). sys/geom/geom_dev.c: - Implement a new ioctl, DIOCGPHYSPATH, which returns the GEOM attribute "GEOM::physpath", if possible. If the attribute request returns a zero-length string, ENOENT is returned. usr.sbin/diskinfo/diskinfo.c: - If the DIOCGPHYSPATH ioctl is successful, report physical path data when diskinfo is executed with the '-v' option. Submitted by: will Reviewed by: gibbs Sponsored by: Spectra Logic Corporation Add generic attribute change notification support to GEOM. sys/sys/geom/geom.h: Add a new attrchanged method field to both g_class and g_geom. sys/sys/geom/geom.h: sys/geom/geom_event.c: - Provide the g_attr_changed() function that providers can use to advertise attribute changes. - Perform delivery of attribute change notifications from a thread context via the standard GEOM event mechanism. sys/geom/geom_subr.c: Inherit the attrchanged method from class to geom (class instance). sys/geom/geom_disk.c: Provide disk_attr_changed() to provide g_attr_changed() access to consumers of the disk API. sys/cam/scsi/scsi_pass.c: sys/cam/scsi/scsi_da.c: sys/geom/geom_dev.c: sys/geom/geom_disk.c: Use attribute changed events to track updates to physical path information. sys/cam/scsi/scsi_da.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, and the updated buffer type references our physical path attribute, emit a GEOM attribute changed event via the disk_attr_changed() API. sys/cam/scsi/scsi_pass.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, update the physical patch devfs alias for this pass instance. Submitted by: gibbs Sponsored by: Spectra Logic Corporation
2011-06-14 17:10:32 +00:00
static int
adagetattr(struct bio *bp)
{
int ret;
Plumb device physical path reporting from CAM devices, through GEOM and DEVFS, and make it accessible via the diskinfo utility. Extend GEOM's generic attribute query mechanism into generic disk consumers. sys/geom/geom_disk.c: sys/geom/geom_disk.h: sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Allow disk providers to implement a new method which can override the default BIO_GETATTR response, d_getattr(struct bio *). This function returns -1 if not handled, otherwise it returns 0 or an errno to be passed to g_io_deliver(). sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Don't copy the serial number to dp->d_ident anymore, as the CAM XPT is now responsible for returning this information via d_getattr()->(a)dagetattr()->xpt_getatr(). sys/geom/geom_dev.c: - Implement a new ioctl, DIOCGPHYSPATH, which returns the GEOM attribute "GEOM::physpath", if possible. If the attribute request returns a zero-length string, ENOENT is returned. usr.sbin/diskinfo/diskinfo.c: - If the DIOCGPHYSPATH ioctl is successful, report physical path data when diskinfo is executed with the '-v' option. Submitted by: will Reviewed by: gibbs Sponsored by: Spectra Logic Corporation Add generic attribute change notification support to GEOM. sys/sys/geom/geom.h: Add a new attrchanged method field to both g_class and g_geom. sys/sys/geom/geom.h: sys/geom/geom_event.c: - Provide the g_attr_changed() function that providers can use to advertise attribute changes. - Perform delivery of attribute change notifications from a thread context via the standard GEOM event mechanism. sys/geom/geom_subr.c: Inherit the attrchanged method from class to geom (class instance). sys/geom/geom_disk.c: Provide disk_attr_changed() to provide g_attr_changed() access to consumers of the disk API. sys/cam/scsi/scsi_pass.c: sys/cam/scsi/scsi_da.c: sys/geom/geom_dev.c: sys/geom/geom_disk.c: Use attribute changed events to track updates to physical path information. sys/cam/scsi/scsi_da.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, and the updated buffer type references our physical path attribute, emit a GEOM attribute changed event via the disk_attr_changed() API. sys/cam/scsi/scsi_pass.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, update the physical patch devfs alias for this pass instance. Submitted by: gibbs Sponsored by: Spectra Logic Corporation
2011-06-14 17:10:32 +00:00
struct cam_periph *periph;
periph = (struct cam_periph *)bp->bio_disk->d_drv1;
cam_periph_lock(periph);
Plumb device physical path reporting from CAM devices, through GEOM and DEVFS, and make it accessible via the diskinfo utility. Extend GEOM's generic attribute query mechanism into generic disk consumers. sys/geom/geom_disk.c: sys/geom/geom_disk.h: sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Allow disk providers to implement a new method which can override the default BIO_GETATTR response, d_getattr(struct bio *). This function returns -1 if not handled, otherwise it returns 0 or an errno to be passed to g_io_deliver(). sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Don't copy the serial number to dp->d_ident anymore, as the CAM XPT is now responsible for returning this information via d_getattr()->(a)dagetattr()->xpt_getatr(). sys/geom/geom_dev.c: - Implement a new ioctl, DIOCGPHYSPATH, which returns the GEOM attribute "GEOM::physpath", if possible. If the attribute request returns a zero-length string, ENOENT is returned. usr.sbin/diskinfo/diskinfo.c: - If the DIOCGPHYSPATH ioctl is successful, report physical path data when diskinfo is executed with the '-v' option. Submitted by: will Reviewed by: gibbs Sponsored by: Spectra Logic Corporation Add generic attribute change notification support to GEOM. sys/sys/geom/geom.h: Add a new attrchanged method field to both g_class and g_geom. sys/sys/geom/geom.h: sys/geom/geom_event.c: - Provide the g_attr_changed() function that providers can use to advertise attribute changes. - Perform delivery of attribute change notifications from a thread context via the standard GEOM event mechanism. sys/geom/geom_subr.c: Inherit the attrchanged method from class to geom (class instance). sys/geom/geom_disk.c: Provide disk_attr_changed() to provide g_attr_changed() access to consumers of the disk API. sys/cam/scsi/scsi_pass.c: sys/cam/scsi/scsi_da.c: sys/geom/geom_dev.c: sys/geom/geom_disk.c: Use attribute changed events to track updates to physical path information. sys/cam/scsi/scsi_da.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, and the updated buffer type references our physical path attribute, emit a GEOM attribute changed event via the disk_attr_changed() API. sys/cam/scsi/scsi_pass.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, update the physical patch devfs alias for this pass instance. Submitted by: gibbs Sponsored by: Spectra Logic Corporation
2011-06-14 17:10:32 +00:00
ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute,
periph->path);
cam_periph_unlock(periph);
Plumb device physical path reporting from CAM devices, through GEOM and DEVFS, and make it accessible via the diskinfo utility. Extend GEOM's generic attribute query mechanism into generic disk consumers. sys/geom/geom_disk.c: sys/geom/geom_disk.h: sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Allow disk providers to implement a new method which can override the default BIO_GETATTR response, d_getattr(struct bio *). This function returns -1 if not handled, otherwise it returns 0 or an errno to be passed to g_io_deliver(). sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Don't copy the serial number to dp->d_ident anymore, as the CAM XPT is now responsible for returning this information via d_getattr()->(a)dagetattr()->xpt_getatr(). sys/geom/geom_dev.c: - Implement a new ioctl, DIOCGPHYSPATH, which returns the GEOM attribute "GEOM::physpath", if possible. If the attribute request returns a zero-length string, ENOENT is returned. usr.sbin/diskinfo/diskinfo.c: - If the DIOCGPHYSPATH ioctl is successful, report physical path data when diskinfo is executed with the '-v' option. Submitted by: will Reviewed by: gibbs Sponsored by: Spectra Logic Corporation Add generic attribute change notification support to GEOM. sys/sys/geom/geom.h: Add a new attrchanged method field to both g_class and g_geom. sys/sys/geom/geom.h: sys/geom/geom_event.c: - Provide the g_attr_changed() function that providers can use to advertise attribute changes. - Perform delivery of attribute change notifications from a thread context via the standard GEOM event mechanism. sys/geom/geom_subr.c: Inherit the attrchanged method from class to geom (class instance). sys/geom/geom_disk.c: Provide disk_attr_changed() to provide g_attr_changed() access to consumers of the disk API. sys/cam/scsi/scsi_pass.c: sys/cam/scsi/scsi_da.c: sys/geom/geom_dev.c: sys/geom/geom_disk.c: Use attribute changed events to track updates to physical path information. sys/cam/scsi/scsi_da.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, and the updated buffer type references our physical path attribute, emit a GEOM attribute changed event via the disk_attr_changed() API. sys/cam/scsi/scsi_pass.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, update the physical patch devfs alias for this pass instance. Submitted by: gibbs Sponsored by: Spectra Logic Corporation
2011-06-14 17:10:32 +00:00
if (ret == 0)
bp->bio_completed = bp->bio_length;
return ret;
}
static int
adadeletemethodsysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
const char *p;
struct ada_softc *softc;
int i, error, value, methods;
softc = (struct ada_softc *)arg1;
value = softc->delete_method;
if (value < 0 || value > ADA_DELETE_MAX)
p = "UNKNOWN";
else
p = ada_delete_method_names[value];
strncpy(buf, p, sizeof(buf));
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
methods = 1 << ADA_DELETE_DISABLE;
if ((softc->flags & ADA_FLAG_CAN_CFA) &&
!(softc->flags & ADA_FLAG_CAN_48BIT))
methods |= 1 << ADA_DELETE_CFA_ERASE;
if (softc->flags & ADA_FLAG_CAN_TRIM)
methods |= 1 << ADA_DELETE_DSM_TRIM;
if (softc->flags & ADA_FLAG_CAN_NCQ_TRIM)
methods |= 1 << ADA_DELETE_NCQ_DSM_TRIM;
for (i = 0; i <= ADA_DELETE_MAX; i++) {
if (!(methods & (1 << i)) ||
strcmp(buf, ada_delete_method_names[i]) != 0)
continue;
softc->delete_method = i;
return (0);
}
return (EINVAL);
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static void
adasetflags(struct ada_softc *softc, struct ccb_getdev *cgd)
{
if ((cgd->ident_data.capabilities1 & ATA_SUPPORT_DMA) &&
(cgd->inq_flags & SID_DMA))
softc->flags |= ADA_FLAG_CAN_DMA;
else
softc->flags &= ~ADA_FLAG_CAN_DMA;
if (cgd->ident_data.support.command2 & ATA_SUPPORT_ADDRESS48) {
softc->flags |= ADA_FLAG_CAN_48BIT;
if (cgd->inq_flags & SID_DMA48)
softc->flags |= ADA_FLAG_CAN_DMA48;
else
softc->flags &= ~ADA_FLAG_CAN_DMA48;
} else
softc->flags &= ~(ADA_FLAG_CAN_48BIT | ADA_FLAG_CAN_DMA48);
if (cgd->ident_data.support.command2 & ATA_SUPPORT_FLUSHCACHE)
softc->flags |= ADA_FLAG_CAN_FLUSHCACHE;
else
softc->flags &= ~ADA_FLAG_CAN_FLUSHCACHE;
if (cgd->ident_data.support.command1 & ATA_SUPPORT_POWERMGT)
softc->flags |= ADA_FLAG_CAN_POWERMGT;
else
softc->flags &= ~ADA_FLAG_CAN_POWERMGT;
if ((cgd->ident_data.satacapabilities & ATA_SUPPORT_NCQ) &&
(cgd->inq_flags & SID_DMA) && (cgd->inq_flags & SID_CmdQue))
softc->flags |= ADA_FLAG_CAN_NCQ;
else
softc->flags &= ~ADA_FLAG_CAN_NCQ;
if ((cgd->ident_data.support_dsm & ATA_SUPPORT_DSM_TRIM) &&
(cgd->inq_flags & SID_DMA)) {
softc->flags |= ADA_FLAG_CAN_TRIM;
softc->trim_max_ranges = TRIM_MAX_RANGES;
if (cgd->ident_data.max_dsm_blocks != 0) {
softc->trim_max_ranges =
min(cgd->ident_data.max_dsm_blocks *
ATA_DSM_BLK_RANGES, softc->trim_max_ranges);
}
/*
* If we can do RCVSND_FPDMA_QUEUED commands, we may be able
* to do NCQ trims, if we support trims at all. We also need
* support from the SIM to do things properly. Perhaps we
* should look at log 13 dword 0 bit 0 and dword 1 bit 0 are
* set too...
*/
if ((softc->quirks & ADA_Q_NCQ_TRIM_BROKEN) == 0 &&
(softc->flags & ADA_FLAG_PIM_ATA_EXT) != 0 &&
(cgd->ident_data.satacapabilities2 &
ATA_SUPPORT_RCVSND_FPDMA_QUEUED) != 0 &&
(softc->flags & ADA_FLAG_CAN_TRIM) != 0)
softc->flags |= ADA_FLAG_CAN_NCQ_TRIM;
else
softc->flags &= ~ADA_FLAG_CAN_NCQ_TRIM;
} else
softc->flags &= ~(ADA_FLAG_CAN_TRIM | ADA_FLAG_CAN_NCQ_TRIM);
if (cgd->ident_data.support.command2 & ATA_SUPPORT_CFA)
softc->flags |= ADA_FLAG_CAN_CFA;
else
softc->flags &= ~ADA_FLAG_CAN_CFA;
/*
* Now that we've set the appropriate flags, setup the delete
* method.
*/
adasetdeletemethod(softc);
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
if ((cgd->ident_data.support.extension & ATA_SUPPORT_GENLOG)
&& ((softc->quirks & ADA_Q_LOG_BROKEN) == 0))
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->flags |= ADA_FLAG_CAN_LOG;
else
softc->flags &= ~ADA_FLAG_CAN_LOG;
if ((cgd->ident_data.support3 & ATA_SUPPORT_ZONE_MASK) ==
ATA_SUPPORT_ZONE_HOST_AWARE)
softc->zone_mode = ADA_ZONE_HOST_AWARE;
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
else if (((cgd->ident_data.support3 & ATA_SUPPORT_ZONE_MASK) ==
ATA_SUPPORT_ZONE_DEV_MANAGED)
|| (softc->quirks & ADA_Q_SMR_DM))
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->zone_mode = ADA_ZONE_DRIVE_MANAGED;
else
softc->zone_mode = ADA_ZONE_NONE;
if (cgd->ident_data.support.command1 & ATA_SUPPORT_LOOKAHEAD)
softc->flags |= ADA_FLAG_CAN_RAHEAD;
else
softc->flags &= ~ADA_FLAG_CAN_RAHEAD;
if (cgd->ident_data.support.command1 & ATA_SUPPORT_WRITECACHE)
softc->flags |= ADA_FLAG_CAN_WCACHE;
else
softc->flags &= ~ADA_FLAG_CAN_WCACHE;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static cam_status
adaregister(struct cam_periph *periph, void *arg)
{
struct ada_softc *softc;
struct ccb_pathinq cpi;
struct ccb_getdev *cgd;
struct disk_params *dp;
struct sbuf sb;
char *announce_buf;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
caddr_t match;
u_int maxio;
int quirks;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL) {
printf("adaregister: no getdev CCB, can't register device\n");
return(CAM_REQ_CMP_ERR);
}
softc = (struct ada_softc *)malloc(sizeof(*softc), M_DEVBUF,
M_NOWAIT|M_ZERO);
if (softc == NULL) {
printf("adaregister: Unable to probe new device. "
"Unable to allocate softc\n");
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
return(CAM_REQ_CMP_ERR);
}
announce_buf = softc->announce_temp;
bzero(announce_buf, ADA_ANNOUNCETMP_SZ);
if (cam_iosched_init(&softc->cam_iosched, periph) != 0) {
printf("adaregister: Unable to probe new device. "
"Unable to allocate iosched memory\n");
free(softc, M_DEVBUF);
return(CAM_REQ_CMP_ERR);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
periph->softc = softc;
/*
* See if this device has any quirks.
*/
match = cam_quirkmatch((caddr_t)&cgd->ident_data,
(caddr_t)ada_quirk_table,
nitems(ada_quirk_table),
sizeof(*ada_quirk_table), ata_identify_match);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (match != NULL)
softc->quirks = ((struct ada_quirk_entry *)match)->quirks;
else
softc->quirks = ADA_Q_NONE;
xpt_path_inq(&cpi, periph->path);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
TASK_INIT(&softc->sysctl_task, 0, adasysctlinit, periph);
/*
* Register this media as a disk
*/
(void)cam_periph_hold(periph, PRIBIO);
cam_periph_unlock(periph);
snprintf(announce_buf, ADA_ANNOUNCETMP_SZ,
"kern.cam.ada.%d.quirks", periph->unit_number);
quirks = softc->quirks;
TUNABLE_INT_FETCH(announce_buf, &quirks);
softc->quirks = quirks;
softc->read_ahead = -1;
snprintf(announce_buf, ADA_ANNOUNCETMP_SZ,
"kern.cam.ada.%d.read_ahead", periph->unit_number);
TUNABLE_INT_FETCH(announce_buf, &softc->read_ahead);
softc->write_cache = -1;
snprintf(announce_buf, ADA_ANNOUNCETMP_SZ,
"kern.cam.ada.%d.write_cache", periph->unit_number);
TUNABLE_INT_FETCH(announce_buf, &softc->write_cache);
/*
* Set support flags based on the Identify data and quirks.
*/
adasetflags(softc, cgd);
/* Disable queue sorting for non-rotational media by default. */
if (cgd->ident_data.media_rotation_rate == ATA_RATE_NON_ROTATING) {
softc->rotating = 0;
} else {
softc->rotating = 1;
}
cam_iosched_set_sort_queue(softc->cam_iosched, softc->rotating ? -1 : 0);
adagetparams(periph, cgd);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc->disk = disk_alloc();
Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay
2013-10-23 09:54:58 +00:00
softc->disk->d_rotation_rate = cgd->ident_data.media_rotation_rate;
softc->disk->d_devstat = devstat_new_entry(periph->periph_name,
periph->unit_number, softc->params.secsize,
DEVSTAT_ALL_SUPPORTED,
DEVSTAT_TYPE_DIRECT |
XPORT_DEVSTAT_TYPE(cpi.transport),
DEVSTAT_PRIORITY_DISK);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc->disk->d_open = adaopen;
softc->disk->d_close = adaclose;
softc->disk->d_strategy = adastrategy;
Plumb device physical path reporting from CAM devices, through GEOM and DEVFS, and make it accessible via the diskinfo utility. Extend GEOM's generic attribute query mechanism into generic disk consumers. sys/geom/geom_disk.c: sys/geom/geom_disk.h: sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Allow disk providers to implement a new method which can override the default BIO_GETATTR response, d_getattr(struct bio *). This function returns -1 if not handled, otherwise it returns 0 or an errno to be passed to g_io_deliver(). sys/cam/scsi/scsi_da.c: sys/cam/ata/ata_da.c: - Don't copy the serial number to dp->d_ident anymore, as the CAM XPT is now responsible for returning this information via d_getattr()->(a)dagetattr()->xpt_getatr(). sys/geom/geom_dev.c: - Implement a new ioctl, DIOCGPHYSPATH, which returns the GEOM attribute "GEOM::physpath", if possible. If the attribute request returns a zero-length string, ENOENT is returned. usr.sbin/diskinfo/diskinfo.c: - If the DIOCGPHYSPATH ioctl is successful, report physical path data when diskinfo is executed with the '-v' option. Submitted by: will Reviewed by: gibbs Sponsored by: Spectra Logic Corporation Add generic attribute change notification support to GEOM. sys/sys/geom/geom.h: Add a new attrchanged method field to both g_class and g_geom. sys/sys/geom/geom.h: sys/geom/geom_event.c: - Provide the g_attr_changed() function that providers can use to advertise attribute changes. - Perform delivery of attribute change notifications from a thread context via the standard GEOM event mechanism. sys/geom/geom_subr.c: Inherit the attrchanged method from class to geom (class instance). sys/geom/geom_disk.c: Provide disk_attr_changed() to provide g_attr_changed() access to consumers of the disk API. sys/cam/scsi/scsi_pass.c: sys/cam/scsi/scsi_da.c: sys/geom/geom_dev.c: sys/geom/geom_disk.c: Use attribute changed events to track updates to physical path information. sys/cam/scsi/scsi_da.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, and the updated buffer type references our physical path attribute, emit a GEOM attribute changed event via the disk_attr_changed() API. sys/cam/scsi/scsi_pass.c: Add AC_ADVINFO_CHANGED to the registered asynchronous CAM events for this driver. When this event occurs, update the physical patch devfs alias for this pass instance. Submitted by: gibbs Sponsored by: Spectra Logic Corporation
2011-06-14 17:10:32 +00:00
softc->disk->d_getattr = adagetattr;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc->disk->d_dump = adadump;
softc->disk->d_gone = adadiskgonecb;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc->disk->d_name = "ada";
softc->disk->d_drv1 = periph;
maxio = cpi.maxio; /* Honor max I/O size of SIM */
if (maxio == 0)
maxio = DFLTPHYS; /* traditional default */
else if (maxio > MAXPHYS)
maxio = MAXPHYS; /* for safety */
if (softc->flags & ADA_FLAG_CAN_48BIT)
maxio = min(maxio, 65536 * softc->params.secsize);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
else /* 28bit ATA command limit */
maxio = min(maxio, 256 * softc->params.secsize);
if (softc->quirks & ADA_Q_128KB)
maxio = min(maxio, 128 * 1024);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc->disk->d_maxsize = maxio;
softc->disk->d_unit = periph->unit_number;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->disk->d_flags = DISKFLAG_DIRECT_COMPLETION | DISKFLAG_CANZONE;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (softc->flags & ADA_FLAG_CAN_FLUSHCACHE)
softc->disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
/* Device lies about TRIM capability. */
if ((softc->quirks & ADA_Q_NO_TRIM) &&
(softc->flags & ADA_FLAG_CAN_TRIM))
softc->flags &= ~ADA_FLAG_CAN_TRIM;
if (softc->flags & ADA_FLAG_CAN_TRIM) {
softc->disk->d_flags |= DISKFLAG_CANDELETE;
softc->disk->d_delmaxsize = softc->params.secsize *
ATA_DSM_RANGE_MAX *
softc->trim_max_ranges;
} else if ((softc->flags & ADA_FLAG_CAN_CFA) &&
!(softc->flags & ADA_FLAG_CAN_48BIT)) {
softc->disk->d_flags |= DISKFLAG_CANDELETE;
softc->disk->d_delmaxsize = 256 * softc->params.secsize;
} else
softc->disk->d_delmaxsize = maxio;
if ((cpi.hba_misc & PIM_UNMAPPED) != 0) {
softc->disk->d_flags |= DISKFLAG_UNMAPPED_BIO;
softc->unmappedio = 1;
}
if (cpi.hba_misc & PIM_ATA_EXT)
softc->flags |= ADA_FLAG_PIM_ATA_EXT;
strlcpy(softc->disk->d_descr, cgd->ident_data.model,
MIN(sizeof(softc->disk->d_descr), sizeof(cgd->ident_data.model)));
strlcpy(softc->disk->d_ident, cgd->ident_data.serial,
MIN(sizeof(softc->disk->d_ident), sizeof(cgd->ident_data.serial)));
softc->disk->d_hba_vendor = cpi.hba_vendor;
softc->disk->d_hba_device = cpi.hba_device;
softc->disk->d_hba_subvendor = cpi.hba_subvendor;
softc->disk->d_hba_subdevice = cpi.hba_subdevice;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc->disk->d_sectorsize = softc->params.secsize;
softc->disk->d_mediasize = (off_t)softc->params.sectors *
softc->params.secsize;
if (ata_physical_sector_size(&cgd->ident_data) !=
softc->params.secsize) {
softc->disk->d_stripesize =
ata_physical_sector_size(&cgd->ident_data);
softc->disk->d_stripeoffset = (softc->disk->d_stripesize -
ata_logical_sector_offset(&cgd->ident_data)) %
softc->disk->d_stripesize;
} else if (softc->quirks & ADA_Q_4K) {
softc->disk->d_stripesize = 4096;
softc->disk->d_stripeoffset = 0;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc->disk->d_fwsectors = softc->params.secs_per_track;
softc->disk->d_fwheads = softc->params.heads;
ata_disk_firmware_geom_adjust(softc->disk);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Acquire a reference to the periph before we register with GEOM.
* We'll release this reference once GEOM calls us back (via
* adadiskgonecb()) telling us that our provider has been freed.
*/
if (cam_periph_acquire(periph) != 0) {
xpt_print(periph->path, "%s: lost periph during "
"registration!\n", __func__);
cam_periph_lock(periph);
return (CAM_REQ_CMP_ERR);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
disk_create(softc->disk, DISK_VERSION);
cam_periph_lock(periph);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
dp = &softc->params;
snprintf(announce_buf, ADA_ANNOUNCETMP_SZ,
"%juMB (%ju %u byte sectors)",
((uintmax_t)dp->secsize * dp->sectors) / (1024 * 1024),
(uintmax_t)dp->sectors, dp->secsize);
sbuf_new(&sb, softc->announce_buffer, ADA_ANNOUNCE_SZ, SBUF_FIXEDLEN);
xpt_announce_periph_sbuf(periph, &sb, announce_buf);
xpt_announce_quirks_sbuf(periph, &sb, softc->quirks, ADA_Q_BIT_STRING);
sbuf_finish(&sb);
sbuf_putbuf(&sb);
/*
* Create our sysctl variables, now that we know
* we have successfully attached.
*/
if (cam_periph_acquire(periph) == 0)
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
taskqueue_enqueue(taskqueue_thread, &softc->sysctl_task);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Add async callbacks for bus reset and
* bus device reset calls. I don't bother
* checking if this fails as, in most cases,
* the system will function just fine without
* them and the only alternative would be to
* not attach the device on failure.
*/
xpt_register_async(AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE |
AC_GETDEV_CHANGED | AC_ADVINFO_CHANGED,
adaasync, periph, periph->path);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*
* Schedule a periodic event to occasionally send an
* ordered tag to a device.
*/
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
callout_init_mtx(&softc->sendordered_c, cam_periph_mtx(periph), 0);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
callout_reset(&softc->sendordered_c,
(ada_default_timeout * hz) / ADA_ORDEREDTAG_INTERVAL,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
adasendorderedtag, softc);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
if (ADA_RA >= 0 && softc->flags & ADA_FLAG_CAN_RAHEAD) {
softc->state = ADA_STATE_RAHEAD;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
} else if (ADA_WC >= 0 && softc->flags & ADA_FLAG_CAN_WCACHE) {
softc->state = ADA_STATE_WCACHE;
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
} else if ((softc->flags & ADA_FLAG_CAN_LOG)
&& (softc->zone_mode != ADA_ZONE_NONE)) {
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->state = ADA_STATE_LOGDIR;
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
} else {
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
/*
* Nothing to probe, so we can just transition to the
* normal state.
*/
adaprobedone(periph, NULL);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
return(CAM_REQ_CMP);
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
xpt_schedule(periph, CAM_PRIORITY_DEV);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
return(CAM_REQ_CMP);
}
static int
ada_dsmtrim_req_create(struct ada_softc *softc, struct bio *bp, struct trim_request *req)
{
uint64_t lastlba = (uint64_t)-1, lbas = 0;
int c, lastcount = 0, off, ranges = 0;
bzero(req, sizeof(*req));
TAILQ_INIT(&req->bps);
do {
uint64_t lba = bp->bio_pblkno;
int count = bp->bio_bcount / softc->params.secsize;
/* Try to extend the previous range. */
if (lba == lastlba) {
c = min(count, ATA_DSM_RANGE_MAX - lastcount);
lastcount += c;
off = (ranges - 1) * ATA_DSM_RANGE_SIZE;
req->data[off + 6] = lastcount & 0xff;
req->data[off + 7] =
(lastcount >> 8) & 0xff;
count -= c;
lba += c;
lbas += c;
}
while (count > 0) {
c = min(count, ATA_DSM_RANGE_MAX);
off = ranges * ATA_DSM_RANGE_SIZE;
req->data[off + 0] = lba & 0xff;
req->data[off + 1] = (lba >> 8) & 0xff;
req->data[off + 2] = (lba >> 16) & 0xff;
req->data[off + 3] = (lba >> 24) & 0xff;
req->data[off + 4] = (lba >> 32) & 0xff;
req->data[off + 5] = (lba >> 40) & 0xff;
req->data[off + 6] = c & 0xff;
req->data[off + 7] = (c >> 8) & 0xff;
lba += c;
lbas += c;
count -= c;
lastcount = c;
ranges++;
/*
* Its the caller's responsibility to ensure the
* request will fit so we don't need to check for
* overrun here
*/
}
lastlba = lba;
TAILQ_INSERT_TAIL(&req->bps, bp, bio_queue);
bp = cam_iosched_next_trim(softc->cam_iosched);
if (bp == NULL)
break;
if (bp->bio_bcount / softc->params.secsize >
(softc->trim_max_ranges - ranges) * ATA_DSM_RANGE_MAX) {
cam_iosched_put_back_trim(softc->cam_iosched, bp);
break;
}
} while (1);
softc->trim_count++;
softc->trim_ranges += ranges;
softc->trim_lbas += lbas;
return (ranges);
}
static void
ada_dsmtrim(struct ada_softc *softc, struct bio *bp, struct ccb_ataio *ataio)
{
struct trim_request *req = &softc->trim_req;
int ranges;
ranges = ada_dsmtrim_req_create(softc, bp, req);
cam_fill_ataio(ataio,
ada_retry_count,
adadone,
CAM_DIR_OUT,
0,
req->data,
howmany(ranges, ATA_DSM_BLK_RANGES) * ATA_DSM_BLK_SIZE,
ada_default_timeout * 1000);
ata_48bit_cmd(ataio, ATA_DATA_SET_MANAGEMENT,
ATA_DSM_TRIM, 0, howmany(ranges, ATA_DSM_BLK_RANGES));
}
static void
ada_ncq_dsmtrim(struct ada_softc *softc, struct bio *bp, struct ccb_ataio *ataio)
{
struct trim_request *req = &softc->trim_req;
int ranges;
ranges = ada_dsmtrim_req_create(softc, bp, req);
cam_fill_ataio(ataio,
ada_retry_count,
adadone,
CAM_DIR_OUT,
0,
req->data,
howmany(ranges, ATA_DSM_BLK_RANGES) * ATA_DSM_BLK_SIZE,
ada_default_timeout * 1000);
ata_ncq_cmd(ataio,
ATA_SEND_FPDMA_QUEUED,
0,
howmany(ranges, ATA_DSM_BLK_RANGES));
ataio->cmd.sector_count_exp = ATA_SFPDMA_DSM;
ataio->ata_flags |= ATA_FLAG_AUX;
ataio->aux = 1;
}
static void
ada_cfaerase(struct ada_softc *softc, struct bio *bp, struct ccb_ataio *ataio)
{
struct trim_request *req = &softc->trim_req;
uint64_t lba = bp->bio_pblkno;
uint16_t count = bp->bio_bcount / softc->params.secsize;
bzero(req, sizeof(*req));
TAILQ_INIT(&req->bps);
TAILQ_INSERT_TAIL(&req->bps, bp, bio_queue);
cam_fill_ataio(ataio,
ada_retry_count,
adadone,
CAM_DIR_NONE,
0,
NULL,
0,
ada_default_timeout*1000);
if (count >= 256)
count = 0;
ata_28bit_cmd(ataio, ATA_CFA_ERASE, 0, lba, count);
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
static int
ada_zone_bio_to_ata(int disk_zone_cmd)
{
switch (disk_zone_cmd) {
case DISK_ZONE_OPEN:
return ATA_ZM_OPEN_ZONE;
case DISK_ZONE_CLOSE:
return ATA_ZM_CLOSE_ZONE;
case DISK_ZONE_FINISH:
return ATA_ZM_FINISH_ZONE;
case DISK_ZONE_RWP:
return ATA_ZM_RWP;
}
return -1;
}
static int
ada_zone_cmd(struct cam_periph *periph, union ccb *ccb, struct bio *bp,
int *queue_ccb)
{
struct ada_softc *softc;
int error;
error = 0;
if (bp->bio_cmd != BIO_ZONE) {
error = EINVAL;
goto bailout;
}
softc = periph->softc;
switch (bp->bio_zone.zone_cmd) {
case DISK_ZONE_OPEN:
case DISK_ZONE_CLOSE:
case DISK_ZONE_FINISH:
case DISK_ZONE_RWP: {
int zone_flags;
int zone_sa;
uint64_t lba;
zone_sa = ada_zone_bio_to_ata(bp->bio_zone.zone_cmd);
if (zone_sa == -1) {
xpt_print(periph->path, "Cannot translate zone "
"cmd %#x to ATA\n", bp->bio_zone.zone_cmd);
error = EINVAL;
goto bailout;
}
zone_flags = 0;
lba = bp->bio_zone.zone_params.rwp.id;
if (bp->bio_zone.zone_params.rwp.flags &
DISK_ZONE_RWP_FLAG_ALL)
zone_flags |= ZBC_OUT_ALL;
ata_zac_mgmt_out(&ccb->ataio,
/*retries*/ ada_retry_count,
/*cbfcnp*/ adadone,
/*use_ncq*/ (softc->flags &
ADA_FLAG_PIM_ATA_EXT) ? 1 : 0,
/*zm_action*/ zone_sa,
/*zone_id*/ lba,
/*zone_flags*/ zone_flags,
/*sector_count*/ 0,
/*data_ptr*/ NULL,
/*dxfer_len*/ 0,
/*timeout*/ ada_default_timeout * 1000);
*queue_ccb = 1;
break;
}
case DISK_ZONE_REPORT_ZONES: {
uint8_t *rz_ptr;
uint32_t num_entries, alloc_size;
struct disk_zone_report *rep;
rep = &bp->bio_zone.zone_params.report;
num_entries = rep->entries_allocated;
if (num_entries == 0) {
xpt_print(periph->path, "No entries allocated for "
"Report Zones request\n");
error = EINVAL;
goto bailout;
}
alloc_size = sizeof(struct scsi_report_zones_hdr) +
(sizeof(struct scsi_report_zones_desc) * num_entries);
alloc_size = min(alloc_size, softc->disk->d_maxsize);
rz_ptr = malloc(alloc_size, M_ATADA, M_NOWAIT | M_ZERO);
if (rz_ptr == NULL) {
xpt_print(periph->path, "Unable to allocate memory "
"for Report Zones request\n");
error = ENOMEM;
goto bailout;
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
ata_zac_mgmt_in(&ccb->ataio,
/*retries*/ ada_retry_count,
/*cbcfnp*/ adadone,
/*use_ncq*/ (softc->flags &
ADA_FLAG_PIM_ATA_EXT) ? 1 : 0,
/*zm_action*/ ATA_ZM_REPORT_ZONES,
/*zone_id*/ rep->starting_id,
/*zone_flags*/ rep->rep_options,
/*data_ptr*/ rz_ptr,
/*dxfer_len*/ alloc_size,
/*timeout*/ ada_default_timeout * 1000);
/*
* For BIO_ZONE, this isn't normally needed. However, it
* is used by devstat_end_transaction_bio() to determine
* how much data was transferred.
*/
/*
* XXX KDM we have a problem. But I'm not sure how to fix
* it. devstat uses bio_bcount - bio_resid to calculate
* the amount of data transferred. The GEOM disk code
* uses bio_length - bio_resid to calculate the amount of
* data in bio_completed. We have different structure
* sizes above and below the ada(4) driver. So, if we
* use the sizes above, the amount transferred won't be
* quite accurate for devstat. If we use different sizes
* for bio_bcount and bio_length (above and below
* respectively), then the residual needs to match one or
* the other. Everything is calculated after the bio
* leaves the driver, so changing the values around isn't
* really an option. For now, just set the count to the
* passed in length. This means that the calculations
* above (e.g. bio_completed) will be correct, but the
* amount of data reported to devstat will be slightly
* under or overstated.
*/
bp->bio_bcount = bp->bio_length;
*queue_ccb = 1;
break;
}
case DISK_ZONE_GET_PARAMS: {
struct disk_zone_disk_params *params;
params = &bp->bio_zone.zone_params.disk_params;
bzero(params, sizeof(*params));
switch (softc->zone_mode) {
case ADA_ZONE_DRIVE_MANAGED:
params->zone_mode = DISK_ZONE_MODE_DRIVE_MANAGED;
break;
case ADA_ZONE_HOST_AWARE:
params->zone_mode = DISK_ZONE_MODE_HOST_AWARE;
break;
case ADA_ZONE_HOST_MANAGED:
params->zone_mode = DISK_ZONE_MODE_HOST_MANAGED;
break;
default:
case ADA_ZONE_NONE:
params->zone_mode = DISK_ZONE_MODE_NONE;
break;
}
if (softc->zone_flags & ADA_ZONE_FLAG_URSWRZ)
params->flags |= DISK_ZONE_DISK_URSWRZ;
if (softc->zone_flags & ADA_ZONE_FLAG_OPT_SEQ_SET) {
params->optimal_seq_zones = softc->optimal_seq_zones;
params->flags |= DISK_ZONE_OPT_SEQ_SET;
}
if (softc->zone_flags & ADA_ZONE_FLAG_OPT_NONSEQ_SET) {
params->optimal_nonseq_zones =
softc->optimal_nonseq_zones;
params->flags |= DISK_ZONE_OPT_NONSEQ_SET;
}
if (softc->zone_flags & ADA_ZONE_FLAG_MAX_SEQ_SET) {
params->max_seq_zones = softc->max_seq_zones;
params->flags |= DISK_ZONE_MAX_SEQ_SET;
}
if (softc->zone_flags & ADA_ZONE_FLAG_RZ_SUP)
params->flags |= DISK_ZONE_RZ_SUP;
if (softc->zone_flags & ADA_ZONE_FLAG_OPEN_SUP)
params->flags |= DISK_ZONE_OPEN_SUP;
if (softc->zone_flags & ADA_ZONE_FLAG_CLOSE_SUP)
params->flags |= DISK_ZONE_CLOSE_SUP;
if (softc->zone_flags & ADA_ZONE_FLAG_FINISH_SUP)
params->flags |= DISK_ZONE_FINISH_SUP;
if (softc->zone_flags & ADA_ZONE_FLAG_RWP_SUP)
params->flags |= DISK_ZONE_RWP_SUP;
break;
}
default:
break;
}
bailout:
return (error);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void
adastart(struct cam_periph *periph, union ccb *start_ccb)
{
struct ada_softc *softc = (struct ada_softc *)periph->softc;
struct ccb_ataio *ataio = &start_ccb->ataio;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("adastart\n"));
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
switch (softc->state) {
case ADA_STATE_NORMAL:
{
struct bio *bp;
u_int8_t tag_code;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
bp = cam_iosched_next_bio(softc->cam_iosched);
if (bp == NULL) {
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
xpt_release_ccb(start_ccb);
break;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if ((bp->bio_flags & BIO_ORDERED) != 0 ||
(bp->bio_cmd != BIO_DELETE && (softc->flags & ADA_FLAG_NEED_OTAG) != 0)) {
softc->flags &= ~ADA_FLAG_NEED_OTAG;
softc->flags |= ADA_FLAG_WAS_OTAG;
tag_code = 0;
} else {
tag_code = 1;
}
switch (bp->bio_cmd) {
case BIO_WRITE:
case BIO_READ:
{
uint64_t lba = bp->bio_pblkno;
uint16_t count = bp->bio_bcount / softc->params.secsize;
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
void *data_ptr;
int rw_op;
if (bp->bio_cmd == BIO_WRITE) {
softc->flags |= ADA_FLAG_DIRTY;
rw_op = CAM_DIR_OUT;
} else {
rw_op = CAM_DIR_IN;
}
data_ptr = bp->bio_data;
if ((bp->bio_flags & (BIO_UNMAPPED|BIO_VLIST)) != 0) {
rw_op |= CAM_DATA_BIO;
data_ptr = bp;
}
#ifdef CAM_TEST_FAILURE
int fail = 0;
/*
* Support the failure ioctls. If the command is a
* read, and there are pending forced read errors, or
* if a write and pending write errors, then fail this
* operation with EIO. This is useful for testing
* purposes. Also, support having every Nth read fail.
*
* This is a rather blunt tool.
*/
if (bp->bio_cmd == BIO_READ) {
if (softc->force_read_error) {
softc->force_read_error--;
fail = 1;
}
if (softc->periodic_read_error > 0) {
if (++softc->periodic_read_count >=
softc->periodic_read_error) {
softc->periodic_read_count = 0;
fail = 1;
}
}
} else {
if (softc->force_write_error) {
softc->force_write_error--;
fail = 1;
}
}
if (fail) {
biofinish(bp, NULL, EIO);
xpt_release_ccb(start_ccb);
adaschedule(periph);
return;
}
#endif
KASSERT((bp->bio_flags & BIO_UNMAPPED) == 0 ||
round_page(bp->bio_bcount + bp->bio_ma_offset) /
PAGE_SIZE == bp->bio_ma_n,
("Short bio %p", bp));
cam_fill_ataio(ataio,
ada_retry_count,
adadone,
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
rw_op,
0,
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
data_ptr,
bp->bio_bcount,
ada_default_timeout*1000);
if ((softc->flags & ADA_FLAG_CAN_NCQ) && tag_code) {
if (bp->bio_cmd == BIO_READ) {
ata_ncq_cmd(ataio, ATA_READ_FPDMA_QUEUED,
lba, count);
} else {
ata_ncq_cmd(ataio, ATA_WRITE_FPDMA_QUEUED,
lba, count);
}
} else if ((softc->flags & ADA_FLAG_CAN_48BIT) &&
(lba + count >= ATA_MAX_28BIT_LBA ||
count > 256)) {
if (softc->flags & ADA_FLAG_CAN_DMA48) {
if (bp->bio_cmd == BIO_READ) {
ata_48bit_cmd(ataio, ATA_READ_DMA48,
0, lba, count);
} else {
ata_48bit_cmd(ataio, ATA_WRITE_DMA48,
0, lba, count);
}
} else {
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (bp->bio_cmd == BIO_READ) {
ata_48bit_cmd(ataio, ATA_READ_MUL48,
0, lba, count);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
} else {
ata_48bit_cmd(ataio, ATA_WRITE_MUL48,
0, lba, count);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
}
} else {
if (count == 256)
count = 0;
if (softc->flags & ADA_FLAG_CAN_DMA) {
if (bp->bio_cmd == BIO_READ) {
ata_28bit_cmd(ataio, ATA_READ_DMA,
0, lba, count);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
} else {
ata_28bit_cmd(ataio, ATA_WRITE_DMA,
0, lba, count);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
} else {
if (bp->bio_cmd == BIO_READ) {
ata_28bit_cmd(ataio, ATA_READ_MUL,
0, lba, count);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
} else {
ata_28bit_cmd(ataio, ATA_WRITE_MUL,
0, lba, count);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
}
}
break;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
case BIO_DELETE:
switch (softc->delete_method) {
case ADA_DELETE_NCQ_DSM_TRIM:
ada_ncq_dsmtrim(softc, bp, ataio);
break;
case ADA_DELETE_DSM_TRIM:
ada_dsmtrim(softc, bp, ataio);
break;
case ADA_DELETE_CFA_ERASE:
ada_cfaerase(softc, bp, ataio);
break;
default:
biofinish(bp, NULL, EOPNOTSUPP);
xpt_release_ccb(start_ccb);
adaschedule(periph);
return;
}
start_ccb->ccb_h.ccb_state = ADA_CCB_TRIM;
start_ccb->ccb_h.flags |= CAM_UNLOCKED;
cam_iosched_submit_trim(softc->cam_iosched);
goto out;
case BIO_FLUSH:
cam_fill_ataio(ataio,
1,
adadone,
CAM_DIR_NONE,
0,
NULL,
0,
ada_default_timeout*1000);
if (softc->flags & ADA_FLAG_CAN_48BIT)
ata_48bit_cmd(ataio, ATA_FLUSHCACHE48, 0, 0, 0);
else
ata_28bit_cmd(ataio, ATA_FLUSHCACHE, 0, 0, 0);
break;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
case BIO_ZONE: {
int error, queue_ccb;
queue_ccb = 0;
error = ada_zone_cmd(periph, start_ccb, bp, &queue_ccb);
if ((error != 0)
|| (queue_ccb == 0)) {
biofinish(bp, NULL, error);
xpt_release_ccb(start_ccb);
return;
}
break;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
start_ccb->ccb_h.ccb_state = ADA_CCB_BUFFER_IO;
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
start_ccb->ccb_h.flags |= CAM_UNLOCKED;
out:
start_ccb->ccb_h.ccb_bp = bp;
softc->outstanding_cmds++;
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
softc->refcount++;
cam_periph_unlock(periph);
xpt_action(start_ccb);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
cam_periph_lock(periph);
/* May have more work to do, so ensure we stay scheduled */
adaschedule(periph);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
break;
}
case ADA_STATE_RAHEAD:
case ADA_STATE_WCACHE:
{
cam_fill_ataio(ataio,
1,
adadone,
CAM_DIR_NONE,
0,
NULL,
0,
ada_default_timeout*1000);
if (softc->state == ADA_STATE_RAHEAD) {
ata_28bit_cmd(ataio, ATA_SETFEATURES, ADA_RA ?
ATA_SF_ENAB_RCACHE : ATA_SF_DIS_RCACHE, 0, 0);
start_ccb->ccb_h.ccb_state = ADA_CCB_RAHEAD;
} else {
ata_28bit_cmd(ataio, ATA_SETFEATURES, ADA_WC ?
ATA_SF_ENAB_WCACHE : ATA_SF_DIS_WCACHE, 0, 0);
start_ccb->ccb_h.ccb_state = ADA_CCB_WCACHE;
}
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
xpt_action(start_ccb);
break;
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
case ADA_STATE_LOGDIR:
{
struct ata_gp_log_dir *log_dir;
if ((softc->flags & ADA_FLAG_CAN_LOG) == 0) {
adaprobedone(periph, start_ccb);
break;
}
log_dir = malloc(sizeof(*log_dir), M_ATADA, M_NOWAIT|M_ZERO);
if (log_dir == NULL) {
xpt_print(periph->path, "Couldn't malloc log_dir "
"data\n");
softc->state = ADA_STATE_NORMAL;
xpt_release_ccb(start_ccb);
break;
}
ata_read_log(ataio,
/*retries*/1,
/*cbfcnp*/adadone,
/*log_address*/ ATA_LOG_DIRECTORY,
/*page_number*/ 0,
/*block_count*/ 1,
/*protocol*/ softc->flags & ADA_FLAG_CAN_DMA ?
CAM_ATAIO_DMA : 0,
/*data_ptr*/ (uint8_t *)log_dir,
/*dxfer_len*/sizeof(*log_dir),
/*timeout*/ada_default_timeout*1000);
start_ccb->ccb_h.ccb_state = ADA_CCB_LOGDIR;
xpt_action(start_ccb);
break;
}
case ADA_STATE_IDDIR:
{
struct ata_identify_log_pages *id_dir;
id_dir = malloc(sizeof(*id_dir), M_ATADA, M_NOWAIT | M_ZERO);
if (id_dir == NULL) {
xpt_print(periph->path, "Couldn't malloc id_dir "
"data\n");
adaprobedone(periph, start_ccb);
break;
}
ata_read_log(ataio,
/*retries*/1,
/*cbfcnp*/adadone,
/*log_address*/ ATA_IDENTIFY_DATA_LOG,
/*page_number*/ ATA_IDL_PAGE_LIST,
/*block_count*/ 1,
/*protocol*/ softc->flags & ADA_FLAG_CAN_DMA ?
CAM_ATAIO_DMA : 0,
/*data_ptr*/ (uint8_t *)id_dir,
/*dxfer_len*/ sizeof(*id_dir),
/*timeout*/ada_default_timeout*1000);
start_ccb->ccb_h.ccb_state = ADA_CCB_IDDIR;
xpt_action(start_ccb);
break;
}
case ADA_STATE_SUP_CAP:
{
struct ata_identify_log_sup_cap *sup_cap;
sup_cap = malloc(sizeof(*sup_cap), M_ATADA, M_NOWAIT|M_ZERO);
if (sup_cap == NULL) {
xpt_print(periph->path, "Couldn't malloc sup_cap "
"data\n");
adaprobedone(periph, start_ccb);
break;
}
ata_read_log(ataio,
/*retries*/1,
/*cbfcnp*/adadone,
/*log_address*/ ATA_IDENTIFY_DATA_LOG,
/*page_number*/ ATA_IDL_SUP_CAP,
/*block_count*/ 1,
/*protocol*/ softc->flags & ADA_FLAG_CAN_DMA ?
CAM_ATAIO_DMA : 0,
/*data_ptr*/ (uint8_t *)sup_cap,
/*dxfer_len*/ sizeof(*sup_cap),
/*timeout*/ada_default_timeout*1000);
start_ccb->ccb_h.ccb_state = ADA_CCB_SUP_CAP;
xpt_action(start_ccb);
break;
}
case ADA_STATE_ZONE:
{
struct ata_zoned_info_log *ata_zone;
ata_zone = malloc(sizeof(*ata_zone), M_ATADA, M_NOWAIT|M_ZERO);
if (ata_zone == NULL) {
xpt_print(periph->path, "Couldn't malloc ata_zone "
"data\n");
adaprobedone(periph, start_ccb);
break;
}
ata_read_log(ataio,
/*retries*/1,
/*cbfcnp*/adadone,
/*log_address*/ ATA_IDENTIFY_DATA_LOG,
/*page_number*/ ATA_IDL_ZDI,
/*block_count*/ 1,
/*protocol*/ softc->flags & ADA_FLAG_CAN_DMA ?
CAM_ATAIO_DMA : 0,
/*data_ptr*/ (uint8_t *)ata_zone,
/*dxfer_len*/ sizeof(*ata_zone),
/*timeout*/ada_default_timeout*1000);
start_ccb->ccb_h.ccb_state = ADA_CCB_ZONE;
xpt_action(start_ccb);
break;
}
}
}
static void
adaprobedone(struct cam_periph *periph, union ccb *ccb)
{
struct ada_softc *softc;
softc = (struct ada_softc *)periph->softc;
if (ccb != NULL)
xpt_release_ccb(ccb);
softc->state = ADA_STATE_NORMAL;
softc->flags |= ADA_FLAG_PROBED;
adaschedule(periph);
if ((softc->flags & ADA_FLAG_ANNOUNCED) == 0) {
softc->flags |= ADA_FLAG_ANNOUNCED;
cam_periph_unhold(periph);
} else {
cam_periph_release_locked(periph);
}
}
static void
adazonedone(struct cam_periph *periph, union ccb *ccb)
{
struct bio *bp;
bp = (struct bio *)ccb->ccb_h.ccb_bp;
switch (bp->bio_zone.zone_cmd) {
case DISK_ZONE_OPEN:
case DISK_ZONE_CLOSE:
case DISK_ZONE_FINISH:
case DISK_ZONE_RWP:
break;
case DISK_ZONE_REPORT_ZONES: {
uint32_t avail_len;
struct disk_zone_report *rep;
struct scsi_report_zones_hdr *hdr;
struct scsi_report_zones_desc *desc;
struct disk_zone_rep_entry *entry;
uint32_t hdr_len, num_avail;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
uint32_t num_to_fill, i;
rep = &bp->bio_zone.zone_params.report;
avail_len = ccb->ataio.dxfer_len - ccb->ataio.resid;
/*
* Note that bio_resid isn't normally used for zone
* commands, but it is used by devstat_end_transaction_bio()
* to determine how much data was transferred. Because
* the size of the SCSI/ATA data structures is different
* than the size of the BIO interface structures, the
* amount of data actually transferred from the drive will
* be different than the amount of data transferred to
* the user.
*/
hdr = (struct scsi_report_zones_hdr *)ccb->ataio.data_ptr;
if (avail_len < sizeof(*hdr)) {
/*
* Is there a better error than EIO here? We asked
* for at least the header, and we got less than
* that.
*/
bp->bio_error = EIO;
bp->bio_flags |= BIO_ERROR;
bp->bio_resid = bp->bio_bcount;
break;
}
hdr_len = le32dec(hdr->length);
if (hdr_len > 0)
rep->entries_available = hdr_len / sizeof(*desc);
else
rep->entries_available = 0;
/*
* NOTE: using the same values for the BIO version of the
* same field as the SCSI/ATA values. This means we could
* get some additional values that aren't defined in bio.h
* if more values of the same field are defined later.
*/
rep->header.same = hdr->byte4 & SRZ_SAME_MASK;
rep->header.maximum_lba = le64dec(hdr->maximum_lba);
/*
* If the drive reports no entries that match the query,
* we're done.
*/
if (hdr_len == 0) {
rep->entries_filled = 0;
bp->bio_resid = bp->bio_bcount;
break;
}
num_avail = min((avail_len - sizeof(*hdr)) / sizeof(*desc),
hdr_len / sizeof(*desc));
/*
* If the drive didn't return any data, then we're done.
*/
if (num_avail == 0) {
rep->entries_filled = 0;
bp->bio_resid = bp->bio_bcount;
break;
}
num_to_fill = min(num_avail, rep->entries_allocated);
/*
* If the user didn't allocate any entries for us to fill,
* we're done.
*/
if (num_to_fill == 0) {
rep->entries_filled = 0;
bp->bio_resid = bp->bio_bcount;
break;
}
for (i = 0, desc = &hdr->desc_list[0], entry=&rep->entries[0];
i < num_to_fill; i++, desc++, entry++) {
/*
* NOTE: we're mapping the values here directly
* from the SCSI/ATA bit definitions to the bio.h
* definitions. There is also a warning in
* disk_zone.h, but the impact is that if
* additional values are added in the SCSI/ATA
* specs these will be visible to consumers of
* this interface.
*/
entry->zone_type = desc->zone_type & SRZ_TYPE_MASK;
entry->zone_condition =
(desc->zone_flags & SRZ_ZONE_COND_MASK) >>
SRZ_ZONE_COND_SHIFT;
entry->zone_flags |= desc->zone_flags &
(SRZ_ZONE_NON_SEQ|SRZ_ZONE_RESET);
entry->zone_length = le64dec(desc->zone_length);
entry->zone_start_lba = le64dec(desc->zone_start_lba);
entry->write_pointer_lba =
le64dec(desc->write_pointer_lba);
}
rep->entries_filled = num_to_fill;
/*
* Note that this residual is accurate from the user's
* standpoint, but the amount transferred isn't accurate
* from the standpoint of what actually came back from the
* drive.
*/
bp->bio_resid = bp->bio_bcount - (num_to_fill * sizeof(*entry));
break;
}
case DISK_ZONE_GET_PARAMS:
default:
/*
* In theory we should not get a GET_PARAMS bio, since it
* should be handled without queueing the command to the
* drive.
*/
panic("%s: Invalid zone command %d", __func__,
bp->bio_zone.zone_cmd);
break;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
if (bp->bio_zone.zone_cmd == DISK_ZONE_REPORT_ZONES)
free(ccb->ataio.data_ptr, M_ATADA);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
static void
adadone(struct cam_periph *periph, union ccb *done_ccb)
{
struct ada_softc *softc;
struct ccb_ataio *ataio;
struct cam_path *path;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
uint32_t priority;
int state;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
softc = (struct ada_softc *)periph->softc;
ataio = &done_ccb->ataio;
path = done_ccb->ccb_h.path;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
priority = done_ccb->ccb_h.pinfo.priority;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("adadone\n"));
state = ataio->ccb_h.ccb_state & ADA_CCB_TYPE_MASK;
switch (state) {
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
case ADA_CCB_BUFFER_IO:
case ADA_CCB_TRIM:
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
{
struct bio *bp;
int error;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
cam_periph_lock(periph);
bp = (struct bio *)done_ccb->ccb_h.ccb_bp;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
error = adaerror(done_ccb, 0, 0);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if (error == ERESTART) {
/* A retry was scheduled, so just return. */
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
cam_periph_unlock(periph);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
return;
}
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(path,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
/*
* If we get an error on an NCQ DSM TRIM, fall back
* to a non-NCQ DSM TRIM forever. Please note that if
* CAN_NCQ_TRIM is set, CAN_TRIM is necessarily set too.
* However, for this one trim, we treat it as advisory
* and return success up the stack.
*/
if (state == ADA_CCB_TRIM &&
error != 0 &&
(softc->flags & ADA_FLAG_CAN_NCQ_TRIM) != 0) {
softc->flags &= ~ADA_FLAG_CAN_NCQ_TRIM;
error = 0;
adasetdeletemethod(softc);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
} else {
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
panic("REQ_CMP with QFRZN");
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
error = 0;
}
bp->bio_error = error;
if (error != 0) {
bp->bio_resid = bp->bio_bcount;
bp->bio_flags |= BIO_ERROR;
} else {
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
if (bp->bio_cmd == BIO_ZONE)
adazonedone(periph, done_ccb);
else if (state == ADA_CCB_TRIM)
bp->bio_resid = 0;
else
bp->bio_resid = ataio->resid;
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
if ((bp->bio_resid > 0)
&& (bp->bio_cmd != BIO_ZONE))
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
bp->bio_flags |= BIO_ERROR;
}
softc->outstanding_cmds--;
if (softc->outstanding_cmds == 0)
softc->flags |= ADA_FLAG_WAS_OTAG;
/*
* We need to call cam_iosched before we call biodone so that we
* don't measure any activity that happens in the completion
* routine, which in the case of sendfile can be quite
* extensive. Release the periph refcount taken in adastart()
* for each CCB.
*/
cam_iosched_bio_complete(softc->cam_iosched, bp, done_ccb);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
xpt_release_ccb(done_ccb);
KASSERT(softc->refcount >= 1, ("adadone softc %p refcount %d", softc, softc->refcount));
softc->refcount--;
if (state == ADA_CCB_TRIM) {
TAILQ_HEAD(, bio) queue;
struct bio *bp1;
TAILQ_INIT(&queue);
TAILQ_CONCAT(&queue, &softc->trim_req.bps, bio_queue);
/*
* Normally, the xpt_release_ccb() above would make sure
* that when we have more work to do, that work would
* get kicked off. However, we specifically keep
* trim_running set to 0 before the call above to allow
* other I/O to progress when many BIO_DELETE requests
* are pushed down. We set trim_running to 0 and call
* daschedule again so that we don't stall if there are
* no other I/Os pending apart from BIO_DELETEs.
*/
cam_iosched_trim_done(softc->cam_iosched);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
adaschedule(periph);
cam_periph_unlock(periph);
while ((bp1 = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, bp1, bio_queue);
bp1->bio_error = error;
if (error != 0) {
bp1->bio_flags |= BIO_ERROR;
bp1->bio_resid = bp1->bio_bcount;
} else
bp1->bio_resid = 0;
biodone(bp1);
}
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
} else {
adaschedule(periph);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
cam_periph_unlock(periph);
biodone(bp);
Merge CAM locking changes from the projects/camlock branch to radically reduce lock congestion and improve SMP scalability of the SCSI/ATA stack, preparing the ground for the coming next GEOM direct dispatch support. Replace big per-SIM locks with bunch of smaller ones: - per-LUN locks to protect device and peripheral drivers state; - per-target locks to protect list of LUNs on target; - per-bus locks to protect reference counting; - per-send queue locks to protect queue of CCBs to be sent; - per-done queue locks to protect queue of completed CCBs; - remaining per-SIM locks now protect only HBA driver internals. While holding LUN lock it is allowed (while not recommended for performance reasons) to take SIM lock. The opposite acquisition order is forbidden. All the other locks are leaf locks, that can be taken anywhere, but should not be cascaded. Many functions, such as: xpt_action(), xpt_done(), xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM lock to be held. To keep compatibility and solve cases where SIM lock can't be dropped, all xpt_async() calls in addition to xpt_done() calls are queued to completion threads for async processing in clean environment without SIM lock held. Instead of single CAM SWI thread, used for commands completion processing before, use multiple (depending on number of CPUs) threads. Load balanced between them using "hash" of the device B:T:L address. HBA drivers that can drop SIM lock during completion processing and have sufficient number of completion threads to efficiently scale to multiple CPUs can use new function xpt_done_direct() to avoid extra context switch. Make ahci(4) driver to use this mechanism depending on hardware setup. Sponsored by: iXsystems, Inc. MFC after: 2 months
2013-10-21 12:00:26 +00:00
}
return;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
case ADA_CCB_RAHEAD:
{
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (adaerror(done_ccb, 0, 0) == ERESTART) {
/* Drop freeze taken due to CAM_DEV_QFREEZE */
cam_release_devq(path, 0, 0, 0, FALSE);
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
cam_release_devq(path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
}
}
/*
* Since our peripheral may be invalidated by an error
* above or an external event, we must release our CCB
* before releasing the reference on the peripheral.
* The peripheral will only go away once the last reference
* is removed, and we need it around for the CCB release
* operation.
*/
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
xpt_release_ccb(done_ccb);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->state = ADA_STATE_WCACHE;
xpt_schedule(periph, priority);
/* Drop freeze taken due to CAM_DEV_QFREEZE */
cam_release_devq(path, 0, 0, 0, FALSE);
return;
}
case ADA_CCB_WCACHE:
{
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (adaerror(done_ccb, 0, 0) == ERESTART) {
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
/* Drop freeze taken due to CAM_DEV_QFREEZE */
cam_release_devq(path, 0, 0, 0, FALSE);
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
cam_release_devq(path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
}
}
/* Drop freeze taken due to CAM_DEV_QFREEZE */
cam_release_devq(path, 0, 0, 0, FALSE);
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
Fix a few ada(4) driver issues: o Some Samsung drives do not support the ATA READ LOG EXT or READ LOG DMA EXT commands, despite indicating that they do in their IDENTIFY data. So, fix this in two ways: 1. Only start the log directory probe (ADA_STATE_LOGDIR) if the drive claims to be an SMR drive in the first place. We don't need to do the extra probing for other devices. This will also serve to prevent problems with other drives that have the same issue. 2. Add quirks for the two Samsung drives that have been reported so far (thanks to Oleg Nauman and Alex Petrov). If there is a reason to do a Read Log later on, we will know that it doesn't work on these drives. o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as drive managed. They don't report this in their Identify data. sys/cam/ata/ata_da.c: Add two new quirks: 1. ADA_Q_LOG_BROKEN, for drives that claim to support Read Log but don't really. 2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but don't report it. This can matter for software that wants to know when it should make an extra effort to write sequentially. Record two Samsung drives that don't support Read Log, and one Seagate drive that doesn't report that it is a SMR drive. The Seagate drive is already recorded in the da(4) driver. We may have to come up with a similar solution in the da(4) driver for SATA drives that don't properly support Read Log. In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the device has the LOG_BROKEN quirk set. Also, look at the SMR_DM quirk and set the device type accordingly if it is actually a drive managed drive. When deciding whether to go into the LOGDIR probe state, look to see whether the device claims to be an SMR device. If not, don't bother with the LOGDIR probe state. Sponsored by: Spectra Logic
2016-05-25 01:37:39 +00:00
if ((softc->flags & ADA_FLAG_CAN_LOG)
&& (softc->zone_mode != ADA_ZONE_NONE)) {
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
xpt_release_ccb(done_ccb);
softc->state = ADA_STATE_LOGDIR;
xpt_schedule(periph, priority);
} else {
adaprobedone(periph, done_ccb);
}
return;
}
case ADA_CCB_LOGDIR:
{
int error;
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
error = 0;
softc->valid_logdir_len = 0;
bzero(&softc->ata_logdir, sizeof(softc->ata_logdir));
softc->valid_logdir_len =
ataio->dxfer_len - ataio->resid;
if (softc->valid_logdir_len > 0)
bcopy(ataio->data_ptr, &softc->ata_logdir,
min(softc->valid_logdir_len,
sizeof(softc->ata_logdir)));
/*
* Figure out whether the Identify Device log is
* supported. The General Purpose log directory
* has a header, and lists the number of pages
* available for each GP log identified by the
* offset into the list.
*/
if ((softc->valid_logdir_len >=
((ATA_IDENTIFY_DATA_LOG + 1) * sizeof(uint16_t)))
&& (le16dec(softc->ata_logdir.header) ==
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
ATA_GP_LOG_DIR_VERSION)
&& (le16dec(&softc->ata_logdir.num_pages[
(ATA_IDENTIFY_DATA_LOG *
sizeof(uint16_t)) - sizeof(uint16_t)]) > 0)){
softc->flags |= ADA_FLAG_CAN_IDLOG;
} else {
softc->flags &= ~ADA_FLAG_CAN_IDLOG;
}
} else {
error = adaerror(done_ccb, CAM_RETRY_SELTO,
SF_RETRY_UA|SF_NO_PRINT);
if (error == ERESTART)
return;
else if (error != 0) {
/*
* If we can't get the ATA log directory,
* then ATA logs are effectively not
* supported even if the bit is set in the
* identify data.
*/
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->flags &= ~(ADA_FLAG_CAN_LOG |
ADA_FLAG_CAN_IDLOG);
if ((done_ccb->ccb_h.status &
CAM_DEV_QFRZN) != 0) {
/* Don't wedge this device's queue */
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
}
}
}
free(ataio->data_ptr, M_ATADA);
if ((error == 0)
&& (softc->flags & ADA_FLAG_CAN_IDLOG)) {
softc->state = ADA_STATE_IDDIR;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
} else
adaprobedone(periph, done_ccb);
return;
}
case ADA_CCB_IDDIR: {
int error;
if ((ataio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
off_t entries_offset, max_entries;
error = 0;
softc->valid_iddir_len = 0;
bzero(&softc->ata_iddir, sizeof(softc->ata_iddir));
softc->flags &= ~(ADA_FLAG_CAN_SUPCAP |
ADA_FLAG_CAN_ZONE);
softc->valid_iddir_len =
ataio->dxfer_len - ataio->resid;
if (softc->valid_iddir_len > 0)
bcopy(ataio->data_ptr, &softc->ata_iddir,
min(softc->valid_iddir_len,
sizeof(softc->ata_iddir)));
entries_offset =
__offsetof(struct ata_identify_log_pages,entries);
max_entries = softc->valid_iddir_len - entries_offset;
if ((softc->valid_iddir_len > (entries_offset + 1))
&& (le64dec(softc->ata_iddir.header) ==
ATA_IDLOG_REVISION)
&& (softc->ata_iddir.entry_count > 0)) {
int num_entries, i;
num_entries = softc->ata_iddir.entry_count;
num_entries = min(num_entries,
softc->valid_iddir_len - entries_offset);
for (i = 0; i < num_entries &&
i < max_entries; i++) {
if (softc->ata_iddir.entries[i] ==
ATA_IDL_SUP_CAP)
softc->flags |=
ADA_FLAG_CAN_SUPCAP;
else if (softc->ata_iddir.entries[i]==
ATA_IDL_ZDI)
softc->flags |=
ADA_FLAG_CAN_ZONE;
if ((softc->flags &
ADA_FLAG_CAN_SUPCAP)
&& (softc->flags &
ADA_FLAG_CAN_ZONE))
break;
}
}
} else {
error = adaerror(done_ccb, CAM_RETRY_SELTO,
SF_RETRY_UA|SF_NO_PRINT);
if (error == ERESTART)
return;
else if (error != 0) {
/*
* If we can't get the ATA Identify Data log
* directory, then it effectively isn't
* supported even if the ATA Log directory
* a non-zero number of pages present for
* this log.
*/
softc->flags &= ~ADA_FLAG_CAN_IDLOG;
if ((done_ccb->ccb_h.status &
CAM_DEV_QFRZN) != 0) {
/* Don't wedge this device's queue */
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
}
}
}
free(ataio->data_ptr, M_ATADA);
if ((error == 0)
&& (softc->flags & ADA_FLAG_CAN_SUPCAP)) {
softc->state = ADA_STATE_SUP_CAP;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
} else
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
adaprobedone(periph, done_ccb);
return;
}
case ADA_CCB_SUP_CAP: {
int error;
if ((ataio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
uint32_t valid_len;
size_t needed_size;
struct ata_identify_log_sup_cap *sup_cap;
error = 0;
sup_cap = (struct ata_identify_log_sup_cap *)
ataio->data_ptr;
valid_len = ataio->dxfer_len - ataio->resid;
needed_size =
__offsetof(struct ata_identify_log_sup_cap,
sup_zac_cap) + 1 + sizeof(sup_cap->sup_zac_cap);
if (valid_len >= needed_size) {
uint64_t zoned, zac_cap;
zoned = le64dec(sup_cap->zoned_cap);
if (zoned & ATA_ZONED_VALID) {
/*
* This should have already been
* set, because this is also in the
* ATA identify data.
*/
if ((zoned & ATA_ZONED_MASK) ==
ATA_SUPPORT_ZONE_HOST_AWARE)
softc->zone_mode =
ADA_ZONE_HOST_AWARE;
else if ((zoned & ATA_ZONED_MASK) ==
ATA_SUPPORT_ZONE_DEV_MANAGED)
softc->zone_mode =
ADA_ZONE_DRIVE_MANAGED;
}
zac_cap = le64dec(sup_cap->sup_zac_cap);
if (zac_cap & ATA_SUP_ZAC_CAP_VALID) {
if (zac_cap & ATA_REPORT_ZONES_SUP)
softc->zone_flags |=
ADA_ZONE_FLAG_RZ_SUP;
if (zac_cap & ATA_ND_OPEN_ZONE_SUP)
softc->zone_flags |=
ADA_ZONE_FLAG_OPEN_SUP;
if (zac_cap & ATA_ND_CLOSE_ZONE_SUP)
softc->zone_flags |=
ADA_ZONE_FLAG_CLOSE_SUP;
if (zac_cap & ATA_ND_FINISH_ZONE_SUP)
softc->zone_flags |=
ADA_ZONE_FLAG_FINISH_SUP;
if (zac_cap & ATA_ND_RWP_SUP)
softc->zone_flags |=
ADA_ZONE_FLAG_RWP_SUP;
} else {
/*
* This field was introduced in
* ACS-4, r08 on April 28th, 2015.
* If the drive firmware was written
* to an earlier spec, it won't have
* the field. So, assume all
* commands are supported.
*/
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
softc->zone_flags |=
ADA_ZONE_FLAG_SUP_MASK;
}
}
} else {
error = adaerror(done_ccb, CAM_RETRY_SELTO,
SF_RETRY_UA|SF_NO_PRINT);
if (error == ERESTART)
return;
else if (error != 0) {
/*
* If we can't get the ATA Identify Data
* Supported Capabilities page, clear the
* flag...
*/
softc->flags &= ~ADA_FLAG_CAN_SUPCAP;
/*
* And clear zone capabilities.
*/
softc->zone_flags &= ~ADA_ZONE_FLAG_SUP_MASK;
if ((done_ccb->ccb_h.status &
CAM_DEV_QFRZN) != 0) {
/* Don't wedge this device's queue */
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
}
}
}
free(ataio->data_ptr, M_ATADA);
if ((error == 0)
&& (softc->flags & ADA_FLAG_CAN_ZONE)) {
softc->state = ADA_STATE_ZONE;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
} else
Add support for managing Shingled Magnetic Recording (SMR) drives. This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
2016-05-19 14:08:36 +00:00
adaprobedone(periph, done_ccb);
return;
}
case ADA_CCB_ZONE: {
int error;
if ((ataio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
struct ata_zoned_info_log *zi_log;
uint32_t valid_len;
size_t needed_size;
zi_log = (struct ata_zoned_info_log *)ataio->data_ptr;
valid_len = ataio->dxfer_len - ataio->resid;
needed_size = __offsetof(struct ata_zoned_info_log,
version_info) + 1 + sizeof(zi_log->version_info);
if (valid_len >= needed_size) {
uint64_t tmpvar;
tmpvar = le64dec(zi_log->zoned_cap);
if (tmpvar & ATA_ZDI_CAP_VALID) {
if (tmpvar & ATA_ZDI_CAP_URSWRZ)
softc->zone_flags |=
ADA_ZONE_FLAG_URSWRZ;
else
softc->zone_flags &=
~ADA_ZONE_FLAG_URSWRZ;
}
tmpvar = le64dec(zi_log->optimal_seq_zones);
if (tmpvar & ATA_ZDI_OPT_SEQ_VALID) {
softc->zone_flags |=
ADA_ZONE_FLAG_OPT_SEQ_SET;
softc->optimal_seq_zones = (tmpvar &
ATA_ZDI_OPT_SEQ_MASK);
} else {
softc->zone_flags &=
~ADA_ZONE_FLAG_OPT_SEQ_SET;
softc->optimal_seq_zones = 0;
}
tmpvar =le64dec(zi_log->optimal_nonseq_zones);
if (tmpvar & ATA_ZDI_OPT_NS_VALID) {
softc->zone_flags |=
ADA_ZONE_FLAG_OPT_NONSEQ_SET;
softc->optimal_nonseq_zones =
(tmpvar & ATA_ZDI_OPT_NS_MASK);
} else {
softc->zone_flags &=
~ADA_ZONE_FLAG_OPT_NONSEQ_SET;
softc->optimal_nonseq_zones = 0;
}
tmpvar = le64dec(zi_log->max_seq_req_zones);
if (tmpvar & ATA_ZDI_MAX_SEQ_VALID) {
softc->zone_flags |=
ADA_ZONE_FLAG_MAX_SEQ_SET;
softc->max_seq_zones =
(tmpvar & ATA_ZDI_MAX_SEQ_MASK);
} else {
softc->zone_flags &=
~ADA_ZONE_FLAG_MAX_SEQ_SET;
softc->max_seq_zones = 0;
}
}
} else {
error = adaerror(done_ccb, CAM_RETRY_SELTO,
SF_RETRY_UA|SF_NO_PRINT);
if (error == ERESTART)
return;
else if (error != 0) {
softc->flags &= ~ADA_FLAG_CAN_ZONE;
softc->flags &= ~ADA_ZONE_FLAG_SET_MASK;
if ((done_ccb->ccb_h.status &
CAM_DEV_QFRZN) != 0) {
/* Don't wedge this device's queue */
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
}
}
}
free(ataio->data_ptr, M_ATADA);
adaprobedone(periph, done_ccb);
return;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
case ADA_CCB_DUMP:
/* No-op. We're polling */
return;
default:
break;
}
xpt_release_ccb(done_ccb);
}
static int
adaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
{
#ifdef CAM_IO_STATS
struct ada_softc *softc;
struct cam_periph *periph;
periph = xpt_path_periph(ccb->ccb_h.path);
softc = (struct ada_softc *)periph->softc;
switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
case CAM_CMD_TIMEOUT:
softc->timeouts++;
break;
case CAM_REQ_ABORTED:
case CAM_REQ_CMP_ERR:
case CAM_REQ_TERMIO:
case CAM_UNREC_HBA_ERROR:
case CAM_DATA_RUN_ERR:
case CAM_ATA_STATUS_ERROR:
softc->errors++;
break;
default:
break;
}
#endif
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
return(cam_periph_error(ccb, cam_flags, sense_flags));
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
static void
adagetparams(struct cam_periph *periph, struct ccb_getdev *cgd)
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
{
struct ada_softc *softc = (struct ada_softc *)periph->softc;
struct disk_params *dp = &softc->params;
u_int64_t lbasize48;
u_int32_t lbasize;
dp->secsize = ata_logical_sector_size(&cgd->ident_data);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
if ((cgd->ident_data.atavalid & ATA_FLAG_54_58) &&
cgd->ident_data.current_heads && cgd->ident_data.current_sectors) {
dp->heads = cgd->ident_data.current_heads;
dp->secs_per_track = cgd->ident_data.current_sectors;
dp->cylinders = cgd->ident_data.cylinders;
dp->sectors = (u_int32_t)cgd->ident_data.current_size_1 |
((u_int32_t)cgd->ident_data.current_size_2 << 16);
} else {
dp->heads = cgd->ident_data.heads;
dp->secs_per_track = cgd->ident_data.sectors;
dp->cylinders = cgd->ident_data.cylinders;
dp->sectors = cgd->ident_data.cylinders *
(u_int32_t)(dp->heads * dp->secs_per_track);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
lbasize = (u_int32_t)cgd->ident_data.lba_size_1 |
((u_int32_t)cgd->ident_data.lba_size_2 << 16);
/* use the 28bit LBA size if valid or bigger than the CHS mapping */
if (cgd->ident_data.cylinders == 16383 || dp->sectors < lbasize)
dp->sectors = lbasize;
/* use the 48bit LBA size if valid */
lbasize48 = ((u_int64_t)cgd->ident_data.lba_size48_1) |
((u_int64_t)cgd->ident_data.lba_size48_2 << 16) |
((u_int64_t)cgd->ident_data.lba_size48_3 << 32) |
((u_int64_t)cgd->ident_data.lba_size48_4 << 48);
if ((cgd->ident_data.support.command2 & ATA_SUPPORT_ADDRESS48) &&
lbasize48 > ATA_MAX_28BIT_LBA)
dp->sectors = lbasize48;
}
static void
adasendorderedtag(void *arg)
{
struct ada_softc *softc = arg;
if (ada_send_ordered) {
if (softc->outstanding_cmds > 0) {
if ((softc->flags & ADA_FLAG_WAS_OTAG) == 0)
softc->flags |= ADA_FLAG_NEED_OTAG;
softc->flags &= ~ADA_FLAG_WAS_OTAG;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
}
/* Queue us up again */
callout_reset(&softc->sendordered_c,
(ada_default_timeout * hz) / ADA_ORDEREDTAG_INTERVAL,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
adasendorderedtag, softc);
}
/*
* Step through all ADA peripheral drivers, and if the device is still open,
* sync the disk cache to physical media.
*/
static void
adaflush(void)
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
{
struct cam_periph *periph;
struct ada_softc *softc;
union ccb *ccb;
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
int error;
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
CAM_PERIPH_FOREACH(periph, &adadriver) {
softc = (struct ada_softc *)periph->softc;
if (SCHEDULER_STOPPED()) {
/* If we paniced with the lock held, do not recurse. */
if (!cam_periph_owned(periph) &&
(softc->flags & ADA_FLAG_OPEN)) {
adadump(softc->disk, NULL, 0, 0, 0);
}
continue;
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_periph_lock(periph);
/*
* We only sync the cache if the drive is still open, and
* if the drive is capable of it..
*/
if (((softc->flags & ADA_FLAG_OPEN) == 0) ||
(softc->flags & ADA_FLAG_CAN_FLUSHCACHE) == 0) {
cam_periph_unlock(periph);
continue;
}
ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
cam_fill_ataio(&ccb->ataio,
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
0,
NULL,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
CAM_DIR_NONE,
0,
NULL,
0,
ada_default_timeout*1000);
if (softc->flags & ADA_FLAG_CAN_48BIT)
ata_48bit_cmd(&ccb->ataio, ATA_FLUSHCACHE48, 0, 0, 0);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
else
ata_28bit_cmd(&ccb->ataio, ATA_FLUSHCACHE, 0, 0, 0);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
error = cam_periph_runccb(ccb, adaerror, /*cam_flags*/0,
/*sense_flags*/ SF_NO_RECOVERY | SF_NO_RETRY,
softc->disk->d_devstat);
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
if (error != 0)
xpt_print(periph->path, "Synchronize cache failed\n");
xpt_release_ccb(ccb);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
cam_periph_unlock(periph);
}
}
static void
adaspindown(uint8_t cmd, int flags)
{
struct cam_periph *periph;
struct ada_softc *softc;
struct ccb_ataio local_ccb;
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
int error;
CAM_PERIPH_FOREACH(periph, &adadriver) {
/* If we paniced with lock held - not recurse here. */
if (cam_periph_owned(periph))
continue;
cam_periph_lock(periph);
softc = (struct ada_softc *)periph->softc;
/*
* We only spin-down the drive if it is capable of it..
*/
if ((softc->flags & ADA_FLAG_CAN_POWERMGT) == 0) {
cam_periph_unlock(periph);
continue;
}
if (bootverbose)
xpt_print(periph->path, "spin-down\n");
memset(&local_ccb, 0, sizeof(local_ccb));
xpt_setup_ccb(&local_ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
local_ccb.ccb_h.ccb_state = ADA_CCB_DUMP;
cam_fill_ataio(&local_ccb,
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
0,
NULL,
CAM_DIR_NONE | flags,
0,
NULL,
0,
ada_default_timeout*1000);
ata_28bit_cmd(&local_ccb, cmd, 0, 0, 0);
error = cam_periph_runccb((union ccb *)&local_ccb, adaerror,
/*cam_flags*/0, /*sense_flags*/ SF_NO_RECOVERY | SF_NO_RETRY,
softc->disk->d_devstat);
One more major cam_periph_error() rewrite to improve error handling and reporting. It includes: - removing of error messages controlled by bootverbose, replacing them with more universal and informative debugging on CAM_DEBUG_INFO level, that is now built into the kernel by default; - more close following to the arguments submitted by caller, such as SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which errors are usual/expected at this point and which are really informative; - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller specify how much assistance it needs at this point; previously consumers controlled that by not calling cam_periph_error() at all, but that made behavior inconsistent and debugging complicated; - tuning debug messages and taken actions order to make debugging output more readable and cause-effect relationships visible; - making camperiphdone() (common device recovery completion handler) to also use cam_periph_error() in most cases, instead of own dumb code; - removing manual sense fetching code from cam_periph_error(); I was told by number of people that it is SIM obligation to fetch sense data, so this code is useless and only significantly complicates recovery logic; - making ada, da and pass driver to use cam_periph_error() with new limited recovery options to handle error recovery and debugging in common way; as one of results, CAM_REQUEUE_REQ and other retrying statuses are now working fine with pass driver, that caused many problems before. - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY() loops on device probe, while device simply loads media; I think that problem may already be fixed in other way, and even if it is not, solution must be different. Sponsored by: iXsystems, Inc. MFC after: 2 weeks
2012-06-09 13:07:44 +00:00
if (error != 0)
xpt_print(periph->path, "Spin-down disk failed\n");
cam_periph_unlock(periph);
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
}
static void
adashutdown(void *arg, int howto)
{
int how;
adaflush();
/*
* STANDBY IMMEDIATE saves any volatile data to the drive. It also spins
* down hard drives. IDLE IMMEDIATE also saves the volatile data without
* a spindown. We send the former when we expect to lose power soon. For
* a warm boot, we send the latter to avoid a thundering herd of spinups
* just after the kernel loads while probing. We have to do something to
* flush the data because the BIOS in many systems resets the HBA
* causing a COMINIT/COMRESET negotiation, which some drives interpret
* as license to toss the volatile data, and others count as unclean
* shutdown when in the Active PM state in SMART attributes.
*
* adaspindown will ensure that we don't send this to a drive that
* doesn't support it.
*/
if (ada_spindown_shutdown != 0) {
how = (howto & (RB_HALT | RB_POWEROFF | RB_POWERCYCLE)) ?
ATA_STANDBY_IMMEDIATE : ATA_IDLE_IMMEDIATE;
adaspindown(how, 0);
}
}
static void
adasuspend(void *arg)
{
adaflush();
/*
* SLEEP also fushes any volatile data, like STANDBY IMEDIATE,
* so we don't need to send it as well.
*/
if (ada_spindown_suspend != 0)
adaspindown(ATA_SLEEP, CAM_DEV_QFREEZE);
}
static void
adaresume(void *arg)
{
struct cam_periph *periph;
struct ada_softc *softc;
if (ada_spindown_suspend == 0)
return;
CAM_PERIPH_FOREACH(periph, &adadriver) {
cam_periph_lock(periph);
softc = (struct ada_softc *)periph->softc;
/*
* We only spin-down the drive if it is capable of it..
*/
if ((softc->flags & ADA_FLAG_CAN_POWERMGT) == 0) {
cam_periph_unlock(periph);
continue;
}
if (bootverbose)
xpt_print(periph->path, "resume\n");
/*
* Drop freeze taken due to CAM_DEV_QFREEZE flag set on
* sleep request.
*/
cam_release_devq(periph->path,
/*relsim_flags*/0,
/*openings*/0,
/*timeout*/0,
/*getcount_only*/0);
cam_periph_unlock(periph);
}
}
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#endif /* _KERNEL */