freebsd-nq/sys/dev/iwi/if_iwi.c

3522 lines
91 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2004, 2005
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
* Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/iwi/if_iwireg.h>
#include <dev/iwi/if_iwivar.h>
#define IWI_DEBUG
#ifdef IWI_DEBUG
#define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0)
int iwi_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
MODULE_DEPEND(iwi, pci, 1, 1, 1);
MODULE_DEPEND(iwi, wlan, 1, 1, 1);
MODULE_DEPEND(iwi, firmware, 1, 1, 1);
enum {
IWI_LED_TX,
IWI_LED_RX,
IWI_LED_POLL,
};
struct iwi_ident {
uint16_t vendor;
uint16_t device;
const char *name;
};
static const struct iwi_ident iwi_ident_table[] = {
{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
{ 0, 0, NULL }
};
static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
int);
static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
int, bus_addr_t, bus_addr_t);
static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
int);
static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *);
static void iwi_node_free(struct ieee80211_node *);
static int iwi_media_change(struct ifnet *);
static void iwi_media_status(struct ifnet *, struct ifmediareq *);
static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void iwi_wme_init(struct iwi_softc *);
static void iwi_wme_setparams(void *, int);
static int iwi_wme_update(struct ieee80211com *);
static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t);
static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
struct iwi_frame *);
static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
static void iwi_rx_intr(struct iwi_softc *);
static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
static void iwi_intr(void *);
static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
static int iwi_tx_start(struct ifnet *, struct mbuf *,
struct ieee80211_node *, int);
static void iwi_start(struct ifnet *);
static void iwi_watchdog(struct ifnet *);
static int iwi_ioctl(struct ifnet *, u_long, caddr_t);
static void iwi_stop_master(struct iwi_softc *);
static int iwi_reset(struct iwi_softc *);
static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
static int iwi_config(struct iwi_softc *);
static int iwi_get_firmware(struct iwi_softc *);
static void iwi_put_firmware(struct iwi_softc *);
static void iwi_scanabort(void *, int);
static void iwi_scandone(void *, int);
static void iwi_scanstart(void *, int);
static void iwi_scanchan(void *, int);
static int iwi_auth_and_assoc(struct iwi_softc *);
static int iwi_disassociate(struct iwi_softc *, int quiet);
static void iwi_down(void *, int);
static void iwi_init(void *);
static void iwi_init_locked(void *, int);
static void iwi_stop(void *);
static void iwi_restart(void *, int);
static int iwi_getrfkill(struct iwi_softc *);
static void iwi_radio_on(void *, int);
static void iwi_radio_off(void *, int);
static void iwi_sysctlattach(struct iwi_softc *);
static void iwi_led_event(struct iwi_softc *, int);
static void iwi_ledattach(struct iwi_softc *);
static int iwi_probe(device_t);
static int iwi_attach(device_t);
static int iwi_detach(device_t);
static int iwi_shutdown(device_t);
static int iwi_suspend(device_t);
static int iwi_resume(device_t);
static device_method_t iwi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, iwi_probe),
DEVMETHOD(device_attach, iwi_attach),
DEVMETHOD(device_detach, iwi_detach),
DEVMETHOD(device_shutdown, iwi_shutdown),
DEVMETHOD(device_suspend, iwi_suspend),
DEVMETHOD(device_resume, iwi_resume),
{ 0, 0 }
};
static driver_t iwi_driver = {
"iwi",
iwi_methods,
sizeof (struct iwi_softc)
};
static devclass_t iwi_devclass;
DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset iwi_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset iwi_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwi_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static __inline uint8_t
MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
}
static __inline uint32_t
MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
}
static int
iwi_probe(device_t dev)
{
const struct iwi_ident *ident;
for (ident = iwi_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return 0;
}
}
return ENXIO;
}
/* Base Address Register */
#define IWI_PCI_BAR0 0x10
static int
iwi_attach(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int error, i;
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
#if __FreeBSD_version >= 700000
sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(dev));
#else
sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq, &sc->sc_tqproc);
kthread_create(taskqueue_thread_loop, &sc->sc_tq, &sc->sc_tqproc,
0, 0, "%s taskq", device_get_nameunit(dev));
#endif
TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
TASK_INIT(&sc->sc_scanstarttask, 0, iwi_scanstart, sc);
TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc);
TASK_INIT(&sc->sc_scandonetask, 0, iwi_scandone, sc);
TASK_INIT(&sc->sc_scantask, 0, iwi_scanchan, sc);
TASK_INIT(&sc->sc_setwmetask, 0, iwi_wme_setparams, sc);
TASK_INIT(&sc->sc_downtask, 0, iwi_down, sc);
TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
device_printf(dev, "chip is in D%d power mode "
"-- setting to D0\n", pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
}
pci_write_config(dev, 0x41, 0, 1);
/* enable bus-mastering */
pci_enable_busmaster(dev);
sc->mem_rid = IWI_PCI_BAR0;
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "could not allocate memory resource\n");
goto fail;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
sc->irq_rid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
goto fail;
}
if (iwi_reset(sc) != 0) {
device_printf(dev, "could not reset adapter\n");
goto fail;
}
/*
* Allocate rings.
*/
if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
device_printf(dev, "could not allocate Cmd ring\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT,
IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 1\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT,
IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 2\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT,
IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 3\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT,
IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 4\n");
goto fail;
}
if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
device_printf(dev, "could not allocate Rx ring\n");
goto fail;
}
iwi_wme_init(sc);
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwi_init;
ifp->if_ioctl = iwi_ioctl;
ifp->if_start = iwi_start;
ifp->if_watchdog = iwi_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_wme.wme_update = iwi_wme_update;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_PMGT | /* power save supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_WME; /* 802.11e */
/* read MAC address from EEPROM */
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
if (pci_get_device(dev) >= 0x4223) {
/* set supported .11a rates (2915ABG only) */
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_ifattach(ic);
ic->ic_bmissthreshold = 10; /* override default */
/* override default methods */
ic->ic_node_alloc = iwi_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = iwi_node_free;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwi_newstate;
ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtap;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtap;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
iwi_sysctlattach(sc);
iwi_ledattach(sc);
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
iwi_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt\n");
goto fail;
}
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail: iwi_detach(dev);
return ENXIO;
}
static int
iwi_detach(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
iwi_stop(sc);
iwi_put_firmware(sc);
if (ifp != NULL) {
bpfdetach(ifp);
ieee80211_ifdetach(ic);
}
iwi_free_cmd_ring(sc, &sc->cmdq);
iwi_free_tx_ring(sc, &sc->txq[0]);
iwi_free_tx_ring(sc, &sc->txq[1]);
iwi_free_tx_ring(sc, &sc->txq[2]);
iwi_free_tx_ring(sc, &sc->txq[3]);
iwi_free_rx_ring(sc, &sc->rxq);
if (sc->irq != NULL) {
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
}
if (sc->mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
if (ifp != NULL)
if_free(ifp);
taskqueue_free(sc->sc_tq);
if (sc->sc_unr != NULL)
delete_unrhdr(sc->sc_unr);
mtx_destroy(&sc->sc_mtx);
return 0;
}
static void
iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
{
int error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1,
count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
return 0;
fail: iwi_free_cmd_ring(sc, ring);
return error;
}
static void
iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
}
static int
iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
bus_addr_t csr_ridx, bus_addr_t csr_widx)
{
int i, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->csr_ridx = csr_ridx;
ring->csr_widx = csr_widx;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1,
count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG,
MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
error = bus_dmamap_create(ring->data_dmat, 0,
&ring->data[i].map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
}
return 0;
fail: iwi_free_tx_ring(sc, ring);
return error;
}
static void
iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
{
struct iwi_rx_data *data;
int i, error;
ring->count = count;
ring->cur = 0;
ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
data = &ring->data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
&data->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
data->reg = IWI_CSR_RX_BASE + i * 4;
}
return 0;
fail: iwi_free_rx_ring(sc, ring);
return error;
}
static void
iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
ring->cur = 0;
}
static void
iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
struct iwi_rx_data *data;
int i;
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
iwi_shutdown(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
iwi_stop(sc);
iwi_put_firmware(sc); /* ??? XXX */
return 0;
}
static int
iwi_suspend(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
iwi_stop(sc);
return 0;
}
static int
iwi_resume(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ic.ic_ifp;
IWI_LOCK_DECL;
IWI_LOCK(sc);
pci_write_config(dev, 0x41, 0, 1);
if (ifp->if_flags & IFF_UP) {
ifp->if_init(ifp->if_softc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ifp->if_start(ifp);
}
IWI_UNLOCK(sc);
return 0;
}
static struct ieee80211_node *
iwi_node_alloc(struct ieee80211_node_table *nt)
{
struct iwi_node *in;
in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
if (in == NULL)
return NULL;
in->in_station = -1;
return &in->in_node;
}
static void
iwi_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct iwi_softc *sc = ic->ic_ifp->if_softc;
struct iwi_node *in = (struct iwi_node *)ni;
if (in->in_station != -1) {
DPRINTF(("%s mac %6D station %u\n", __func__,
ni->ni_macaddr, ":", in->in_station));
free_unr(sc->sc_unr, in->in_station);
}
sc->sc_node_free(ni);
}
static int
iwi_media_change(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
int error;
IWI_LOCK_DECL;
IWI_LOCK(sc);
error = ieee80211_media_change(ifp);
if (error == ENETRESET &&
(ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
iwi_init_locked(sc, 0);
IWI_UNLOCK(sc);
return error;
}
/*
* Convert h/w rate code to IEEE rate code.
*/
static int
iwi_cvtrate(int iwirate)
{
switch (iwirate) {
case IWI_RATE_DS1: return 2;
case IWI_RATE_DS2: return 4;
case IWI_RATE_DS5: return 11;
case IWI_RATE_DS11: return 22;
case IWI_RATE_OFDM6: return 12;
case IWI_RATE_OFDM9: return 18;
case IWI_RATE_OFDM12: return 24;
case IWI_RATE_OFDM18: return 36;
case IWI_RATE_OFDM24: return 48;
case IWI_RATE_OFDM36: return 72;
case IWI_RATE_OFDM48: return 96;
case IWI_RATE_OFDM54: return 108;
}
return 0;
}
/*
* The firmware automatically adapts the transmit speed. We report its current
* value here.
*/
static void
iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int rate;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
if (ic->ic_opmode == IEEE80211_M_IBSS)
imr->ifm_active |= IFM_IEEE80211_ADHOC;
else if (ic->ic_opmode == IEEE80211_M_MONITOR)
imr->ifm_active |= IFM_IEEE80211_MONITOR;
}
static int
iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwi_softc *sc = ifp->if_softc;
DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[nstate], sc->flags));
/* XXX state change race with taskqueue */
switch (nstate) {
case IEEE80211_S_SCAN:
if (ic->ic_state == IEEE80211_S_RUN) {
/*
* Beacon miss, send disassoc and wait for a reply
* from the card; we'll start a scan then. Note
* this only happens with auto roaming; otherwise
* just notify users and wait to be directed.
*/
/* notify directly as we bypass net80211 */
ieee80211_sta_leave(ic, ic->ic_bss);
if (ic->ic_roaming == IEEE80211_ROAMING_AUTO)
taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
break;
}
if ((sc->flags & IWI_FLAG_SCANNING) == 0) {
sc->flags |= IWI_FLAG_SCANNING;
taskqueue_enqueue(sc->sc_tq, &sc->sc_scanstarttask);
}
break;
case IEEE80211_S_AUTH:
iwi_auth_and_assoc(sc);
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_IBSS) {
/*
* XXX when joining an ibss network we are called
* with a SCAN -> RUN transition on scan complete.
* Use that to call iwi_auth_and_assoc. On completing
* the join we are then called again with an
* AUTH -> RUN transition and we want to do nothing.
* This is all totally bogus and needs to be redone.
*/
if (ic->ic_state == IEEE80211_S_SCAN)
iwi_auth_and_assoc(sc);
} else if (ic->ic_opmode == IEEE80211_M_MONITOR)
taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
/* XXX way wrong */
return sc->sc_newstate(ic, nstate,
IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_INIT:
/*
* NB: don't try to do this if iwi_stop_master has
* shutdown the firmware and disabled interrupts.
*/
if (ic->ic_state == IEEE80211_S_RUN &&
(sc->flags & IWI_FLAG_FW_INITED))
taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
break;
}
ic->ic_state = nstate;
return 0;
}
2005-08-21 09:52:18 +00:00
/*
* WME parameters coming from IEEE 802.11e specification. These values are
* already declared in ieee80211_proto.c, but they are static so they can't
* be reused here.
*/
static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
{ 0, 3, 5, 7, 0 }, /* WME_AC_BE */
{ 0, 3, 5, 10, 0 }, /* WME_AC_BK */
{ 0, 2, 4, 5, 188 }, /* WME_AC_VI */
{ 0, 2, 3, 4, 102 } /* WME_AC_VO */
};
static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
{ 0, 3, 4, 6, 0 }, /* WME_AC_BE */
{ 0, 3, 4, 10, 0 }, /* WME_AC_BK */
{ 0, 2, 3, 4, 94 }, /* WME_AC_VI */
{ 0, 2, 2, 3, 47 } /* WME_AC_VO */
};
#define IWI_EXP2(v) htole16((1 << (v)) - 1)
#define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
static void
iwi_wme_init(struct iwi_softc *sc)
{
2005-08-21 09:52:18 +00:00
const struct wmeParams *wmep;
int ac;
memset(sc->wme, 0, sizeof sc->wme);
2005-08-21 09:52:18 +00:00
for (ac = 0; ac < WME_NUM_AC; ac++) {
/* set WME values for CCK modulation */
wmep = &iwi_wme_cck_params[ac];
sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
sc->wme[1].acm[ac] = wmep->wmep_acm;
2005-08-21 09:52:18 +00:00
/* set WME values for OFDM modulation */
wmep = &iwi_wme_ofdm_params[ac];
sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
sc->wme[2].acm[ac] = wmep->wmep_acm;
}
}
static int
iwi_wme_setparams_locked(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct wmeParams *wmep;
int ac;
for (ac = 0; ac < WME_NUM_AC; ac++) {
/* set WME values for current operating mode */
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
sc->wme[0].acm[ac] = wmep->wmep_acm;
2005-08-21 09:52:18 +00:00
}
DPRINTF(("Setting WME parameters\n"));
return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
}
static void
iwi_wme_setparams(void *arg, int npending)
{
struct iwi_softc *sc = arg;
IWI_LOCK_DECL;
IWI_LOCK(sc);
(void) iwi_wme_setparams_locked(sc);
IWI_UNLOCK(sc);
}
2005-08-21 09:52:18 +00:00
#undef IWI_USEC
#undef IWI_EXP2
static int
iwi_wme_update(struct ieee80211com *ic)
{
struct iwi_softc *sc = ic->ic_ifp->if_softc;
/*
* We may be called to update the WME parameters in
* the adapter at various places. If we're already
* associated then initiate the request immediately
* (via the taskqueue); otherwise we assume the params
* will get sent down to the adapter as part of the
* work iwi_auth_and_assoc does.
*/
if (ic->ic_state == IEEE80211_S_RUN)
taskqueue_enqueue(sc->sc_tq, &sc->sc_setwmetask);
return 0;
}
static int
iwi_wme_setie(struct iwi_softc *sc)
{
struct ieee80211_wme_info wme;
memset(&wme, 0, sizeof wme);
wme.wme_id = IEEE80211_ELEMID_VENDOR;
wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
wme.wme_oui[0] = 0x00;
wme.wme_oui[1] = 0x50;
wme.wme_oui[2] = 0xf2;
wme.wme_type = WME_OUI_TYPE;
wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
wme.wme_version = WME_VERSION;
wme.wme_info = 0;
DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
*/
static uint16_t
iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* write start bit (1) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
/* write READ opcode (10) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
}
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
}
IWI_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
return val;
}
static void
iwi_setcurchan(struct iwi_softc *sc, int chan)
{
struct ieee80211com *ic = &sc->sc_ic;
ic->ic_curchan = &ic->ic_channels[chan];
sc->curchan = chan;
sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
htole16(ic->ic_curchan->ic_freq);
sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
htole16(ic->ic_curchan->ic_flags);
}
static void
iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
struct iwi_frame *frame)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct mbuf *mnew, *m;
struct ieee80211_node *ni;
int type, error, framelen;
framelen = le16toh(frame->len);
if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
/*
* XXX >MCLBYTES is bogus as it means the h/w dma'd
* out of bounds; need to figure out how to limit
* frame size in the firmware
*/
/* XXX stat */
DPRINTFN(1,
("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
le16toh(frame->len), frame->chan, frame->rssi,
frame->rssi_dbm));
return;
}
DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
if (frame->chan != sc->curchan)
iwi_setcurchan(sc, frame->chan);
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
ifp->if_ierrors++;
return;
}
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
&data->physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
ifp->if_ierrors++;
return;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
CSR_WRITE_4(sc, data->reg, data->physaddr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
sizeof (struct iwi_frame) + framelen;
m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
Fix the following bpf(4) race condition which can result in a panic: (1) bpf peer attaches to interface netif0 (2) Packet is received by netif0 (3) ifp->if_bpf pointer is checked and handed off to bpf (4) bpf peer detaches from netif0 resulting in ifp->if_bpf being initialized to NULL. (5) ifp->if_bpf is dereferenced by bpf machinery (6) Kaboom This race condition likely explains the various different kernel panics reported around sending SIGINT to tcpdump or dhclient processes. But really this race can result in kernel panics anywhere you have frequent bpf attach and detach operations with high packet per second load. Summary of changes: - Remove the bpf interface's "driverp" member - When we attach bpf interfaces, we now set the ifp->if_bpf member to the bpf interface structure. Once this is done, ifp->if_bpf should never be NULL. [1] - Introduce bpf_peers_present function, an inline operation which will do a lockless read bpf peer list associated with the interface. It should be noted that the bpf code will pickup the bpf_interface lock before adding or removing bpf peers. This should serialize the access to the bpf descriptor list, removing the race. - Expose the bpf_if structure in bpf.h so that the bpf_peers_present function can use it. This also removes the struct bpf_if; hack that was there. - Adjust all consumers of the raw if_bpf structure to use bpf_peers_present Now what happens is: (1) Packet is received by netif0 (2) Check to see if bpf descriptor list is empty (3) Pickup the bpf interface lock (4) Hand packet off to process From the attach/detach side: (1) Pickup the bpf interface lock (2) Add/remove from bpf descriptor list Now that we are storing the bpf interface structure with the ifnet, there is is no need to walk the bpf interface list to locate the correct bpf interface. We now simply look up the interface, and initialize the pointer. This has a nice side effect of changing a bpf interface attach operation from O(N) (where N is the number of bpf interfaces), to O(1). [1] From now on, we can no longer check ifp->if_bpf to tell us whether or not we have any bpf peers that might be interested in receiving packets. In collaboration with: sam@ MFC after: 1 month
2006-06-02 19:59:33 +00:00
if (bpf_peers_present(sc->sc_drvbpf)) {
struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = iwi_cvtrate(frame->rate);
tap->wr_antsignal = frame->signal;
tap->wr_antenna = frame->antenna;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
/* send the frame to the 802.11 layer */
type = ieee80211_input(ic, m, ni, frame->rssi_dbm, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
if (sc->sc_softled) {
/*
* Blink for any data frame. Otherwise do a
* heartbeat-style blink when idle. The latter
* is mainly for station mode where we depend on
* periodic beacon frames to trigger the poll event.
*/
if (type == IEEE80211_FC0_TYPE_DATA) {
sc->sc_rxrate = frame->rate;
iwi_led_event(sc, IWI_LED_RX);
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
iwi_led_event(sc, IWI_LED_POLL);
}
}
/* unaligned little endian access */
#define LE_READ_2(p) \
((u_int16_t) \
((((const u_int8_t *)(p))[0] ) | \
(((const u_int8_t *)(p))[1] << 8)))
#define LE_READ_4(p) \
((u_int32_t) \
((((const u_int8_t *)(p))[0] ) | \
(((const u_int8_t *)(p))[1] << 8) | \
(((const u_int8_t *)(p))[2] << 16) | \
(((const u_int8_t *)(p))[3] << 24)))
#define IEEE80211_VERIFY_LENGTH(_len, _minlen) do { \
if ((_len) < (_minlen)) { \
return; \
} \
} while (0)
static int __inline
iswmeoui(const u_int8_t *frm)
{
return frm[1] > 3 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI);
}
/*
* Check for an association response frame to see if QoS
* has been negotiated. We parse just enough to figure
* out if we're supposed to use QoS. The proper solution
* is to pass the frame up so ieee80211_input can do the
* work but that's made hard by how things currently are
* done in the driver.
*/
static void
iwi_checkforqos(struct iwi_softc *sc, const struct ieee80211_frame *wh, int len)
{
#define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
const uint8_t *frm, *efrm, *wme;
struct ieee80211_node *ni;
/* NB: +8 for capinfo, status, associd, and first ie */
if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
return;
/*
* asresp frame format
* [2] capability information
* [2] status
* [2] association ID
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] WME
*/
frm = (const uint8_t *)&wh[1];
efrm = ((const uint8_t *) wh) + len;
frm += 6;
wme = NULL;
while (frm < efrm) {
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
switch (*frm) {
case IEEE80211_ELEMID_VENDOR:
if (iswmeoui(frm))
wme = frm;
break;
}
frm += frm[1] + 2;
}
ni = sc->sc_ic.ic_bss;
if (wme != NULL)
ni->ni_flags |= IEEE80211_NODE_QOS;
else
ni->ni_flags &= ~IEEE80211_NODE_QOS;
#undef SUBTYPE
}
static void
iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_notif_scan_channel *chan;
struct iwi_notif_scan_complete *scan;
struct iwi_notif_authentication *auth;
struct iwi_notif_association *assoc;
struct iwi_notif_beacon_state *beacon;
switch (notif->type) {
case IWI_NOTIF_TYPE_SCAN_CHANNEL:
chan = (struct iwi_notif_scan_channel *)(notif + 1);
DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
ic->ic_channels[chan->nchan].ic_freq, chan->nchan));
break;
case IWI_NOTIF_TYPE_SCAN_COMPLETE:
scan = (struct iwi_notif_scan_complete *)(notif + 1);
DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
scan->status));
sc->sc_scan_timer = 0;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/*
* Monitor mode works by doing a passive scan to set
* the channel and enable rx. Because we don't want
* to abort a scan lest the firmware crash we scan
* for a short period of time and automatically restart
* the scan when notified the sweep has completed.
*/
taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
} else {
sc->flags &= ~IWI_FLAG_SCANNING;
taskqueue_enqueue(sc->sc_tq, &sc->sc_scandonetask);
}
break;
case IWI_NOTIF_TYPE_AUTHENTICATION:
auth = (struct iwi_notif_authentication *)(notif + 1);
switch (auth->state) {
case IWI_AUTH_SUCCESS:
DPRINTFN(2, ("Authentication succeeeded\n"));
ieee80211_node_authorize(ic->ic_bss);
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
break;
case IWI_AUTH_FAIL:
DPRINTFN(2, ("Authentication failed\n"));
sc->flags &= ~IWI_FLAG_ASSOCIATED;
/* XXX */
break;
case IWI_AUTH_SENT_1:
case IWI_AUTH_RECV_2:
case IWI_AUTH_SEQ1_PASS:
break;
case IWI_AUTH_SEQ1_FAIL:
DPRINTFN(2, ("Initial authentication handshake failed; "
"you probably need shared key\n"));
/* XXX retry shared key when in auto */
break;
default:
device_printf(sc->sc_dev,
"unknown authentication state %u\n", auth->state);
}
break;
case IWI_NOTIF_TYPE_ASSOCIATION:
assoc = (struct iwi_notif_association *)(notif + 1);
switch (assoc->state) {
case IWI_AUTH_SUCCESS:
/* re-association, do nothing */
break;
case IWI_ASSOC_SUCCESS:
DPRINTFN(2, ("Association succeeded\n"));
sc->flags |= IWI_FLAG_ASSOCIATED;
iwi_checkforqos(sc,
(const struct ieee80211_frame *)(assoc+1),
le16toh(notif->len) - sizeof(*assoc));
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IWI_ASSOC_FAIL:
DPRINTFN(2, ("Association failed\n"));
sc->flags &= ~IWI_FLAG_ASSOCIATED;
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
default:
device_printf(sc->sc_dev,
"unknown association state %u\n", assoc->state);
}
break;
case IWI_NOTIF_TYPE_BEACON:
/* XXX check struct length */
beacon = (struct iwi_notif_beacon_state *)(notif + 1);
DPRINTFN(5, ("Beacon state (%u, %u)\n",
beacon->state, le32toh(beacon->number)));
if (beacon->state == IWI_BEACON_MISS) {
#if 0
if (sc->flags & IWI_FLAG_SCANNING) {
/* XXX terminate scan, linux driver
says fw can get stuck */
/* XXX should be handled in iwi_newstate */
taskqueue_enqueue(sc->sc_tq,
&sc->sc_scanaborttask);
}
#endif
/*
* The firmware notifies us of every beacon miss
* so we need to track the count against the
* configured threshold before notifying the
* 802.11 layer.
* XXX try to roam, drop assoc only on much higher count
*/
if (le32toh(beacon->number) >= ic->ic_bmissthreshold) {
DPRINTF(("Beacon miss: %u >= %u\n",
le32toh(beacon->number),
ic->ic_bmissthreshold));
ieee80211_beacon_miss(ic);
}
}
break;
case IWI_NOTIF_TYPE_CALIBRATION:
case IWI_NOTIF_TYPE_NOISE:
case IWI_NOTIF_TYPE_LINK_QUALITY:
DPRINTFN(5, ("Notification (%u)\n", notif->type));
break;
default:
DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
notif->type, notif->flags, le16toh(notif->len)));
}
}
static void
iwi_rx_intr(struct iwi_softc *sc)
{
struct iwi_rx_data *data;
struct iwi_hdr *hdr;
uint32_t hw;
hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
for (; sc->rxq.cur != hw;) {
data = &sc->rxq.data[sc->rxq.cur];
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
hdr = mtod(data->m, struct iwi_hdr *);
switch (hdr->type) {
case IWI_HDR_TYPE_FRAME:
iwi_frame_intr(sc, data, sc->rxq.cur,
(struct iwi_frame *)(hdr + 1));
break;
case IWI_HDR_TYPE_NOTIF:
iwi_notification_intr(sc,
(struct iwi_notif *)(hdr + 1));
break;
default:
device_printf(sc->sc_dev, "unknown hdr type %u\n",
hdr->type);
}
DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
}
/* tell the firmware what we have processed */
hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
}
static void
iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwi_tx_data *data;
uint32_t hw;
hw = CSR_READ_4(sc, txq->csr_ridx);
for (; txq->next != hw;) {
data = &txq->data[txq->next];
bus_dmamap_sync(txq->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
DPRINTFN(15, ("tx done idx=%u\n", txq->next));
ifp->if_opackets++;
txq->queued--;
txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
}
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (sc->sc_softled)
iwi_led_event(sc, IWI_LED_TX);
iwi_start(ifp);
}
static void
iwi_intr(void *arg)
{
struct iwi_softc *sc = arg;
uint32_t r;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
IWI_UNLOCK(sc);
return;
}
/* acknowledge interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR, r);
if (r & IWI_INTR_FATAL_ERROR) {
device_printf(sc->sc_dev, "firmware error\n");
taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
}
if (r & IWI_INTR_FW_INITED) {
if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
wakeup(sc);
}
if (r & IWI_INTR_RADIO_OFF)
taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask);
if (r & IWI_INTR_CMD_DONE) {
sc->flags &= ~IWI_FLAG_BUSY;
wakeup(sc);
}
if (r & IWI_INTR_TX1_DONE)
iwi_tx_intr(sc, &sc->txq[0]);
if (r & IWI_INTR_TX2_DONE)
iwi_tx_intr(sc, &sc->txq[1]);
if (r & IWI_INTR_TX3_DONE)
iwi_tx_intr(sc, &sc->txq[2]);
if (r & IWI_INTR_TX4_DONE)
iwi_tx_intr(sc, &sc->txq[3]);
if (r & IWI_INTR_RX_DONE)
iwi_rx_intr(sc);
if (r & IWI_INTR_PARITY_ERROR) {
/* XXX rate-limit */
device_printf(sc->sc_dev, "parity error\n");
}
IWI_UNLOCK(sc);
}
static int
iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
{
struct iwi_cmd_desc *desc;
if (sc->flags & IWI_FLAG_BUSY) {
device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
__func__, type);
return EAGAIN;
}
sc->flags |= IWI_FLAG_BUSY;
desc = &sc->cmdq.desc[sc->cmdq.cur];
desc->hdr.type = IWI_HDR_TYPE_COMMAND;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->type = type;
desc->len = len;
memcpy(desc->data, data, len);
bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
type, len));
sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
}
static void
iwi_write_ibssnode(struct iwi_softc *sc,
const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
{
struct iwi_ibssnode node;
/* write node information into NIC memory */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, addr);
DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
CSR_WRITE_REGION_1(sc,
IWI_CSR_NODE_BASE + entry * sizeof node,
(uint8_t *)&node, sizeof node);
}
static int
iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
int ac)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_node *in = (struct iwi_node *)ni;
const struct ieee80211_frame *wh;
struct ieee80211_key *k;
const struct chanAccParams *cap;
struct iwi_tx_ring *txq = &sc->txq[ac];
struct iwi_tx_data *data;
struct iwi_tx_desc *desc;
struct mbuf *mnew;
bus_dma_segment_t segs[IWI_MAX_NSEG];
int error, nsegs, hdrlen, i;
int ismcast, flags, xflags, staid;
wh = mtod(m0, const struct ieee80211_frame *);
/* NB: only data frames use this path */
hdrlen = ieee80211_hdrsize(wh);
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
flags = xflags = 0;
if (!ismcast)
flags |= IWI_DATA_FLAG_NEED_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
flags |= IWI_DATA_FLAG_SHPREAMBLE;
if (IEEE80211_QOS_HAS_SEQ(wh)) {
xflags |= IWI_DATA_XFLAG_QOS;
cap = &ic->ic_wme.wme_chanParams;
if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
flags &= ~IWI_DATA_FLAG_NEED_ACK;
}
/*
* This is only used in IBSS mode where the firmware expect an index
* in a h/w table instead of a destination address.
*/
if (ic->ic_opmode == IEEE80211_M_IBSS) {
if (!ismcast) {
if (in->in_station == -1) {
in->in_station = alloc_unr(sc->sc_unr);
if (in->in_station == -1) {
/* h/w table is full */
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
return 0;
}
iwi_write_ibssnode(sc,
ni->ni_macaddr, in->in_station);
}
staid = in->in_station;
} else {
/*
* Multicast addresses have no associated node
* so there will be no station entry. We reserve
* entry 0 for one mcast address and use that.
* If there are many being used this will be
* expensive and we'll need to do a better job
* but for now this handles the broadcast case.
*/
if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
iwi_write_ibssnode(sc, sc->sc_mcast, 0);
}
staid = 0;
}
} else
staid = 0;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
Fix the following bpf(4) race condition which can result in a panic: (1) bpf peer attaches to interface netif0 (2) Packet is received by netif0 (3) ifp->if_bpf pointer is checked and handed off to bpf (4) bpf peer detaches from netif0 resulting in ifp->if_bpf being initialized to NULL. (5) ifp->if_bpf is dereferenced by bpf machinery (6) Kaboom This race condition likely explains the various different kernel panics reported around sending SIGINT to tcpdump or dhclient processes. But really this race can result in kernel panics anywhere you have frequent bpf attach and detach operations with high packet per second load. Summary of changes: - Remove the bpf interface's "driverp" member - When we attach bpf interfaces, we now set the ifp->if_bpf member to the bpf interface structure. Once this is done, ifp->if_bpf should never be NULL. [1] - Introduce bpf_peers_present function, an inline operation which will do a lockless read bpf peer list associated with the interface. It should be noted that the bpf code will pickup the bpf_interface lock before adding or removing bpf peers. This should serialize the access to the bpf descriptor list, removing the race. - Expose the bpf_if structure in bpf.h so that the bpf_peers_present function can use it. This also removes the struct bpf_if; hack that was there. - Adjust all consumers of the raw if_bpf structure to use bpf_peers_present Now what happens is: (1) Packet is received by netif0 (2) Check to see if bpf descriptor list is empty (3) Pickup the bpf interface lock (4) Hand packet off to process From the attach/detach side: (1) Pickup the bpf interface lock (2) Add/remove from bpf descriptor list Now that we are storing the bpf interface structure with the ifnet, there is is no need to walk the bpf interface list to locate the correct bpf interface. We now simply look up the interface, and initialize the pointer. This has a nice side effect of changing a bpf interface attach operation from O(N) (where N is the number of bpf interfaces), to O(1). [1] From now on, we can no longer check ifp->if_bpf to tell us whether or not we have any bpf peers that might be interested in receiving packets. In collaboration with: sam@ MFC after: 1 month
2006-06-02 19:59:33 +00:00
if (bpf_peers_present(sc->sc_drvbpf)) {
struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
data = &txq->data[txq->cur];
desc = &txq->desc[txq->cur];
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
&nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_DONTWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
m0, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
desc->hdr.type = IWI_HDR_TYPE_DATA;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->station = staid;
desc->cmd = IWI_DATA_CMD_TX;
desc->len = htole16(m0->m_pkthdr.len);
desc->flags = flags;
desc->xflags = xflags;
#if 0
if (ic->ic_flags & IEEE80211_F_PRIVACY)
desc->wep_txkey = ic->ic_crypto.cs_def_txkey;
else
#endif
desc->flags |= IWI_DATA_FLAG_NO_WEP;
desc->nseg = htole32(nsegs);
for (i = 0; i < nsegs; i++) {
desc->seg_addr[i] = htole32(segs[i].ds_addr);
desc->seg_len[i] = htole16(segs[i].ds_len);
}
bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
ac, txq->cur, le16toh(desc->len), nsegs));
txq->queued++;
txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
return 0;
}
static void
iwi_start(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
int ac;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if (ic->ic_state != IEEE80211_S_RUN) {
IWI_UNLOCK(sc);
return;
}
for (;;) {
IF_DEQUEUE(&ic->ic_mgtq, m0);
if (m0 == NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_len < sizeof (struct ether_header) &&
(m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* XXX does not belong here */
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
/* there is no place left in this ring */
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
BPF_MTAP(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
} else {
ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
/* XXX no way to send mgt frames (yet), discard */
m_freem(m0);
ieee80211_free_node(ni);
continue;
}
2006-06-02 23:14:40 +00:00
if (bpf_peers_present(ic->ic_rawbpf))
bpf_mtap(ic->ic_rawbpf, m0);
if (iwi_tx_start(ifp, m0, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
IWI_UNLOCK(sc);
}
static void
iwi_watchdog(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
ifp->if_oerrors++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
}
}
if (sc->sc_rfkill_timer > 0) {
if (--sc->sc_rfkill_timer == 0) {
/*
* Check for a change in rfkill state. We get an
* interrupt when a radio is disabled but not when
* it is enabled so we must poll for the latter.
*/
if (!iwi_getrfkill(sc))
taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask);
else
sc->sc_rfkill_timer = 2;
}
}
if (sc->sc_scan_timer > 0) {
if (--sc->sc_scan_timer == 0) {
if (sc->flags & IWI_FLAG_SCANNING) {
if_printf(ifp, "scan stuck\n");
taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
}
}
}
if (sc->sc_tx_timer || sc->sc_rfkill_timer || sc->sc_scan_timer)
ifp->if_timer = 1;
else
ifp->if_timer = 0;
ieee80211_watchdog(ic);
IWI_UNLOCK(sc);
}
static int
iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
IWI_LOCK_DECL;
IWI_LOCK(sc);
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
iwi_init_locked(sc, 0);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
iwi_stop(sc);
else {
/*
* If device was stopped due to rfkill then
* marked down we'll have the polling thread
* running; stop it explicitly.
*/
sc->sc_rfkill_timer = 0;
}
iwi_put_firmware(sc);
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
iwi_init_locked(sc, 0);
error = 0;
}
IWI_UNLOCK(sc);
return error;
}
static void
iwi_stop_master(struct iwi_softc *sc)
{
uint32_t tmp;
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5)
device_printf(sc->sc_dev, "timeout waiting for master\n");
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
sc->flags &= ~IWI_FLAG_FW_INITED;
}
static int
iwi_reset(struct iwi_softc *sc)
{
uint32_t tmp;
int i, ntries;
iwi_stop_master(sc);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for clock stabilization\n");
return EIO;
}
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
DELAY(10);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
/* clear NIC memory */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
for (i = 0; i < 0xc000; i++)
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
return 0;
}
static const struct iwi_firmware_ohdr *
iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
{
struct firmware *fp = fw->fp;
const struct iwi_firmware_ohdr *hdr;
if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
return NULL;
}
hdr = (const struct iwi_firmware_ohdr *)fp->data;
if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
(IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
IWI_FW_REQ_MINOR);
return NULL;
}
fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
fw->name = fp->name;
return hdr;
}
static const struct iwi_firmware_ohdr *
iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
{
const struct iwi_firmware_ohdr *hdr;
hdr = iwi_setup_ofw(sc, fw);
if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
device_printf(sc->sc_dev, "%s is not a ucode image\n",
fw->name);
hdr = NULL;
}
return hdr;
}
static void
iwi_getfw(struct iwi_fw *fw, const char *fwname,
struct iwi_fw *uc, const char *ucname)
{
if (fw->fp == NULL)
fw->fp = firmware_get(fwname);
/* NB: pre-3.0 ucode is packaged separately */
if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
uc->fp = firmware_get(ucname);
}
/*
* Get the required firmware images if not already loaded.
* Note that we hold firmware images so long as the device
* is marked up in case we need to reload them on device init.
* This is necessary because we re-init the device sometimes
* from a context where we cannot read from the filesystem
* (e.g. from the taskqueue thread when rfkill is re-enabled).
*
* NB: the order of get'ing and put'ing images here is
* intentional to support handling firmware images bundled
* by operating mode and/or all together in one file with
* the boot firmware as "master".
*/
static int
iwi_get_firmware(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct iwi_firmware_hdr *hdr;
struct firmware *fp;
/* invalidate cached firmware on mode change */
if (sc->fw_mode != ic->ic_opmode)
iwi_put_firmware(sc);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
break;
case IEEE80211_M_IBSS:
iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
break;
case IEEE80211_M_MONITOR:
iwi_getfw(&sc->fw_fw, "iwi_monitor",
&sc->fw_uc, "iwi_ucode_monitor");
break;
default:
break;
}
fp = sc->fw_fw.fp;
if (fp == NULL) {
device_printf(sc->sc_dev, "could not load firmware\n");
goto bad;
}
if (fp->version < 300) {
/*
* Firmware prior to 3.0 was packaged as separate
* boot, firmware, and ucode images. Verify the
* ucode image was read in, retrieve the boot image
* if needed, and check version stamps for consistency.
* The version stamps in the data are also checked
* above; this is a bit paranoid but is a cheap
* safeguard against mis-packaging.
*/
if (sc->fw_uc.fp == NULL) {
device_printf(sc->sc_dev, "could not load ucode\n");
goto bad;
}
if (sc->fw_boot.fp == NULL) {
sc->fw_boot.fp = firmware_get("iwi_boot");
if (sc->fw_boot.fp == NULL) {
device_printf(sc->sc_dev,
"could not load boot firmware\n");
goto bad;
}
}
if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
device_printf(sc->sc_dev,
"firmware version mismatch: "
"'%s' is %d, '%s' is %d, '%s' is %d\n",
sc->fw_boot.fp->name, sc->fw_boot.fp->version,
sc->fw_uc.fp->name, sc->fw_uc.fp->version,
sc->fw_fw.fp->name, sc->fw_fw.fp->version
);
goto bad;
}
/*
* Check and setup each image.
*/
if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
goto bad;
} else {
/*
* Check and setup combined image.
*/
if (fp->datasize < sizeof(hdr)) {
device_printf(sc->sc_dev, "image '%s' too small\n",
fp->name);
goto bad;
}
hdr = (const struct iwi_firmware_hdr *)fp->data;
if (fp->datasize < sizeof(*hdr) + hdr->bsize + hdr->usize + hdr->fsize) {
device_printf(sc->sc_dev, "image '%s' too small (2)\n",
fp->name);
goto bad;
}
sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
sc->fw_boot.size = hdr->bsize;
sc->fw_boot.name = fp->name;
sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
sc->fw_uc.size = hdr->usize;
sc->fw_uc.name = fp->name;
sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
sc->fw_fw.size = hdr->fsize;
sc->fw_fw.name = fp->name;
}
sc->fw_mode = ic->ic_opmode;
return 1;
bad:
iwi_put_firmware(sc);
return 0;
}
static void
iwi_put_fw(struct iwi_fw *fw)
{
if (fw->fp != NULL) {
firmware_put(fw->fp, FIRMWARE_UNLOAD);
fw->fp = NULL;
}
fw->data = NULL;
fw->size = 0;
fw->name = NULL;
}
/*
* Release any cached firmware images.
*/
static void
iwi_put_firmware(struct iwi_softc *sc)
{
iwi_put_fw(&sc->fw_uc);
iwi_put_fw(&sc->fw_fw);
iwi_put_fw(&sc->fw_boot);
}
static int
iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
{
uint32_t tmp;
const uint16_t *w;
const char *uc = fw->data;
size_t size = fw->size;
int i, ntries, error;
error = 0;
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5) {
device_printf(sc->sc_dev, "timeout waiting for master\n");
error = EIO;
goto fail;
}
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
DELAY(5000);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
tmp &= ~IWI_RST_PRINCETON_RESET;
CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
DELAY(5000);
MEM_WRITE_4(sc, 0x3000e0, 0);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
DELAY(1000);
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x40);
DELAY(1000);
/* write microcode into adapter memory */
for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
MEM_WRITE_2(sc, 0x200010, htole16(*w));
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x80);
/* wait until we get an answer */
for (ntries = 0; ntries < 100; ntries++) {
if (MEM_READ_1(sc, 0x200000) & 1)
break;
DELAY(100);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for ucode to initialize\n");
error = EIO;
goto fail;
}
/* read the answer or the firmware will not initialize properly */
for (i = 0; i < 7; i++)
MEM_READ_4(sc, 0x200004);
MEM_WRITE_1(sc, 0x200000, 0x00);
fail:
return error;
}
/* macro to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
static int
iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
{
u_char *p, *end;
uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2005-11-20 04:27:24 +00:00
int ntries, error;
/* copy firmware image to DMA memory */
memcpy(sc->fw_virtaddr, fw->data, fw->size);
/* make sure the adapter will get up-to-date values */
bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2006-03-10 18:55:30 +00:00
/* tell the adapter where the command blocks are stored */
MEM_WRITE_4(sc, 0x3000a0, 0x27000);
/*
* Store command blocks into adapter's internal memory using register
* indirections. The adapter will read the firmware image through DMA
* using information stored in command blocks.
*/
src = sc->fw_physaddr;
p = sc->fw_virtaddr;
end = p + fw->size;
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
while (p < end) {
dst = GETLE32(p); p += 4; src += 4;
len = GETLE32(p); p += 4; src += 4;
p += len;
while (len > 0) {
mlen = min(len, IWI_CB_MAXDATALEN);
ctl = IWI_CB_DEFAULT_CTL | mlen;
sum = ctl ^ src ^ dst;
/* write a command block */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
src += mlen;
dst += mlen;
len -= mlen;
}
}
/* write a fictive final command block (sentinel) */
sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
/* tell the adapter to start processing command blocks */
MEM_WRITE_4(sc, 0x3000a4, 0x540100);
/* wait until the adapter reaches the sentinel */
for (ntries = 0; ntries < 400; ntries++) {
if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
break;
DELAY(100);
}
if (ntries == 400) {
device_printf(sc->sc_dev,
"timeout processing command blocks for %s firmware\n",
fw->name);
error = EIO;
goto fail5;
}
/* we're done with command blocks processing */
MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
/* allow interrupts so we know when the firmware is ready */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
/* tell the adapter to initialize the firmware */
CSR_WRITE_4(sc, IWI_CSR_RST, 0);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
device_printf(sc->sc_dev, "timeout waiting for %s firmware "
"initialization to complete\n", fw->name);
}
fail5:
return error;
}
static int
iwi_setpowermode(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t data;
if (ic->ic_flags & IEEE80211_F_PMGTON) {
/* XXX set more fine-grained operation */
data = htole32(IWI_POWER_MODE_MAX);
} else
data = htole32(IWI_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
}
static int
iwi_setwepkeys(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_wep_key wepkey;
struct ieee80211_key *wk;
int error, i;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
wk = &ic->ic_crypto.cs_nw_keys[i];
wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
wepkey.idx = i;
wepkey.len = wk->wk_keylen;
memset(wepkey.key, 0, sizeof wepkey.key);
memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
wepkey.len));
error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey);
if (error != 0)
return error;
}
return 0;
}
static int
iwi_config(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwi_configuration config;
struct iwi_rateset rs;
struct iwi_txpower power;
uint32_t data;
int error, i;
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
return error;
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.silence_threshold = 0x1e;
config.antenna = sc->antenna;
config.multicast_enabled = 1;
config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
if (error != 0)
return error;
error = iwi_setpowermode(sc);
if (error != 0)
return error;
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
power.mode = IWI_MODE_11B;
power.nchan = 11;
for (i = 0; i < 11; i++) {
power.chan[i].chan = i + 1;
power.chan[i].power = IWI_TXPOWER_MAX;
}
DPRINTF(("Setting .11b channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
if (error != 0)
return error;
power.mode = IWI_MODE_11G;
DPRINTF(("Setting .11g channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
if (error != 0)
return error;
}
rs.mode = IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
rs.nrates);
DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
if (error != 0)
return error;
rs.mode = IWI_MODE_11A;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
rs.nrates);
DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
if (error != 0)
return error;
/* if we have a desired ESSID, set it now */
if (ic->ic_des_esslen != 0) {
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting desired ESSID to ");
ieee80211_print_essid(ic->ic_des_essid,
ic->ic_des_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
ic->ic_des_esslen);
if (error != 0)
return error;
}
data = htole32(arc4random());
DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
if (error != 0)
return error;
error = iwi_setwepkeys(sc);
if (error != 0)
return error;
/* enable adapter */
DPRINTF(("Enabling adapter\n"));
return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
}
static __inline void
set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
{
uint8_t *st = &scan->scan_type[ix / 2];
if (ix % 2)
*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
else
*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
}
static int
iwi_scan(struct iwi_softc *sc)
{
#define IEEE80211_MODE_5GHZ (1<<IEEE80211_MODE_11A)
#define IEEE80211_MODE_2GHZ ((1<<IEEE80211_MODE_11B)|1<<IEEE80211_MODE_11G)
struct ieee80211com *ic = &sc->sc_ic;
const struct ieee80211_channel *c;
struct iwi_scan_ext scan;
int i, ix, start, scan_type;
memset(&scan, 0, sizeof scan);
/* XXX different dwell times for different scan types */
scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(sc->dwelltime);
scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(sc->dwelltime);
scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(sc->dwelltime);
scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
scan_type = (ic->ic_des_esslen != 0) ? IWI_SCAN_TYPE_BDIRECTED :
IWI_SCAN_TYPE_BROADCAST;
ix = 0;
if (ic->ic_modecaps & IEEE80211_MODE_5GHZ) {
start = ix;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
/*
* NB: ieee80211_next_scan clears curchan from the
* channel list so we must explicitly check; this
* will be fixed when the new scanning support arrives.
*/
if (!IEEE80211_IS_CHAN_5GHZ(c) ||
!(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
continue;
ix++;
scan.channels[ix] = i;
if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
else
set_scan_type(&scan, ix, scan_type);
}
if (start != ix) {
scan.channels[start] = IWI_CHAN_5GHZ | (ix - start);
ix++;
}
}
if (ic->ic_modecaps & IEEE80211_MODE_2GHZ) {
start = ix;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
/* NB: see above */
if (!IEEE80211_IS_CHAN_2GHZ(c) ||
!(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
continue;
ix++;
scan.channels[ix] = i;
if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
else
set_scan_type(&scan, ix, scan_type);
}
if (start != ix)
scan.channels[start] = IWI_CHAN_2GHZ | (ix - start);
}
DPRINTF(("Start scanning\n"));
/*
* With 100ms/channel dwell time and a max of ~20 channels
* 5 seconds may be too tight; leave a bit more slack.
*/
sc->sc_scan_timer = 7; /* seconds to complete */
sc->sc_ifp->if_timer = 1;
sc->flags |= IWI_FLAG_SCANNING;
return iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
#undef IEEE80211_MODE_5GHZ
#undef IEEE80211_MODE_2GHZ
}
static void
iwi_scanabort(void *arg, int npending)
{
struct iwi_softc *sc = arg;
IWI_LOCK_DECL;
IWI_LOCK(sc);
/* NB: make sure we're still scanning */
if (sc->flags & IWI_FLAG_SCANNING)
iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
IWI_UNLOCK(sc);
}
static void
iwi_scanstart(void *arg, int npending)
{
struct iwi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
IWI_LOCK_DECL;
IWI_LOCK(sc);
/*
* Tell the card to kick off a scan. We guard this
* by checking IWI_FLAG_SCANNING as otherwise we'll
* do this twice because ieee80211_begin_scan will
* immediately call us back to scan the first channel
* in the list.
*/
if (sc->flags & IWI_FLAG_SCANNING) {
ieee80211_begin_scan(ic, 1);
if (iwi_scan(sc) != 0) {
/* XXX should not happen */
sc->flags &= ~IWI_FLAG_SCANNING;
ieee80211_new_state(ic, IEEE80211_S_INIT, 0);
}
}
IWI_UNLOCK(sc);
}
static void
iwi_scandone(void *arg, int npending)
{
struct iwi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
IWI_LOCK_DECL;
IWI_LOCK(sc);
if (sc->flags & IWI_FLAG_ASSOCIATED)
iwi_disassociate(sc, 0);
ieee80211_end_scan(ic);
IWI_UNLOCK(sc);
}
/*
* Set the current channel by doing a passive scan. Note this
* is explicitly for monitor mode operation; do not use it for
* anything else (sigh).
*/
static void
iwi_scanchan(void *arg, int npending)
{
struct iwi_softc *sc = arg;
struct ieee80211com *ic;
struct ieee80211_channel *chan;
struct iwi_scan_ext scan;
IWI_LOCK_DECL;
IWI_LOCK(sc);
ic = &sc->sc_ic;
KASSERT(ic->ic_opmode == IEEE80211_M_MONITOR,
("opmode %u", ic->ic_opmode));
chan = ic->ic_ibss_chan;
memset(&scan, 0, sizeof scan);
/*
* Set the dwell time to a fairly small value. The firmware
* is prone to crash when aborting a scan so it's better to
* let a scan complete before changing channels--such as when
* channel hopping in monitor mode.
*/
scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(2000);
scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
if (IEEE80211_IS_CHAN_5GHZ(chan))
scan.channels[0] = 1 | IWI_CHAN_5GHZ;
else
scan.channels[0] = 1 | IWI_CHAN_2GHZ;
scan.channels[1] = ieee80211_chan2ieee(ic, chan);
set_scan_type(&scan, 1, IWI_SCAN_TYPE_PASSIVE);
DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
sc->flags |= IWI_FLAG_SCANNING;
(void) iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
IWI_UNLOCK(sc);
}
static int
iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
{
struct iwi_sensitivity sens;
DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
memset(&sens, 0, sizeof sens);
sens.rssi = htole16(rssi_dbm);
return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
}
static int
iwi_auth_and_assoc(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_node *ni = ic->ic_bss;
struct iwi_configuration config;
struct iwi_associate *assoc = &sc->assoc;
struct iwi_rateset rs;
uint16_t capinfo;
int error;
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.antenna = sc->antenna;
config.multicast_enabled = 1;
config.use_protection = 1;
config.answer_pbreq =
(ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
if (error != 0)
return error;
}
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
if (error != 0)
return error;
/* the rate set has already been "negotiated" */
rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_NEGOTIATED;
rs.nrates = ni->ni_rates.rs_nrates;
memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
if (error != 0)
return error;
memset(assoc, 0, sizeof *assoc);
if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) {
/* NB: don't treat WME setup as failure */
if (iwi_wme_setparams_locked(sc) == 0 && iwi_wme_setie(sc) == 0)
assoc->policy |= htole16(IWI_POLICY_WME);
/* XXX complain on failure? */
}
if (ic->ic_opt_ie != NULL) {
DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len));
error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie,
ic->ic_opt_ie_len);
if (error != 0)
return error;
}
error = iwi_set_sensitivity(sc, ni->ni_rssi);
if (error != 0)
return error;
if (IEEE80211_IS_CHAN_A(ni->ni_chan))
assoc->mode = IWI_MODE_11A;
else if (IEEE80211_IS_CHAN_G(ni->ni_chan))
assoc->mode = IWI_MODE_11G;
else if (IEEE80211_IS_CHAN_B(ni->ni_chan))
assoc->mode = IWI_MODE_11B;
/* XXX else error */
assoc->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
/*
* NB: do not arrange for shared key auth w/o privacy
* (i.e. a wep key); it causes a firmware error.
*/
if ((ic->ic_flags & IEEE80211_F_PRIVACY) &&
ni->ni_authmode == IEEE80211_AUTH_SHARED) {
assoc->auth = IWI_AUTH_SHARED;
/*
* It's possible to have privacy marked but no default
* key setup. This typically is due to a user app bug
* but if we blindly grab the key the firmware will
* barf so avoid it for now.
*/
if (ic->ic_crypto.cs_def_txkey != IEEE80211_KEYIX_NONE)
assoc->auth |= ic->ic_crypto.cs_def_txkey << 4;
error = iwi_setwepkeys(sc);
if (error != 0)
return error;
}
if (ic->ic_flags & IEEE80211_F_WPA)
assoc->policy |= htole16(IWI_POLICY_WPA);
if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
assoc->type = IWI_HC_IBSS_START;
else
assoc->type = IWI_HC_ASSOC;
memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
if (ic->ic_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
assoc->capinfo = htole16(capinfo);
assoc->lintval = htole16(ic->ic_lintval);
assoc->intval = htole16(ni->ni_intval);
IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
if (ic->ic_opmode == IEEE80211_M_IBSS)
IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
else
IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
"auth %u capinfo 0x%x lintval %u bintval %u\n",
assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
assoc->bssid, ":", assoc->dst, ":",
assoc->chan, le16toh(assoc->policy), assoc->auth,
le16toh(assoc->capinfo), le16toh(assoc->lintval),
le16toh(assoc->intval)));
return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
}
static int
iwi_disassociate(struct iwi_softc *sc, int quiet)
{
struct iwi_associate *assoc = &sc->assoc;
if (quiet)
assoc->type = IWI_HC_DISASSOC_QUIET;
else
assoc->type = IWI_HC_DISASSOC;
DPRINTF(("Trying to disassociate from %6D channel %u\n",
assoc->bssid, ":", assoc->chan));
return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
}
static void
iwi_down(void *arg, int npending)
{
struct iwi_softc *sc = arg;
IWI_LOCK_DECL;
IWI_LOCK(sc);
iwi_disassociate(sc, 0);
IWI_UNLOCK(sc);
}
static void
iwi_init(void *priv)
{
struct iwi_softc *sc = priv;
IWI_LOCK_DECL;
IWI_LOCK(sc);
iwi_init_locked(sc, 0);
IWI_UNLOCK(sc);
}
static void
iwi_init_locked(void *priv, int force)
{
struct iwi_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwi_rx_data *data;
int i;
IWI_LOCK_DECL;
2006-03-10 18:55:30 +00:00
if (sc->flags & IWI_FLAG_FW_LOADING)
return; /* XXX: condvar? */
iwi_stop(sc);
if (iwi_reset(sc) != 0) {
device_printf(sc->sc_dev, "could not reset adapter\n");
goto fail;
}
sc->flags |= IWI_FLAG_FW_LOADING;
IWI_UNLOCK(sc);
if (!iwi_get_firmware(sc)) {
IWI_LOCK(sc);
goto fail;
}
/* allocate DMA memory for mapping firmware image */
if (sc->fw_boot.size > sc->fw_dma_size)
sc->fw_dma_size = sc->fw_boot.size;
if (sc->fw_fw.size > sc->fw_dma_size)
sc->fw_dma_size = sc->fw_fw.size;
if (sc->fw_uc.size > sc->fw_dma_size)
sc->fw_dma_size = sc->fw_uc.size;
if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, sc->fw_dma_size, 1, sc->fw_dma_size,
0, NULL, NULL, &sc->fw_dmat) != 0) {
device_printf(sc->sc_dev,
"could not create firmware DMA tag\n");
IWI_LOCK(sc);
goto fail;
}
if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
&sc->fw_map) != 0) {
device_printf(sc->sc_dev,
"could not allocate firmware DMA memory\n");
IWI_LOCK(sc);
goto fail2;
}
if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
sc->fw_dma_size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
device_printf(sc->sc_dev, "could not load firmware DMA map\n");
IWI_LOCK(sc);
goto fail3;
}
IWI_LOCK(sc);
if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
device_printf(sc->sc_dev,
"could not load boot firmware %s\n", sc->fw_boot.name);
goto fail4;
}
if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
device_printf(sc->sc_dev,
"could not load microcode %s\n", sc->fw_uc.name);
goto fail4;
}
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
for (i = 0; i < sc->rxq.count; i++) {
data = &sc->rxq.data[i];
CSR_WRITE_4(sc, data->reg, data->physaddr);
}
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
device_printf(sc->sc_dev,
"could not load main firmware %s\n", sc->fw_fw.name);
goto fail4;
}
sc->flags |= IWI_FLAG_FW_INITED;
bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
bus_dma_tag_destroy(sc->fw_dmat);
if (iwi_config(sc) != 0) {
device_printf(sc->sc_dev, "device configuration failed\n");
goto fail;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
/*
* NB: When restarting the adapter clock the state
* machine regardless of the roaming mode; otherwise
* we need to notify user apps so they can manually
* get us going again.
*/
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL || force)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->flags &= ~IWI_FLAG_FW_LOADING;
return;
fail4: bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
fail3: bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
fail2: bus_dma_tag_destroy(sc->fw_dmat);
fail: ifp->if_flags &= ~IFF_UP;
sc->flags &= ~IWI_FLAG_FW_LOADING;
iwi_stop(sc);
iwi_put_firmware(sc);
}
static void
iwi_stop(void *priv)
{
struct iwi_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
if (sc->sc_softled) {
callout_stop(&sc->sc_ledtimer);
sc->sc_blinking = 0;
}
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
/* reset rings */
iwi_reset_cmd_ring(sc, &sc->cmdq);
iwi_reset_tx_ring(sc, &sc->txq[0]);
iwi_reset_tx_ring(sc, &sc->txq[1]);
iwi_reset_tx_ring(sc, &sc->txq[2]);
iwi_reset_tx_ring(sc, &sc->txq[3]);
iwi_reset_rx_ring(sc, &sc->rxq);
ifp->if_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2006-03-10 18:55:30 +00:00
sc->sc_tx_timer = 0;
sc->sc_rfkill_timer = 0;
sc->sc_scan_timer = 0;
sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_SCANNING | IWI_FLAG_ASSOCIATED);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
static void
iwi_restart(void *arg, int npending)
{
struct iwi_softc *sc = arg;
IWI_LOCK_DECL;
IWI_LOCK(sc);
iwi_init_locked(sc, 1); /* NB: force state machine */
IWI_UNLOCK(sc);
}
/*
* Return whether or not the radio is enabled in hardware
* (i.e. the rfkill switch is "off").
*/
static int
iwi_getrfkill(struct iwi_softc *sc)
{
return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
}
static void
iwi_radio_on(void *arg, int pending)
{
struct iwi_softc *sc = arg;
device_printf(sc->sc_dev, "radio turned on\n");
iwi_init(sc);
}
static void
iwi_radio_off(void *arg, int pending)
{
struct iwi_softc *sc = arg;
device_printf(sc->sc_dev, "radio turned off\n");
iwi_stop(sc);
sc->sc_rfkill_timer = 2;
sc->sc_ifp->if_timer = 1;
}
static int
iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
uint32_t size, buf[128];
if (!(sc->flags & IWI_FLAG_FW_INITED)) {
memset(buf, 0, sizeof buf);
return SYSCTL_OUT(req, buf, sizeof buf);
}
size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
return SYSCTL_OUT(req, buf, sizeof buf);
}
static int
iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
int val = !iwi_getrfkill(sc);
return SYSCTL_OUT(req, &val, sizeof val);
}
/*
* Add sysctl knobs.
*/
static void
iwi_sysctlattach(struct iwi_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
"radio transmitter switch state (0=off, 1=on)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
"statistics");
sc->dwelltime = 100;
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "dwell",
CTLFLAG_RW, &sc->dwelltime, 0,
"channel dwell time (ms) for AP/station scanning");
sc->bluetooth = 0;
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
sc->antenna = IWI_ANTENNA_AUTO;
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
}
/*
* LED support.
*
* Different cards have different capabilities. Some have three
* led's while others have only one. The linux ipw driver defines
* led's for link state (associated or not), band (11a, 11g, 11b),
* and for link activity. We use one led and vary the blink rate
* according to the tx/rx traffic a la the ath driver.
*/
static __inline uint32_t
iwi_toggle_event(uint32_t r)
{
return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
}
static uint32_t
iwi_read_event(struct iwi_softc *sc)
{
return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
}
static void
iwi_write_event(struct iwi_softc *sc, uint32_t v)
{
MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
}
static void
iwi_led_done(void *arg)
{
struct iwi_softc *sc = arg;
sc->sc_blinking = 0;
}
/*
* Turn the activity LED off: flip the pin and then set a timer so no
* update will happen for the specified duration.
*/
static void
iwi_led_off(void *arg)
{
struct iwi_softc *sc = arg;
uint32_t v;
v = iwi_read_event(sc);
v &= ~sc->sc_ledpin;
iwi_write_event(sc, iwi_toggle_event(v));
callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
}
/*
* Blink the LED according to the specified on/off times.
*/
static void
iwi_led_blink(struct iwi_softc *sc, int on, int off)
{
uint32_t v;
v = iwi_read_event(sc);
v |= sc->sc_ledpin;
iwi_write_event(sc, iwi_toggle_event(v));
sc->sc_blinking = 1;
sc->sc_ledoff = off;
callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
}
static void
iwi_led_event(struct iwi_softc *sc, int event)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
static const struct {
u_int rate; /* tx/rx iwi rate */
u_int16_t timeOn; /* LED on time (ms) */
u_int16_t timeOff; /* LED off time (ms) */
} blinkrates[] = {
{ IWI_RATE_OFDM54, 40, 10 },
{ IWI_RATE_OFDM48, 44, 11 },
{ IWI_RATE_OFDM36, 50, 13 },
{ IWI_RATE_OFDM24, 57, 14 },
{ IWI_RATE_OFDM18, 67, 16 },
{ IWI_RATE_OFDM12, 80, 20 },
{ IWI_RATE_DS11, 100, 25 },
{ IWI_RATE_OFDM9, 133, 34 },
{ IWI_RATE_OFDM6, 160, 40 },
{ IWI_RATE_DS5, 200, 50 },
{ 6, 240, 58 }, /* XXX 3Mb/s if it existed */
{ IWI_RATE_DS2, 267, 66 },
{ IWI_RATE_DS1, 400, 100 },
{ 0, 500, 130 }, /* unknown rate/polling */
};
uint32_t txrate;
int j = 0; /* XXX silence compiler */
sc->sc_ledevent = ticks; /* time of last event */
if (sc->sc_blinking) /* don't interrupt active blink */
return;
switch (event) {
case IWI_LED_POLL:
j = N(blinkrates)-1;
break;
case IWI_LED_TX:
/* read current transmission rate from adapter */
txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
if (blinkrates[sc->sc_txrix].rate != txrate) {
for (j = 0; j < N(blinkrates)-1; j++)
if (blinkrates[j].rate == txrate)
break;
sc->sc_txrix = j;
} else
j = sc->sc_txrix;
break;
case IWI_LED_RX:
if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
for (j = 0; j < N(blinkrates)-1; j++)
if (blinkrates[j].rate == sc->sc_rxrate)
break;
sc->sc_rxrix = j;
} else
j = sc->sc_rxrix;
break;
}
/* XXX beware of overflow */
iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
(blinkrates[j].timeOff * hz) / 1000);
#undef N
}
static int
iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
int softled = sc->sc_softled;
int error;
error = sysctl_handle_int(oidp, &softled, 0, req);
if (error || !req->newptr)
return error;
softled = (softled != 0);
if (softled != sc->sc_softled) {
if (softled) {
uint32_t v = iwi_read_event(sc);
v &= ~sc->sc_ledpin;
iwi_write_event(sc, iwi_toggle_event(v));
}
sc->sc_softled = softled;
}
return 0;
}
static void
iwi_ledattach(struct iwi_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
sc->sc_blinking = 0;
sc->sc_ledstate = 1;
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
iwi_sysctl_softled, "I", "enable/disable software LED support");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
"pin setting to turn activity LED on");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
"idle time for inactivity LED (ticks)");
/* XXX for debugging */
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
"NIC type from EEPROM");
sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
sc->sc_softled = 1;
sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
if (sc->sc_nictype == 1) {
/*
* NB: led's are reversed.
*/
sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
}
}