freebsd-nq/sys/dev/nvme/nvme_sim.c

400 lines
11 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2016 Netflix, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_internal.h> // Yes, this is wrong.
#include <cam/cam_debug.h>
#include "nvme_private.h"
#define ccb_accb_ptr spriv_ptr0
#define ccb_ctrlr_ptr spriv_ptr1
static void nvme_sim_action(struct cam_sim *sim, union ccb *ccb);
static void nvme_sim_poll(struct cam_sim *sim);
#define sim2softc(sim) ((struct nvme_sim_softc *)cam_sim_softc(sim))
#define sim2ns(sim) (sim2softc(sim)->s_ns)
#define sim2ctrlr(sim) (sim2softc(sim)->s_ctrlr)
struct nvme_sim_softc
{
struct nvme_controller *s_ctrlr;
struct nvme_namespace *s_ns;
struct cam_sim *s_sim;
struct cam_path *s_path;
};
static void
nvme_sim_nvmeio_done(void *ccb_arg, const struct nvme_completion *cpl)
{
union ccb *ccb = (union ccb *)ccb_arg;
/*
* Let the periph know the completion, and let it sort out what
* it means. Make our best guess, though for the status code.
*/
memcpy(&ccb->nvmeio.cpl, cpl, sizeof(*cpl));
if (nvme_completion_is_error(cpl)) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done_direct(ccb);
}
}
static void
nvme_sim_nvmeio(struct cam_sim *sim, union ccb *ccb)
{
struct ccb_nvmeio *nvmeio = &ccb->nvmeio;
struct nvme_request *req;
void *payload;
uint32_t size;
struct nvme_controller *ctrlr;
ctrlr = sim2ctrlr(sim);
payload = nvmeio->data_ptr;
size = nvmeio->dxfer_len;
/* SG LIST ??? */
if ((nvmeio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
req = nvme_allocate_request_bio((struct bio *)payload,
nvme_sim_nvmeio_done, ccb);
else if ((nvmeio->ccb_h.flags & CAM_DATA_SG) == CAM_DATA_SG)
req = nvme_allocate_request_ccb(ccb, nvme_sim_nvmeio_done, ccb);
else if (payload == NULL)
req = nvme_allocate_request_null(nvme_sim_nvmeio_done, ccb);
else
req = nvme_allocate_request_vaddr(payload, size,
nvme_sim_nvmeio_done, ccb);
if (req == NULL) {
nvmeio->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
return;
}
memcpy(&req->cmd, &ccb->nvmeio.cmd, sizeof(ccb->nvmeio.cmd));
if (ccb->ccb_h.func_code == XPT_NVME_IO)
nvme_ctrlr_submit_io_request(ctrlr, req);
else
nvme_ctrlr_submit_admin_request(ctrlr, req);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
}
static void
nvme_sim_action(struct cam_sim *sim, union ccb *ccb)
{
struct nvme_controller *ctrlr;
struct nvme_namespace *ns;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("nvme_sim_action: func= %#x\n",
ccb->ccb_h.func_code));
/*
* XXX when we support multiple namespaces in the base driver we'll need
* to revisit how all this gets stored and saved in the periph driver's
* reserved areas. Right now we store all three in the softc of the sim.
*/
ns = sim2ns(sim);
ctrlr = sim2ctrlr(sim);
mtx_assert(&ctrlr->lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_CALC_GEOMETRY: /* Calculate Geometry Totally nuts ? XXX */
/*
* Only meaningful for old-school SCSI disks since only the SCSI
* da driver generates them. Reject all these that slip through.
*/
/*FALLTHROUGH*/
case XPT_ABORT: /* Abort the specified CCB */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_SET_TRAN_SETTINGS:
/*
* NVMe doesn't really have different transfer settings, but
* other parts of CAM think failure here is a big deal.
*/
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
/*
* NVMe may have multiple LUNs on the same path. Current generation
* of NVMe devives support only a single name space. Multiple name
* space drives are coming, but it's unclear how we should report
* them up the stack.
*/
cpi->version_num = 1;
cpi->hba_inquiry = 0;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_UNMAPPED /* | PIM_NOSCAN */;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = ctrlr->cdata.nn;
cpi->maxio = nvme_ns_get_max_io_xfer_size(ns);
cpi->initiator_id = 0;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 4000000; /* 4 GB/s 4 lanes pcie 3 */
strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(cpi->hba_vid, "NVMe", HBA_IDLEN);
strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->transport = XPORT_NVME; /* XXX XPORT_PCIE ? */
cpi->transport_version = 1; /* XXX Get PCIe spec ? */
cpi->protocol = PROTO_NVME;
cpi->protocol_version = NVME_REV_1; /* Groks all 1.x NVMe cards */
cpi->xport_specific.nvme.nsid = ns->id;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS: /* Get transport settings */
{
struct ccb_trans_settings *cts;
struct ccb_trans_settings_nvme *nvmep;
struct ccb_trans_settings_nvme *nvmex;
cts = &ccb->cts;
nvmex = &cts->xport_specific.nvme;
nvmep = &cts->proto_specific.nvme;
nvmex->valid = CTS_NVME_VALID_SPEC;
nvmex->spec_major = 1; /* XXX read from card */
nvmex->spec_minor = 2;
nvmex->spec_tiny = 0;
nvmep->valid = CTS_NVME_VALID_SPEC;
nvmep->spec_major = 1; /* XXX read from card */
nvmep->spec_minor = 2;
nvmep->spec_tiny = 0;
cts->transport = XPORT_NVME;
cts->protocol = PROTO_NVME;
cts->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/*
* every driver handles this, but nothing generates it. Assume
* it's OK to just say 'that worked'.
*/
/*FALLTHROUGH*/
case XPT_RESET_DEV: /* Bus Device Reset the specified device */
case XPT_RESET_BUS: /* Reset the specified bus */
/*
* NVMe doesn't really support physically resetting the bus. It's part
* of the bus scanning dance, so return sucess to tell the process to
* proceed.
*/
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_NVME_IO: /* Execute the requested I/O operation */
case XPT_NVME_ADMIN: /* or Admin operation */
nvme_sim_nvmeio(sim, ccb);
return; /* no done */
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
static void
nvme_sim_poll(struct cam_sim *sim)
{
nvme_ctrlr_intx_handler(sim2ctrlr(sim));
}
static void *
nvme_sim_new_controller(struct nvme_controller *ctrlr)
{
struct cam_devq *devq;
int max_trans;
int unit;
struct nvme_sim_softc *sc = NULL;
max_trans = ctrlr->max_hw_pend_io;
unit = device_get_unit(ctrlr->dev);
devq = cam_simq_alloc(max_trans);
if (devq == NULL)
return NULL;
sc = malloc(sizeof(*sc), M_NVME, M_ZERO | M_WAITOK);
sc->s_ctrlr = ctrlr;
sc->s_sim = cam_sim_alloc(nvme_sim_action, nvme_sim_poll,
"nvme", sc, unit, &ctrlr->lock, max_trans, max_trans, devq);
if (sc->s_sim == NULL) {
printf("Failed to allocate a sim\n");
cam_simq_free(devq);
free(sc, M_NVME);
return NULL;
}
return sc;
}
static void
nvme_sim_rescan_target(struct nvme_controller *ctrlr, struct cam_path *path)
{
union ccb *ccb;
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
printf("unable to alloc CCB for rescan\n");
return;
}
if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
printf("unable to copy path for rescan\n");
xpt_free_ccb(ccb);
return;
}
xpt_rescan(ccb);
}
static void *
nvme_sim_new_ns(struct nvme_namespace *ns, void *sc_arg)
{
struct nvme_sim_softc *sc = sc_arg;
struct nvme_controller *ctrlr = sc->s_ctrlr;
int i;
sc->s_ns = ns;
/*
* XXX this is creating one bus per ns, but it should be one
* XXX target per controller, and one LUN per namespace.
* XXX Current drives only support one NS, so there's time
* XXX to fix it later when new drives arrive.
*
* XXX I'm pretty sure the xpt_bus_register() call below is
* XXX like super lame and it really belongs in the sim_new_ctrlr
* XXX callback. Then the create_path below would be pretty close
* XXX to being right. Except we should be per-ns not per-ctrlr
* XXX data.
*/
mtx_lock(&ctrlr->lock);
/* Create bus */
/*
* XXX do I need to lock ctrlr->lock ?
* XXX do I need to lock the path?
* ata and scsi seem to in their code, but their discovery is
* somewhat more asynchronous. We're only every called one at a
* time, and nothing is in parallel.
*/
i = 0;
if (xpt_bus_register(sc->s_sim, ctrlr->dev, 0) != CAM_SUCCESS)
goto error;
i++;
if (xpt_create_path(&sc->s_path, /*periph*/NULL, cam_sim_path(sc->s_sim),
1, ns->id) != CAM_REQ_CMP)
goto error;
i++;
sc->s_path->device->nvme_data = nvme_ns_get_data(ns);
sc->s_path->device->nvme_cdata = nvme_ctrlr_get_data(ns->ctrlr);
/* Scan bus */
nvme_sim_rescan_target(ctrlr, sc->s_path);
mtx_unlock(&ctrlr->lock);
return ns;
error:
switch (i) {
case 2:
xpt_free_path(sc->s_path);
case 1:
xpt_bus_deregister(cam_sim_path(sc->s_sim));
case 0:
cam_sim_free(sc->s_sim, /*free_devq*/TRUE);
}
mtx_unlock(&ctrlr->lock);
return NULL;
}
static void
nvme_sim_controller_fail(void *ctrlr_arg)
{
/* XXX cleanup XXX */
}
struct nvme_consumer *consumer_cookie;
static void
nvme_sim_init(void)
{
if (nvme_use_nvd)
return;
consumer_cookie = nvme_register_consumer(nvme_sim_new_ns,
nvme_sim_new_controller, NULL, nvme_sim_controller_fail);
}
SYSINIT(nvme_sim_register, SI_SUB_DRIVERS, SI_ORDER_ANY,
nvme_sim_init, NULL);
static void
nvme_sim_uninit(void)
{
if (nvme_use_nvd)
return;
/* XXX Cleanup */
nvme_unregister_consumer(consumer_cookie);
}
SYSUNINIT(nvme_sim_unregister, SI_SUB_DRIVERS, SI_ORDER_ANY,
nvme_sim_uninit, NULL);