freebsd-nq/sys/kern/subr_bus_dma.c

832 lines
20 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 EMC Corp.
* All rights reserved.
*
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_bus.h"
#include "opt_iommu.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/ktr.h>
#include <sys/mbuf.h>
#include <sys/memdesc.h>
#include <sys/proc.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/pmap.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
#include <opencrypto/cryptodev.h>
#include <machine/bus.h>
/*
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
* Load up data starting at offset within a region specified by a
* list of virtual address ranges until either length or the region
* are exhausted.
*/
static int
_bus_dmamap_load_vlist(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dma_segment_t *list, int sglist_cnt, struct pmap *pmap, int *nsegs,
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
int flags, size_t offset, size_t length)
{
int error;
error = 0;
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
for (; sglist_cnt > 0 && length != 0; sglist_cnt--, list++) {
char *addr;
size_t ds_len;
KASSERT((offset < list->ds_len),
("Invalid mid-segment offset"));
addr = (char *)(uintptr_t)list->ds_addr + offset;
ds_len = list->ds_len - offset;
offset = 0;
if (ds_len > length)
ds_len = length;
length -= ds_len;
KASSERT((ds_len != 0), ("Segment length is zero"));
error = _bus_dmamap_load_buffer(dmat, map, addr, ds_len, pmap,
flags, NULL, nsegs);
if (error)
break;
}
return (error);
}
/*
* Load a list of physical addresses.
*/
static int
_bus_dmamap_load_plist(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dma_segment_t *list, int sglist_cnt, int *nsegs, int flags)
{
int error;
error = 0;
for (; sglist_cnt > 0; sglist_cnt--, list++) {
error = _bus_dmamap_load_phys(dmat, map,
(vm_paddr_t)list->ds_addr, list->ds_len, flags, NULL,
nsegs);
if (error)
break;
}
return (error);
}
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
/*
* Load an unmapped mbuf
*/
static int
_bus_dmamap_load_mbuf_epg(bus_dma_tag_t dmat, bus_dmamap_t map,
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
struct mbuf *m, bus_dma_segment_t *segs, int *nsegs, int flags)
{
int error, i, off, len, pglen, pgoff, seglen, segoff;
M_ASSERTEXTPG(m);
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
len = m->m_len;
error = 0;
/* Skip over any data removed from the front. */
off = mtod(m, vm_offset_t);
if (m->m_epg_hdrlen != 0) {
if (off >= m->m_epg_hdrlen) {
off -= m->m_epg_hdrlen;
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
} else {
seglen = m->m_epg_hdrlen - off;
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
segoff = off;
seglen = min(seglen, len);
off = 0;
len -= seglen;
error = _bus_dmamap_load_buffer(dmat, map,
&m->m_epg_hdr[segoff], seglen, kernel_pmap,
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
flags, segs, nsegs);
}
}
pgoff = m->m_epg_1st_off;
for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
pglen = m_epg_pagelen(m, i, pgoff);
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
if (off >= pglen) {
off -= pglen;
pgoff = 0;
continue;
}
seglen = pglen - off;
segoff = pgoff + off;
off = 0;
seglen = min(seglen, len);
len -= seglen;
error = _bus_dmamap_load_phys(dmat, map,
m->m_epg_pa[i] + segoff, seglen, flags, segs, nsegs);
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
pgoff = 0;
};
if (len != 0 && error == 0) {
KASSERT((off + len) <= m->m_epg_trllen,
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
("off + len > trail (%d + %d > %d)", off, len,
m->m_epg_trllen));
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
error = _bus_dmamap_load_buffer(dmat, map,
&m->m_epg_trail[off], len, kernel_pmap, flags, segs,
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
nsegs);
}
return (error);
}
/*
* Load a single mbuf.
*/
static int
_bus_dmamap_load_single_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *m, bus_dma_segment_t *segs, int *nsegs, int flags)
{
int error;
error = 0;
if ((m->m_flags & M_EXTPG) != 0)
error = _bus_dmamap_load_mbuf_epg(dmat, map, m, segs, nsegs,
flags);
else
error = _bus_dmamap_load_buffer(dmat, map, m->m_data, m->m_len,
kernel_pmap, flags | BUS_DMA_LOAD_MBUF, segs, nsegs);
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, *nsegs);
return (error);
}
/*
* Load an mbuf chain.
*/
static int
_bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *m0, bus_dma_segment_t *segs, int *nsegs, int flags)
{
struct mbuf *m;
int error;
error = 0;
for (m = m0; m != NULL && error == 0; m = m->m_next) {
if (m->m_len > 0) {
if ((m->m_flags & M_EXTPG) != 0)
error = _bus_dmamap_load_mbuf_epg(dmat,
Add an external mbuf buffer type that holds multiple unmapped pages. Unmapped mbufs allow sendfile to carry multiple pages of data in a single mbuf, without mapping those pages. It is a requirement for Netflix's in-kernel TLS, and provides a 5-10% CPU savings on heavy web serving workloads when used by sendfile, due to effectively compressing socket buffers by an order of magnitude, and hence reducing cache misses. For this new external mbuf buffer type (EXT_PGS), the ext_buf pointer now points to a struct mbuf_ext_pgs structure instead of a data buffer. This structure contains an array of physical addresses (this reduces cache misses compared to an earlier version that stored an array of vm_page_t pointers). It also stores additional fields needed for in-kernel TLS such as the TLS header and trailer data that are currently unused. To more easily detect these mbufs, the M_NOMAP flag is set in m_flags in addition to M_EXT. Various functions like m_copydata() have been updated to safely access packet contents (using uiomove_fromphys()), to make things like BPF safe. NIC drivers advertise support for unmapped mbufs on transmit via a new IFCAP_NOMAP capability. This capability can be toggled via the new 'nomap' and '-nomap' ifconfig(8) commands. For NIC drivers that only transmit packet contents via DMA and use bus_dma, adding the capability to if_capabilities and if_capenable should be all that is required. If a NIC does not support unmapped mbufs, they are converted to a chain of mapped mbufs (using sf_bufs to provide the mapping) in ip_output or ip6_output. If an unmapped mbuf requires software checksums, it is also converted to a chain of mapped mbufs before computing the checksum. Submitted by: gallatin (earlier version) Reviewed by: gallatin, hselasky, rrs Discussed with: ae, kp (firewalls) Relnotes: yes Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20616
2019-06-29 00:48:33 +00:00
map, m, segs, nsegs, flags);
else
error = _bus_dmamap_load_buffer(dmat, map,
m->m_data, m->m_len, kernel_pmap,
flags | BUS_DMA_LOAD_MBUF, segs, nsegs);
}
}
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, *nsegs);
return (error);
}
/*
* Load from block io.
*/
static int
_bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio,
int *nsegs, int flags)
{
Implement the concept of the unmapped VMIO buffers, i.e. buffers which do not map the b_pages pages into buffer_map KVA. The use of the unmapped buffers eliminate the need to perform TLB shootdown for mapping on the buffer creation and reuse, greatly reducing the amount of IPIs for shootdown on big-SMP machines and eliminating up to 25-30% of the system time on i/o intensive workloads. The unmapped buffer should be explicitely requested by the GB_UNMAPPED flag by the consumer. For unmapped buffer, no KVA reservation is performed at all. The consumer might request unmapped buffer which does have a KVA reserve, to manually map it without recursing into buffer cache and blocking, with the GB_KVAALLOC flag. When the mapped buffer is requested and unmapped buffer already exists, the cache performs an upgrade, possibly reusing the KVA reservation. Unmapped buffer is translated into unmapped bio in g_vfs_strategy(). Unmapped bio carry a pointer to the vm_page_t array, offset and length instead of the data pointer. The provider which processes the bio should explicitely specify a readiness to accept unmapped bio, otherwise g_down geom thread performs the transient upgrade of the bio request by mapping the pages into the new bio_transient_map KVA submap. The bio_transient_map submap claims up to 10% of the buffer map, and the total buffer_map + bio_transient_map KVA usage stays the same. Still, it could be manually tuned by kern.bio_transient_maxcnt tunable, in the units of the transient mappings. Eventually, the bio_transient_map could be removed after all geom classes and drivers can accept unmapped i/o requests. Unmapped support can be turned off by the vfs.unmapped_buf_allowed tunable, disabling which makes the buffer (or cluster) creation requests to ignore GB_UNMAPPED and GB_KVAALLOC flags. Unmapped buffers are only enabled by default on the architectures where pmap_copy_page() was implemented and tested. In the rework, filesystem metadata is not the subject to maxbufspace limit anymore. Since the metadata buffers are always mapped, the buffers still have to fit into the buffer map, which provides a reasonable (but practically unreachable) upper bound on it. The non-metadata buffer allocations, both mapped and unmapped, is accounted against maxbufspace, as before. Effectively, this means that the maxbufspace is forced on mapped and unmapped buffers separately. The pre-patch bufspace limiting code did not worked, because buffer_map fragmentation does not allow the limit to be reached. By Jeff Roberson request, the getnewbuf() function was split into smaller single-purpose functions. Sponsored by: The FreeBSD Foundation Discussed with: jeff (previous version) Tested by: pho, scottl (previous version), jhb, bf MFC after: 2 weeks
2013-03-19 14:13:12 +00:00
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
if ((bio->bio_flags & BIO_VLIST) != 0) {
bus_dma_segment_t *segs = (bus_dma_segment_t *)bio->bio_data;
return (_bus_dmamap_load_vlist(dmat, map, segs, bio->bio_ma_n,
kernel_pmap, nsegs, flags, bio->bio_ma_offset,
bio->bio_bcount));
Implement the concept of the unmapped VMIO buffers, i.e. buffers which do not map the b_pages pages into buffer_map KVA. The use of the unmapped buffers eliminate the need to perform TLB shootdown for mapping on the buffer creation and reuse, greatly reducing the amount of IPIs for shootdown on big-SMP machines and eliminating up to 25-30% of the system time on i/o intensive workloads. The unmapped buffer should be explicitely requested by the GB_UNMAPPED flag by the consumer. For unmapped buffer, no KVA reservation is performed at all. The consumer might request unmapped buffer which does have a KVA reserve, to manually map it without recursing into buffer cache and blocking, with the GB_KVAALLOC flag. When the mapped buffer is requested and unmapped buffer already exists, the cache performs an upgrade, possibly reusing the KVA reservation. Unmapped buffer is translated into unmapped bio in g_vfs_strategy(). Unmapped bio carry a pointer to the vm_page_t array, offset and length instead of the data pointer. The provider which processes the bio should explicitely specify a readiness to accept unmapped bio, otherwise g_down geom thread performs the transient upgrade of the bio request by mapping the pages into the new bio_transient_map KVA submap. The bio_transient_map submap claims up to 10% of the buffer map, and the total buffer_map + bio_transient_map KVA usage stays the same. Still, it could be manually tuned by kern.bio_transient_maxcnt tunable, in the units of the transient mappings. Eventually, the bio_transient_map could be removed after all geom classes and drivers can accept unmapped i/o requests. Unmapped support can be turned off by the vfs.unmapped_buf_allowed tunable, disabling which makes the buffer (or cluster) creation requests to ignore GB_UNMAPPED and GB_KVAALLOC flags. Unmapped buffers are only enabled by default on the architectures where pmap_copy_page() was implemented and tested. In the rework, filesystem metadata is not the subject to maxbufspace limit anymore. Since the metadata buffers are always mapped, the buffers still have to fit into the buffer map, which provides a reasonable (but practically unreachable) upper bound on it. The non-metadata buffer allocations, both mapped and unmapped, is accounted against maxbufspace, as before. Effectively, this means that the maxbufspace is forced on mapped and unmapped buffers separately. The pre-patch bufspace limiting code did not worked, because buffer_map fragmentation does not allow the limit to be reached. By Jeff Roberson request, the getnewbuf() function was split into smaller single-purpose functions. Sponsored by: The FreeBSD Foundation Discussed with: jeff (previous version) Tested by: pho, scottl (previous version), jhb, bf MFC after: 2 weeks
2013-03-19 14:13:12 +00:00
}
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
if ((bio->bio_flags & BIO_UNMAPPED) != 0)
return (_bus_dmamap_load_ma(dmat, map, bio->bio_ma,
bio->bio_bcount, bio->bio_ma_offset, flags, NULL, nsegs));
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
return (_bus_dmamap_load_buffer(dmat, map, bio->bio_data,
bio->bio_bcount, kernel_pmap, flags, NULL, nsegs));
}
int
bus_dmamap_load_ma_triv(bus_dma_tag_t dmat, bus_dmamap_t map,
struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
bus_dma_segment_t *segs, int *segp)
{
vm_paddr_t paddr;
bus_size_t len;
int error, i;
Implement the concept of the unmapped VMIO buffers, i.e. buffers which do not map the b_pages pages into buffer_map KVA. The use of the unmapped buffers eliminate the need to perform TLB shootdown for mapping on the buffer creation and reuse, greatly reducing the amount of IPIs for shootdown on big-SMP machines and eliminating up to 25-30% of the system time on i/o intensive workloads. The unmapped buffer should be explicitely requested by the GB_UNMAPPED flag by the consumer. For unmapped buffer, no KVA reservation is performed at all. The consumer might request unmapped buffer which does have a KVA reserve, to manually map it without recursing into buffer cache and blocking, with the GB_KVAALLOC flag. When the mapped buffer is requested and unmapped buffer already exists, the cache performs an upgrade, possibly reusing the KVA reservation. Unmapped buffer is translated into unmapped bio in g_vfs_strategy(). Unmapped bio carry a pointer to the vm_page_t array, offset and length instead of the data pointer. The provider which processes the bio should explicitely specify a readiness to accept unmapped bio, otherwise g_down geom thread performs the transient upgrade of the bio request by mapping the pages into the new bio_transient_map KVA submap. The bio_transient_map submap claims up to 10% of the buffer map, and the total buffer_map + bio_transient_map KVA usage stays the same. Still, it could be manually tuned by kern.bio_transient_maxcnt tunable, in the units of the transient mappings. Eventually, the bio_transient_map could be removed after all geom classes and drivers can accept unmapped i/o requests. Unmapped support can be turned off by the vfs.unmapped_buf_allowed tunable, disabling which makes the buffer (or cluster) creation requests to ignore GB_UNMAPPED and GB_KVAALLOC flags. Unmapped buffers are only enabled by default on the architectures where pmap_copy_page() was implemented and tested. In the rework, filesystem metadata is not the subject to maxbufspace limit anymore. Since the metadata buffers are always mapped, the buffers still have to fit into the buffer map, which provides a reasonable (but practically unreachable) upper bound on it. The non-metadata buffer allocations, both mapped and unmapped, is accounted against maxbufspace, as before. Effectively, this means that the maxbufspace is forced on mapped and unmapped buffers separately. The pre-patch bufspace limiting code did not worked, because buffer_map fragmentation does not allow the limit to be reached. By Jeff Roberson request, the getnewbuf() function was split into smaller single-purpose functions. Sponsored by: The FreeBSD Foundation Discussed with: jeff (previous version) Tested by: pho, scottl (previous version), jhb, bf MFC after: 2 weeks
2013-03-19 14:13:12 +00:00
error = 0;
for (i = 0; tlen > 0; i++, tlen -= len) {
len = min(PAGE_SIZE - ma_offs, tlen);
paddr = VM_PAGE_TO_PHYS(ma[i]) + ma_offs;
Implement the concept of the unmapped VMIO buffers, i.e. buffers which do not map the b_pages pages into buffer_map KVA. The use of the unmapped buffers eliminate the need to perform TLB shootdown for mapping on the buffer creation and reuse, greatly reducing the amount of IPIs for shootdown on big-SMP machines and eliminating up to 25-30% of the system time on i/o intensive workloads. The unmapped buffer should be explicitely requested by the GB_UNMAPPED flag by the consumer. For unmapped buffer, no KVA reservation is performed at all. The consumer might request unmapped buffer which does have a KVA reserve, to manually map it without recursing into buffer cache and blocking, with the GB_KVAALLOC flag. When the mapped buffer is requested and unmapped buffer already exists, the cache performs an upgrade, possibly reusing the KVA reservation. Unmapped buffer is translated into unmapped bio in g_vfs_strategy(). Unmapped bio carry a pointer to the vm_page_t array, offset and length instead of the data pointer. The provider which processes the bio should explicitely specify a readiness to accept unmapped bio, otherwise g_down geom thread performs the transient upgrade of the bio request by mapping the pages into the new bio_transient_map KVA submap. The bio_transient_map submap claims up to 10% of the buffer map, and the total buffer_map + bio_transient_map KVA usage stays the same. Still, it could be manually tuned by kern.bio_transient_maxcnt tunable, in the units of the transient mappings. Eventually, the bio_transient_map could be removed after all geom classes and drivers can accept unmapped i/o requests. Unmapped support can be turned off by the vfs.unmapped_buf_allowed tunable, disabling which makes the buffer (or cluster) creation requests to ignore GB_UNMAPPED and GB_KVAALLOC flags. Unmapped buffers are only enabled by default on the architectures where pmap_copy_page() was implemented and tested. In the rework, filesystem metadata is not the subject to maxbufspace limit anymore. Since the metadata buffers are always mapped, the buffers still have to fit into the buffer map, which provides a reasonable (but practically unreachable) upper bound on it. The non-metadata buffer allocations, both mapped and unmapped, is accounted against maxbufspace, as before. Effectively, this means that the maxbufspace is forced on mapped and unmapped buffers separately. The pre-patch bufspace limiting code did not worked, because buffer_map fragmentation does not allow the limit to be reached. By Jeff Roberson request, the getnewbuf() function was split into smaller single-purpose functions. Sponsored by: The FreeBSD Foundation Discussed with: jeff (previous version) Tested by: pho, scottl (previous version), jhb, bf MFC after: 2 weeks
2013-03-19 14:13:12 +00:00
error = _bus_dmamap_load_phys(dmat, map, paddr, len,
flags, segs, segp);
Implement the concept of the unmapped VMIO buffers, i.e. buffers which do not map the b_pages pages into buffer_map KVA. The use of the unmapped buffers eliminate the need to perform TLB shootdown for mapping on the buffer creation and reuse, greatly reducing the amount of IPIs for shootdown on big-SMP machines and eliminating up to 25-30% of the system time on i/o intensive workloads. The unmapped buffer should be explicitely requested by the GB_UNMAPPED flag by the consumer. For unmapped buffer, no KVA reservation is performed at all. The consumer might request unmapped buffer which does have a KVA reserve, to manually map it without recursing into buffer cache and blocking, with the GB_KVAALLOC flag. When the mapped buffer is requested and unmapped buffer already exists, the cache performs an upgrade, possibly reusing the KVA reservation. Unmapped buffer is translated into unmapped bio in g_vfs_strategy(). Unmapped bio carry a pointer to the vm_page_t array, offset and length instead of the data pointer. The provider which processes the bio should explicitely specify a readiness to accept unmapped bio, otherwise g_down geom thread performs the transient upgrade of the bio request by mapping the pages into the new bio_transient_map KVA submap. The bio_transient_map submap claims up to 10% of the buffer map, and the total buffer_map + bio_transient_map KVA usage stays the same. Still, it could be manually tuned by kern.bio_transient_maxcnt tunable, in the units of the transient mappings. Eventually, the bio_transient_map could be removed after all geom classes and drivers can accept unmapped i/o requests. Unmapped support can be turned off by the vfs.unmapped_buf_allowed tunable, disabling which makes the buffer (or cluster) creation requests to ignore GB_UNMAPPED and GB_KVAALLOC flags. Unmapped buffers are only enabled by default on the architectures where pmap_copy_page() was implemented and tested. In the rework, filesystem metadata is not the subject to maxbufspace limit anymore. Since the metadata buffers are always mapped, the buffers still have to fit into the buffer map, which provides a reasonable (but practically unreachable) upper bound on it. The non-metadata buffer allocations, both mapped and unmapped, is accounted against maxbufspace, as before. Effectively, this means that the maxbufspace is forced on mapped and unmapped buffers separately. The pre-patch bufspace limiting code did not worked, because buffer_map fragmentation does not allow the limit to be reached. By Jeff Roberson request, the getnewbuf() function was split into smaller single-purpose functions. Sponsored by: The FreeBSD Foundation Discussed with: jeff (previous version) Tested by: pho, scottl (previous version), jhb, bf MFC after: 2 weeks
2013-03-19 14:13:12 +00:00
if (error != 0)
break;
ma_offs = 0;
}
return (error);
}
/*
* Load a cam control block.
*/
static int
_bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb,
int *nsegs, int flags)
{
struct ccb_hdr *ccb_h;
void *data_ptr;
int error;
uint32_t dxfer_len;
uint16_t sglist_cnt;
error = 0;
ccb_h = &ccb->ccb_h;
switch (ccb_h->func_code) {
case XPT_SCSI_IO: {
struct ccb_scsiio *csio;
csio = &ccb->csio;
data_ptr = csio->data_ptr;
dxfer_len = csio->dxfer_len;
sglist_cnt = csio->sglist_cnt;
break;
}
case XPT_CONT_TARGET_IO: {
struct ccb_scsiio *ctio;
ctio = &ccb->ctio;
data_ptr = ctio->data_ptr;
dxfer_len = ctio->dxfer_len;
sglist_cnt = ctio->sglist_cnt;
break;
}
case XPT_ATA_IO: {
struct ccb_ataio *ataio;
ataio = &ccb->ataio;
data_ptr = ataio->data_ptr;
dxfer_len = ataio->dxfer_len;
sglist_cnt = 0;
break;
}
case XPT_NVME_IO:
case XPT_NVME_ADMIN: {
struct ccb_nvmeio *nvmeio;
nvmeio = &ccb->nvmeio;
data_ptr = nvmeio->data_ptr;
dxfer_len = nvmeio->dxfer_len;
sglist_cnt = nvmeio->sglist_cnt;
break;
}
default:
panic("_bus_dmamap_load_ccb: Unsupported func code %d",
ccb_h->func_code);
}
switch ((ccb_h->flags & CAM_DATA_MASK)) {
case CAM_DATA_VADDR:
error = _bus_dmamap_load_buffer(dmat, map, data_ptr, dxfer_len,
kernel_pmap, flags, NULL, nsegs);
break;
case CAM_DATA_PADDR:
error = _bus_dmamap_load_phys(dmat, map,
(vm_paddr_t)(uintptr_t)data_ptr, dxfer_len, flags, NULL,
nsegs);
break;
case CAM_DATA_SG:
error = _bus_dmamap_load_vlist(dmat, map,
(bus_dma_segment_t *)data_ptr, sglist_cnt, kernel_pmap,
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
nsegs, flags, 0, dxfer_len);
break;
case CAM_DATA_SG_PADDR:
error = _bus_dmamap_load_plist(dmat, map,
(bus_dma_segment_t *)data_ptr, sglist_cnt, nsegs, flags);
break;
case CAM_DATA_BIO:
error = _bus_dmamap_load_bio(dmat, map, (struct bio *)data_ptr,
nsegs, flags);
break;
default:
panic("_bus_dmamap_load_ccb: flags 0x%X unimplemented",
ccb_h->flags);
}
return (error);
}
/*
* Load a uio.
*/
static int
_bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio,
int *nsegs, int flags)
{
bus_size_t resid;
bus_size_t minlen;
struct iovec *iov;
pmap_t pmap;
caddr_t addr;
int error, i;
if (uio->uio_segflg == UIO_USERSPACE) {
KASSERT(uio->uio_td != NULL,
("bus_dmamap_load_uio: USERSPACE but no proc"));
pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
} else
pmap = kernel_pmap;
resid = uio->uio_resid;
iov = uio->uio_iov;
error = 0;
for (i = 0; i < uio->uio_iovcnt && resid != 0 && !error; i++) {
/*
* Now at the first iovec to load. Load each iovec
* until we have exhausted the residual count.
*/
addr = (caddr_t) iov[i].iov_base;
minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
if (minlen > 0) {
error = _bus_dmamap_load_buffer(dmat, map, addr,
minlen, pmap, flags, NULL, nsegs);
resid -= minlen;
}
}
return (error);
}
/*
* Map the buffer buf into bus space using the dmamap map.
*/
int
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
bus_size_t buflen, bus_dmamap_callback_t *callback,
void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
struct memdesc mem;
int error;
int nsegs;
if ((flags & BUS_DMA_NOWAIT) == 0) {
mem = memdesc_vaddr(buf, buflen);
_bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg);
}
nsegs = -1;
error = _bus_dmamap_load_buffer(dmat, map, buf, buflen, kernel_pmap,
flags, NULL, &nsegs);
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, 0);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
2013-03-27 23:07:43 +00:00
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0,
bus_dmamap_callback2_t *callback, void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
int nsegs, error;
M_ASSERTPKTHDR(m0);
flags |= BUS_DMA_NOWAIT;
nsegs = -1;
error = _bus_dmamap_load_mbuf_sg(dmat, map, m0, NULL, &nsegs, flags);
++nsegs;
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, 0, error);
else
(*callback)(callback_arg, segs, nsegs, m0->m_pkthdr.len, error);
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
return (error);
}
int
bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0,
bus_dma_segment_t *segs, int *nsegs, int flags)
{
int error;
flags |= BUS_DMA_NOWAIT;
*nsegs = -1;
error = _bus_dmamap_load_mbuf_sg(dmat, map, m0, segs, nsegs, flags);
++*nsegs;
_bus_dmamap_complete(dmat, map, segs, *nsegs, error);
return (error);
}
int
bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio,
bus_dmamap_callback2_t *callback, void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
int nsegs, error;
flags |= BUS_DMA_NOWAIT;
nsegs = -1;
error = _bus_dmamap_load_uio(dmat, map, uio, &nsegs, flags);
nsegs++;
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, 0, error);
else
(*callback)(callback_arg, segs, nsegs, uio->uio_resid, error);
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
return (error);
}
int
bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb,
bus_dmamap_callback_t *callback, void *callback_arg,
int flags)
{
bus_dma_segment_t *segs;
struct ccb_hdr *ccb_h;
struct memdesc mem;
int error;
int nsegs;
ccb_h = &ccb->ccb_h;
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_NONE) {
callback(callback_arg, NULL, 0, 0);
return (0);
}
if ((flags & BUS_DMA_NOWAIT) == 0) {
mem = memdesc_ccb(ccb);
_bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg);
}
nsegs = -1;
error = _bus_dmamap_load_ccb(dmat, map, ccb, &nsegs, flags);
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, error);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio,
bus_dmamap_callback_t *callback, void *callback_arg,
int flags)
{
bus_dma_segment_t *segs;
struct memdesc mem;
int error;
int nsegs;
if ((flags & BUS_DMA_NOWAIT) == 0) {
mem = memdesc_bio(bio);
_bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg);
}
nsegs = -1;
error = _bus_dmamap_load_bio(dmat, map, bio, &nsegs, flags);
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, error);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
2013-03-27 23:07:43 +00:00
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_mem(bus_dma_tag_t dmat, bus_dmamap_t map,
struct memdesc *mem, bus_dmamap_callback_t *callback,
void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
int error;
int nsegs;
if ((flags & BUS_DMA_NOWAIT) == 0)
_bus_dmamap_waitok(dmat, map, mem, callback, callback_arg);
nsegs = -1;
error = 0;
switch (mem->md_type) {
case MEMDESC_VADDR:
error = _bus_dmamap_load_buffer(dmat, map, mem->u.md_vaddr,
mem->md_opaque, kernel_pmap, flags, NULL, &nsegs);
break;
case MEMDESC_PADDR:
error = _bus_dmamap_load_phys(dmat, map, mem->u.md_paddr,
mem->md_opaque, flags, NULL, &nsegs);
break;
case MEMDESC_VLIST:
error = _bus_dmamap_load_vlist(dmat, map, mem->u.md_list,
Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic MFC after: 1 week
2015-12-03 20:54:55 +00:00
mem->md_opaque, kernel_pmap, &nsegs, flags, 0, SIZE_T_MAX);
break;
case MEMDESC_PLIST:
error = _bus_dmamap_load_plist(dmat, map, mem->u.md_list,
mem->md_opaque, &nsegs, flags);
break;
case MEMDESC_BIO:
error = _bus_dmamap_load_bio(dmat, map, mem->u.md_bio,
&nsegs, flags);
break;
case MEMDESC_UIO:
error = _bus_dmamap_load_uio(dmat, map, mem->u.md_uio,
&nsegs, flags);
break;
case MEMDESC_MBUF:
error = _bus_dmamap_load_mbuf_sg(dmat, map, mem->u.md_mbuf,
NULL, &nsegs, flags);
break;
case MEMDESC_CCB:
error = _bus_dmamap_load_ccb(dmat, map, mem->u.md_ccb, &nsegs,
flags);
break;
}
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, 0);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
2013-03-27 23:07:43 +00:00
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
int
Add support for optional separate output buffers to in-kernel crypto. Some crypto consumers such as GELI and KTLS for file-backed sendfile need to store their output in a separate buffer from the input. Currently these consumers copy the contents of the input buffer into the output buffer and queue an in-place crypto operation on the output buffer. Using a separate output buffer avoids this copy. - Create a new 'struct crypto_buffer' describing a crypto buffer containing a type and type-specific fields. crp_ilen is gone, instead buffers that use a flat kernel buffer have a cb_buf_len field for their length. The length of other buffer types is inferred from the backing store (e.g. uio_resid for a uio). Requests now have two such structures: crp_buf for the input buffer, and crp_obuf for the output buffer. - Consumers now use helper functions (crypto_use_*, e.g. crypto_use_mbuf()) to configure the input buffer. If an output buffer is not configured, the request still modifies the input buffer in-place. A consumer uses a second set of helper functions (crypto_use_output_*) to configure an output buffer. - Consumers must request support for separate output buffers when creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are only permitted to queue a request with a separate output buffer on sessions with this flag set. Existing drivers already reject sessions with unknown flags, so this permits drivers to be modified to support this extension without requiring all drivers to change. - Several data-related functions now have matching versions that operate on an explicit buffer (e.g. crypto_apply_buf, crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf). - Most of the existing data-related functions operate on the input buffer. However crypto_copyback always writes to the output buffer if a request uses a separate output buffer. - For the regions in input/output buffers, the following conventions are followed: - AAD and IV are always present in input only and their fields are offsets into the input buffer. - payload is always present in both buffers. If a request uses a separate output buffer, it must set a new crp_payload_start_output field to the offset of the payload in the output buffer. - digest is in the input buffer for verify operations, and in the output buffer for compute operations. crp_digest_start is relative to the appropriate buffer. - Add a crypto buffer cursor abstraction. This is a more general form of some bits in the cryptosoft driver that tried to always use uio's. However, compared to the original code, this avoids rewalking the uio iovec array for requests with multiple vectors. It also avoids allocate an iovec array for mbufs and populating it by instead walking the mbuf chain directly. - Update the cryptosoft(4) driver to support separate output buffers making use of the cursor abstraction. Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
bus_dmamap_load_crp_buffer(bus_dma_tag_t dmat, bus_dmamap_t map,
struct crypto_buffer *cb, bus_dmamap_callback_t *callback,
void *callback_arg, int flags)
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
{
bus_dma_segment_t *segs;
int error;
int nsegs;
flags |= BUS_DMA_NOWAIT;
nsegs = -1;
error = 0;
Add support for optional separate output buffers to in-kernel crypto. Some crypto consumers such as GELI and KTLS for file-backed sendfile need to store their output in a separate buffer from the input. Currently these consumers copy the contents of the input buffer into the output buffer and queue an in-place crypto operation on the output buffer. Using a separate output buffer avoids this copy. - Create a new 'struct crypto_buffer' describing a crypto buffer containing a type and type-specific fields. crp_ilen is gone, instead buffers that use a flat kernel buffer have a cb_buf_len field for their length. The length of other buffer types is inferred from the backing store (e.g. uio_resid for a uio). Requests now have two such structures: crp_buf for the input buffer, and crp_obuf for the output buffer. - Consumers now use helper functions (crypto_use_*, e.g. crypto_use_mbuf()) to configure the input buffer. If an output buffer is not configured, the request still modifies the input buffer in-place. A consumer uses a second set of helper functions (crypto_use_output_*) to configure an output buffer. - Consumers must request support for separate output buffers when creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are only permitted to queue a request with a separate output buffer on sessions with this flag set. Existing drivers already reject sessions with unknown flags, so this permits drivers to be modified to support this extension without requiring all drivers to change. - Several data-related functions now have matching versions that operate on an explicit buffer (e.g. crypto_apply_buf, crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf). - Most of the existing data-related functions operate on the input buffer. However crypto_copyback always writes to the output buffer if a request uses a separate output buffer. - For the regions in input/output buffers, the following conventions are followed: - AAD and IV are always present in input only and their fields are offsets into the input buffer. - payload is always present in both buffers. If a request uses a separate output buffer, it must set a new crp_payload_start_output field to the offset of the payload in the output buffer. - digest is in the input buffer for verify operations, and in the output buffer for compute operations. crp_digest_start is relative to the appropriate buffer. - Add a crypto buffer cursor abstraction. This is a more general form of some bits in the cryptosoft driver that tried to always use uio's. However, compared to the original code, this avoids rewalking the uio iovec array for requests with multiple vectors. It also avoids allocate an iovec array for mbufs and populating it by instead walking the mbuf chain directly. - Update the cryptosoft(4) driver to support separate output buffers making use of the cursor abstraction. Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
switch (cb->cb_type) {
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
case CRYPTO_BUF_CONTIG:
Add support for optional separate output buffers to in-kernel crypto. Some crypto consumers such as GELI and KTLS for file-backed sendfile need to store their output in a separate buffer from the input. Currently these consumers copy the contents of the input buffer into the output buffer and queue an in-place crypto operation on the output buffer. Using a separate output buffer avoids this copy. - Create a new 'struct crypto_buffer' describing a crypto buffer containing a type and type-specific fields. crp_ilen is gone, instead buffers that use a flat kernel buffer have a cb_buf_len field for their length. The length of other buffer types is inferred from the backing store (e.g. uio_resid for a uio). Requests now have two such structures: crp_buf for the input buffer, and crp_obuf for the output buffer. - Consumers now use helper functions (crypto_use_*, e.g. crypto_use_mbuf()) to configure the input buffer. If an output buffer is not configured, the request still modifies the input buffer in-place. A consumer uses a second set of helper functions (crypto_use_output_*) to configure an output buffer. - Consumers must request support for separate output buffers when creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are only permitted to queue a request with a separate output buffer on sessions with this flag set. Existing drivers already reject sessions with unknown flags, so this permits drivers to be modified to support this extension without requiring all drivers to change. - Several data-related functions now have matching versions that operate on an explicit buffer (e.g. crypto_apply_buf, crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf). - Most of the existing data-related functions operate on the input buffer. However crypto_copyback always writes to the output buffer if a request uses a separate output buffer. - For the regions in input/output buffers, the following conventions are followed: - AAD and IV are always present in input only and their fields are offsets into the input buffer. - payload is always present in both buffers. If a request uses a separate output buffer, it must set a new crp_payload_start_output field to the offset of the payload in the output buffer. - digest is in the input buffer for verify operations, and in the output buffer for compute operations. crp_digest_start is relative to the appropriate buffer. - Add a crypto buffer cursor abstraction. This is a more general form of some bits in the cryptosoft driver that tried to always use uio's. However, compared to the original code, this avoids rewalking the uio iovec array for requests with multiple vectors. It also avoids allocate an iovec array for mbufs and populating it by instead walking the mbuf chain directly. - Update the cryptosoft(4) driver to support separate output buffers making use of the cursor abstraction. Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
error = _bus_dmamap_load_buffer(dmat, map, cb->cb_buf,
cb->cb_buf_len, kernel_pmap, flags, NULL, &nsegs);
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
break;
case CRYPTO_BUF_MBUF:
Add support for optional separate output buffers to in-kernel crypto. Some crypto consumers such as GELI and KTLS for file-backed sendfile need to store their output in a separate buffer from the input. Currently these consumers copy the contents of the input buffer into the output buffer and queue an in-place crypto operation on the output buffer. Using a separate output buffer avoids this copy. - Create a new 'struct crypto_buffer' describing a crypto buffer containing a type and type-specific fields. crp_ilen is gone, instead buffers that use a flat kernel buffer have a cb_buf_len field for their length. The length of other buffer types is inferred from the backing store (e.g. uio_resid for a uio). Requests now have two such structures: crp_buf for the input buffer, and crp_obuf for the output buffer. - Consumers now use helper functions (crypto_use_*, e.g. crypto_use_mbuf()) to configure the input buffer. If an output buffer is not configured, the request still modifies the input buffer in-place. A consumer uses a second set of helper functions (crypto_use_output_*) to configure an output buffer. - Consumers must request support for separate output buffers when creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are only permitted to queue a request with a separate output buffer on sessions with this flag set. Existing drivers already reject sessions with unknown flags, so this permits drivers to be modified to support this extension without requiring all drivers to change. - Several data-related functions now have matching versions that operate on an explicit buffer (e.g. crypto_apply_buf, crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf). - Most of the existing data-related functions operate on the input buffer. However crypto_copyback always writes to the output buffer if a request uses a separate output buffer. - For the regions in input/output buffers, the following conventions are followed: - AAD and IV are always present in input only and their fields are offsets into the input buffer. - payload is always present in both buffers. If a request uses a separate output buffer, it must set a new crp_payload_start_output field to the offset of the payload in the output buffer. - digest is in the input buffer for verify operations, and in the output buffer for compute operations. crp_digest_start is relative to the appropriate buffer. - Add a crypto buffer cursor abstraction. This is a more general form of some bits in the cryptosoft driver that tried to always use uio's. However, compared to the original code, this avoids rewalking the uio iovec array for requests with multiple vectors. It also avoids allocate an iovec array for mbufs and populating it by instead walking the mbuf chain directly. - Update the cryptosoft(4) driver to support separate output buffers making use of the cursor abstraction. Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
error = _bus_dmamap_load_mbuf_sg(dmat, map, cb->cb_mbuf,
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
NULL, &nsegs, flags);
break;
case CRYPTO_BUF_SINGLE_MBUF:
error = _bus_dmamap_load_single_mbuf(dmat, map, cb->cb_mbuf,
NULL, &nsegs, flags);
break;
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
case CRYPTO_BUF_UIO:
Add support for optional separate output buffers to in-kernel crypto. Some crypto consumers such as GELI and KTLS for file-backed sendfile need to store their output in a separate buffer from the input. Currently these consumers copy the contents of the input buffer into the output buffer and queue an in-place crypto operation on the output buffer. Using a separate output buffer avoids this copy. - Create a new 'struct crypto_buffer' describing a crypto buffer containing a type and type-specific fields. crp_ilen is gone, instead buffers that use a flat kernel buffer have a cb_buf_len field for their length. The length of other buffer types is inferred from the backing store (e.g. uio_resid for a uio). Requests now have two such structures: crp_buf for the input buffer, and crp_obuf for the output buffer. - Consumers now use helper functions (crypto_use_*, e.g. crypto_use_mbuf()) to configure the input buffer. If an output buffer is not configured, the request still modifies the input buffer in-place. A consumer uses a second set of helper functions (crypto_use_output_*) to configure an output buffer. - Consumers must request support for separate output buffers when creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are only permitted to queue a request with a separate output buffer on sessions with this flag set. Existing drivers already reject sessions with unknown flags, so this permits drivers to be modified to support this extension without requiring all drivers to change. - Several data-related functions now have matching versions that operate on an explicit buffer (e.g. crypto_apply_buf, crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf). - Most of the existing data-related functions operate on the input buffer. However crypto_copyback always writes to the output buffer if a request uses a separate output buffer. - For the regions in input/output buffers, the following conventions are followed: - AAD and IV are always present in input only and their fields are offsets into the input buffer. - payload is always present in both buffers. If a request uses a separate output buffer, it must set a new crp_payload_start_output field to the offset of the payload in the output buffer. - digest is in the input buffer for verify operations, and in the output buffer for compute operations. crp_digest_start is relative to the appropriate buffer. - Add a crypto buffer cursor abstraction. This is a more general form of some bits in the cryptosoft driver that tried to always use uio's. However, compared to the original code, this avoids rewalking the uio iovec array for requests with multiple vectors. It also avoids allocate an iovec array for mbufs and populating it by instead walking the mbuf chain directly. - Update the cryptosoft(4) driver to support separate output buffers making use of the cursor abstraction. Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
error = _bus_dmamap_load_uio(dmat, map, cb->cb_uio, &nsegs,
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
flags);
break;
case CRYPTO_BUF_VMPAGE:
error = _bus_dmamap_load_ma(dmat, map, cb->cb_vm_page,
cb->cb_vm_page_len, cb->cb_vm_page_offset, flags, NULL,
&nsegs);
break;
Add support for optional separate output buffers to in-kernel crypto. Some crypto consumers such as GELI and KTLS for file-backed sendfile need to store their output in a separate buffer from the input. Currently these consumers copy the contents of the input buffer into the output buffer and queue an in-place crypto operation on the output buffer. Using a separate output buffer avoids this copy. - Create a new 'struct crypto_buffer' describing a crypto buffer containing a type and type-specific fields. crp_ilen is gone, instead buffers that use a flat kernel buffer have a cb_buf_len field for their length. The length of other buffer types is inferred from the backing store (e.g. uio_resid for a uio). Requests now have two such structures: crp_buf for the input buffer, and crp_obuf for the output buffer. - Consumers now use helper functions (crypto_use_*, e.g. crypto_use_mbuf()) to configure the input buffer. If an output buffer is not configured, the request still modifies the input buffer in-place. A consumer uses a second set of helper functions (crypto_use_output_*) to configure an output buffer. - Consumers must request support for separate output buffers when creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are only permitted to queue a request with a separate output buffer on sessions with this flag set. Existing drivers already reject sessions with unknown flags, so this permits drivers to be modified to support this extension without requiring all drivers to change. - Several data-related functions now have matching versions that operate on an explicit buffer (e.g. crypto_apply_buf, crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf). - Most of the existing data-related functions operate on the input buffer. However crypto_copyback always writes to the output buffer if a request uses a separate output buffer. - For the regions in input/output buffers, the following conventions are followed: - AAD and IV are always present in input only and their fields are offsets into the input buffer. - payload is always present in both buffers. If a request uses a separate output buffer, it must set a new crp_payload_start_output field to the offset of the payload in the output buffer. - digest is in the input buffer for verify operations, and in the output buffer for compute operations. crp_digest_start is relative to the appropriate buffer. - Add a crypto buffer cursor abstraction. This is a more general form of some bits in the cryptosoft driver that tried to always use uio's. However, compared to the original code, this avoids rewalking the uio iovec array for requests with multiple vectors. It also avoids allocate an iovec array for mbufs and populating it by instead walking the mbuf chain directly. - Update the cryptosoft(4) driver to support separate output buffers making use of the cursor abstraction. Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
default:
error = EINVAL;
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
}
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, 0);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
Add support for optional separate output buffers to in-kernel crypto. Some crypto consumers such as GELI and KTLS for file-backed sendfile need to store their output in a separate buffer from the input. Currently these consumers copy the contents of the input buffer into the output buffer and queue an in-place crypto operation on the output buffer. Using a separate output buffer avoids this copy. - Create a new 'struct crypto_buffer' describing a crypto buffer containing a type and type-specific fields. crp_ilen is gone, instead buffers that use a flat kernel buffer have a cb_buf_len field for their length. The length of other buffer types is inferred from the backing store (e.g. uio_resid for a uio). Requests now have two such structures: crp_buf for the input buffer, and crp_obuf for the output buffer. - Consumers now use helper functions (crypto_use_*, e.g. crypto_use_mbuf()) to configure the input buffer. If an output buffer is not configured, the request still modifies the input buffer in-place. A consumer uses a second set of helper functions (crypto_use_output_*) to configure an output buffer. - Consumers must request support for separate output buffers when creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are only permitted to queue a request with a separate output buffer on sessions with this flag set. Existing drivers already reject sessions with unknown flags, so this permits drivers to be modified to support this extension without requiring all drivers to change. - Several data-related functions now have matching versions that operate on an explicit buffer (e.g. crypto_apply_buf, crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf). - Most of the existing data-related functions operate on the input buffer. However crypto_copyback always writes to the output buffer if a request uses a separate output buffer. - For the regions in input/output buffers, the following conventions are followed: - AAD and IV are always present in input only and their fields are offsets into the input buffer. - payload is always present in both buffers. If a request uses a separate output buffer, it must set a new crp_payload_start_output field to the offset of the payload in the output buffer. - digest is in the input buffer for verify operations, and in the output buffer for compute operations. crp_digest_start is relative to the appropriate buffer. - Add a crypto buffer cursor abstraction. This is a more general form of some bits in the cryptosoft driver that tried to always use uio's. However, compared to the original code, this avoids rewalking the uio iovec array for requests with multiple vectors. It also avoids allocate an iovec array for mbufs and populating it by instead walking the mbuf chain directly. - Update the cryptosoft(4) driver to support separate output buffers making use of the cursor abstraction. Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
int
bus_dmamap_load_crp(bus_dma_tag_t dmat, bus_dmamap_t map, struct cryptop *crp,
bus_dmamap_callback_t *callback, void *callback_arg, int flags)
{
return (bus_dmamap_load_crp_buffer(dmat, map, &crp->crp_buf, callback,
callback_arg, flags));
}
void
bus_dma_template_init(bus_dma_template_t *t, bus_dma_tag_t parent)
{
if (t == NULL)
return;
t->parent = parent;
t->alignment = 1;
t->boundary = 0;
t->lowaddr = t->highaddr = BUS_SPACE_MAXADDR;
t->maxsize = t->maxsegsize = BUS_SPACE_MAXSIZE;
t->nsegments = BUS_SPACE_UNRESTRICTED;
t->lockfunc = NULL;
t->lockfuncarg = NULL;
t->flags = 0;
}
int
bus_dma_template_tag(bus_dma_template_t *t, bus_dma_tag_t *dmat)
{
if (t == NULL || dmat == NULL)
return (EINVAL);
return (bus_dma_tag_create(t->parent, t->alignment, t->boundary,
t->lowaddr, t->highaddr, NULL, NULL, t->maxsize,
t->nsegments, t->maxsegsize, t->flags, t->lockfunc, t->lockfuncarg,
dmat));
}
void
bus_dma_template_fill(bus_dma_template_t *t, bus_dma_param_t *kv, u_int count)
{
bus_dma_param_t *pkv;
while (count) {
pkv = &kv[--count];
switch (pkv->key) {
case BD_PARAM_PARENT:
t->parent = pkv->ptr;
break;
case BD_PARAM_ALIGNMENT:
t->alignment = pkv->num;
break;
case BD_PARAM_BOUNDARY:
t->boundary = pkv->num;
break;
case BD_PARAM_LOWADDR:
t->lowaddr = pkv->pa;
break;
case BD_PARAM_HIGHADDR:
t->highaddr = pkv->pa;
break;
case BD_PARAM_MAXSIZE:
t->maxsize = pkv->num;
break;
case BD_PARAM_NSEGMENTS:
t->nsegments = pkv->num;
break;
case BD_PARAM_MAXSEGSIZE:
t->maxsegsize = pkv->num;
break;
case BD_PARAM_FLAGS:
t->flags = pkv->num;
break;
case BD_PARAM_LOCKFUNC:
t->lockfunc = pkv->ptr;
break;
case BD_PARAM_LOCKFUNCARG:
t->lockfuncarg = pkv->ptr;
break;
case BD_PARAM_NAME:
t->name = pkv->ptr;
break;
case BD_PARAM_INVALID:
default:
KASSERT(0, ("Invalid key %d\n", pkv->key));
break;
}
}
return;
}
#ifndef IOMMU
bool bus_dma_iommu_set_buswide(device_t dev);
int bus_dma_iommu_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map,
vm_paddr_t start, vm_size_t length, int flags);
bool
bus_dma_iommu_set_buswide(device_t dev)
{
return (false);
}
int
bus_dma_iommu_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map,
vm_paddr_t start, vm_size_t length, int flags)
{
return (0);
}
#endif