freebsd-nq/sys/fs/ext2fs/ext2_extents.c

1579 lines
34 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2010 Zheng Liu <lz@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/vnode.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <fs/ext2fs/ext2_mount.h>
#include <fs/ext2fs/fs.h>
#include <fs/ext2fs/inode.h>
#include <fs/ext2fs/ext2fs.h>
#include <fs/ext2fs/ext2_extents.h>
#include <fs/ext2fs/ext2_extern.h>
static MALLOC_DEFINE(M_EXT2EXTENTS, "ext2_extents", "EXT2 extents");
#ifdef EXT2FS_DEBUG
static void
ext4_ext_print_extent(struct ext4_extent *ep)
{
printf(" ext %p => (blk %u len %u start %lu)\n",
ep, ep->e_blk, ep->e_len,
(uint64_t)ep->e_start_hi << 32 | ep->e_start_lo);
}
static void ext4_ext_print_header(struct inode *ip, struct ext4_extent_header *ehp);
static void
ext4_ext_print_index(struct inode *ip, struct ext4_extent_index *ex, int do_walk)
{
struct m_ext2fs *fs;
struct buf *bp;
int error;
fs = ip->i_e2fs;
printf(" index %p => (blk %u pblk %lu)\n",
ex, ex->ei_blk, (uint64_t)ex->ei_leaf_hi << 32 | ex->ei_leaf_lo);
if(!do_walk)
return;
if ((error = bread(ip->i_devvp,
fsbtodb(fs, ((uint64_t)ex->ei_leaf_hi << 32 | ex->ei_leaf_lo)),
(int)fs->e2fs_bsize, NOCRED, &bp)) != 0) {
brelse(bp);
return;
}
ext4_ext_print_header(ip, (struct ext4_extent_header *)bp->b_data);
brelse(bp);
}
static void
ext4_ext_print_header(struct inode *ip, struct ext4_extent_header *ehp)
{
int i;
printf("header %p => (magic 0x%x entries %d max %d depth %d gen %d)\n",
ehp, ehp->eh_magic, ehp->eh_ecount, ehp->eh_max, ehp->eh_depth,
ehp->eh_gen);
for (i = 0; i < ehp->eh_ecount; i++)
if (ehp->eh_depth != 0)
ext4_ext_print_index(ip,
(struct ext4_extent_index *)(ehp + 1 + i), 1);
else
ext4_ext_print_extent((struct ext4_extent *)(ehp + 1 + i));
}
static void
ext4_ext_print_path(struct inode *ip, struct ext4_extent_path *path)
{
int k, l;
l = path->ep_depth
printf("ip=%d, Path:\n", ip->i_number);
for (k = 0; k <= l; k++, path++) {
if (path->ep_index) {
ext4_ext_print_index(ip, path->ep_index, 0);
} else if (path->ep_ext) {
ext4_ext_print_extent(path->ep_ext);
}
}
}
void
ext4_ext_print_extent_tree_status(struct inode * ip)
{
struct ext4_extent_header *ehp;
ehp = (struct ext4_extent_header *)(char *)ip->i_db;
printf("Extent status:ip=%d\n", ip->i_number);
if (!(ip->i_flag & IN_E4EXTENTS))
return;
ext4_ext_print_header(ip, ehp);
return;
}
#endif
static inline struct ext4_extent_header *
ext4_ext_inode_header(struct inode *ip)
{
return ((struct ext4_extent_header *)ip->i_db);
}
static inline struct ext4_extent_header *
ext4_ext_block_header(char *bdata)
{
return ((struct ext4_extent_header *)bdata);
}
static inline unsigned short
ext4_ext_inode_depth(struct inode *ip)
{
struct ext4_extent_header *ehp;
ehp = (struct ext4_extent_header *)ip->i_data;
return (ehp->eh_depth);
}
static inline e4fs_daddr_t
ext4_ext_index_pblock(struct ext4_extent_index *index)
{
e4fs_daddr_t blk;
blk = index->ei_leaf_lo;
blk |= (e4fs_daddr_t)index->ei_leaf_hi << 32;
return (blk);
}
static inline void
ext4_index_store_pblock(struct ext4_extent_index *index, e4fs_daddr_t pb)
{
index->ei_leaf_lo = pb & 0xffffffff;
index->ei_leaf_hi = (pb >> 32) & 0xffff;
}
static inline e4fs_daddr_t
ext4_ext_extent_pblock(struct ext4_extent *extent)
{
e4fs_daddr_t blk;
blk = extent->e_start_lo;
blk |= (e4fs_daddr_t)extent->e_start_hi << 32;
return (blk);
}
static inline void
ext4_ext_store_pblock(struct ext4_extent *ex, e4fs_daddr_t pb)
{
ex->e_start_lo = pb & 0xffffffff;
ex->e_start_hi = (pb >> 32) & 0xffff;
}
int
ext4_ext_in_cache(struct inode *ip, daddr_t lbn, struct ext4_extent *ep)
{
struct ext4_extent_cache *ecp;
int ret = EXT4_EXT_CACHE_NO;
ecp = &ip->i_ext_cache;
if (ecp->ec_type == EXT4_EXT_CACHE_NO)
return (ret);
if (lbn >= ecp->ec_blk && lbn < ecp->ec_blk + ecp->ec_len) {
ep->e_blk = ecp->ec_blk;
ep->e_start_lo = ecp->ec_start & 0xffffffff;
ep->e_start_hi = ecp->ec_start >> 32 & 0xffff;
ep->e_len = ecp->ec_len;
ret = ecp->ec_type;
}
return (ret);
}
static int
ext4_ext_check_header(struct inode *ip, struct ext4_extent_header *eh)
{
struct m_ext2fs *fs;
char *error_msg;
fs = ip->i_e2fs;
if (eh->eh_magic != EXT4_EXT_MAGIC) {
error_msg = "invalid magic";
goto corrupted;
}
if (eh->eh_max == 0) {
error_msg = "invalid eh_max";
goto corrupted;
}
if (eh->eh_ecount > eh->eh_max) {
error_msg = "invalid eh_entries";
goto corrupted;
}
return (0);
corrupted:
ext2_fserr(fs, ip->i_uid, error_msg);
return (EIO);
}
static void
ext4_ext_binsearch_index(struct ext4_extent_path *path, int blk)
{
struct ext4_extent_header *eh;
struct ext4_extent_index *r, *l, *m;
eh = path->ep_header;
KASSERT(eh->eh_ecount <= eh->eh_max && eh->eh_ecount > 0,
("ext4_ext_binsearch_index: bad args"));
l = EXT_FIRST_INDEX(eh) + 1;
r = EXT_FIRST_INDEX(eh) + eh->eh_ecount - 1;
while (l <= r) {
m = l + (r - l) / 2;
if (blk < m->ei_blk)
r = m - 1;
else
l = m + 1;
}
path->ep_index = l - 1;
}
static void
ext4_ext_binsearch_ext(struct ext4_extent_path *path, int blk)
{
struct ext4_extent_header *eh;
struct ext4_extent *r, *l, *m;
eh = path->ep_header;
KASSERT(eh->eh_ecount <= eh->eh_max,
("ext4_ext_binsearch_ext: bad args"));
if (eh->eh_ecount == 0)
return;
l = EXT_FIRST_EXTENT(eh) + 1;
r = EXT_FIRST_EXTENT(eh) + eh->eh_ecount - 1;
while (l <= r) {
m = l + (r - l) / 2;
if (blk < m->e_blk)
r = m - 1;
else
l = m + 1;
}
path->ep_ext = l - 1;
}
static int
ext4_ext_fill_path_bdata(struct ext4_extent_path *path,
struct buf *bp, uint64_t blk)
{
KASSERT(path->ep_data == NULL,
("ext4_ext_fill_path_bdata: bad ep_data"));
path->ep_data = malloc(bp->b_bufsize, M_EXT2EXTENTS, M_WAITOK);
if (!path->ep_data)
return (ENOMEM);
memcpy(path->ep_data, bp->b_data, bp->b_bufsize);
path->ep_blk = blk;
return (0);
}
static void
ext4_ext_fill_path_buf(struct ext4_extent_path *path, struct buf *bp)
{
KASSERT(path->ep_data != NULL,
("ext4_ext_fill_path_buf: bad ep_data"));
memcpy(bp->b_data, path->ep_data, bp->b_bufsize);
}
static void
ext4_ext_drop_refs(struct ext4_extent_path *path)
{
int depth, i;
if (!path)
return;
depth = path->ep_depth;
for (i = 0; i <= depth; i++, path++)
if (path->ep_data) {
free(path->ep_data, M_EXT2EXTENTS);
path->ep_data = NULL;
}
}
void
ext4_ext_path_free(struct ext4_extent_path *path)
{
if (!path)
return;
ext4_ext_drop_refs(path);
free(path, M_EXT2EXTENTS);
}
int
ext4_ext_find_extent(struct inode *ip, daddr_t block,
struct ext4_extent_path **ppath)
{
struct m_ext2fs *fs;
struct ext4_extent_header *eh;
struct ext4_extent_path *path;
struct buf *bp;
uint64_t blk;
int error, depth, i, ppos, alloc;
fs = ip->i_e2fs;
eh = ext4_ext_inode_header(ip);
depth = ext4_ext_inode_depth(ip);
ppos = 0;
alloc = 0;
error = ext4_ext_check_header(ip, eh);
if (error)
return (error);
if (ppath == NULL)
return (EINVAL);
path = *ppath;
if (path == NULL) {
path = malloc(EXT4_EXT_DEPTH_MAX *
sizeof(struct ext4_extent_path),
M_EXT2EXTENTS, M_WAITOK | M_ZERO);
if (!path)
return (ENOMEM);
*ppath = path;
alloc = 1;
}
path[0].ep_header = eh;
path[0].ep_data = NULL;
/* Walk through the tree. */
i = depth;
while (i) {
ext4_ext_binsearch_index(&path[ppos], block);
blk = ext4_ext_index_pblock(path[ppos].ep_index);
path[ppos].ep_depth = i;
path[ppos].ep_ext = NULL;
error = bread(ip->i_devvp, fsbtodb(ip->i_e2fs, blk),
ip->i_e2fs->e2fs_bsize, NOCRED, &bp);
if (error) {
brelse(bp);
goto error;
}
ppos++;
if (ppos > depth) {
ext2_fserr(fs, ip->i_uid,
"ppos > depth => extent corrupted");
error = EIO;
brelse(bp);
goto error;
}
ext4_ext_fill_path_bdata(&path[ppos], bp, blk);
bqrelse(bp);
eh = ext4_ext_block_header(path[ppos].ep_data);
if (ext4_ext_check_header(ip, eh) ||
ext2_extent_blk_csum_verify(ip, path[ppos].ep_data)) {
error = EIO;
goto error;
}
path[ppos].ep_header = eh;
i--;
}
error = ext4_ext_check_header(ip, eh);
if (error)
goto error;
/* Find extent. */
path[ppos].ep_depth = i;
path[ppos].ep_header = eh;
path[ppos].ep_ext = NULL;
path[ppos].ep_index = NULL;
ext4_ext_binsearch_ext(&path[ppos], block);
return (0);
error:
ext4_ext_drop_refs(path);
if (alloc)
free(path, M_EXT2EXTENTS);
*ppath = NULL;
return (error);
}
static inline int
ext4_ext_space_root(struct inode *ip)
{
int size;
size = sizeof(ip->i_data);
size -= sizeof(struct ext4_extent_header);
size /= sizeof(struct ext4_extent);
return (size);
}
static inline int
ext4_ext_space_block(struct inode *ip)
{
struct m_ext2fs *fs;
int size;
fs = ip->i_e2fs;
size = (fs->e2fs_bsize - sizeof(struct ext4_extent_header)) /
sizeof(struct ext4_extent);
return (size);
}
static inline int
ext4_ext_space_block_index(struct inode *ip)
{
struct m_ext2fs *fs;
int size;
fs = ip->i_e2fs;
size = (fs->e2fs_bsize - sizeof(struct ext4_extent_header)) /
sizeof(struct ext4_extent_index);
return (size);
}
void
ext4_ext_tree_init(struct inode *ip)
{
struct ext4_extent_header *ehp;
ip->i_flag |= IN_E4EXTENTS;
memset(ip->i_data, 0, EXT2_NDADDR + EXT2_NIADDR);
ehp = (struct ext4_extent_header *)ip->i_data;
ehp->eh_magic = EXT4_EXT_MAGIC;
ehp->eh_max = ext4_ext_space_root(ip);
ip->i_ext_cache.ec_type = EXT4_EXT_CACHE_NO;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
ext2_update(ip->i_vnode, 1);
}
static inline void
ext4_ext_put_in_cache(struct inode *ip, uint32_t blk,
uint32_t len, uint32_t start, int type)
{
KASSERT(len != 0, ("ext4_ext_put_in_cache: bad input"));
ip->i_ext_cache.ec_type = type;
ip->i_ext_cache.ec_blk = blk;
ip->i_ext_cache.ec_len = len;
ip->i_ext_cache.ec_start = start;
}
static e4fs_daddr_t
ext4_ext_blkpref(struct inode *ip, struct ext4_extent_path *path,
e4fs_daddr_t block)
{
struct m_ext2fs *fs;
struct ext4_extent *ex;
e4fs_daddr_t bg_start;
int depth;
fs = ip->i_e2fs;
if (path) {
depth = path->ep_depth;
ex = path[depth].ep_ext;
if (ex) {
e4fs_daddr_t pblk = ext4_ext_extent_pblock(ex);
e2fs_daddr_t blk = ex->e_blk;
if (block > blk)
return (pblk + (block - blk));
else
return (pblk - (blk - block));
}
/* Try to get block from index itself. */
if (path[depth].ep_data)
return (path[depth].ep_blk);
}
/* Use inode's group. */
bg_start = (ip->i_block_group * EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
fs->e2fs->e2fs_first_dblock;
return (bg_start + block);
}
static int inline
ext4_can_extents_be_merged(struct ext4_extent *ex1,
struct ext4_extent *ex2)
{
if (ex1->e_blk + ex1->e_len != ex2->e_blk)
return (0);
if (ex1->e_len + ex2->e_len > EXT4_MAX_LEN)
return (0);
if (ext4_ext_extent_pblock(ex1) + ex1->e_len ==
ext4_ext_extent_pblock(ex2))
return (1);
return (0);
}
static unsigned
ext4_ext_next_leaf_block(struct inode *ip, struct ext4_extent_path *path)
{
int depth = path->ep_depth;
/* Empty tree */
if (depth == 0)
return (EXT4_MAX_BLOCKS);
/* Go to indexes. */
depth--;
while (depth >= 0) {
if (path[depth].ep_index !=
EXT_LAST_INDEX(path[depth].ep_header))
return (path[depth].ep_index[1].ei_blk);
depth--;
}
return (EXT4_MAX_BLOCKS);
}
static int
ext4_ext_dirty(struct inode *ip, struct ext4_extent_path *path)
{
struct m_ext2fs *fs;
struct buf *bp;
uint64_t blk;
int error;
fs = ip->i_e2fs;
if (!path)
return (EINVAL);
if (path->ep_data) {
blk = path->ep_blk;
bp = getblk(ip->i_devvp, fsbtodb(fs, blk),
fs->e2fs_bsize, 0, 0, 0);
if (!bp)
return (EIO);
ext4_ext_fill_path_buf(path, bp);
ext2_extent_blk_csum_set(ip, bp->b_data);
error = bwrite(bp);
} else {
ip->i_flag |= IN_CHANGE | IN_UPDATE;
error = ext2_update(ip->i_vnode, 1);
}
return (error);
}
static int
ext4_ext_insert_index(struct inode *ip, struct ext4_extent_path *path,
uint32_t lblk, e4fs_daddr_t blk)
{
struct m_ext2fs *fs;
struct ext4_extent_index *idx;
int len;
fs = ip->i_e2fs;
if (lblk == path->ep_index->ei_blk) {
ext2_fserr(fs, ip->i_uid,
"lblk == index blk => extent corrupted");
return (EIO);
}
if (path->ep_header->eh_ecount >= path->ep_header->eh_max) {
ext2_fserr(fs, ip->i_uid,
"ecout > maxcount => extent corrupted");
return (EIO);
}
if (lblk > path->ep_index->ei_blk) {
/* Insert after. */
idx = path->ep_index + 1;
} else {
/* Insert before. */
idx = path->ep_index;
}
len = EXT_LAST_INDEX(path->ep_header) - idx + 1;
if (len > 0)
memmove(idx + 1, idx, len * sizeof(struct ext4_extent_index));
if (idx > EXT_MAX_INDEX(path->ep_header)) {
ext2_fserr(fs, ip->i_uid,
"index is out of range => extent corrupted");
return (EIO);
}
idx->ei_blk = lblk;
ext4_index_store_pblock(idx, blk);
path->ep_header->eh_ecount++;
return (ext4_ext_dirty(ip, path));
}
static e4fs_daddr_t
ext4_ext_alloc_meta(struct inode *ip)
{
e4fs_daddr_t blk = ext2_alloc_meta(ip);
if (blk) {
ip->i_blocks += btodb(ip->i_e2fs->e2fs_bsize);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
ext2_update(ip->i_vnode, 1);
}
return (blk);
}
static void
ext4_ext_blkfree(struct inode *ip, uint64_t blk, int count, int flags)
{
struct m_ext2fs *fs;
int i, blocksreleased;
fs = ip->i_e2fs;
blocksreleased = count;
for(i = 0; i < count; i++)
ext2_blkfree(ip, blk + i, fs->e2fs_bsize);
if (ip->i_blocks >= blocksreleased)
ip->i_blocks -= (btodb(fs->e2fs_bsize)*blocksreleased);
else
ip->i_blocks = 0;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
ext2_update(ip->i_vnode, 1);
}
static int
ext4_ext_split(struct inode *ip, struct ext4_extent_path *path,
struct ext4_extent *newext, int at)
{
struct m_ext2fs *fs;
struct buf *bp;
int depth = ext4_ext_inode_depth(ip);
struct ext4_extent_header *neh;
struct ext4_extent_index *fidx;
struct ext4_extent *ex;
int i = at, k, m, a;
e4fs_daddr_t newblk, oldblk;
uint32_t border;
e4fs_daddr_t *ablks = NULL;
int error = 0;
fs = ip->i_e2fs;
bp = NULL;
/*
* We will split at current extent for now.
*/
if (path[depth].ep_ext > EXT_MAX_EXTENT(path[depth].ep_header)) {
ext2_fserr(fs, ip->i_uid,
"extent is out of range => extent corrupted");
return (EIO);
}
if (path[depth].ep_ext != EXT_MAX_EXTENT(path[depth].ep_header))
border = path[depth].ep_ext[1].e_blk;
else
border = newext->e_blk;
/* Allocate new blocks. */
ablks = malloc(sizeof(e4fs_daddr_t) * depth,
M_EXT2EXTENTS, M_WAITOK | M_ZERO);
if (!ablks)
return (ENOMEM);
for (a = 0; a < depth - at; a++) {
newblk = ext4_ext_alloc_meta(ip);
if (newblk == 0)
goto cleanup;
ablks[a] = newblk;
}
newblk = ablks[--a];
bp = getblk(ip->i_devvp, fsbtodb(fs, newblk), fs->e2fs_bsize, 0, 0, 0);
if (!bp) {
error = EIO;
goto cleanup;
}
neh = ext4_ext_block_header(bp->b_data);
neh->eh_ecount = 0;
neh->eh_max = ext4_ext_space_block(ip);
neh->eh_magic = EXT4_EXT_MAGIC;
neh->eh_depth = 0;
ex = EXT_FIRST_EXTENT(neh);
if (path[depth].ep_header->eh_ecount != path[depth].ep_header->eh_max) {
ext2_fserr(fs, ip->i_uid,
"extents count out of range => extent corrupted");
error = EIO;
goto cleanup;
}
/* Start copy from next extent. */
m = 0;
path[depth].ep_ext++;
while (path[depth].ep_ext <= EXT_MAX_EXTENT(path[depth].ep_header)) {
path[depth].ep_ext++;
m++;
}
if (m) {
memmove(ex, path[depth].ep_ext - m,
sizeof(struct ext4_extent) * m);
neh->eh_ecount = neh->eh_ecount + m;
}
ext2_extent_blk_csum_set(ip, bp->b_data);
bwrite(bp);
bp = NULL;
/* Fix old leaf. */
if (m) {
path[depth].ep_header->eh_ecount =
path[depth].ep_header->eh_ecount - m;
ext4_ext_dirty(ip, path + depth);
}
/* Create intermediate indexes. */
k = depth - at - 1;
KASSERT(k >= 0, ("ext4_ext_split: negative k"));
/* Insert new index into current index block. */
i = depth - 1;
while (k--) {
oldblk = newblk;
newblk = ablks[--a];
error = bread(ip->i_devvp, fsbtodb(fs, newblk),
(int)fs->e2fs_bsize, NOCRED, &bp);
if (error) {
brelse(bp);
goto cleanup;
}
neh = (struct ext4_extent_header *)bp->b_data;
neh->eh_ecount = 1;
neh->eh_magic = EXT4_EXT_MAGIC;
neh->eh_max = ext4_ext_space_block_index(ip);
neh->eh_depth = depth - i;
fidx = EXT_FIRST_INDEX(neh);
fidx->ei_blk = border;
ext4_index_store_pblock(fidx, oldblk);
m = 0;
path[i].ep_index++;
while (path[i].ep_index <= EXT_MAX_INDEX(path[i].ep_header)) {
path[i].ep_index++;
m++;
}
if (m) {
memmove(++fidx, path[i].ep_index - m,
sizeof(struct ext4_extent_index) * m);
neh->eh_ecount = neh->eh_ecount + m;
}
ext2_extent_blk_csum_set(ip, bp->b_data);
bwrite(bp);
bp = NULL;
/* Fix old index. */
if (m) {
path[i].ep_header->eh_ecount =
path[i].ep_header->eh_ecount - m;
ext4_ext_dirty(ip, path + i);
}
i--;
}
error = ext4_ext_insert_index(ip, path + at, border, newblk);
cleanup:
if (bp)
brelse(bp);
if (error) {
for (i = 0; i < depth; i++) {
if (!ablks[i])
continue;
ext4_ext_blkfree(ip, ablks[i], 1, 0);
}
}
free(ablks, M_EXT2EXTENTS);
return (error);
}
static int
ext4_ext_grow_indepth(struct inode *ip, struct ext4_extent_path *path,
struct ext4_extent *newext)
{
struct m_ext2fs *fs;
struct ext4_extent_path *curpath;
struct ext4_extent_header *neh;
struct buf *bp;
e4fs_daddr_t newblk;
int error = 0;
fs = ip->i_e2fs;
curpath = path;
newblk = ext4_ext_alloc_meta(ip);
if (newblk == 0)
return (error);
bp = getblk(ip->i_devvp, fsbtodb(fs, newblk), fs->e2fs_bsize, 0, 0, 0);
if (!bp)
return (EIO);
/* Move top-level index/leaf into new block. */
memmove(bp->b_data, curpath->ep_header, sizeof(ip->i_data));
/* Set size of new block */
neh = ext4_ext_block_header(bp->b_data);
neh->eh_magic = EXT4_EXT_MAGIC;
if (ext4_ext_inode_depth(ip))
neh->eh_max = ext4_ext_space_block_index(ip);
else
neh->eh_max = ext4_ext_space_block(ip);
ext2_extent_blk_csum_set(ip, bp->b_data);
error = bwrite(bp);
if (error)
goto out;
bp = NULL;
curpath->ep_header->eh_magic = EXT4_EXT_MAGIC;
curpath->ep_header->eh_max = ext4_ext_space_root(ip);
curpath->ep_header->eh_ecount = 1;
curpath->ep_index = EXT_FIRST_INDEX(curpath->ep_header);
curpath->ep_index->ei_blk = EXT_FIRST_EXTENT(path[0].ep_header)->e_blk;
ext4_index_store_pblock(curpath->ep_index, newblk);
neh = ext4_ext_inode_header(ip);
neh->eh_depth = path->ep_depth + 1;
ext4_ext_dirty(ip, curpath);
out:
brelse(bp);
return (error);
}
static int
ext4_ext_create_new_leaf(struct inode *ip, struct ext4_extent_path *path,
struct ext4_extent *newext)
{
struct ext4_extent_path *curpath;
int depth, i, error;
repeat:
i = depth = ext4_ext_inode_depth(ip);
/* Look for free index entry int the tree */
curpath = path + depth;
while (i > 0 && !EXT_HAS_FREE_INDEX(curpath)) {
i--;
curpath--;
}
/*
* We use already allocated block for index block,
* so subsequent data blocks should be contiguous.
*/
if (EXT_HAS_FREE_INDEX(curpath)) {
error = ext4_ext_split(ip, path, newext, i);
if (error)
goto out;
/* Refill path. */
ext4_ext_drop_refs(path);
error = ext4_ext_find_extent(ip, newext->e_blk, &path);
if (error)
goto out;
} else {
/* Tree is full, do grow in depth. */
error = ext4_ext_grow_indepth(ip, path, newext);
if (error)
goto out;
/* Refill path. */
ext4_ext_drop_refs(path);
error = ext4_ext_find_extent(ip, newext->e_blk, &path);
if (error)
goto out;
/* Check and split tree if required. */
depth = ext4_ext_inode_depth(ip);
if (path[depth].ep_header->eh_ecount ==
path[depth].ep_header->eh_max)
goto repeat;
}
out:
return (error);
}
static int
ext4_ext_correct_indexes(struct inode *ip, struct ext4_extent_path *path)
{
struct ext4_extent_header *eh;
struct ext4_extent *ex;
int32_t border;
int depth, k;
depth = ext4_ext_inode_depth(ip);
eh = path[depth].ep_header;
ex = path[depth].ep_ext;
if (ex == NULL || eh == NULL)
return (EIO);
if (!depth)
return (0);
/* We will correct tree if first leaf got modified only. */
if (ex != EXT_FIRST_EXTENT(eh))
return (0);
k = depth - 1;
border = path[depth].ep_ext->e_blk;
path[k].ep_index->ei_blk = border;
ext4_ext_dirty(ip, path + k);
while (k--) {
/* Change all left-side indexes. */
if (path[k+1].ep_index != EXT_FIRST_INDEX(path[k+1].ep_header))
break;
path[k].ep_index->ei_blk = border;
ext4_ext_dirty(ip, path + k);
}
return (0);
}
static int
ext4_ext_insert_extent(struct inode *ip, struct ext4_extent_path *path,
struct ext4_extent *newext)
{
struct ext4_extent_header * eh;
struct ext4_extent *ex, *nex, *nearex;
struct ext4_extent_path *npath;
int depth, len, error, next;
depth = ext4_ext_inode_depth(ip);
ex = path[depth].ep_ext;
npath = NULL;
if (newext->e_len == 0 || path[depth].ep_header == NULL)
return (EINVAL);
/* Insert block into found extent. */
if (ex && ext4_can_extents_be_merged(ex, newext)) {
ex->e_len = ex->e_len + newext->e_len;
eh = path[depth].ep_header;
nearex = ex;
goto merge;
}
repeat:
depth = ext4_ext_inode_depth(ip);
eh = path[depth].ep_header;
if (eh->eh_ecount < eh->eh_max)
goto has_space;
/* Try next leaf */
nex = EXT_LAST_EXTENT(eh);
next = ext4_ext_next_leaf_block(ip, path);
if (newext->e_blk > nex->e_blk && next != EXT4_MAX_BLOCKS) {
KASSERT(npath == NULL,
("ext4_ext_insert_extent: bad path"));
error = ext4_ext_find_extent(ip, next, &npath);
if (error)
goto cleanup;
if (npath->ep_depth != path->ep_depth) {
error = EIO;
goto cleanup;
}
eh = npath[depth].ep_header;
if (eh->eh_ecount < eh->eh_max) {
path = npath;
goto repeat;
}
}
/*
* There is no free space in the found leaf,
* try to add a new leaf to the tree.
*/
error = ext4_ext_create_new_leaf(ip, path, newext);
if (error)
goto cleanup;
depth = ext4_ext_inode_depth(ip);
eh = path[depth].ep_header;
has_space:
nearex = path[depth].ep_ext;
if (!nearex) {
/* Create new extent in the leaf. */
path[depth].ep_ext = EXT_FIRST_EXTENT(eh);
} else if (newext->e_blk > nearex->e_blk) {
if (nearex != EXT_LAST_EXTENT(eh)) {
len = EXT_MAX_EXTENT(eh) - nearex;
len = (len - 1) * sizeof(struct ext4_extent);
len = len < 0 ? 0 : len;
memmove(nearex + 2, nearex + 1, len);
}
path[depth].ep_ext = nearex + 1;
} else {
len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
len = len < 0 ? 0 : len;
memmove(nearex + 1, nearex, len);
path[depth].ep_ext = nearex;
}
eh->eh_ecount = eh->eh_ecount + 1;
nearex = path[depth].ep_ext;
nearex->e_blk = newext->e_blk;
nearex->e_start_lo = newext->e_start_lo;
nearex->e_start_hi = newext->e_start_hi;
nearex->e_len = newext->e_len;
merge:
/* Try to merge extents to the right. */
while (nearex < EXT_LAST_EXTENT(eh)) {
if (!ext4_can_extents_be_merged(nearex, nearex + 1))
break;
/* Merge with next extent. */
nearex->e_len = nearex->e_len + nearex[1].e_len;
if (nearex + 1 < EXT_LAST_EXTENT(eh)) {
len = (EXT_LAST_EXTENT(eh) - nearex - 1) *
sizeof(struct ext4_extent);
memmove(nearex + 1, nearex + 2, len);
}
eh->eh_ecount = eh->eh_ecount - 1;
KASSERT(eh->eh_ecount != 0,
("ext4_ext_insert_extent: bad ecount"));
}
/*
* Try to merge extents to the left,
* start from inexes correction.
*/
error = ext4_ext_correct_indexes(ip, path);
if (error)
goto cleanup;
ext4_ext_dirty(ip, path + depth);
cleanup:
if (npath) {
ext4_ext_drop_refs(npath);
free(npath, M_EXT2EXTENTS);
}
ip->i_ext_cache.ec_type = EXT4_EXT_CACHE_NO;
return (error);
}
static e4fs_daddr_t
ext4_new_blocks(struct inode *ip, daddr_t lbn, e4fs_daddr_t pref,
struct ucred *cred, unsigned long *count, int *perror)
{
struct m_ext2fs *fs;
e4fs_daddr_t newblk;
fs = ip->i_e2fs;
/*
* We will allocate only single block for now.
*/
if (*count > 1)
return (0);
EXT2_LOCK(ip->i_ump);
*perror = ext2_alloc(ip, lbn, pref, (int)fs->e2fs_bsize, cred, &newblk);
if (*perror)
return (0);
if (newblk) {
ip->i_flag |= IN_CHANGE | IN_UPDATE;
ext2_update(ip->i_vnode, 1);
}
return (newblk);
}
int
ext4_ext_get_blocks(struct inode *ip, e4fs_daddr_t iblk,
unsigned long max_blocks, struct ucred *cred, struct buf **bpp,
int *pallocated, daddr_t *nb)
{
struct m_ext2fs *fs;
struct buf *bp = NULL;
struct ext4_extent_path *path;
struct ext4_extent newex, *ex;
e4fs_daddr_t bpref, newblk = 0;
unsigned long allocated = 0;
int error = 0, depth;
fs = ip->i_e2fs;
*pallocated = 0;
path = NULL;
if(bpp)
*bpp = NULL;
/* Check cache. */
if ((bpref = ext4_ext_in_cache(ip, iblk, &newex))) {
if (bpref == EXT4_EXT_CACHE_IN) {
/* Block is already allocated. */
newblk = iblk - newex.e_blk +
ext4_ext_extent_pblock(&newex);
allocated = newex.e_len - (iblk - newex.e_blk);
goto out;
} else {
error = EIO;
goto out2;
}
}
error = ext4_ext_find_extent(ip, iblk, &path);
if (error) {
goto out2;
}
depth = ext4_ext_inode_depth(ip);
if (path[depth].ep_ext == NULL && depth != 0) {
error = EIO;
goto out2;
}
if ((ex = path[depth].ep_ext)) {
uint64_t lblk = ex->e_blk;
uint16_t e_len = ex->e_len;
e4fs_daddr_t e_start = ext4_ext_extent_pblock(ex);
if (e_len > EXT4_MAX_LEN)
goto out2;
/* If we found extent covers block, simply return it. */
if (iblk >= lblk && iblk < lblk + e_len) {
newblk = iblk - lblk + e_start;
allocated = e_len - (iblk - lblk);
ext4_ext_put_in_cache(ip, lblk, e_len,
e_start, EXT4_EXT_CACHE_IN);
goto out;
}
}
/* Allocate the new block. */
if (S_ISREG(ip->i_mode) && (!ip->i_next_alloc_block)) {
ip->i_next_alloc_goal = 0;
}
bpref = ext4_ext_blkpref(ip, path, iblk);
allocated = max_blocks;
newblk = ext4_new_blocks(ip, iblk, bpref, cred, &allocated, &error);
if (!newblk)
goto out2;
/* Try to insert new extent into found leaf and return. */
newex.e_blk = iblk;
ext4_ext_store_pblock(&newex, newblk);
newex.e_len = allocated;
error = ext4_ext_insert_extent(ip, path, &newex);
if (error)
goto out2;
newblk = ext4_ext_extent_pblock(&newex);
ext4_ext_put_in_cache(ip, iblk, allocated, newblk, EXT4_EXT_CACHE_IN);
*pallocated = 1;
out:
if (allocated > max_blocks)
allocated = max_blocks;
if (bpp)
{
error = bread(ip->i_devvp, fsbtodb(fs, newblk),
fs->e2fs_bsize, cred, &bp);
if (error) {
brelse(bp);
} else {
*bpp = bp;
}
}
out2:
if (path) {
ext4_ext_drop_refs(path);
free(path, M_EXT2EXTENTS);
}
if (nb)
*nb = newblk;
return (error);
}
static inline uint16_t
ext4_ext_get_actual_len(struct ext4_extent *ext)
{
return (ext->e_len <= EXT_INIT_MAX_LEN ?
ext->e_len : (ext->e_len - EXT_INIT_MAX_LEN));
}
static inline struct ext4_extent_header *
ext4_ext_header(struct inode *ip)
{
return (struct ext4_extent_header *)ip->i_db;
}
static int
ext4_remove_blocks(struct inode *ip, struct ext4_extent *ex,
unsigned long from, unsigned long to)
{
unsigned long num, start;
if (from >= ex->e_blk &&
to == ex->e_blk + ext4_ext_get_actual_len(ex) - 1) {
/* Tail cleanup. */
num = ex->e_blk + ext4_ext_get_actual_len(ex) - from;
start = ext4_ext_extent_pblock(ex) +
ext4_ext_get_actual_len(ex) - num;
ext4_ext_blkfree(ip, start, num, 0);
}
return (0);
}
static int
ext4_ext_rm_index(struct inode *ip, struct ext4_extent_path *path)
{
e4fs_daddr_t leaf;
/* Free index block. */
path--;
leaf = ext4_ext_index_pblock(path->ep_index);
KASSERT(path->ep_header->eh_ecount != 0,
("ext4_ext_rm_index: bad ecount"));
path->ep_header->eh_ecount--;
ext4_ext_dirty(ip, path);
ext4_ext_blkfree(ip, leaf, 1, 0);
return (0);
}
static int
ext4_ext_rm_leaf(struct inode *ip, struct ext4_extent_path *path,
uint64_t start)
{
struct m_ext2fs *fs;
int depth;
struct ext4_extent_header *eh;
unsigned int a, b, block, num;
unsigned long ex_blk;
unsigned short ex_len;
struct ext4_extent *ex;
int error, correct_index;
fs = ip->i_e2fs;
depth = ext4_ext_inode_depth(ip);
correct_index = 0;
if (!path[depth].ep_header) {
if (path[depth].ep_data == NULL)
return (EINVAL);
path[depth].ep_header =
(struct ext4_extent_header* )path[depth].ep_data;
}
eh = path[depth].ep_header;
if (!eh) {
ext2_fserr(fs, ip->i_uid, "bad header => extent corrupted");
return (EIO);
}
ex = EXT_LAST_EXTENT(eh);
ex_blk = ex->e_blk;
ex_len = ext4_ext_get_actual_len(ex);
while (ex >= EXT_FIRST_EXTENT(eh) && ex_blk + ex_len > start) {
path[depth].ep_ext = ex;
a = ex_blk > start ? ex_blk : start;
b = (uint64_t)ex_blk + ex_len - 1 <
EXT4_MAX_BLOCKS ? ex_blk + ex_len - 1 : EXT4_MAX_BLOCKS;
if (a != ex_blk && b != ex_blk + ex_len - 1)
return (EINVAL);
else if (a != ex_blk) {
/* Remove tail of the extent. */
block = ex_blk;
num = a - block;
} else if (b != ex_blk + ex_len - 1) {
/* Remove head of the extent, not implemented. */
return (EINVAL);
} else {
/* Remove whole extent. */
block = ex_blk;
num = 0;
}
if (ex == EXT_FIRST_EXTENT(eh))
correct_index = 1;
error = ext4_remove_blocks(ip, ex, a, b);
if (error)
goto out;
if (num == 0) {
ext4_ext_store_pblock(ex, 0);
eh->eh_ecount--;
}
ex->e_blk = block;
ex->e_len = num;
ext4_ext_dirty(ip, path + depth);
ex--;
ex_blk = ex->e_blk;
ex_len = ext4_ext_get_actual_len(ex);
};
if (correct_index && eh->eh_ecount)
error = ext4_ext_correct_indexes(ip, path);
/*
* If this leaf is free, we should
* remove it from index block above.
*/
if (error == 0 && eh->eh_ecount == 0 && path[depth].ep_data != NULL)
error = ext4_ext_rm_index(ip, path + depth);
out:
return (error);
}
static struct buf *
ext4_read_extent_tree_block(struct inode *ip, e4fs_daddr_t pblk,
int depth, int flags)
{
struct m_ext2fs *fs;
struct ext4_extent_header *eh;
struct buf *bp;
int error;
fs = ip->i_e2fs;
error = bread(ip->i_devvp, fsbtodb(fs, pblk),
fs->e2fs_bsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (NULL);
}
eh = ext4_ext_block_header(bp->b_data);
if (eh->eh_depth != depth) {
ext2_fserr(fs, ip->i_uid, "unexpected eh_depth");
goto err;
}
error = ext4_ext_check_header(ip, eh);
if (error)
goto err;
return (bp);
err:
brelse(bp);
return (NULL);
}
static int inline
ext4_ext_more_to_rm(struct ext4_extent_path *path)
{
KASSERT(path->ep_index != NULL,
("ext4_ext_more_to_rm: bad index from path"));
if (path->ep_index < EXT_FIRST_INDEX(path->ep_header))
return (0);
if (path->ep_header->eh_ecount == path->index_count)
return (0);
return (1);
}
int
ext4_ext_remove_space(struct inode *ip, off_t length, int flags,
struct ucred *cred, struct thread *td)
{
struct buf *bp;
struct ext4_extent_header *ehp;
struct ext4_extent_path *path;
int depth;
int i, error;
ehp = (struct ext4_extent_header *)ip->i_db;
depth = ext4_ext_inode_depth(ip);
error = ext4_ext_check_header(ip, ehp);
if(error)
return (error);
path = malloc(sizeof(struct ext4_extent_path) * (depth + 1),
M_EXT2EXTENTS, M_WAITOK | M_ZERO);
if (!path)
return (ENOMEM);
i = 0;
path[0].ep_header = ehp;
path[0].ep_depth = depth;
while (i >= 0 && error == 0) {
if (i == depth) {
/* This is leaf. */
error = ext4_ext_rm_leaf(ip, path, length);
if (error)
break;
free(path[i].ep_data, M_EXT2EXTENTS);
path[i].ep_data = NULL;
i--;
continue;
}
/* This is index. */
if (!path[i].ep_header)
path[i].ep_header =
(struct ext4_extent_header *)path[i].ep_data;
if (!path[i].ep_index) {
/* This level hasn't touched yet. */
path[i].ep_index = EXT_LAST_INDEX(path[i].ep_header);
path[i].index_count = path[i].ep_header->eh_ecount + 1;
} else {
/* We've already was here, see at next index. */
path[i].ep_index--;
}
if (ext4_ext_more_to_rm(path + i)) {
memset(path + i + 1, 0, sizeof(*path));
bp = ext4_read_extent_tree_block(ip,
ext4_ext_index_pblock(path[i].ep_index),
path[0].ep_depth - (i + 1), 0);
if (!bp) {
error = EIO;
break;
}
ext4_ext_fill_path_bdata(&path[i+1], bp,
ext4_ext_index_pblock(path[i].ep_index));
brelse(bp);
path[i].index_count = path[i].ep_header->eh_ecount;
i++;
} else {
if (path[i].ep_header->eh_ecount == 0 && i > 0) {
/* Index is empty, remove it. */
error = ext4_ext_rm_index(ip, path + i);
}
free(path[i].ep_data, M_EXT2EXTENTS);
path[i].ep_data = NULL;
i--;
}
}
if (path->ep_header->eh_ecount == 0) {
/*
* Truncate the tree to zero.
*/
ext4_ext_header(ip)->eh_depth = 0;
ext4_ext_header(ip)->eh_max = ext4_ext_space_root(ip);
ext4_ext_dirty(ip, path);
}
ext4_ext_drop_refs(path);
free(path, M_EXT2EXTENTS);
return (error);
}