765 lines
23 KiB
Groff
Raw Normal View History

1994-05-30 19:09:18 +00:00
.\" Copyright (c) 1983, 1991, 1993
.\" The Regents of the University of California.
.\" Copyright (c) 2010-2011 The FreeBSD Foundation
.\" All rights reserved.
.\"
.\" Portions of this documentation were written at the Centre for Advanced
.\" Internet Architectures, Swinburne University of Technology, Melbourne,
.\" Australia by David Hayes under sponsorship from the FreeBSD Foundation.
1994-05-30 19:09:18 +00:00
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the University nor the names of its contributors
1994-05-30 19:09:18 +00:00
.\" may be used to endorse or promote products derived from this software
.\" without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" From: @(#)tcp.4 8.1 (Berkeley) 6/5/93
1999-08-28 00:22:10 +00:00
.\" $FreeBSD$
1994-05-30 19:09:18 +00:00
.\"
.Dd December 2, 2019
1994-05-30 19:09:18 +00:00
.Dt TCP 4
.Os
1994-05-30 19:09:18 +00:00
.Sh NAME
.Nm tcp
.Nd Internet Transmission Control Protocol
.Sh SYNOPSIS
.In sys/types.h
.In sys/socket.h
.In netinet/in.h
.In netinet/tcp.h
1994-05-30 19:09:18 +00:00
.Ft int
.Fn socket AF_INET SOCK_STREAM 0
.Sh DESCRIPTION
The
.Tn TCP
protocol provides reliable, flow-controlled, two-way
transmission of data.
It is a byte-stream protocol used to
1994-05-30 19:09:18 +00:00
support the
.Dv SOCK_STREAM
abstraction.
.Tn TCP
uses the standard
1994-05-30 19:09:18 +00:00
Internet address format and, in addition, provides a per-host
collection of
.Dq "port addresses" .
1994-05-30 19:09:18 +00:00
Thus, each address is composed
of an Internet address specifying the host and network,
with a specific
1994-05-30 19:09:18 +00:00
.Tn TCP
port on the host identifying the peer entity.
.Pp
Sockets utilizing the
.Tn TCP
protocol are either
1994-05-30 19:09:18 +00:00
.Dq active
or
.Dq passive .
Active sockets initiate connections to passive
sockets.
By default,
1994-05-30 19:09:18 +00:00
.Tn TCP
sockets are created active; to create a
passive socket, the
1994-05-30 19:09:18 +00:00
.Xr listen 2
system call must be used
after binding the socket with the
.Xr bind 2
system call.
Only passive sockets may use the
1994-05-30 19:09:18 +00:00
.Xr accept 2
call to accept incoming connections.
Only active sockets may use the
1994-05-30 19:09:18 +00:00
.Xr connect 2
call to initiate connections.
.Pp
Passive sockets may
.Dq underspecify
their location to match
incoming connection requests from multiple networks.
This technique, termed
.Dq "wildcard addressing" ,
1994-05-30 19:09:18 +00:00
allows a single
server to provide service to clients on multiple networks.
To create a socket which listens on all networks, the Internet
address
.Dv INADDR_ANY
must be bound.
The
1994-05-30 19:09:18 +00:00
.Tn TCP
port may still be specified
at this time; if the port is not specified, the system will assign one.
Once a connection has been established, the socket's address is
fixed by the peer entity's location.
The address assigned to the
1994-05-30 19:09:18 +00:00
socket is the address associated with the network interface
through which packets are being transmitted and received.
Normally, this address corresponds to the peer entity's network.
1994-05-30 19:09:18 +00:00
.Pp
.Tn TCP
supports a number of socket options which can be set with
1994-05-30 19:09:18 +00:00
.Xr setsockopt 2
and tested with
.Xr getsockopt 2 :
.Bl -tag -width ".Dv TCP_FUNCTION_BLK"
.It Dv TCP_INFO
Information about a socket's underlying TCP session may be retrieved
by passing the read-only option
.Dv TCP_INFO
to
.Xr getsockopt 2 .
It accepts a single argument: a pointer to an instance of
.Vt "struct tcp_info" .
.Pp
This API is subject to change; consult the source to determine
which fields are currently filled out by this option.
.Fx
specific additions include
send window size,
receive window size,
and
bandwidth-controlled window space.
.It Dv TCP_CCALGOOPT
Set or query congestion control algorithm specific parameters.
See
.Xr mod_cc 4
for details.
.It Dv TCP_CONGESTION
Select or query the congestion control algorithm that TCP will use for the
connection.
See
.Xr mod_cc 4
for details.
.It Dv TCP_FUNCTION_BLK
Select or query the set of functions that TCP will use for this connection.
This allows a user to select an alternate TCP stack.
The alternate TCP stack must already be loaded in the kernel.
To list the available TCP stacks, see
.Va functions_available
in the
.Sx MIB Variables
section further down.
To list the default TCP stack, see
.Va functions_default
in the
.Sx MIB Variables
section.
.It Dv TCP_KEEPINIT
This
.Xr setsockopt 2
option accepts a per-socket timeout argument of
.Vt "u_int"
in seconds, for new, non-established
.Tn TCP
connections.
For the global default in milliseconds see
.Va keepinit
in the
.Sx MIB Variables
section further down.
.It Dv TCP_KEEPIDLE
This
.Xr setsockopt 2
option accepts an argument of
.Vt "u_int"
for the amount of time, in seconds, that the connection must be idle
before keepalive probes (if enabled) are sent for the connection of this
socket.
If set on a listening socket, the value is inherited by the newly created
socket upon
.Xr accept 2 .
For the global default in milliseconds see
.Va keepidle
in the
.Sx MIB Variables
section further down.
.It Dv TCP_KEEPINTVL
This
.Xr setsockopt 2
option accepts an argument of
.Vt "u_int"
to set the per-socket interval, in seconds, between keepalive probes sent
to a peer.
If set on a listening socket, the value is inherited by the newly created
socket upon
.Xr accept 2 .
For the global default in milliseconds see
.Va keepintvl
in the
.Sx MIB Variables
section further down.
.It Dv TCP_KEEPCNT
This
.Xr setsockopt 2
option accepts an argument of
.Vt "u_int"
and allows a per-socket tuning of the number of probes sent, with no response,
before the connection will be dropped.
If set on a listening socket, the value is inherited by the newly created
socket upon
.Xr accept 2 .
For the global default see the
.Va keepcnt
in the
.Sx MIB Variables
section further down.
.It Dv TCP_NODELAY
1994-05-30 19:09:18 +00:00
Under most circumstances,
.Tn TCP
sends data when it is presented;
when outstanding data has not yet been acknowledged, it gathers
small amounts of output to be sent in a single packet once
an acknowledgement is received.
For a small number of clients, such as window systems
that send a stream of mouse events which receive no replies,
this packetization may cause significant delays.
The boolean option
1994-05-30 19:09:18 +00:00
.Dv TCP_NODELAY
defeats this algorithm.
.It Dv TCP_MAXSEG
By default, a sender- and
.No receiver- Ns Tn TCP
will negotiate among themselves to determine the maximum segment size
to be used for each connection.
The
.Dv TCP_MAXSEG
option allows the user to determine the result of this negotiation,
and to reduce it if desired.
.It Dv TCP_NOOPT
.Tn TCP
usually sends a number of options in each packet, corresponding to
various
.Tn TCP
extensions which are provided in this implementation.
The boolean option
.Dv TCP_NOOPT
is provided to disable
.Tn TCP
option use on a per-connection basis.
.It Dv TCP_NOPUSH
By convention, the
.No sender- Ns Tn TCP
will set the
.Dq push
bit, and begin transmission immediately (if permitted) at the end of
every user call to
.Xr write 2
or
.Xr writev 2 .
When this option is set to a non-zero value,
.Tn TCP
will delay sending any data at all until either the socket is closed,
or the internal send buffer is filled.
.It Dv TCP_MD5SIG
Initial import of RFC 2385 (TCP-MD5) digest support. This is the first of two commits; bringing in the kernel support first. This can be enabled by compiling a kernel with options TCP_SIGNATURE and FAST_IPSEC. For the uninitiated, this is a TCP option which provides for a means of authenticating TCP sessions which came into being before IPSEC. It is still relevant today, however, as it is used by many commercial router vendors, particularly with BGP, and as such has become a requirement for interconnect at many major Internet points of presence. Several parts of the TCP and IP headers, including the segment payload, are digested with MD5, including a shared secret. The PF_KEY interface is used to manage the secrets using security associations in the SADB. There is a limitation here in that as there is no way to map a TCP flow per-port back to an SPI without polluting tcpcb or using the SPD; the code to do the latter is unstable at this time. Therefore this code only supports per-host keying granularity. Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6), TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective users of this feature, this will not pose any problem. This implementation is output-only; that is, the option is honoured when responding to a host initiating a TCP session, but no effort is made [yet] to authenticate inbound traffic. This is, however, sufficient to interwork with Cisco equipment. Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with local patches. Patches for tcpdump to validate TCP-MD5 sessions are also available from me upon request. Sponsored by: sentex.net
2004-02-11 04:26:04 +00:00
This option enables the use of MD5 digests (also known as TCP-MD5)
on writes to the specified socket.
Outgoing traffic is digested;
Merge projects/ipsec into head/. Small summary ------------- o Almost all IPsec releated code was moved into sys/netipsec. o New kernel modules added: ipsec.ko and tcpmd5.ko. New kernel option IPSEC_SUPPORT added. It enables support for loading and unloading of ipsec.ko and tcpmd5.ko kernel modules. o IPSEC_NAT_T option was removed. Now NAT-T support is enabled by default. The UDP_ENCAP_ESPINUDP_NON_IKE encapsulation type support was removed. Added TCP/UDP checksum handling for inbound packets that were decapsulated by transport mode SAs. setkey(8) modified to show run-time NAT-T configuration of SA. o New network pseudo interface if_ipsec(4) added. For now it is build as part of ipsec.ko module (or with IPSEC kernel). It implements IPsec virtual tunnels to create route-based VPNs. o The network stack now invokes IPsec functions using special methods. The only one header file <netipsec/ipsec_support.h> should be included to declare all the needed things to work with IPsec. o All IPsec protocols handlers (ESP/AH/IPCOMP protosw) were removed. Now these protocols are handled directly via IPsec methods. o TCP_SIGNATURE support was reworked to be more close to RFC. o PF_KEY SADB was reworked: - now all security associations stored in the single SPI namespace, and all SAs MUST have unique SPI. - several hash tables added to speed up lookups in SADB. - SADB now uses rmlock to protect access, and concurrent threads can do SA lookups in the same time. - many PF_KEY message handlers were reworked to reflect changes in SADB. - SADB_UPDATE message was extended to support new PF_KEY headers: SADB_X_EXT_NEW_ADDRESS_SRC and SADB_X_EXT_NEW_ADDRESS_DST. They can be used by IKE daemon to change SA addresses. o ipsecrequest and secpolicy structures were cardinally changed to avoid locking protection for ipsecrequest. Now we support only limited number (4) of bundled SAs, but they are supported for both INET and INET6. o INPCB security policy cache was introduced. Each PCB now caches used security policies to avoid SP lookup for each packet. o For inbound security policies added the mode, when the kernel does check for full history of applied IPsec transforms. o References counting rules for security policies and security associations were changed. The proper SA locking added into xform code. o xform code was also changed. Now it is possible to unregister xforms. tdb_xxx structures were changed and renamed to reflect changes in SADB/SPDB, and changed rules for locking and refcounting. Reviewed by: gnn, wblock Obtained from: Yandex LLC Relnotes: yes Sponsored by: Yandex LLC Differential Revision: https://reviews.freebsd.org/D9352
2017-02-06 08:49:57 +00:00
digests on incoming traffic are verified.
When this option is enabled on a socket, all inbound and outgoing
TCP segments must be signed with MD5 digests.
Initial import of RFC 2385 (TCP-MD5) digest support. This is the first of two commits; bringing in the kernel support first. This can be enabled by compiling a kernel with options TCP_SIGNATURE and FAST_IPSEC. For the uninitiated, this is a TCP option which provides for a means of authenticating TCP sessions which came into being before IPSEC. It is still relevant today, however, as it is used by many commercial router vendors, particularly with BGP, and as such has become a requirement for interconnect at many major Internet points of presence. Several parts of the TCP and IP headers, including the segment payload, are digested with MD5, including a shared secret. The PF_KEY interface is used to manage the secrets using security associations in the SADB. There is a limitation here in that as there is no way to map a TCP flow per-port back to an SPI without polluting tcpcb or using the SPD; the code to do the latter is unstable at this time. Therefore this code only supports per-host keying granularity. Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6), TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective users of this feature, this will not pose any problem. This implementation is output-only; that is, the option is honoured when responding to a host initiating a TCP session, but no effort is made [yet] to authenticate inbound traffic. This is, however, sufficient to interwork with Cisco equipment. Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with local patches. Patches for tcpdump to validate TCP-MD5 sessions are also available from me upon request. Sponsored by: sentex.net
2004-02-11 04:26:04 +00:00
.Pp
One common use for this in a
.Fx
router deployment is to enable
Initial import of RFC 2385 (TCP-MD5) digest support. This is the first of two commits; bringing in the kernel support first. This can be enabled by compiling a kernel with options TCP_SIGNATURE and FAST_IPSEC. For the uninitiated, this is a TCP option which provides for a means of authenticating TCP sessions which came into being before IPSEC. It is still relevant today, however, as it is used by many commercial router vendors, particularly with BGP, and as such has become a requirement for interconnect at many major Internet points of presence. Several parts of the TCP and IP headers, including the segment payload, are digested with MD5, including a shared secret. The PF_KEY interface is used to manage the secrets using security associations in the SADB. There is a limitation here in that as there is no way to map a TCP flow per-port back to an SPI without polluting tcpcb or using the SPD; the code to do the latter is unstable at this time. Therefore this code only supports per-host keying granularity. Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6), TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective users of this feature, this will not pose any problem. This implementation is output-only; that is, the option is honoured when responding to a host initiating a TCP session, but no effort is made [yet] to authenticate inbound traffic. This is, however, sufficient to interwork with Cisco equipment. Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with local patches. Patches for tcpdump to validate TCP-MD5 sessions are also available from me upon request. Sponsored by: sentex.net
2004-02-11 04:26:04 +00:00
based routers to interwork with Cisco equipment at peering points.
Support for this feature conforms to RFC 2385.
.Pp
In order for this option to function correctly, it is necessary for the
administrator to add a tcp-md5 key entry to the system's security
associations database (SADB) using the
.Xr setkey 8
utility.
Merge projects/ipsec into head/. Small summary ------------- o Almost all IPsec releated code was moved into sys/netipsec. o New kernel modules added: ipsec.ko and tcpmd5.ko. New kernel option IPSEC_SUPPORT added. It enables support for loading and unloading of ipsec.ko and tcpmd5.ko kernel modules. o IPSEC_NAT_T option was removed. Now NAT-T support is enabled by default. The UDP_ENCAP_ESPINUDP_NON_IKE encapsulation type support was removed. Added TCP/UDP checksum handling for inbound packets that were decapsulated by transport mode SAs. setkey(8) modified to show run-time NAT-T configuration of SA. o New network pseudo interface if_ipsec(4) added. For now it is build as part of ipsec.ko module (or with IPSEC kernel). It implements IPsec virtual tunnels to create route-based VPNs. o The network stack now invokes IPsec functions using special methods. The only one header file <netipsec/ipsec_support.h> should be included to declare all the needed things to work with IPsec. o All IPsec protocols handlers (ESP/AH/IPCOMP protosw) were removed. Now these protocols are handled directly via IPsec methods. o TCP_SIGNATURE support was reworked to be more close to RFC. o PF_KEY SADB was reworked: - now all security associations stored in the single SPI namespace, and all SAs MUST have unique SPI. - several hash tables added to speed up lookups in SADB. - SADB now uses rmlock to protect access, and concurrent threads can do SA lookups in the same time. - many PF_KEY message handlers were reworked to reflect changes in SADB. - SADB_UPDATE message was extended to support new PF_KEY headers: SADB_X_EXT_NEW_ADDRESS_SRC and SADB_X_EXT_NEW_ADDRESS_DST. They can be used by IKE daemon to change SA addresses. o ipsecrequest and secpolicy structures were cardinally changed to avoid locking protection for ipsecrequest. Now we support only limited number (4) of bundled SAs, but they are supported for both INET and INET6. o INPCB security policy cache was introduced. Each PCB now caches used security policies to avoid SP lookup for each packet. o For inbound security policies added the mode, when the kernel does check for full history of applied IPsec transforms. o References counting rules for security policies and security associations were changed. The proper SA locking added into xform code. o xform code was also changed. Now it is possible to unregister xforms. tdb_xxx structures were changed and renamed to reflect changes in SADB/SPDB, and changed rules for locking and refcounting. Reviewed by: gnn, wblock Obtained from: Yandex LLC Relnotes: yes Sponsored by: Yandex LLC Differential Revision: https://reviews.freebsd.org/D9352
2017-02-06 08:49:57 +00:00
This entry can only be specified on a per-host basis at this time.
Initial import of RFC 2385 (TCP-MD5) digest support. This is the first of two commits; bringing in the kernel support first. This can be enabled by compiling a kernel with options TCP_SIGNATURE and FAST_IPSEC. For the uninitiated, this is a TCP option which provides for a means of authenticating TCP sessions which came into being before IPSEC. It is still relevant today, however, as it is used by many commercial router vendors, particularly with BGP, and as such has become a requirement for interconnect at many major Internet points of presence. Several parts of the TCP and IP headers, including the segment payload, are digested with MD5, including a shared secret. The PF_KEY interface is used to manage the secrets using security associations in the SADB. There is a limitation here in that as there is no way to map a TCP flow per-port back to an SPI without polluting tcpcb or using the SPD; the code to do the latter is unstable at this time. Therefore this code only supports per-host keying granularity. Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6), TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective users of this feature, this will not pose any problem. This implementation is output-only; that is, the option is honoured when responding to a host initiating a TCP session, but no effort is made [yet] to authenticate inbound traffic. This is, however, sufficient to interwork with Cisco equipment. Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with local patches. Patches for tcpdump to validate TCP-MD5 sessions are also available from me upon request. Sponsored by: sentex.net
2004-02-11 04:26:04 +00:00
.Pp
Merge projects/ipsec into head/. Small summary ------------- o Almost all IPsec releated code was moved into sys/netipsec. o New kernel modules added: ipsec.ko and tcpmd5.ko. New kernel option IPSEC_SUPPORT added. It enables support for loading and unloading of ipsec.ko and tcpmd5.ko kernel modules. o IPSEC_NAT_T option was removed. Now NAT-T support is enabled by default. The UDP_ENCAP_ESPINUDP_NON_IKE encapsulation type support was removed. Added TCP/UDP checksum handling for inbound packets that were decapsulated by transport mode SAs. setkey(8) modified to show run-time NAT-T configuration of SA. o New network pseudo interface if_ipsec(4) added. For now it is build as part of ipsec.ko module (or with IPSEC kernel). It implements IPsec virtual tunnels to create route-based VPNs. o The network stack now invokes IPsec functions using special methods. The only one header file <netipsec/ipsec_support.h> should be included to declare all the needed things to work with IPsec. o All IPsec protocols handlers (ESP/AH/IPCOMP protosw) were removed. Now these protocols are handled directly via IPsec methods. o TCP_SIGNATURE support was reworked to be more close to RFC. o PF_KEY SADB was reworked: - now all security associations stored in the single SPI namespace, and all SAs MUST have unique SPI. - several hash tables added to speed up lookups in SADB. - SADB now uses rmlock to protect access, and concurrent threads can do SA lookups in the same time. - many PF_KEY message handlers were reworked to reflect changes in SADB. - SADB_UPDATE message was extended to support new PF_KEY headers: SADB_X_EXT_NEW_ADDRESS_SRC and SADB_X_EXT_NEW_ADDRESS_DST. They can be used by IKE daemon to change SA addresses. o ipsecrequest and secpolicy structures were cardinally changed to avoid locking protection for ipsecrequest. Now we support only limited number (4) of bundled SAs, but they are supported for both INET and INET6. o INPCB security policy cache was introduced. Each PCB now caches used security policies to avoid SP lookup for each packet. o For inbound security policies added the mode, when the kernel does check for full history of applied IPsec transforms. o References counting rules for security policies and security associations were changed. The proper SA locking added into xform code. o xform code was also changed. Now it is possible to unregister xforms. tdb_xxx structures were changed and renamed to reflect changes in SADB/SPDB, and changed rules for locking and refcounting. Reviewed by: gnn, wblock Obtained from: Yandex LLC Relnotes: yes Sponsored by: Yandex LLC Differential Revision: https://reviews.freebsd.org/D9352
2017-02-06 08:49:57 +00:00
If an SADB entry cannot be found for the destination,
the system does not send any outgoing segments and drops any inbound segments.
.It Dv TCP_STATS
Manage collection of connection level statistics using the
.Xr stats 3
framework.
Merge projects/ipsec into head/. Small summary ------------- o Almost all IPsec releated code was moved into sys/netipsec. o New kernel modules added: ipsec.ko and tcpmd5.ko. New kernel option IPSEC_SUPPORT added. It enables support for loading and unloading of ipsec.ko and tcpmd5.ko kernel modules. o IPSEC_NAT_T option was removed. Now NAT-T support is enabled by default. The UDP_ENCAP_ESPINUDP_NON_IKE encapsulation type support was removed. Added TCP/UDP checksum handling for inbound packets that were decapsulated by transport mode SAs. setkey(8) modified to show run-time NAT-T configuration of SA. o New network pseudo interface if_ipsec(4) added. For now it is build as part of ipsec.ko module (or with IPSEC kernel). It implements IPsec virtual tunnels to create route-based VPNs. o The network stack now invokes IPsec functions using special methods. The only one header file <netipsec/ipsec_support.h> should be included to declare all the needed things to work with IPsec. o All IPsec protocols handlers (ESP/AH/IPCOMP protosw) were removed. Now these protocols are handled directly via IPsec methods. o TCP_SIGNATURE support was reworked to be more close to RFC. o PF_KEY SADB was reworked: - now all security associations stored in the single SPI namespace, and all SAs MUST have unique SPI. - several hash tables added to speed up lookups in SADB. - SADB now uses rmlock to protect access, and concurrent threads can do SA lookups in the same time. - many PF_KEY message handlers were reworked to reflect changes in SADB. - SADB_UPDATE message was extended to support new PF_KEY headers: SADB_X_EXT_NEW_ADDRESS_SRC and SADB_X_EXT_NEW_ADDRESS_DST. They can be used by IKE daemon to change SA addresses. o ipsecrequest and secpolicy structures were cardinally changed to avoid locking protection for ipsecrequest. Now we support only limited number (4) of bundled SAs, but they are supported for both INET and INET6. o INPCB security policy cache was introduced. Each PCB now caches used security policies to avoid SP lookup for each packet. o For inbound security policies added the mode, when the kernel does check for full history of applied IPsec transforms. o References counting rules for security policies and security associations were changed. The proper SA locking added into xform code. o xform code was also changed. Now it is possible to unregister xforms. tdb_xxx structures were changed and renamed to reflect changes in SADB/SPDB, and changed rules for locking and refcounting. Reviewed by: gnn, wblock Obtained from: Yandex LLC Relnotes: yes Sponsored by: Yandex LLC Differential Revision: https://reviews.freebsd.org/D9352
2017-02-06 08:49:57 +00:00
.Pp
Each dropped segment is taken into account in the TCP protocol statistics.
Add kernel-side support for in-kernel TLS. KTLS adds support for in-kernel framing and encryption of Transport Layer Security (1.0-1.2) data on TCP sockets. KTLS only supports offload of TLS for transmitted data. Key negotation must still be performed in userland. Once completed, transmit session keys for a connection are provided to the kernel via a new TCP_TXTLS_ENABLE socket option. All subsequent data transmitted on the socket is placed into TLS frames and encrypted using the supplied keys. Any data written to a KTLS-enabled socket via write(2), aio_write(2), or sendfile(2) is assumed to be application data and is encoded in TLS frames with an application data type. Individual records can be sent with a custom type (e.g. handshake messages) via sendmsg(2) with a new control message (TLS_SET_RECORD_TYPE) specifying the record type. At present, rekeying is not supported though the in-kernel framework should support rekeying. KTLS makes use of the recently added unmapped mbufs to store TLS frames in the socket buffer. Each TLS frame is described by a single ext_pgs mbuf. The ext_pgs structure contains the header of the TLS record (and trailer for encrypted records) as well as references to the associated TLS session. KTLS supports two primary methods of encrypting TLS frames: software TLS and ifnet TLS. Software TLS marks mbufs holding socket data as not ready via M_NOTREADY similar to sendfile(2) when TLS framing information is added to an unmapped mbuf in ktls_frame(). ktls_enqueue() is then called to schedule TLS frames for encryption. In the case of sendfile_iodone() calls ktls_enqueue() instead of pru_ready() leaving the mbufs marked M_NOTREADY until encryption is completed. For other writes (vn_sendfile when pages are available, write(2), etc.), the PRUS_NOTREADY is set when invoking pru_send() along with invoking ktls_enqueue(). A pool of worker threads (the "KTLS" kernel process) encrypts TLS frames queued via ktls_enqueue(). Each TLS frame is temporarily mapped using the direct map and passed to a software encryption backend to perform the actual encryption. (Note: The use of PHYS_TO_DMAP could be replaced with sf_bufs if someone wished to make this work on architectures without a direct map.) KTLS supports pluggable software encryption backends. Internally, Netflix uses proprietary pure-software backends. This commit includes a simple backend in a new ktls_ocf.ko module that uses the kernel's OpenCrypto framework to provide AES-GCM encryption of TLS frames. As a result, software TLS is now a bit of a misnomer as it can make use of hardware crypto accelerators. Once software encryption has finished, the TLS frame mbufs are marked ready via pru_ready(). At this point, the encrypted data appears as regular payload to the TCP stack stored in unmapped mbufs. ifnet TLS permits a NIC to offload the TLS encryption and TCP segmentation. In this mode, a new send tag type (IF_SND_TAG_TYPE_TLS) is allocated on the interface a socket is routed over and associated with a TLS session. TLS records for a TLS session using ifnet TLS are not marked M_NOTREADY but are passed down the stack unencrypted. The ip_output_send() and ip6_output_send() helper functions that apply send tags to outbound IP packets verify that the send tag of the TLS record matches the outbound interface. If so, the packet is tagged with the TLS send tag and sent to the interface. The NIC device driver must recognize packets with the TLS send tag and schedule them for TLS encryption and TCP segmentation. If the the outbound interface does not match the interface in the TLS send tag, the packet is dropped. In addition, a task is scheduled to refresh the TLS send tag for the TLS session. If a new TLS send tag cannot be allocated, the connection is dropped. If a new TLS send tag is allocated, however, subsequent packets will be tagged with the correct TLS send tag. (This latter case has been tested by configuring both ports of a Chelsio T6 in a lagg and failing over from one port to another. As the connections migrated to the new port, new TLS send tags were allocated for the new port and connections resumed without being dropped.) ifnet TLS can be enabled and disabled on supported network interfaces via new '[-]txtls[46]' options to ifconfig(8). ifnet TLS is supported across both vlan devices and lagg interfaces using failover, lacp with flowid enabled, or lacp with flowid enabled. Applications may request the current KTLS mode of a connection via a new TCP_TXTLS_MODE socket option. They can also use this socket option to toggle between software and ifnet TLS modes. In addition, a testing tool is available in tools/tools/switch_tls. This is modeled on tcpdrop and uses similar syntax. However, instead of dropping connections, -s is used to force KTLS connections to switch to software TLS and -i is used to switch to ifnet TLS. Various sysctls and counters are available under the kern.ipc.tls sysctl node. The kern.ipc.tls.enable node must be set to true to enable KTLS (it is off by default). The use of unmapped mbufs must also be enabled via kern.ipc.mb_use_ext_pgs to enable KTLS. KTLS is enabled via the KERN_TLS kernel option. This patch is the culmination of years of work by several folks including Scott Long and Randall Stewart for the original design and implementation; Drew Gallatin for several optimizations including the use of ext_pgs mbufs, the M_NOTREADY mechanism for TLS records awaiting software encryption, and pluggable software crypto backends; and John Baldwin for modifications to support hardware TLS offload. Reviewed by: gallatin, hselasky, rrs Obtained from: Netflix Sponsored by: Netflix, Chelsio Communications Differential Revision: https://reviews.freebsd.org/D21277
2019-08-27 00:01:56 +00:00
.It Dv TCP_TXTLS_ENABLE
Enable in-kernel Transport Layer Security (TLS) for data written to this
socket.
The
.Vt struct tls_so_enable
argument defines the encryption and authentication algorithms and keys
used to encrypt the socket data as well as the maximum TLS record
payload size.
.Pp
All data written to this socket will be encapsulated in TLS records
and subsequently encrypted.
By default all data written to this socket is treated as application data.
Individual TLS records with a type other than application data
(for example, handshake messages),
may be transmitted by invoking
.Xr sendmsg 2
with a custom TLS record type set in a
.Dv TLS_SET_RECORD_TYPE
control message.
The payload of this control message is a single byte holding the desired
TLS record type.
.Pp
Data read from this socket will still be encrypted and must be parsed by
a TLS-aware consumer.
.Pp
At present, only a single key may be set on a socket.
As such, users of this option must disable rekeying.
.It Dv TCP_TXTLS_MODE
The integer argument can be used to get or set the current TLS mode of a
socket.
Setting the mode can only used to toggle between software and NIC TLS after
TLS has been initially enabled via the
.Dv TCP_TXTLS_ENABLE
option.
The available modes are:
.Bl -tag -width "Dv TCP_TLS_MODE_IFNET"
.It Dv TCP_TLS_MODE_NONE
In-kernel TLS framing and encryption is not enabled for this socket.
.It Dv TCP_TLS_MODE_SW
TLS records are encrypted by the kernel prior to placing the data in the
socket buffer.
Typically this encryption is performed in software.
.It Dv TCP_TLS_MODE_IFNET
TLS records are encrypted by the network interface card (NIC).
.El
.El
.Pp
1994-05-30 19:09:18 +00:00
The option level for the
.Xr setsockopt 2
1994-05-30 19:09:18 +00:00
call is the protocol number for
.Tn TCP ,
available from
.Xr getprotobyname 3 ,
or
.Dv IPPROTO_TCP .
All options are declared in
.In netinet/tcp.h .
1994-05-30 19:09:18 +00:00
.Pp
Options at the
.Tn IP
transport level may be used with
.Tn TCP ;
see
.Xr ip 4 .
Incoming connection requests that are source-routed are noted,
and the reverse source route is used in responding.
.Pp
The default congestion control algorithm for
.Tn TCP
is
.Xr cc_newreno 4 .
Other congestion control algorithms can be made available using the
.Xr mod_cc 4
framework.
.Ss MIB Variables
The
.Tn TCP
protocol implements a number of variables in the
.Va net.inet.tcp
branch of the
.Xr sysctl 3
MIB.
.Bl -tag -width ".Va TCPCTL_DO_RFC1323"
.It Dv TCPCTL_DO_RFC1323
.Pq Va rfc1323
Implement the window scaling and timestamp options of RFC 1323
(default is true).
.It Dv TCPCTL_MSSDFLT
.Pq Va mssdflt
The default value used for the maximum segment size
.Pq Dq MSS
when no advice to the contrary is received from MSS negotiation.
.It Dv TCPCTL_SENDSPACE
.Pq Va sendspace
Maximum
.Tn TCP
send window.
.It Dv TCPCTL_RECVSPACE
.Pq Va recvspace
Maximum
.Tn TCP
receive window.
.It Va log_in_vain
Log any connection attempts to ports where there is not a socket
accepting connections.
The value of 1 limits the logging to
.Tn SYN
(connection establishment) packets only.
That of 2 results in any
.Tn TCP
packets to closed ports being logged.
Any value unlisted above disables the logging
(default is 0, i.e., the logging is disabled).
.It Va msl
2002-01-21 12:09:13 +00:00
The Maximum Segment Lifetime, in milliseconds, for a packet.
.It Va keepinit
Timeout, in milliseconds, for new, non-established
.Tn TCP
connections.
The default is 75000 msec.
.It Va keepidle
Amount of time, in milliseconds, that the connection must be idle
before keepalive probes (if enabled) are sent.
The default is 7200000 msec (2 hours).
.It Va keepintvl
The interval, in milliseconds, between keepalive probes sent to remote
machines, when no response is received on a
.Va keepidle
probe.
The default is 75000 msec.
.It Va keepcnt
Number of probes sent, with no response, before a connection
is dropped.
The default is 8 packets.
.It Va always_keepalive
Assume that
.Dv SO_KEEPALIVE
is set on all
.Tn TCP
connections, the kernel will
periodically send a packet to the remote host to verify the connection
is still up.
.It Va icmp_may_rst
Certain
.Tn ICMP
unreachable messages may abort connections in
.Tn SYN-SENT
state.
.It Va do_tcpdrain
Flush packets in the
.Tn TCP
reassembly queue if the system is low on mbufs.
.It Va blackhole
If enabled, disable sending of RST when a connection is attempted
to a port where there is not a socket accepting connections.
See
.Xr blackhole 4 .
.It Va delayed_ack
Delay ACK to try and piggyback it onto a data packet.
.It Va delacktime
Maximum amount of time, in milliseconds, before a delayed ACK is sent.
.It Va path_mtu_discovery
Enable Path MTU Discovery.
.It Va tcbhashsize
Size of the
.Tn TCP
control-block hash table
(read-only).
This may be tuned using the kernel option
.Dv TCBHASHSIZE
or by setting
.Va net.inet.tcp.tcbhashsize
in the
.Xr loader 8 .
.It Va pcbcount
Number of active process control blocks
(read-only).
.It Va syncookies
Determines whether or not
.Tn SYN
cookies should be generated for outbound
.Tn SYN-ACK
packets.
.Tn SYN
cookies are a great help during
.Tn SYN
flood attacks, and are enabled by default.
(See
.Xr syncookies 4 . )
.It Va isn_reseed_interval
The interval (in seconds) specifying how often the secret data used in
RFC 1948 initial sequence number calculations should be reseeded.
By default, this variable is set to zero, indicating that
no reseeding will occur.
Reseeding should not be necessary, and will break
.Dv TIME_WAIT
recycling for a few minutes.
.It Va reass.cursegments
The current total number of segments present in all reassembly queues.
.It Va reass.maxsegments
The maximum limit on the total number of segments across all reassembly
queues.
The limit can be adjusted as a tunable.
.It Va reass.maxqueuelen
The maximum number of segments allowed in each reassembly queue.
By default, the system chooses a limit based on each TCP connection's
receive buffer size and maximum segment size (MSS).
The actual limit applied to a session's reassembly queue will be the lower of
the system-calculated automatic limit and the user-specified
.Va reass.maxqueuelen
limit.
.It Va rexmit_initial , rexmit_min , rexmit_slop
Adjust the retransmit timer calculation for
.Tn TCP .
The slop is
typically added to the raw calculation to take into account
occasional variances that the
.Tn SRTT
(smoothed round-trip time)
2004-06-21 17:42:49 +00:00
is unable to accommodate, while the minimum specifies an
absolute minimum.
While a number of
.Tn TCP
RFCs suggest a 1
second minimum, these RFCs tend to focus on streaming behavior,
and fail to deal with the fact that a 1 second minimum has severe
detrimental effects over lossy interactive connections, such
as a 802.11b wireless link, and over very fast but lossy
connections for those cases not covered by the fast retransmit
code.
For this reason, we use 200ms of slop and a near-0
minimum, which gives us an effective minimum of 200ms (similar to
.Tn Linux ) .
The initial value is used before an RTT measurement has been performed.
.It Va initcwnd_segments
Enable the ability to specify initial congestion window in number of segments.
The default value is 10 as suggested by RFC 6928.
Changing the value on fly would not affect connections using congestion window
from the hostcache.
Caution:
This regulates the burst of packets allowed to be sent in the first RTT.
The value should be relative to the link capacity.
Start with small values for lower-capacity links.
Large bursts can cause buffer overruns and packet drops if routers have small
buffers or the link is experiencing congestion.
.It Va newcwd
Enable the New Congestion Window Validation mechanism as described in RFC 7661.
This gently reduces the congestion window during periods, where TCP is
application limited and the network bandwidth is not utilized completely.
That prevents self-inflicted packet losses once the application starts to
transmit data at a higher speed.
.It Va rfc6675_pipe
Calculate the bytes in flight using the algorithm described in RFC 6675, and
is also a prerequisite to enable Proportional Rate Reduction.
.It Va rfc3042
Enable the Limited Transmit algorithm as described in RFC 3042.
It helps avoid timeouts on lossy links and also when the congestion window
is small, as happens on short transfers.
.It Va rfc3390
Enable support for RFC 3390, which allows for a variable-sized
starting congestion window on new connections, depending on the
maximum segment size.
This helps throughput in general, but
particularly affects short transfers and high-bandwidth large
propagation-delay connections.
.It Va sack.enable
Enable support for RFC 2018, TCP Selective Acknowledgment option,
which allows the receiver to inform the sender about all successfully
arrived segments, allowing the sender to retransmit the missing segments
only.
.It Va sack.maxholes
Maximum number of SACK holes per connection.
Defaults to 128.
.It Va sack.globalmaxholes
Maximum number of SACK holes per system, across all connections.
Defaults to 65536.
.It Va maxtcptw
When a TCP connection enters the
.Dv TIME_WAIT
state, its associated socket structure is freed, since it is of
negligible size and use, and a new structure is allocated to contain a
minimal amount of information necessary for sustaining a connection in
this state, called the compressed TCP TIME_WAIT state.
Since this structure is smaller than a socket structure, it can save
a significant amount of system memory.
The
.Va net.inet.tcp.maxtcptw
MIB variable controls the maximum number of these structures allocated.
By default, it is initialized to
.Va kern.ipc.maxsockets
/ 5.
.It Va nolocaltimewait
Suppress creating of compressed TCP TIME_WAIT states for connections in
which both endpoints are local.
.It Va fast_finwait2_recycle
Recycle
.Tn TCP
.Dv FIN_WAIT_2
2007-04-03 18:57:09 +00:00
connections faster when the socket is marked as
.Dv SBS_CANTRCVMORE
(no user process has the socket open, data received on
the socket cannot be read).
The timeout used here is
.Va finwait2_timeout .
.It Va finwait2_timeout
Timeout to use for fast recycling of
.Tn TCP
.Dv FIN_WAIT_2
connections.
Defaults to 60 seconds.
2008-08-16 21:12:25 +00:00
.It Va ecn.enable
Enable support for TCP Explicit Congestion Notification (ECN).
ECN allows a TCP sender to reduce the transmission rate in order to
avoid packet drops.
Settings:
.Bl -tag -compact
.It 0
Disable ECN.
.It 1
Allow incoming connections to request ECN.
Outgoing connections will request ECN.
.It 2
Allow incoming connections to request ECN.
Outgoing connections will not request ECN.
.El
2008-08-16 21:12:25 +00:00
.It Va ecn.maxretries
Number of retries (SYN or SYN/ACK retransmits) before disabling ECN on a
specific connection.
This is needed to help with connection establishment
2008-08-16 21:12:25 +00:00
when a broken firewall is in the network path.
.It Va pmtud_blackhole_detection
Turn on automatic path MTU blackhole detection.
In case of retransmits OS will
lower the MSS to check if it's MTU problem.
If current MSS is greater than
configured value to try, it will be set to configured value, otherwise,
MSS will be set to default values
.Po Va net.inet.tcp.mssdflt
and
.Va net.inet.tcp.v6mssdflt
.Pc .
.It Va pmtud_blackhole_mss
MSS to try for IPv4 if PMTU blackhole detection is turned on.
.It Va v6pmtud_blackhole_mss
MSS to try for IPv6 if PMTU blackhole detection is turned on.
.It Va pmtud_blackhole_activated
Number of times configured values were used in an attempt to downshift.
.It Va pmtud_blackhole_activated_min_mss
Number of times default MSS was used in an attempt to downshift.
.It Va pmtud_blackhole_failed
Number of connections for which retransmits continued even after MSS
downshift.
.It Va functions_available
List of available TCP function blocks (TCP stacks).
.It Va functions_default
The default TCP function block (TCP stack).
.It Va functions_inherit_listen_socket_stack
Determines whether to inherit listen socket's tcp stack or use the current
system default tcp stack, as defined by
.Va functions_default .
Default is true.
.It Va insecure_rst
Use criteria defined in RFC793 instead of RFC5961 for accepting RST segments.
Default is false.
.It Va insecure_syn
Use criteria defined in RFC793 instead of RFC5961 for accepting SYN segments.
Default is false.
.It Va ts_offset_per_conn
When initializing the TCP timestamps, use a per connection offset instead of a
per host pair offset.
Default is to use per connection offsets as recommended in RFC 7323.
.It Va perconn_stats_enable
Controls the default collection of statistics for all connections using the
.Xr stats 3
framework.
0 disables, 1 enables, 2 enables random sampling across log id connection
groups with all connections in a group receiving the same setting.
.It Va perconn_stats_sample_rates
A CSV list of template_spec=percent key-value pairs which controls the per
template sampling rates when
.Xr stats 3
sampling is enabled.
.El
.Sh ERRORS
1994-05-30 19:09:18 +00:00
A socket operation may fail with one of the following errors returned:
.Bl -tag -width Er
1994-05-30 19:09:18 +00:00
.It Bq Er EISCONN
when trying to establish a connection on a socket which
already has one;
.It Bo Er ENOBUFS Bc or Bo Er ENOMEM Bc
1994-05-30 19:09:18 +00:00
when the system runs out of memory for
an internal data structure;
.It Bq Er ETIMEDOUT
when a connection was dropped
due to excessive retransmissions;
.It Bq Er ECONNRESET
when the remote peer
forces the connection to be closed;
.It Bq Er ECONNREFUSED
when the remote
peer actively refuses connection establishment (usually because
no process is listening to the port);
.It Bq Er EADDRINUSE
when an attempt
is made to create a socket with a port which has already been
allocated;
.It Bq Er EADDRNOTAVAIL
when an attempt is made to create a
1994-05-30 19:09:18 +00:00
socket with a network address for which no network interface
exists;
.It Bq Er EAFNOSUPPORT
when an attempt is made to bind or connect a socket to a multicast
address.
.It Bq Er EINVAL
when trying to change TCP function blocks at an invalid point in the session;
.It Bq Er ENOENT
when trying to use a TCP function block that is not available;
1994-05-30 19:09:18 +00:00
.El
.Sh SEE ALSO
.Xr getsockopt 2 ,
.Xr socket 2 ,
.Xr stats 3 ,
.Xr sysctl 3 ,
.Xr blackhole 4 ,
1994-05-30 19:09:18 +00:00
.Xr inet 4 ,
1996-12-26 16:16:37 +00:00
.Xr intro 4 ,
.Xr ip 4 ,
.Xr mod_cc 4 ,
.Xr siftr 4 ,
2002-12-23 14:51:18 +00:00
.Xr syncache 4 ,
.Xr setkey 8 ,
.Xr tcp_functions 9
.Rs
.%A "V. Jacobson"
.%A "R. Braden"
.%A "D. Borman"
.%T "TCP Extensions for High Performance"
.%O "RFC 1323"
.Re
.Rs
Initial import of RFC 2385 (TCP-MD5) digest support. This is the first of two commits; bringing in the kernel support first. This can be enabled by compiling a kernel with options TCP_SIGNATURE and FAST_IPSEC. For the uninitiated, this is a TCP option which provides for a means of authenticating TCP sessions which came into being before IPSEC. It is still relevant today, however, as it is used by many commercial router vendors, particularly with BGP, and as such has become a requirement for interconnect at many major Internet points of presence. Several parts of the TCP and IP headers, including the segment payload, are digested with MD5, including a shared secret. The PF_KEY interface is used to manage the secrets using security associations in the SADB. There is a limitation here in that as there is no way to map a TCP flow per-port back to an SPI without polluting tcpcb or using the SPD; the code to do the latter is unstable at this time. Therefore this code only supports per-host keying granularity. Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6), TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective users of this feature, this will not pose any problem. This implementation is output-only; that is, the option is honoured when responding to a host initiating a TCP session, but no effort is made [yet] to authenticate inbound traffic. This is, however, sufficient to interwork with Cisco equipment. Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with local patches. Patches for tcpdump to validate TCP-MD5 sessions are also available from me upon request. Sponsored by: sentex.net
2004-02-11 04:26:04 +00:00
.%A "A. Heffernan"
.%T "Protection of BGP Sessions via the TCP MD5 Signature Option"
.%O "RFC 2385"
.Re
2008-08-16 21:12:25 +00:00
.Rs
.%A "K. Ramakrishnan"
.%A "S. Floyd"
.%A "D. Black"
.%T "The Addition of Explicit Congestion Notification (ECN) to IP"
.%O "RFC 3168"
.Re
1994-05-30 19:09:18 +00:00
.Sh HISTORY
The
.Tn TCP
protocol appeared in
1994-05-30 19:09:18 +00:00
.Bx 4.2 .
The RFC 1323 extensions for window scaling and timestamps were added
in
.Bx 4.4 .
The
.Dv TCP_INFO
option was introduced in
.Tn Linux 2.6
and is
.Em subject to change .