freebsd-nq/lib/Sema/Sema.cpp

869 lines
30 KiB
C++
Raw Normal View History

2009-06-02 17:58:47 +00:00
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the actions class which performs semantic analysis and
// builds an AST out of a parse stream.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
2009-10-14 18:03:49 +00:00
#include "llvm/ADT/DenseMap.h"
2009-11-18 14:59:57 +00:00
#include "llvm/ADT/APFloat.h"
2009-06-02 17:58:47 +00:00
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Lex/Preprocessor.h"
2009-10-14 18:03:49 +00:00
#include "clang/Basic/PartialDiagnostic.h"
2009-06-02 17:58:47 +00:00
#include "clang/Basic/TargetInfo.h"
using namespace clang;
2009-10-23 14:22:18 +00:00
/// Determines whether we should have an a.k.a. clause when
/// pretty-printing a type. There are three main criteria:
///
/// 1) Some types provide very minimal sugar that doesn't impede the
/// user's understanding --- for example, elaborated type
/// specifiers. If this is all the sugar we see, we don't want an
/// a.k.a. clause.
/// 2) Some types are technically sugared but are much more familiar
/// when seen in their sugared form --- for example, va_list,
/// vector types, and the magic Objective C types. We don't
/// want to desugar these, even if we do produce an a.k.a. clause.
/// 3) Some types may have already been desugared previously in this diagnostic.
/// if this is the case, doing another "aka" would just be clutter.
///
static bool ShouldAKA(ASTContext &Context, QualType QT,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
QualType &DesugaredQT) {
QualType InputTy = QT;
bool AKA = false;
QualifierCollector Qc;
while (true) {
const Type *Ty = Qc.strip(QT);
// Don't aka just because we saw an elaborated type...
if (isa<ElaboratedType>(Ty)) {
QT = cast<ElaboratedType>(Ty)->desugar();
continue;
}
// ...or a qualified name type...
if (isa<QualifiedNameType>(Ty)) {
QT = cast<QualifiedNameType>(Ty)->desugar();
continue;
}
// ...or a substituted template type parameter.
if (isa<SubstTemplateTypeParmType>(Ty)) {
QT = cast<SubstTemplateTypeParmType>(Ty)->desugar();
continue;
}
// Don't desugar template specializations.
if (isa<TemplateSpecializationType>(Ty))
break;
// Don't desugar magic Objective-C types.
if (QualType(Ty,0) == Context.getObjCIdType() ||
QualType(Ty,0) == Context.getObjCClassType() ||
QualType(Ty,0) == Context.getObjCSelType() ||
QualType(Ty,0) == Context.getObjCProtoType())
break;
// Don't desugar va_list.
if (QualType(Ty,0) == Context.getBuiltinVaListType())
break;
// Otherwise, do a single-step desugar.
QualType Underlying;
bool IsSugar = false;
switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
case Type::Class: { \
const Class##Type *CTy = cast<Class##Type>(Ty); \
if (CTy->isSugared()) { \
IsSugar = true; \
Underlying = CTy->desugar(); \
} \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// If it wasn't sugared, we're done.
if (!IsSugar)
break;
// If the desugared type is a vector type, we don't want to expand
// it, it will turn into an attribute mess. People want their "vec4".
if (isa<VectorType>(Underlying))
break;
// Otherwise, we're tearing through something opaque; note that
// we'll eventually need an a.k.a. clause and keep going.
AKA = true;
QT = Underlying;
continue;
}
// If we never tore through opaque sugar, don't print aka.
if (!AKA) return false;
// If we did, check to see if we already desugared this type in this
// diagnostic. If so, don't do it again.
for (unsigned i = 0; i != NumPrevArgs; ++i) {
// TODO: Handle ak_declcontext case.
if (PrevArgs[i].first == Diagnostic::ak_qualtype) {
void *Ptr = (void*)PrevArgs[i].second;
QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
if (PrevTy == InputTy)
return false;
}
}
DesugaredQT = Qc.apply(QT);
return true;
}
2009-10-14 18:03:49 +00:00
/// \brief Convert the given type to a string suitable for printing as part of
/// a diagnostic.
///
/// \param Context the context in which the type was allocated
/// \param Ty the type to print
2009-10-23 14:22:18 +00:00
static std::string
ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs) {
2009-10-14 18:03:49 +00:00
// FIXME: Playing with std::string is really slow.
std::string S = Ty.getAsString(Context.PrintingPolicy);
2009-10-23 14:22:18 +00:00
// Consider producing an a.k.a. clause if removing all the direct
// sugar gives us something "significantly different".
QualType DesugaredTy;
if (ShouldAKA(Context, Ty, PrevArgs, NumPrevArgs, DesugaredTy)) {
2009-10-14 18:03:49 +00:00
S = "'"+S+"' (aka '";
S += DesugaredTy.getAsString(Context.PrintingPolicy);
S += "')";
return S;
}
S = "'" + S + "'";
return S;
}
/// ConvertQualTypeToStringFn - This function is used to pretty print the
2009-06-02 17:58:47 +00:00
/// specified QualType as a string in diagnostics.
static void ConvertArgToStringFn(Diagnostic::ArgumentKind Kind, intptr_t Val,
const char *Modifier, unsigned ModLen,
const char *Argument, unsigned ArgLen,
2009-10-23 14:22:18 +00:00
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
2009-06-02 17:58:47 +00:00
llvm::SmallVectorImpl<char> &Output,
void *Cookie) {
ASTContext &Context = *static_cast<ASTContext*>(Cookie);
2009-10-14 18:03:49 +00:00
2009-06-02 17:58:47 +00:00
std::string S;
2009-10-14 18:03:49 +00:00
bool NeedQuotes = true;
2009-10-23 14:22:18 +00:00
switch (Kind) {
default: assert(0 && "unknown ArgumentKind");
case Diagnostic::ak_qualtype: {
2009-06-02 17:58:47 +00:00
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for QualType argument");
QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
2009-10-23 14:22:18 +00:00
S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs);
2009-10-14 18:03:49 +00:00
NeedQuotes = false;
2009-10-23 14:22:18 +00:00
break;
}
case Diagnostic::ak_declarationname: {
2009-06-02 17:58:47 +00:00
DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
S = N.getAsString();
2009-10-14 18:03:49 +00:00
2009-06-02 17:58:47 +00:00
if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
S = '+' + S;
else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12) && ArgLen==0)
S = '-' + S;
else
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for DeclarationName argument");
2009-10-23 14:22:18 +00:00
break;
}
case Diagnostic::ak_nameddecl: {
2009-10-14 18:03:49 +00:00
bool Qualified;
2009-06-02 17:58:47 +00:00
if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
2009-10-14 18:03:49 +00:00
Qualified = true;
else {
2009-06-02 17:58:47 +00:00
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for NamedDecl* argument");
2009-10-14 18:03:49 +00:00
Qualified = false;
}
2009-10-23 14:22:18 +00:00
reinterpret_cast<NamedDecl*>(Val)->
getNameForDiagnostic(S, Context.PrintingPolicy, Qualified);
break;
}
case Diagnostic::ak_nestednamespec: {
2009-10-14 18:03:49 +00:00
llvm::raw_string_ostream OS(S);
2009-10-23 14:22:18 +00:00
reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS,
Context.PrintingPolicy);
2009-10-14 18:03:49 +00:00
NeedQuotes = false;
2009-10-23 14:22:18 +00:00
break;
}
case Diagnostic::ak_declcontext: {
2009-10-14 18:03:49 +00:00
DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
2009-10-23 14:22:18 +00:00
assert(DC && "Should never have a null declaration context");
if (DC->isTranslationUnit()) {
2009-10-14 18:03:49 +00:00
// FIXME: Get these strings from some localized place
if (Context.getLangOptions().CPlusPlus)
S = "the global namespace";
else
S = "the global scope";
} else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
2009-10-23 14:22:18 +00:00
S = ConvertTypeToDiagnosticString(Context, Context.getTypeDeclType(Type),
PrevArgs, NumPrevArgs);
2009-10-14 18:03:49 +00:00
} else {
// FIXME: Get these strings from some localized place
NamedDecl *ND = cast<NamedDecl>(DC);
if (isa<NamespaceDecl>(ND))
S += "namespace ";
else if (isa<ObjCMethodDecl>(ND))
S += "method ";
else if (isa<FunctionDecl>(ND))
S += "function ";
S += "'";
ND->getNameForDiagnostic(S, Context.PrintingPolicy, true);
S += "'";
2009-06-02 17:58:47 +00:00
}
2009-10-23 14:22:18 +00:00
NeedQuotes = false;
break;
}
2009-06-02 17:58:47 +00:00
}
2009-10-14 18:03:49 +00:00
if (NeedQuotes)
Output.push_back('\'');
2009-06-02 17:58:47 +00:00
Output.append(S.begin(), S.end());
2009-10-14 18:03:49 +00:00
if (NeedQuotes)
Output.push_back('\'');
2009-06-02 17:58:47 +00:00
}
static inline RecordDecl *CreateStructDecl(ASTContext &C, const char *Name) {
if (C.getLangOptions().CPlusPlus)
2009-10-14 18:03:49 +00:00
return CXXRecordDecl::Create(C, TagDecl::TK_struct,
2009-06-02 17:58:47 +00:00
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
2009-10-14 18:03:49 +00:00
return RecordDecl::Create(C, TagDecl::TK_struct,
2009-06-02 17:58:47 +00:00
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
}
void Sema::ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) {
TUScope = S;
PushDeclContext(S, Context.getTranslationUnitDecl());
2009-10-14 18:03:49 +00:00
2009-06-02 17:58:47 +00:00
if (PP.getTargetInfo().getPointerWidth(0) >= 64) {
2009-12-15 18:49:47 +00:00
TypeSourceInfo *TInfo;
2009-11-04 15:04:32 +00:00
2009-06-02 17:58:47 +00:00
// Install [u]int128_t for 64-bit targets.
2009-12-15 18:49:47 +00:00
TInfo = Context.getTrivialTypeSourceInfo(Context.Int128Ty);
2009-06-02 17:58:47 +00:00
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("__int128_t"),
2009-12-15 18:49:47 +00:00
TInfo), TUScope);
2009-11-04 15:04:32 +00:00
2009-12-15 18:49:47 +00:00
TInfo = Context.getTrivialTypeSourceInfo(Context.UnsignedInt128Ty);
2009-06-02 17:58:47 +00:00
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("__uint128_t"),
2009-12-15 18:49:47 +00:00
TInfo), TUScope);
2009-06-02 17:58:47 +00:00
}
2009-10-14 18:03:49 +00:00
2009-06-02 17:58:47 +00:00
if (!PP.getLangOptions().ObjC1) return;
2009-10-14 18:03:49 +00:00
2009-06-22 08:08:35 +00:00
// Built-in ObjC types may already be set by PCHReader (hence isNull checks).
2009-06-02 17:58:47 +00:00
if (Context.getObjCSelType().isNull()) {
2009-12-01 11:08:04 +00:00
// Create the built-in typedef for 'SEL'.
QualType SelT = Context.getPointerType(Context.ObjCBuiltinSelTy);
2009-12-15 18:49:47 +00:00
TypeSourceInfo *SelInfo = Context.getTrivialTypeSourceInfo(SelT);
2009-11-04 15:04:32 +00:00
TypedefDecl *SelTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("SEL"), SelInfo);
2009-06-02 17:58:47 +00:00
PushOnScopeChains(SelTypedef, TUScope);
Context.setObjCSelType(Context.getTypeDeclType(SelTypedef));
2009-12-01 11:08:04 +00:00
Context.ObjCSelRedefinitionType = Context.getObjCSelType();
2009-06-02 17:58:47 +00:00
}
// Synthesize "@class Protocol;
if (Context.getObjCProtoType().isNull()) {
ObjCInterfaceDecl *ProtocolDecl =
ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(),
2009-10-14 18:03:49 +00:00
&Context.Idents.get("Protocol"),
2009-06-02 17:58:47 +00:00
SourceLocation(), true);
Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl));
2009-11-19 09:00:00 +00:00
PushOnScopeChains(ProtocolDecl, TUScope, false);
2009-06-02 17:58:47 +00:00
}
2009-10-14 18:03:49 +00:00
// Create the built-in typedef for 'id'.
2009-06-02 17:58:47 +00:00
if (Context.getObjCIdType().isNull()) {
2009-11-04 15:04:32 +00:00
QualType IdT = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy);
2009-12-15 18:49:47 +00:00
TypeSourceInfo *IdInfo = Context.getTrivialTypeSourceInfo(IdT);
2009-11-04 15:04:32 +00:00
TypedefDecl *IdTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("id"), IdInfo);
2009-06-02 17:58:47 +00:00
PushOnScopeChains(IdTypedef, TUScope);
Context.setObjCIdType(Context.getTypeDeclType(IdTypedef));
2009-10-14 18:03:49 +00:00
Context.ObjCIdRedefinitionType = Context.getObjCIdType();
}
// Create the built-in typedef for 'Class'.
if (Context.getObjCClassType().isNull()) {
2009-11-04 15:04:32 +00:00
QualType ClassType
= Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy);
2009-12-15 18:49:47 +00:00
TypeSourceInfo *ClassInfo = Context.getTrivialTypeSourceInfo(ClassType);
2009-11-04 15:04:32 +00:00
TypedefDecl *ClassTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("Class"), ClassInfo);
2009-10-14 18:03:49 +00:00
PushOnScopeChains(ClassTypedef, TUScope);
Context.setObjCClassType(Context.getTypeDeclType(ClassTypedef));
Context.ObjCClassRedefinitionType = Context.getObjCClassType();
2009-06-02 17:58:47 +00:00
}
}
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
2009-11-18 14:59:57 +00:00
bool CompleteTranslationUnit,
CodeCompleteConsumer *CodeCompleter)
2009-06-02 17:58:47 +00:00
: LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer),
2009-10-14 18:03:49 +00:00
Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()),
2009-11-18 14:59:57 +00:00
ExternalSource(0), CodeCompleter(CodeCompleter), CurContext(0),
2010-01-01 10:34:51 +00:00
CurBlock(0), PackContext(0), ParsingDeclDepth(0),
2009-10-14 18:03:49 +00:00
IdResolver(pp.getLangOptions()), StdNamespace(0), StdBadAlloc(0),
2009-12-01 11:08:04 +00:00
GlobalNewDeleteDeclared(false),
2009-06-02 17:58:47 +00:00
CompleteTranslationUnit(CompleteTranslationUnit),
2009-11-18 14:59:57 +00:00
NumSFINAEErrors(0), NonInstantiationEntries(0),
CurrentInstantiationScope(0)
{
2009-06-02 17:58:47 +00:00
TUScope = 0;
if (getLangOptions().CPlusPlus)
FieldCollector.reset(new CXXFieldCollector());
2009-10-14 18:03:49 +00:00
2009-06-02 17:58:47 +00:00
// Tell diagnostics how to render things from the AST library.
PP.getDiagnostics().SetArgToStringFn(ConvertArgToStringFn, &Context);
2009-12-01 11:08:04 +00:00
ExprEvalContexts.push_back(
ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0));
2009-06-02 17:58:47 +00:00
}
2009-11-18 14:59:57 +00:00
/// Retrieves the width and signedness of the given integer type,
/// or returns false if it is not an integer type.
///
/// \param T must be canonical
static bool getIntProperties(ASTContext &C, const Type *T,
unsigned &BitWidth, bool &Signed) {
assert(T->isCanonicalUnqualified());
if (const VectorType *VT = dyn_cast<VectorType>(T))
T = VT->getElementType().getTypePtr();
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
T = CT->getElementType().getTypePtr();
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
if (!BT->isInteger()) return false;
BitWidth = C.getIntWidth(QualType(T, 0));
Signed = BT->isSignedInteger();
return true;
}
return false;
}
/// Checks whether the given value will have the same value if it it
/// is truncated to the given width, then extended back to the
/// original width.
static bool IsSameIntAfterCast(const llvm::APSInt &value,
unsigned TargetWidth) {
unsigned SourceWidth = value.getBitWidth();
llvm::APSInt truncated = value;
truncated.trunc(TargetWidth);
truncated.extend(SourceWidth);
return (truncated == value);
}
/// Checks whether the given value will have the same value if it
/// is truncated to the given width, then extended back to the original
/// width.
///
/// The value might be a vector or a complex.
static bool IsSameIntAfterCast(const APValue &value, unsigned TargetWidth) {
if (value.isInt())
return IsSameIntAfterCast(value.getInt(), TargetWidth);
if (value.isVector()) {
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
if (!IsSameIntAfterCast(value.getVectorElt(i), TargetWidth))
return false;
return true;
}
if (value.isComplexInt()) {
return IsSameIntAfterCast(value.getComplexIntReal(), TargetWidth) &&
IsSameIntAfterCast(value.getComplexIntImag(), TargetWidth);
}
// This can happen with lossless casts to intptr_t of "based" lvalues.
// Assume it might use arbitrary bits.
assert(value.isLValue());
return false;
}
/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
const llvm::fltSemantics &Src,
const llvm::fltSemantics &Tgt) {
llvm::APFloat truncated = value;
bool ignored;
truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
return truncated.bitwiseIsEqual(value);
}
/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
///
/// The value might be a vector of floats (or a complex number).
static bool IsSameFloatAfterCast(const APValue &value,
const llvm::fltSemantics &Src,
const llvm::fltSemantics &Tgt) {
if (value.isFloat())
return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
if (value.isVector()) {
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
return false;
return true;
}
assert(value.isComplexFloat());
return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
}
/// Determines if it's reasonable for the given expression to be truncated
/// down to the given integer width.
/// * Boolean expressions are automatically white-listed.
/// * Arithmetic operations on implicitly-promoted operands of the
/// target width or less are okay --- not because the results are
/// actually guaranteed to fit within the width, but because the
/// user is effectively pretending that the operations are closed
/// within the implicitly-promoted type.
static bool IsExprValueWithinWidth(ASTContext &C, Expr *E, unsigned Width) {
E = E->IgnoreParens();
#ifndef NDEBUG
{
const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr();
unsigned EWidth;
bool ESigned;
if (!getIntProperties(C, ETy, EWidth, ESigned))
assert(0 && "expression not of integer type");
// The caller should never let this happen.
assert(EWidth > Width && "called on expr whose type is too small");
}
#endif
// Strip implicit casts off.
while (isa<ImplicitCastExpr>(E)) {
E = cast<ImplicitCastExpr>(E)->getSubExpr();
const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr();
unsigned EWidth;
bool ESigned;
if (!getIntProperties(C, ETy, EWidth, ESigned))
return false;
if (EWidth <= Width)
return true;
}
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
switch (BO->getOpcode()) {
// Boolean-valued operations are white-listed.
case BinaryOperator::LAnd:
case BinaryOperator::LOr:
case BinaryOperator::LT:
case BinaryOperator::GT:
case BinaryOperator::LE:
case BinaryOperator::GE:
case BinaryOperator::EQ:
case BinaryOperator::NE:
return true;
// Operations with opaque sources are black-listed.
case BinaryOperator::PtrMemD:
case BinaryOperator::PtrMemI:
return false;
// Left shift gets black-listed based on a judgement call.
case BinaryOperator::Shl:
return false;
// Various special cases.
case BinaryOperator::Shr:
return IsExprValueWithinWidth(C, BO->getLHS(), Width);
case BinaryOperator::Comma:
return IsExprValueWithinWidth(C, BO->getRHS(), Width);
case BinaryOperator::Sub:
if (BO->getLHS()->getType()->isPointerType())
return false;
// fallthrough
// Any other operator is okay if the operands are
// promoted from expressions of appropriate size.
default:
return IsExprValueWithinWidth(C, BO->getLHS(), Width) &&
IsExprValueWithinWidth(C, BO->getRHS(), Width);
}
}
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
switch (UO->getOpcode()) {
// Boolean-valued operations are white-listed.
case UnaryOperator::LNot:
return true;
// Operations with opaque sources are black-listed.
case UnaryOperator::Deref:
case UnaryOperator::AddrOf: // should be impossible
return false;
case UnaryOperator::OffsetOf:
return false;
default:
return IsExprValueWithinWidth(C, UO->getSubExpr(), Width);
}
}
// Don't diagnose if the expression is an integer constant
// whose value in the target type is the same as it was
// in the original type.
Expr::EvalResult result;
if (E->Evaluate(result, C))
if (IsSameIntAfterCast(result.Val, Width))
return true;
return false;
}
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
}
/// Implements -Wconversion.
static void CheckImplicitConversion(Sema &S, Expr *E, QualType T) {
// Don't diagnose in unevaluated contexts.
2009-12-01 11:08:04 +00:00
if (S.ExprEvalContexts.back().Context == Sema::Unevaluated)
2009-11-18 14:59:57 +00:00
return;
// Don't diagnose for value-dependent expressions.
if (E->isValueDependent())
return;
const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
// Never diagnose implicit casts to bool.
if (Target->isSpecificBuiltinType(BuiltinType::Bool))
return;
// Strip vector types.
if (isa<VectorType>(Source)) {
if (!isa<VectorType>(Target))
return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
Source = cast<VectorType>(Source)->getElementType().getTypePtr();
Target = cast<VectorType>(Target)->getElementType().getTypePtr();
}
// Strip complex types.
if (isa<ComplexType>(Source)) {
if (!isa<ComplexType>(Target))
return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
}
const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
// If the source is floating point...
if (SourceBT && SourceBT->isFloatingPoint()) {
// ...and the target is floating point...
if (TargetBT && TargetBT->isFloatingPoint()) {
// ...then warn if we're dropping FP rank.
// Builtin FP kinds are ordered by increasing FP rank.
if (SourceBT->getKind() > TargetBT->getKind()) {
// Don't warn about float constants that are precisely
// representable in the target type.
Expr::EvalResult result;
if (E->Evaluate(result, S.Context)) {
// Value might be a float, a float vector, or a float complex.
if (IsSameFloatAfterCast(result.Val,
S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
return;
}
DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
}
return;
}
// If the target is integral, always warn.
2010-01-01 10:34:51 +00:00
if ((TargetBT && TargetBT->isInteger()))
2009-11-18 14:59:57 +00:00
// TODO: don't warn for integer values?
return DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
return;
}
unsigned SourceWidth, TargetWidth;
bool SourceSigned, TargetSigned;
if (!getIntProperties(S.Context, Source, SourceWidth, SourceSigned) ||
!getIntProperties(S.Context, Target, TargetWidth, TargetSigned))
return;
if (SourceWidth > TargetWidth) {
if (IsExprValueWithinWidth(S.Context, E, TargetWidth))
return;
// People want to build with -Wshorten-64-to-32 and not -Wconversion
// and by god we'll let them.
if (SourceWidth == 64 && TargetWidth == 32)
return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
}
return;
}
2009-10-14 18:03:49 +00:00
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
2009-06-02 17:58:47 +00:00
/// If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
2009-10-14 18:03:49 +00:00
void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty,
CastExpr::CastKind Kind, bool isLvalue) {
2009-06-02 17:58:47 +00:00
QualType ExprTy = Context.getCanonicalType(Expr->getType());
QualType TypeTy = Context.getCanonicalType(Ty);
2009-10-14 18:03:49 +00:00
2009-06-02 17:58:47 +00:00
if (ExprTy == TypeTy)
return;
2009-10-14 18:03:49 +00:00
2009-11-18 14:59:57 +00:00
if (Expr->getType()->isPointerType() && Ty->isPointerType()) {
QualType ExprBaseType = cast<PointerType>(ExprTy)->getPointeeType();
QualType BaseType = cast<PointerType>(TypeTy)->getPointeeType();
2009-06-02 17:58:47 +00:00
if (ExprBaseType.getAddressSpace() != BaseType.getAddressSpace()) {
Diag(Expr->getExprLoc(), diag::err_implicit_pointer_address_space_cast)
<< Expr->getSourceRange();
}
}
2009-10-14 18:03:49 +00:00
2009-11-18 14:59:57 +00:00
CheckImplicitConversion(*this, Expr, Ty);
2009-06-02 17:58:47 +00:00
if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(Expr)) {
2009-10-14 18:03:49 +00:00
if (ImpCast->getCastKind() == Kind) {
ImpCast->setType(Ty);
ImpCast->setLvalueCast(isLvalue);
return;
}
}
Expr = new (Context) ImplicitCastExpr(Ty, Kind, Expr, isLvalue);
2009-06-02 17:58:47 +00:00
}
void Sema::DeleteExpr(ExprTy *E) {
if (E) static_cast<Expr*>(E)->Destroy(Context);
}
void Sema::DeleteStmt(StmtTy *S) {
if (S) static_cast<Stmt*>(S)->Destroy(Context);
}
/// ActOnEndOfTranslationUnit - This is called at the very end of the
/// translation unit when EOF is reached and all but the top-level scope is
/// popped.
void Sema::ActOnEndOfTranslationUnit() {
2009-12-15 18:49:47 +00:00
while (1) {
// C++: Perform implicit template instantiations.
//
// FIXME: When we perform these implicit instantiations, we do not carefully
// keep track of the point of instantiation (C++ [temp.point]). This means
// that name lookup that occurs within the template instantiation will
// always happen at the end of the translation unit, so it will find
// some names that should not be found. Although this is common behavior
// for C++ compilers, it is technically wrong. In the future, we either need
// to be able to filter the results of name lookup or we need to perform
// template instantiations earlier.
PerformPendingImplicitInstantiations();
/// If ProcessPendingClassesWithUnmarkedVirtualMembers ends up marking
/// any virtual member functions it might lead to more pending template
/// instantiations, which is why we need to loop here.
if (!ProcessPendingClassesWithUnmarkedVirtualMembers())
break;
}
2009-10-14 18:03:49 +00:00
// Check for #pragma weak identifiers that were never declared
// FIXME: This will cause diagnostics to be emitted in a non-determinstic
// order! Iterating over a densemap like this is bad.
for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator
I = WeakUndeclaredIdentifiers.begin(),
E = WeakUndeclaredIdentifiers.end(); I != E; ++I) {
if (I->second.getUsed()) continue;
Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared)
<< I->first;
}
2009-06-02 17:58:47 +00:00
if (!CompleteTranslationUnit)
return;
// C99 6.9.2p2:
// A declaration of an identifier for an object that has file
// scope without an initializer, and without a storage-class
// specifier or with the storage-class specifier static,
// constitutes a tentative definition. If a translation unit
// contains one or more tentative definitions for an identifier,
// and the translation unit contains no external definition for
// that identifier, then the behavior is exactly as if the
// translation unit contains a file scope declaration of that
// identifier, with the composite type as of the end of the
// translation unit, with an initializer equal to 0.
2009-10-14 18:03:49 +00:00
for (unsigned i = 0, e = TentativeDefinitionList.size(); i != e; ++i) {
VarDecl *VD = TentativeDefinitions.lookup(TentativeDefinitionList[i]);
2009-06-02 17:58:47 +00:00
2009-10-14 18:03:49 +00:00
// If the tentative definition was completed, it will be in the list, but
// not the map.
if (VD == 0 || VD->isInvalidDecl() || !VD->isTentativeDefinition(Context))
2009-06-02 17:58:47 +00:00
continue;
2009-10-14 18:03:49 +00:00
if (const IncompleteArrayType *ArrayT
2009-06-02 17:58:47 +00:00
= Context.getAsIncompleteArrayType(VD->getType())) {
2009-10-14 18:03:49 +00:00
if (RequireCompleteType(VD->getLocation(),
2009-06-02 17:58:47 +00:00
ArrayT->getElementType(),
2009-10-14 18:03:49 +00:00
diag::err_tentative_def_incomplete_type_arr)) {
2009-06-02 17:58:47 +00:00
VD->setInvalidDecl();
2009-10-14 18:03:49 +00:00
continue;
2009-06-02 17:58:47 +00:00
}
2009-10-14 18:03:49 +00:00
// Set the length of the array to 1 (C99 6.9.2p5).
Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
2009-10-23 14:22:18 +00:00
QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
One, ArrayType::Normal, 0);
2009-10-14 18:03:49 +00:00
VD->setType(T);
} else if (RequireCompleteType(VD->getLocation(), VD->getType(),
2009-06-02 17:58:47 +00:00
diag::err_tentative_def_incomplete_type))
VD->setInvalidDecl();
// Notify the consumer that we've completed a tentative definition.
if (!VD->isInvalidDecl())
Consumer.CompleteTentativeDefinition(VD);
}
}
//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//
2009-10-14 18:03:49 +00:00
DeclContext *Sema::getFunctionLevelDeclContext() {
2010-01-01 10:34:51 +00:00
DeclContext *DC = CurContext;
2009-10-14 18:03:49 +00:00
while (isa<BlockDecl>(DC))
DC = DC->getParent();
return DC;
}
2009-06-02 17:58:47 +00:00
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *Sema::getCurFunctionDecl() {
2009-10-14 18:03:49 +00:00
DeclContext *DC = getFunctionLevelDeclContext();
2009-06-02 17:58:47 +00:00
return dyn_cast<FunctionDecl>(DC);
}
ObjCMethodDecl *Sema::getCurMethodDecl() {
2009-10-14 18:03:49 +00:00
DeclContext *DC = getFunctionLevelDeclContext();
2009-06-02 17:58:47 +00:00
return dyn_cast<ObjCMethodDecl>(DC);
}
NamedDecl *Sema::getCurFunctionOrMethodDecl() {
2009-10-14 18:03:49 +00:00
DeclContext *DC = getFunctionLevelDeclContext();
2009-06-02 17:58:47 +00:00
if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
return cast<NamedDecl>(DC);
return 0;
}
Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
2009-06-14 09:24:02 +00:00
if (!this->Emit())
return;
2009-10-14 18:03:49 +00:00
2009-06-02 17:58:47 +00:00
// If this is not a note, and we're in a template instantiation
// that is different from the last template instantiation where
// we emitted an error, print a template instantiation
// backtrace.
if (!SemaRef.Diags.isBuiltinNote(DiagID) &&
!SemaRef.ActiveTemplateInstantiations.empty() &&
2009-10-14 18:03:49 +00:00
SemaRef.ActiveTemplateInstantiations.back()
2009-06-02 17:58:47 +00:00
!= SemaRef.LastTemplateInstantiationErrorContext) {
SemaRef.PrintInstantiationStack();
2009-10-14 18:03:49 +00:00
SemaRef.LastTemplateInstantiationErrorContext
2009-06-02 17:58:47 +00:00
= SemaRef.ActiveTemplateInstantiations.back();
}
}
2009-07-04 13:58:54 +00:00
2009-10-14 18:03:49 +00:00
Sema::SemaDiagnosticBuilder
Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
PD.Emit(Builder);
return Builder;
}
2009-07-04 13:58:54 +00:00
void Sema::ActOnComment(SourceRange Comment) {
Context.Comments.push_back(Comment);
}
2009-10-14 18:03:49 +00:00