1035 lines
26 KiB
C
1035 lines
26 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
||
|
* Use is subject to license terms.
|
||
|
*/
|
||
|
|
||
|
#pragma ident "@(#)dmu_tx.c 1.19 08/03/20 SMI"
|
||
|
|
||
|
#include <sys/dmu.h>
|
||
|
#include <sys/dmu_impl.h>
|
||
|
#include <sys/dbuf.h>
|
||
|
#include <sys/dmu_tx.h>
|
||
|
#include <sys/dmu_objset.h>
|
||
|
#include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
|
||
|
#include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
|
||
|
#include <sys/dsl_pool.h>
|
||
|
#include <sys/zap_impl.h> /* for fzap_default_block_shift */
|
||
|
#include <sys/spa.h>
|
||
|
#include <sys/zfs_context.h>
|
||
|
|
||
|
typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
|
||
|
uint64_t arg1, uint64_t arg2);
|
||
|
|
||
|
|
||
|
dmu_tx_t *
|
||
|
dmu_tx_create_dd(dsl_dir_t *dd)
|
||
|
{
|
||
|
dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
|
||
|
tx->tx_dir = dd;
|
||
|
if (dd)
|
||
|
tx->tx_pool = dd->dd_pool;
|
||
|
list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
|
||
|
offsetof(dmu_tx_hold_t, txh_node));
|
||
|
#ifdef ZFS_DEBUG
|
||
|
refcount_create(&tx->tx_space_written);
|
||
|
refcount_create(&tx->tx_space_freed);
|
||
|
#endif
|
||
|
return (tx);
|
||
|
}
|
||
|
|
||
|
dmu_tx_t *
|
||
|
dmu_tx_create(objset_t *os)
|
||
|
{
|
||
|
dmu_tx_t *tx = dmu_tx_create_dd(os->os->os_dsl_dataset->ds_dir);
|
||
|
tx->tx_objset = os;
|
||
|
tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os->os_dsl_dataset);
|
||
|
return (tx);
|
||
|
}
|
||
|
|
||
|
dmu_tx_t *
|
||
|
dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
|
||
|
{
|
||
|
dmu_tx_t *tx = dmu_tx_create_dd(NULL);
|
||
|
|
||
|
ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
|
||
|
tx->tx_pool = dp;
|
||
|
tx->tx_txg = txg;
|
||
|
tx->tx_anyobj = TRUE;
|
||
|
|
||
|
return (tx);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
dmu_tx_is_syncing(dmu_tx_t *tx)
|
||
|
{
|
||
|
return (tx->tx_anyobj);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
dmu_tx_private_ok(dmu_tx_t *tx)
|
||
|
{
|
||
|
return (tx->tx_anyobj);
|
||
|
}
|
||
|
|
||
|
static dmu_tx_hold_t *
|
||
|
dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
|
||
|
enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
dnode_t *dn = NULL;
|
||
|
int err;
|
||
|
|
||
|
if (object != DMU_NEW_OBJECT) {
|
||
|
err = dnode_hold(os->os, object, tx, &dn);
|
||
|
if (err) {
|
||
|
tx->tx_err = err;
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
if (err == 0 && tx->tx_txg != 0) {
|
||
|
mutex_enter(&dn->dn_mtx);
|
||
|
/*
|
||
|
* dn->dn_assigned_txg == tx->tx_txg doesn't pose a
|
||
|
* problem, but there's no way for it to happen (for
|
||
|
* now, at least).
|
||
|
*/
|
||
|
ASSERT(dn->dn_assigned_txg == 0);
|
||
|
dn->dn_assigned_txg = tx->tx_txg;
|
||
|
(void) refcount_add(&dn->dn_tx_holds, tx);
|
||
|
mutex_exit(&dn->dn_mtx);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
|
||
|
txh->txh_tx = tx;
|
||
|
txh->txh_dnode = dn;
|
||
|
#ifdef ZFS_DEBUG
|
||
|
txh->txh_type = type;
|
||
|
txh->txh_arg1 = arg1;
|
||
|
txh->txh_arg2 = arg2;
|
||
|
#endif
|
||
|
list_insert_tail(&tx->tx_holds, txh);
|
||
|
|
||
|
return (txh);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
|
||
|
{
|
||
|
/*
|
||
|
* If we're syncing, they can manipulate any object anyhow, and
|
||
|
* the hold on the dnode_t can cause problems.
|
||
|
*/
|
||
|
if (!dmu_tx_is_syncing(tx)) {
|
||
|
(void) dmu_tx_hold_object_impl(tx, os,
|
||
|
object, THT_NEWOBJECT, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
|
||
|
{
|
||
|
int err;
|
||
|
dmu_buf_impl_t *db;
|
||
|
|
||
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
||
|
db = dbuf_hold_level(dn, level, blkid, FTAG);
|
||
|
rw_exit(&dn->dn_struct_rwlock);
|
||
|
if (db == NULL)
|
||
|
return (EIO);
|
||
|
err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
|
||
|
dbuf_rele(db, FTAG);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
/* ARGSUSED */
|
||
|
static void
|
||
|
dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
|
||
|
{
|
||
|
dnode_t *dn = txh->txh_dnode;
|
||
|
uint64_t start, end, i;
|
||
|
int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
|
||
|
int err = 0;
|
||
|
|
||
|
if (len == 0)
|
||
|
return;
|
||
|
|
||
|
min_bs = SPA_MINBLOCKSHIFT;
|
||
|
max_bs = SPA_MAXBLOCKSHIFT;
|
||
|
min_ibs = DN_MIN_INDBLKSHIFT;
|
||
|
max_ibs = DN_MAX_INDBLKSHIFT;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* For i/o error checking, read the first and last level-0
|
||
|
* blocks (if they are not aligned), and all the level-1 blocks.
|
||
|
*/
|
||
|
|
||
|
if (dn) {
|
||
|
if (dn->dn_maxblkid == 0) {
|
||
|
err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
} else {
|
||
|
zio_t *zio = zio_root(dn->dn_objset->os_spa,
|
||
|
NULL, NULL, ZIO_FLAG_CANFAIL);
|
||
|
|
||
|
/* first level-0 block */
|
||
|
start = off >> dn->dn_datablkshift;
|
||
|
if (P2PHASE(off, dn->dn_datablksz) ||
|
||
|
len < dn->dn_datablksz) {
|
||
|
err = dmu_tx_check_ioerr(zio, dn, 0, start);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* last level-0 block */
|
||
|
end = (off+len-1) >> dn->dn_datablkshift;
|
||
|
if (end != start &&
|
||
|
P2PHASE(off+len, dn->dn_datablksz)) {
|
||
|
err = dmu_tx_check_ioerr(zio, dn, 0, end);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* level-1 blocks */
|
||
|
if (dn->dn_nlevels > 1) {
|
||
|
start >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
||
|
end >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
||
|
for (i = start+1; i < end; i++) {
|
||
|
err = dmu_tx_check_ioerr(zio, dn, 1, i);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
err = zio_wait(zio);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If there's more than one block, the blocksize can't change,
|
||
|
* so we can make a more precise estimate. Alternatively,
|
||
|
* if the dnode's ibs is larger than max_ibs, always use that.
|
||
|
* This ensures that if we reduce DN_MAX_INDBLKSHIFT,
|
||
|
* the code will still work correctly on existing pools.
|
||
|
*/
|
||
|
if (dn && (dn->dn_maxblkid != 0 || dn->dn_indblkshift > max_ibs)) {
|
||
|
min_ibs = max_ibs = dn->dn_indblkshift;
|
||
|
if (dn->dn_datablkshift != 0)
|
||
|
min_bs = max_bs = dn->dn_datablkshift;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* 'end' is the last thing we will access, not one past.
|
||
|
* This way we won't overflow when accessing the last byte.
|
||
|
*/
|
||
|
start = P2ALIGN(off, 1ULL << max_bs);
|
||
|
end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
|
||
|
txh->txh_space_towrite += end - start + 1;
|
||
|
|
||
|
start >>= min_bs;
|
||
|
end >>= min_bs;
|
||
|
|
||
|
epbs = min_ibs - SPA_BLKPTRSHIFT;
|
||
|
|
||
|
/*
|
||
|
* The object contains at most 2^(64 - min_bs) blocks,
|
||
|
* and each indirect level maps 2^epbs.
|
||
|
*/
|
||
|
for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
|
||
|
start >>= epbs;
|
||
|
end >>= epbs;
|
||
|
/*
|
||
|
* If we increase the number of levels of indirection,
|
||
|
* we'll need new blkid=0 indirect blocks. If start == 0,
|
||
|
* we're already accounting for that blocks; and if end == 0,
|
||
|
* we can't increase the number of levels beyond that.
|
||
|
*/
|
||
|
if (start != 0 && end != 0)
|
||
|
txh->txh_space_towrite += 1ULL << max_ibs;
|
||
|
txh->txh_space_towrite += (end - start + 1) << max_ibs;
|
||
|
}
|
||
|
|
||
|
ASSERT(txh->txh_space_towrite < 2 * DMU_MAX_ACCESS);
|
||
|
|
||
|
out:
|
||
|
if (err)
|
||
|
txh->txh_tx->tx_err = err;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dmu_tx_count_dnode(dmu_tx_hold_t *txh)
|
||
|
{
|
||
|
dnode_t *dn = txh->txh_dnode;
|
||
|
dnode_t *mdn = txh->txh_tx->tx_objset->os->os_meta_dnode;
|
||
|
uint64_t space = mdn->dn_datablksz +
|
||
|
((mdn->dn_nlevels-1) << mdn->dn_indblkshift);
|
||
|
|
||
|
if (dn && dn->dn_dbuf->db_blkptr &&
|
||
|
dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
|
||
|
dn->dn_dbuf->db_blkptr->blk_birth)) {
|
||
|
txh->txh_space_tooverwrite += space;
|
||
|
} else {
|
||
|
txh->txh_space_towrite += space;
|
||
|
if (dn && dn->dn_dbuf->db_blkptr)
|
||
|
txh->txh_space_tounref += space;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
ASSERT(len < DMU_MAX_ACCESS);
|
||
|
ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
|
||
|
|
||
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
||
|
object, THT_WRITE, off, len);
|
||
|
if (txh == NULL)
|
||
|
return;
|
||
|
|
||
|
dmu_tx_count_write(txh, off, len);
|
||
|
dmu_tx_count_dnode(txh);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
|
||
|
{
|
||
|
uint64_t blkid, nblks;
|
||
|
uint64_t space = 0, unref = 0;
|
||
|
dnode_t *dn = txh->txh_dnode;
|
||
|
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
|
||
|
spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
|
||
|
int dirty;
|
||
|
|
||
|
/*
|
||
|
* We don't need to use any locking to check for dirtyness
|
||
|
* because it's OK if we get stale data -- the dnode may become
|
||
|
* dirty immediately after our check anyway. This is just a
|
||
|
* means to avoid the expensive count when we aren't sure we
|
||
|
* need it. We need to be able to deal with a dirty dnode.
|
||
|
*/
|
||
|
dirty = list_link_active(&dn->dn_dirty_link[0]) |
|
||
|
list_link_active(&dn->dn_dirty_link[1]) |
|
||
|
list_link_active(&dn->dn_dirty_link[2]) |
|
||
|
list_link_active(&dn->dn_dirty_link[3]);
|
||
|
if (dirty || dn->dn_assigned_txg || dn->dn_phys->dn_nlevels == 0)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* the struct_rwlock protects us against dn_phys->dn_nlevels
|
||
|
* changing, in case (against all odds) we manage to dirty &
|
||
|
* sync out the changes after we check for being dirty.
|
||
|
* also, dbuf_hold_impl() wants us to have the struct_rwlock.
|
||
|
*
|
||
|
* It's fine to use dn_datablkshift rather than the dn_phys
|
||
|
* equivalent because if it is changing, maxblkid==0 and we will
|
||
|
* bail.
|
||
|
*/
|
||
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
||
|
if (dn->dn_phys->dn_maxblkid == 0) {
|
||
|
if (off == 0 && len >= dn->dn_datablksz) {
|
||
|
blkid = 0;
|
||
|
nblks = 1;
|
||
|
} else {
|
||
|
rw_exit(&dn->dn_struct_rwlock);
|
||
|
return;
|
||
|
}
|
||
|
} else {
|
||
|
blkid = off >> dn->dn_datablkshift;
|
||
|
nblks = (off + len) >> dn->dn_datablkshift;
|
||
|
|
||
|
if (blkid >= dn->dn_phys->dn_maxblkid) {
|
||
|
rw_exit(&dn->dn_struct_rwlock);
|
||
|
return;
|
||
|
}
|
||
|
if (blkid + nblks > dn->dn_phys->dn_maxblkid)
|
||
|
nblks = dn->dn_phys->dn_maxblkid - blkid;
|
||
|
|
||
|
/* don't bother after 128,000 blocks */
|
||
|
nblks = MIN(nblks, 128*1024);
|
||
|
}
|
||
|
|
||
|
if (dn->dn_phys->dn_nlevels == 1) {
|
||
|
int i;
|
||
|
for (i = 0; i < nblks; i++) {
|
||
|
blkptr_t *bp = dn->dn_phys->dn_blkptr;
|
||
|
ASSERT3U(blkid + i, <, dn->dn_phys->dn_nblkptr);
|
||
|
bp += blkid + i;
|
||
|
if (dsl_dataset_block_freeable(ds, bp->blk_birth)) {
|
||
|
dprintf_bp(bp, "can free old%s", "");
|
||
|
space += bp_get_dasize(spa, bp);
|
||
|
}
|
||
|
unref += BP_GET_ASIZE(bp);
|
||
|
}
|
||
|
nblks = 0;
|
||
|
}
|
||
|
|
||
|
while (nblks) {
|
||
|
dmu_buf_impl_t *dbuf;
|
||
|
int err, epbs, blkoff, tochk;
|
||
|
|
||
|
epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
||
|
blkoff = P2PHASE(blkid, 1<<epbs);
|
||
|
tochk = MIN((1<<epbs) - blkoff, nblks);
|
||
|
|
||
|
err = dbuf_hold_impl(dn, 1, blkid >> epbs, TRUE, FTAG, &dbuf);
|
||
|
if (err == 0) {
|
||
|
int i;
|
||
|
blkptr_t *bp;
|
||
|
|
||
|
err = dbuf_read(dbuf, NULL,
|
||
|
DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
|
||
|
if (err != 0) {
|
||
|
txh->txh_tx->tx_err = err;
|
||
|
dbuf_rele(dbuf, FTAG);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
bp = dbuf->db.db_data;
|
||
|
bp += blkoff;
|
||
|
|
||
|
for (i = 0; i < tochk; i++) {
|
||
|
if (dsl_dataset_block_freeable(ds,
|
||
|
bp[i].blk_birth)) {
|
||
|
dprintf_bp(&bp[i],
|
||
|
"can free old%s", "");
|
||
|
space += bp_get_dasize(spa, &bp[i]);
|
||
|
}
|
||
|
unref += BP_GET_ASIZE(bp);
|
||
|
}
|
||
|
dbuf_rele(dbuf, FTAG);
|
||
|
}
|
||
|
if (err && err != ENOENT) {
|
||
|
txh->txh_tx->tx_err = err;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
blkid += tochk;
|
||
|
nblks -= tochk;
|
||
|
}
|
||
|
rw_exit(&dn->dn_struct_rwlock);
|
||
|
|
||
|
txh->txh_space_tofree += space;
|
||
|
txh->txh_space_tounref += unref;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
dnode_t *dn;
|
||
|
uint64_t start, end, i;
|
||
|
int err, shift;
|
||
|
zio_t *zio;
|
||
|
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
|
||
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
||
|
object, THT_FREE, off, len);
|
||
|
if (txh == NULL)
|
||
|
return;
|
||
|
dn = txh->txh_dnode;
|
||
|
|
||
|
/* first block */
|
||
|
if (off != 0)
|
||
|
dmu_tx_count_write(txh, off, 1);
|
||
|
/* last block */
|
||
|
if (len != DMU_OBJECT_END)
|
||
|
dmu_tx_count_write(txh, off+len, 1);
|
||
|
|
||
|
if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
|
||
|
return;
|
||
|
if (len == DMU_OBJECT_END)
|
||
|
len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
|
||
|
|
||
|
/*
|
||
|
* For i/o error checking, read the first and last level-0
|
||
|
* blocks, and all the level-1 blocks. The above count_write's
|
||
|
* will take care of the level-0 blocks.
|
||
|
*/
|
||
|
if (dn->dn_nlevels > 1) {
|
||
|
shift = dn->dn_datablkshift + dn->dn_indblkshift -
|
||
|
SPA_BLKPTRSHIFT;
|
||
|
start = off >> shift;
|
||
|
end = dn->dn_datablkshift ? ((off+len) >> shift) : 0;
|
||
|
|
||
|
zio = zio_root(tx->tx_pool->dp_spa,
|
||
|
NULL, NULL, ZIO_FLAG_CANFAIL);
|
||
|
for (i = start; i <= end; i++) {
|
||
|
uint64_t ibyte = i << shift;
|
||
|
err = dnode_next_offset(dn, FALSE, &ibyte, 2, 1, 0);
|
||
|
i = ibyte >> shift;
|
||
|
if (err == ESRCH)
|
||
|
break;
|
||
|
if (err) {
|
||
|
tx->tx_err = err;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
err = dmu_tx_check_ioerr(zio, dn, 1, i);
|
||
|
if (err) {
|
||
|
tx->tx_err = err;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
err = zio_wait(zio);
|
||
|
if (err) {
|
||
|
tx->tx_err = err;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dmu_tx_count_dnode(txh);
|
||
|
dmu_tx_count_free(txh, off, len);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, char *name)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
dnode_t *dn;
|
||
|
uint64_t nblocks;
|
||
|
int epbs, err;
|
||
|
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
|
||
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
||
|
object, THT_ZAP, add, (uintptr_t)name);
|
||
|
if (txh == NULL)
|
||
|
return;
|
||
|
dn = txh->txh_dnode;
|
||
|
|
||
|
dmu_tx_count_dnode(txh);
|
||
|
|
||
|
if (dn == NULL) {
|
||
|
/*
|
||
|
* We will be able to fit a new object's entries into one leaf
|
||
|
* block. So there will be at most 2 blocks total,
|
||
|
* including the header block.
|
||
|
*/
|
||
|
dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ASSERT3P(dmu_ot[dn->dn_type].ot_byteswap, ==, zap_byteswap);
|
||
|
|
||
|
if (dn->dn_maxblkid == 0 && !add) {
|
||
|
/*
|
||
|
* If there is only one block (i.e. this is a micro-zap)
|
||
|
* and we are not adding anything, the accounting is simple.
|
||
|
*/
|
||
|
err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
|
||
|
if (err) {
|
||
|
tx->tx_err = err;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Use max block size here, since we don't know how much
|
||
|
* the size will change between now and the dbuf dirty call.
|
||
|
*/
|
||
|
if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
|
||
|
dn->dn_phys->dn_blkptr[0].blk_birth)) {
|
||
|
txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE;
|
||
|
} else {
|
||
|
txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
|
||
|
txh->txh_space_tounref +=
|
||
|
BP_GET_ASIZE(dn->dn_phys->dn_blkptr);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (dn->dn_maxblkid > 0 && name) {
|
||
|
/*
|
||
|
* access the name in this fat-zap so that we'll check
|
||
|
* for i/o errors to the leaf blocks, etc.
|
||
|
*/
|
||
|
err = zap_lookup(&dn->dn_objset->os, dn->dn_object, name,
|
||
|
8, 0, NULL);
|
||
|
if (err == EIO) {
|
||
|
tx->tx_err = err;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* 3 blocks overwritten: target leaf, ptrtbl block, header block
|
||
|
* 3 new blocks written if adding: new split leaf, 2 grown ptrtbl blocks
|
||
|
*/
|
||
|
dmu_tx_count_write(txh, dn->dn_maxblkid * dn->dn_datablksz,
|
||
|
(3 + add ? 3 : 0) << dn->dn_datablkshift);
|
||
|
|
||
|
/*
|
||
|
* If the modified blocks are scattered to the four winds,
|
||
|
* we'll have to modify an indirect twig for each.
|
||
|
*/
|
||
|
epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
||
|
for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs)
|
||
|
txh->txh_space_towrite += 3 << dn->dn_indblkshift;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
|
||
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
||
|
object, THT_BONUS, 0, 0);
|
||
|
if (txh)
|
||
|
dmu_tx_count_dnode(txh);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
|
||
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
||
|
DMU_NEW_OBJECT, THT_SPACE, space, 0);
|
||
|
|
||
|
txh->txh_space_towrite += space;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
int holds = 0;
|
||
|
|
||
|
/*
|
||
|
* By asserting that the tx is assigned, we're counting the
|
||
|
* number of dn_tx_holds, which is the same as the number of
|
||
|
* dn_holds. Otherwise, we'd be counting dn_holds, but
|
||
|
* dn_tx_holds could be 0.
|
||
|
*/
|
||
|
ASSERT(tx->tx_txg != 0);
|
||
|
|
||
|
/* if (tx->tx_anyobj == TRUE) */
|
||
|
/* return (0); */
|
||
|
|
||
|
for (txh = list_head(&tx->tx_holds); txh;
|
||
|
txh = list_next(&tx->tx_holds, txh)) {
|
||
|
if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
|
||
|
holds++;
|
||
|
}
|
||
|
|
||
|
return (holds);
|
||
|
}
|
||
|
|
||
|
#ifdef ZFS_DEBUG
|
||
|
void
|
||
|
dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
int match_object = FALSE, match_offset = FALSE;
|
||
|
dnode_t *dn = db->db_dnode;
|
||
|
|
||
|
ASSERT(tx->tx_txg != 0);
|
||
|
ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset->os);
|
||
|
ASSERT3U(dn->dn_object, ==, db->db.db_object);
|
||
|
|
||
|
if (tx->tx_anyobj)
|
||
|
return;
|
||
|
|
||
|
/* XXX No checking on the meta dnode for now */
|
||
|
if (db->db.db_object == DMU_META_DNODE_OBJECT)
|
||
|
return;
|
||
|
|
||
|
for (txh = list_head(&tx->tx_holds); txh;
|
||
|
txh = list_next(&tx->tx_holds, txh)) {
|
||
|
ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
|
||
|
if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
|
||
|
match_object = TRUE;
|
||
|
if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
|
||
|
int datablkshift = dn->dn_datablkshift ?
|
||
|
dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
|
||
|
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
||
|
int shift = datablkshift + epbs * db->db_level;
|
||
|
uint64_t beginblk = shift >= 64 ? 0 :
|
||
|
(txh->txh_arg1 >> shift);
|
||
|
uint64_t endblk = shift >= 64 ? 0 :
|
||
|
((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
|
||
|
uint64_t blkid = db->db_blkid;
|
||
|
|
||
|
/* XXX txh_arg2 better not be zero... */
|
||
|
|
||
|
dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
|
||
|
txh->txh_type, beginblk, endblk);
|
||
|
|
||
|
switch (txh->txh_type) {
|
||
|
case THT_WRITE:
|
||
|
if (blkid >= beginblk && blkid <= endblk)
|
||
|
match_offset = TRUE;
|
||
|
/*
|
||
|
* We will let this hold work for the bonus
|
||
|
* buffer so that we don't need to hold it
|
||
|
* when creating a new object.
|
||
|
*/
|
||
|
if (blkid == DB_BONUS_BLKID)
|
||
|
match_offset = TRUE;
|
||
|
/*
|
||
|
* They might have to increase nlevels,
|
||
|
* thus dirtying the new TLIBs. Or the
|
||
|
* might have to change the block size,
|
||
|
* thus dirying the new lvl=0 blk=0.
|
||
|
*/
|
||
|
if (blkid == 0)
|
||
|
match_offset = TRUE;
|
||
|
break;
|
||
|
case THT_FREE:
|
||
|
if (blkid == beginblk &&
|
||
|
(txh->txh_arg1 != 0 ||
|
||
|
dn->dn_maxblkid == 0))
|
||
|
match_offset = TRUE;
|
||
|
if (blkid == endblk &&
|
||
|
txh->txh_arg2 != DMU_OBJECT_END)
|
||
|
match_offset = TRUE;
|
||
|
break;
|
||
|
case THT_BONUS:
|
||
|
if (blkid == DB_BONUS_BLKID)
|
||
|
match_offset = TRUE;
|
||
|
break;
|
||
|
case THT_ZAP:
|
||
|
match_offset = TRUE;
|
||
|
break;
|
||
|
case THT_NEWOBJECT:
|
||
|
match_object = TRUE;
|
||
|
break;
|
||
|
default:
|
||
|
ASSERT(!"bad txh_type");
|
||
|
}
|
||
|
}
|
||
|
if (match_object && match_offset)
|
||
|
return;
|
||
|
}
|
||
|
panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
|
||
|
(u_longlong_t)db->db.db_object, db->db_level,
|
||
|
(u_longlong_t)db->db_blkid);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int
|
||
|
dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
spa_t *spa = tx->tx_pool->dp_spa;
|
||
|
uint64_t lsize, asize, fsize, usize;
|
||
|
uint64_t towrite, tofree, tooverwrite, tounref;
|
||
|
|
||
|
ASSERT3U(tx->tx_txg, ==, 0);
|
||
|
|
||
|
if (tx->tx_err)
|
||
|
return (tx->tx_err);
|
||
|
|
||
|
if (spa_state(spa) == POOL_STATE_IO_FAILURE) {
|
||
|
/*
|
||
|
* If the user has indicated a blocking failure mode
|
||
|
* then return ERESTART which will block in dmu_tx_wait().
|
||
|
* Otherwise, return EIO so that an error can get
|
||
|
* propagated back to the VOP calls.
|
||
|
*
|
||
|
* Note that we always honor the txg_how flag regardless
|
||
|
* of the failuremode setting.
|
||
|
*/
|
||
|
if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
|
||
|
txg_how != TXG_WAIT)
|
||
|
return (EIO);
|
||
|
|
||
|
return (ERESTART);
|
||
|
}
|
||
|
|
||
|
tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
|
||
|
tx->tx_needassign_txh = NULL;
|
||
|
|
||
|
/*
|
||
|
* NB: No error returns are allowed after txg_hold_open, but
|
||
|
* before processing the dnode holds, due to the
|
||
|
* dmu_tx_unassign() logic.
|
||
|
*/
|
||
|
|
||
|
towrite = tofree = tooverwrite = tounref = 0;
|
||
|
for (txh = list_head(&tx->tx_holds); txh;
|
||
|
txh = list_next(&tx->tx_holds, txh)) {
|
||
|
dnode_t *dn = txh->txh_dnode;
|
||
|
if (dn != NULL) {
|
||
|
mutex_enter(&dn->dn_mtx);
|
||
|
if (dn->dn_assigned_txg == tx->tx_txg - 1) {
|
||
|
mutex_exit(&dn->dn_mtx);
|
||
|
tx->tx_needassign_txh = txh;
|
||
|
return (ERESTART);
|
||
|
}
|
||
|
if (dn->dn_assigned_txg == 0)
|
||
|
dn->dn_assigned_txg = tx->tx_txg;
|
||
|
ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
|
||
|
(void) refcount_add(&dn->dn_tx_holds, tx);
|
||
|
mutex_exit(&dn->dn_mtx);
|
||
|
}
|
||
|
towrite += txh->txh_space_towrite;
|
||
|
tofree += txh->txh_space_tofree;
|
||
|
tooverwrite += txh->txh_space_tooverwrite;
|
||
|
tounref += txh->txh_space_tounref;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* NB: This check must be after we've held the dnodes, so that
|
||
|
* the dmu_tx_unassign() logic will work properly
|
||
|
*/
|
||
|
if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg)
|
||
|
return (ERESTART);
|
||
|
|
||
|
/*
|
||
|
* If a snapshot has been taken since we made our estimates,
|
||
|
* assume that we won't be able to free or overwrite anything.
|
||
|
*/
|
||
|
if (tx->tx_objset &&
|
||
|
dsl_dataset_prev_snap_txg(tx->tx_objset->os->os_dsl_dataset) >
|
||
|
tx->tx_lastsnap_txg) {
|
||
|
towrite += tooverwrite;
|
||
|
tooverwrite = tofree = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert logical size to worst-case allocated size.
|
||
|
*/
|
||
|
fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
|
||
|
lsize = towrite + tooverwrite;
|
||
|
asize = spa_get_asize(tx->tx_pool->dp_spa, lsize);
|
||
|
usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
|
||
|
|
||
|
#ifdef ZFS_DEBUG
|
||
|
tx->tx_space_towrite = asize;
|
||
|
tx->tx_space_tofree = tofree;
|
||
|
tx->tx_space_tooverwrite = tooverwrite;
|
||
|
tx->tx_space_tounref = tounref;
|
||
|
#endif
|
||
|
|
||
|
if (tx->tx_dir && asize != 0) {
|
||
|
int err = dsl_dir_tempreserve_space(tx->tx_dir,
|
||
|
lsize, asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
|
||
|
if (err)
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dmu_tx_unassign(dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
|
||
|
if (tx->tx_txg == 0)
|
||
|
return;
|
||
|
|
||
|
txg_rele_to_quiesce(&tx->tx_txgh);
|
||
|
|
||
|
for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
|
||
|
txh = list_next(&tx->tx_holds, txh)) {
|
||
|
dnode_t *dn = txh->txh_dnode;
|
||
|
|
||
|
if (dn == NULL)
|
||
|
continue;
|
||
|
mutex_enter(&dn->dn_mtx);
|
||
|
ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
|
||
|
|
||
|
if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
|
||
|
dn->dn_assigned_txg = 0;
|
||
|
cv_broadcast(&dn->dn_notxholds);
|
||
|
}
|
||
|
mutex_exit(&dn->dn_mtx);
|
||
|
}
|
||
|
|
||
|
txg_rele_to_sync(&tx->tx_txgh);
|
||
|
|
||
|
tx->tx_lasttried_txg = tx->tx_txg;
|
||
|
tx->tx_txg = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Assign tx to a transaction group. txg_how can be one of:
|
||
|
*
|
||
|
* (1) TXG_WAIT. If the current open txg is full, waits until there's
|
||
|
* a new one. This should be used when you're not holding locks.
|
||
|
* If will only fail if we're truly out of space (or over quota).
|
||
|
*
|
||
|
* (2) TXG_NOWAIT. If we can't assign into the current open txg without
|
||
|
* blocking, returns immediately with ERESTART. This should be used
|
||
|
* whenever you're holding locks. On an ERESTART error, the caller
|
||
|
* should drop locks, do a dmu_tx_wait(tx), and try again.
|
||
|
*
|
||
|
* (3) A specific txg. Use this if you need to ensure that multiple
|
||
|
* transactions all sync in the same txg. Like TXG_NOWAIT, it
|
||
|
* returns ERESTART if it can't assign you into the requested txg.
|
||
|
*/
|
||
|
int
|
||
|
dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
ASSERT(txg_how != 0);
|
||
|
ASSERT(!dsl_pool_sync_context(tx->tx_pool));
|
||
|
|
||
|
while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
|
||
|
dmu_tx_unassign(tx);
|
||
|
|
||
|
if (err != ERESTART || txg_how != TXG_WAIT)
|
||
|
return (err);
|
||
|
|
||
|
dmu_tx_wait(tx);
|
||
|
}
|
||
|
|
||
|
txg_rele_to_quiesce(&tx->tx_txgh);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_wait(dmu_tx_t *tx)
|
||
|
{
|
||
|
spa_t *spa = tx->tx_pool->dp_spa;
|
||
|
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
|
||
|
/*
|
||
|
* It's possible that the pool has become active after this thread
|
||
|
* has tried to obtain a tx. If that's the case then his
|
||
|
* tx_lasttried_txg would not have been assigned.
|
||
|
*/
|
||
|
if (spa_state(spa) == POOL_STATE_IO_FAILURE ||
|
||
|
tx->tx_lasttried_txg == 0) {
|
||
|
txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1);
|
||
|
} else if (tx->tx_needassign_txh) {
|
||
|
dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
|
||
|
|
||
|
mutex_enter(&dn->dn_mtx);
|
||
|
while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
|
||
|
cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
|
||
|
mutex_exit(&dn->dn_mtx);
|
||
|
tx->tx_needassign_txh = NULL;
|
||
|
} else {
|
||
|
txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
|
||
|
{
|
||
|
#ifdef ZFS_DEBUG
|
||
|
if (tx->tx_dir == NULL || delta == 0)
|
||
|
return;
|
||
|
|
||
|
if (delta > 0) {
|
||
|
ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
|
||
|
tx->tx_space_towrite);
|
||
|
(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
|
||
|
} else {
|
||
|
(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_commit(dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
|
||
|
ASSERT(tx->tx_txg != 0);
|
||
|
|
||
|
while (txh = list_head(&tx->tx_holds)) {
|
||
|
dnode_t *dn = txh->txh_dnode;
|
||
|
|
||
|
list_remove(&tx->tx_holds, txh);
|
||
|
kmem_free(txh, sizeof (dmu_tx_hold_t));
|
||
|
if (dn == NULL)
|
||
|
continue;
|
||
|
mutex_enter(&dn->dn_mtx);
|
||
|
ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
|
||
|
|
||
|
if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
|
||
|
dn->dn_assigned_txg = 0;
|
||
|
cv_broadcast(&dn->dn_notxholds);
|
||
|
}
|
||
|
mutex_exit(&dn->dn_mtx);
|
||
|
dnode_rele(dn, tx);
|
||
|
}
|
||
|
|
||
|
if (tx->tx_tempreserve_cookie)
|
||
|
dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
|
||
|
|
||
|
if (tx->tx_anyobj == FALSE)
|
||
|
txg_rele_to_sync(&tx->tx_txgh);
|
||
|
list_destroy(&tx->tx_holds);
|
||
|
#ifdef ZFS_DEBUG
|
||
|
dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
|
||
|
tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
|
||
|
tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
|
||
|
refcount_destroy_many(&tx->tx_space_written,
|
||
|
refcount_count(&tx->tx_space_written));
|
||
|
refcount_destroy_many(&tx->tx_space_freed,
|
||
|
refcount_count(&tx->tx_space_freed));
|
||
|
#endif
|
||
|
kmem_free(tx, sizeof (dmu_tx_t));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dmu_tx_abort(dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_tx_hold_t *txh;
|
||
|
|
||
|
ASSERT(tx->tx_txg == 0);
|
||
|
|
||
|
while (txh = list_head(&tx->tx_holds)) {
|
||
|
dnode_t *dn = txh->txh_dnode;
|
||
|
|
||
|
list_remove(&tx->tx_holds, txh);
|
||
|
kmem_free(txh, sizeof (dmu_tx_hold_t));
|
||
|
if (dn != NULL)
|
||
|
dnode_rele(dn, tx);
|
||
|
}
|
||
|
list_destroy(&tx->tx_holds);
|
||
|
#ifdef ZFS_DEBUG
|
||
|
refcount_destroy_many(&tx->tx_space_written,
|
||
|
refcount_count(&tx->tx_space_written));
|
||
|
refcount_destroy_many(&tx->tx_space_freed,
|
||
|
refcount_count(&tx->tx_space_freed));
|
||
|
#endif
|
||
|
kmem_free(tx, sizeof (dmu_tx_t));
|
||
|
}
|
||
|
|
||
|
uint64_t
|
||
|
dmu_tx_get_txg(dmu_tx_t *tx)
|
||
|
{
|
||
|
ASSERT(tx->tx_txg != 0);
|
||
|
return (tx->tx_txg);
|
||
|
}
|