freebsd-nq/include/sys/metaslab.h

149 lines
5.5 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright (c) 2017, Intel Corporation.
2008-11-20 20:01:55 +00:00
*/
#ifndef _SYS_METASLAB_H
#define _SYS_METASLAB_H
#include <sys/spa.h>
#include <sys/space_map.h>
#include <sys/txg.h>
#include <sys/zio.h>
#include <sys/avl.h>
#ifdef __cplusplus
extern "C" {
#endif
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
typedef struct metaslab_ops {
uint64_t (*msop_alloc)(metaslab_t *, uint64_t);
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
} metaslab_ops_t;
2009-07-02 22:44:48 +00:00
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
extern metaslab_ops_t *zfs_metaslab_ops;
int metaslab_init(metaslab_group_t *, uint64_t, uint64_t, uint64_t,
metaslab_t **);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
void metaslab_fini(metaslab_t *);
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
void metaslab_set_unflushed_txg(metaslab_t *, uint64_t, dmu_tx_t *);
void metaslab_set_estimated_condensed_size(metaslab_t *, uint64_t, dmu_tx_t *);
uint64_t metaslab_unflushed_txg(metaslab_t *);
uint64_t metaslab_estimated_condensed_size(metaslab_t *);
int metaslab_sort_by_flushed(const void *, const void *);
uint64_t metaslab_unflushed_changes_memused(metaslab_t *);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
int metaslab_load(metaslab_t *);
void metaslab_unload(metaslab_t *);
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
boolean_t metaslab_flush(metaslab_t *, dmu_tx_t *);
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 18:38:11 +00:00
uint64_t metaslab_allocated_space(metaslab_t *);
Illumos #4101, #4102, #4103, #4105, #4106 4101 metaslab_debug should allow for fine-grained control 4102 space_maps should store more information about themselves 4103 space map object blocksize should be increased 4105 removing a mirrored log device results in a leaked object 4106 asynchronously load metaslab Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Sebastien Roy <seb@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Prior to this patch, space_maps were preferred solely based on the amount of free space left in each. Unfortunately, this heuristic didn't contain any information about the make-up of that free space, which meant we could keep preferring and loading a highly fragmented space map that wouldn't actually have enough contiguous space to satisfy the allocation; then unloading that space_map and repeating the process. This change modifies the space_map's to store additional information about the contiguous space in the space_map, so that we can use this information to make a better decision about which space_map to load. This requires reallocating all space_map objects to increase their bonus buffer size sizes enough to fit the new metadata. The above feature can be enabled via a new feature flag introduced by this change: com.delphix:spacemap_histogram In addition to the above, this patch allows the space_map block size to be increase. Currently the block size is set to be 4K in size, which has certain implications including the following: * 4K sector devices will not see any compression benefit * large space_maps require more metadata on-disk * large space_maps require more time to load (typically random reads) Now the space_map block size can adjust as needed up to the maximum size set via the space_map_max_blksz variable. A bug was fixed which resulted in potentially leaking an object when removing a mirrored log device. The previous logic for vdev_remove() did not deal with removing top-level vdevs that are interior vdevs (i.e. mirror) correctly. The problem would occur when removing a mirrored log device, and result in the DTL space map object being leaked; because top-level vdevs don't have DTL space map objects associated with them. References: https://www.illumos.org/issues/4101 https://www.illumos.org/issues/4102 https://www.illumos.org/issues/4103 https://www.illumos.org/issues/4105 https://www.illumos.org/issues/4106 https://github.com/illumos/illumos-gate/commit/0713e23 Porting notes: A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also, the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary. Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2488
2013-10-01 21:25:53 +00:00
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
void metaslab_sync(metaslab_t *, uint64_t);
void metaslab_sync_done(metaslab_t *, uint64_t);
void metaslab_sync_reassess(metaslab_group_t *);
uint64_t metaslab_largest_allocatable(metaslab_t *);
2008-11-20 20:01:55 +00:00
/*
* metaslab alloc flags
*/
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
#define METASLAB_HINTBP_FAVOR 0x0
#define METASLAB_HINTBP_AVOID 0x1
#define METASLAB_GANG_HEADER 0x2
#define METASLAB_GANG_CHILD 0x4
#define METASLAB_ASYNC_ALLOC 0x8
#define METASLAB_DONT_THROTTLE 0x10
#define METASLAB_MUST_RESERVE 0x20
#define METASLAB_FASTWRITE 0x40
Only examine best metaslabs on each vdev On a system with very high fragmentation, we may need to do lots of gang allocations (e.g. most indirect block allocations (~50KB) may need to gang). Before failing a "normal" allocation and resorting to ganging, we try every metaslab. This has the impact of loading every metaslab (not a huge deal since we now typically keep all metaslabs loaded), and also iterating over every metaslab for every failing allocation. If there are many metaslabs (more than the typical ~200, e.g. due to vdev expansion or very large vdevs), the CPU cost of this iteration can be very impactful. This iteration is done with the mg_lock held, creating long hold times and high lock contention for concurrent allocations, ultimately causing long txg sync times and poor application performance. To address this, this commit changes the behavior of "normal" (not try_hard, not ZIL) allocations. These will now only examine the 100 best metaslabs (as determined by their ms_weight). If none of these have a large enough free segment, then the allocation will fail and we'll fall back on ganging. To accomplish this, we will now (normally) gang before doing a `try_hard` allocation. Non-try_hard allocations will only examine the 100 best metaslabs of each vdev. In summary, we will first try normal allocation. If that fails then we will do a gang allocation. If that fails then we will do a "try hard" gang allocation. If that fails then we will have a multi-layer gang block. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #11327
2020-12-16 22:40:05 +00:00
#define METASLAB_ZIL 0x80
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
int metaslab_alloc(spa_t *, metaslab_class_t *, uint64_t,
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
blkptr_t *, int, uint64_t, blkptr_t *, int, zio_alloc_list_t *, zio_t *,
int);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
int metaslab_alloc_dva(spa_t *, metaslab_class_t *, uint64_t,
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
dva_t *, int, dva_t *, uint64_t, int, zio_alloc_list_t *, int);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
void metaslab_free(spa_t *, const blkptr_t *, uint64_t, boolean_t);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-16 22:11:29 +00:00
void metaslab_free_concrete(vdev_t *, uint64_t, uint64_t, boolean_t);
void metaslab_free_dva(spa_t *, const dva_t *, boolean_t);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
void metaslab_free_impl_cb(uint64_t, vdev_t *, uint64_t, uint64_t, void *);
void metaslab_unalloc_dva(spa_t *, const dva_t *, uint64_t);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
int metaslab_claim(spa_t *, const blkptr_t *, uint64_t);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 16:30:13 +00:00
int metaslab_claim_impl(vdev_t *, uint64_t, uint64_t, uint64_t);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
void metaslab_check_free(spa_t *, const blkptr_t *);
void metaslab_fastwrite_mark(spa_t *, const blkptr_t *);
void metaslab_fastwrite_unmark(spa_t *, const blkptr_t *);
2008-11-20 20:01:55 +00:00
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 17:36:03 +00:00
void metaslab_stat_init(void);
void metaslab_stat_fini(void);
void metaslab_trace_init(zio_alloc_list_t *);
void metaslab_trace_fini(zio_alloc_list_t *);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
metaslab_class_t *metaslab_class_create(spa_t *, metaslab_ops_t *);
void metaslab_class_destroy(metaslab_class_t *);
int metaslab_class_validate(metaslab_class_t *);
void metaslab_class_histogram_verify(metaslab_class_t *);
uint64_t metaslab_class_fragmentation(metaslab_class_t *);
uint64_t metaslab_class_expandable_space(metaslab_class_t *);
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
boolean_t metaslab_class_throttle_reserve(metaslab_class_t *, int, int,
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
zio_t *, int);
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
void metaslab_class_throttle_unreserve(metaslab_class_t *, int, int, zio_t *);
void metaslab_class_evict_old(metaslab_class_t *, uint64_t);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
uint64_t metaslab_class_get_alloc(metaslab_class_t *);
uint64_t metaslab_class_get_space(metaslab_class_t *);
uint64_t metaslab_class_get_dspace(metaslab_class_t *);
uint64_t metaslab_class_get_deferred(metaslab_class_t *);
2008-11-20 20:01:55 +00:00
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
void metaslab_space_update(vdev_t *, metaslab_class_t *,
int64_t, int64_t, int64_t);
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
metaslab_group_t *metaslab_group_create(metaslab_class_t *, vdev_t *, int);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
void metaslab_group_destroy(metaslab_group_t *);
void metaslab_group_activate(metaslab_group_t *);
void metaslab_group_passivate(metaslab_group_t *);
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 00:59:18 +00:00
boolean_t metaslab_group_initialized(metaslab_group_t *);
Illumos 4976-4984 - metaslab improvements 4976 zfs should only avoid writing to a failing non-redundant top-level vdev 4978 ztest fails in get_metaslab_refcount() 4979 extend free space histogram to device and pool 4980 metaslabs should have a fragmentation metric 4981 remove fragmented ops vector from block allocator 4982 space_map object should proactively upgrade when feature is enabled 4983 need to collect metaslab information via mdb 4984 device selection should use fragmentation metric Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <adam.leventhal@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/4976 https://www.illumos.org/issues/4978 https://www.illumos.org/issues/4979 https://www.illumos.org/issues/4980 https://www.illumos.org/issues/4981 https://www.illumos.org/issues/4982 https://www.illumos.org/issues/4983 https://www.illumos.org/issues/4984 https://github.com/illumos/illumos-gate/commit/2e4c998 Notes: The "zdb -M" option has been re-tasked to display the new metaslab fragmentation metric and the new "zdb -I" option is used to control the maximum number of in-flight I/Os. The new fragmentation metric is derived from the space map histogram which has been rolled up to the vdev and pool level and is presented to the user via "zpool list". Add a number of module parameters related to the new metaslab weighting logic. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2595
2014-07-19 20:19:24 +00:00
uint64_t metaslab_group_get_space(metaslab_group_t *);
void metaslab_group_histogram_verify(metaslab_group_t *);
uint64_t metaslab_group_fragmentation(metaslab_group_t *);
void metaslab_group_histogram_remove(metaslab_group_t *, metaslab_t *);
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 20:56:06 +00:00
void metaslab_group_alloc_decrement(spa_t *, uint64_t, void *, int, int,
boolean_t);
void metaslab_group_alloc_verify(spa_t *, const blkptr_t *, void *, int);
Introduce auxiliary metaslab histograms This patch introduces 3 new histograms per metaslab. These histograms track segments that have made it to the metaslab's space map histogram (and are part of the spacemap) but have not yet reached the ms_allocatable tree on loaded metaslab's because these metaslab's are currently syncing and haven't gone through metaslab_sync_done() yet. The histograms help when we decide whether to load an unloaded metaslab in-order to allocate from it. When calculating the weight of an unloaded metaslab traditionally, we look at the highest bucket of its spacemap's histogram. The problem is that we are not guaranteed to be able to allocated that segment when we load the metaslab because it may still be at the freeing, freed, or defer trees. The new histograms are used when we try to calculate an unloaded metaslab's weight to deal with this issue by removing segments that have would not be in the allocatable tree at runtime. Note, that this method of dealing with this is not completely accurate as adjacent segments are not always consolidated in the space map histogram of a metaslab. In addition and to make things deterministic, we always reset the weight of unloaded metaslabs based on their space map weight (instead of doing that on a need basis). Thus, every time a metaslab is loaded and its weight is reset again (from the weight based on its space map to the one based on its allocatable range tree) we expect (and assert) that this change in weight can only get better if it doesn't stay the same. Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matt Ahrens <mahrens@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8358
2019-02-20 17:59:57 +00:00
void metaslab_recalculate_weight_and_sort(metaslab_t *);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 16:13:20 +00:00
void metaslab_disable(metaslab_t *);
void metaslab_enable(metaslab_t *, boolean_t, boolean_t);
void metaslab_set_selected_txg(metaslab_t *, uint64_t);
2008-11-20 20:01:55 +00:00
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 17:11:49 +00:00
extern int metaslab_debug_load;
Extend zdb to print inconsistencies in livelists and metaslabs Livelists and spacemaps are data structures that are logs of allocations and frees. Livelists entries are block pointers (blkptr_t). Spacemaps entries are ranges of numbers, most often used as to track allocated/freed regions of metaslabs/vdevs. These data structures can become self-inconsistent, for example if a block or range can be "double allocated" (two allocation records without an intervening free) or "double freed" (two free records without an intervening allocation). ZDB (as well as zfs running in the kernel) can detect these inconsistencies when loading livelists and metaslab. However, it generally halts processing when the error is detected. When analyzing an on-disk problem, we often want to know the entire set of inconsistencies, which is not possible with the current behavior. This commit adds a new flag, `zdb -y`, which analyzes the livelist and metaslab data structures and displays all of their inconsistencies. Note that this is different from the leak detection performed by `zdb -b`, which checks for inconsistencies between the spacemaps and the tree of block pointers, but assumes the spacemaps are self-consistent. The specific checks added are: Verify livelists by iterating through each sublivelists and: - report leftover FREEs - report double ALLOCs and double FREEs - record leftover ALLOCs together with their TXG [see Cross Check] Verify spacemaps by iterating over each metaslab and: - iterate over spacemap and then the metaslab's entries in the spacemap log, then report any double FREEs and double ALLOCs Verify that livelists are consistenet with spacemaps. The space referenced by livelists (after using the FREE's to cancel out corresponding ALLOCs) should be allocated, according to the spacemaps. Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Sara Hartse <sara.hartse@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-66031 Closes #10515
2020-07-15 00:51:05 +00:00
range_seg_type_t metaslab_calculate_range_tree_type(vdev_t *vdev,
metaslab_t *msp, uint64_t *start, uint64_t *shift);
2008-11-20 20:01:55 +00:00
#ifdef __cplusplus
}
#endif
#endif /* _SYS_METASLAB_H */