freebsd-nq/crypto/o_time.c

218 lines
7.2 KiB
C
Raw Normal View History

/* crypto/o_time.c -*- mode:C; c-file-style: "eay" -*- */
/* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
* project 2001.
*/
/* ====================================================================
* Copyright (c) 2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <openssl/e_os2.h>
#include <string.h>
#include "o_time.h"
#ifdef OPENSSL_SYS_VMS
# include <libdtdef.h>
# include <lib$routines.h>
# include <lnmdef.h>
# include <starlet.h>
# include <descrip.h>
# include <stdlib.h>
#endif
struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)
{
struct tm *ts = NULL;
2003-10-01 12:32:41 +00:00
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_SYS_OS2) && !defined(__CYGWIN32__) && (!defined(OPENSSL_SYS_VMS) || defined(gmtime_r)) && !defined(OPENSSL_SYS_MACOSX) && !defined(OPENSSL_SYS_SUNOS)
/* should return &data, but doesn't on some systems,
so we don't even look at the return value */
gmtime_r(timer,result);
ts = result;
#elif !defined(OPENSSL_SYS_VMS)
ts = gmtime(timer);
2003-10-01 12:32:41 +00:00
if (ts == NULL)
return NULL;
memcpy(result, ts, sizeof(struct tm));
ts = result;
#endif
#ifdef OPENSSL_SYS_VMS
if (ts == NULL)
{
static $DESCRIPTOR(tabnam,"LNM$DCL_LOGICAL");
static $DESCRIPTOR(lognam,"SYS$TIMEZONE_DIFFERENTIAL");
char logvalue[256];
unsigned int reslen = 0;
struct {
short buflen;
short code;
void *bufaddr;
unsigned int *reslen;
} itemlist[] = {
{ 0, LNM$_STRING, 0, 0 },
{ 0, 0, 0, 0 },
};
int status;
time_t t;
/* Get the value for SYS$TIMEZONE_DIFFERENTIAL */
itemlist[0].buflen = sizeof(logvalue);
itemlist[0].bufaddr = logvalue;
itemlist[0].reslen = &reslen;
status = sys$trnlnm(0, &tabnam, &lognam, 0, itemlist);
if (!(status & 1))
return NULL;
logvalue[reslen] = '\0';
2005-02-25 05:39:05 +00:00
t = *timer;
/* The following is extracted from the DEC C header time.h */
/*
** Beginning in OpenVMS Version 7.0 mktime, time, ctime, strftime
** have two implementations. One implementation is provided
** for compatibility and deals with time in terms of local time,
** the other __utc_* deals with time in terms of UTC.
*/
/* We use the same conditions as in said time.h to check if we should
assume that t contains local time (and should therefore be adjusted)
or UTC (and should therefore be left untouched). */
#if __CRTL_VER < 70000000 || defined _VMS_V6_SOURCE
/* Get the numerical value of the equivalence string */
status = atoi(logvalue);
/* and use it to move time to GMT */
2005-02-25 05:39:05 +00:00
t -= status;
#endif
/* then convert the result to the time structure */
2005-02-25 05:39:05 +00:00
/* Since there was no gmtime_r() to do this stuff for us,
we have to do it the hard way. */
{
/* The VMS epoch is the astronomical Smithsonian date,
if I remember correctly, which is November 17, 1858.
Furthermore, time is measure in thenths of microseconds
and stored in quadwords (64 bit integers). unix_epoch
below is January 1st 1970 expressed as a VMS time. The
following code was used to get this number:
#include <stdio.h>
#include <stdlib.h>
#include <lib$routines.h>
#include <starlet.h>
main()
{
unsigned long systime[2];
unsigned short epoch_values[7] =
{ 1970, 1, 1, 0, 0, 0, 0 };
lib$cvt_vectim(epoch_values, systime);
printf("%u %u", systime[0], systime[1]);
}
*/
unsigned long unix_epoch[2] = { 1273708544, 8164711 };
unsigned long deltatime[2];
unsigned long systime[2];
struct vms_vectime
{
short year, month, day, hour, minute, second,
centi_second;
} time_values;
long operation;
/* Turn the number of seconds since January 1st 1970 to
an internal delta time.
Note that lib$cvt_to_internal_time() will assume
that t is signed, and will therefore break on 32-bit
systems some time in 2038.
*/
operation = LIB$K_DELTA_SECONDS;
status = lib$cvt_to_internal_time(&operation,
&t, deltatime);
/* Add the delta time with the Unix epoch and we have
the current UTC time in internal format */
status = lib$add_times(unix_epoch, deltatime, systime);
/* Turn the internal time into a time vector */
status = sys$numtim(&time_values, systime);
/* Fill in the struct tm with the result */
result->tm_sec = time_values.second;
result->tm_min = time_values.minute;
result->tm_hour = time_values.hour;
result->tm_mday = time_values.day;
result->tm_mon = time_values.month - 1;
result->tm_year = time_values.year - 1900;
operation = LIB$K_DAY_OF_WEEK;
status = lib$cvt_from_internal_time(&operation,
&result->tm_wday, systime);
result->tm_wday %= 7;
operation = LIB$K_DAY_OF_YEAR;
status = lib$cvt_from_internal_time(&operation,
&result->tm_yday, systime);
result->tm_yday--;
result->tm_isdst = 0; /* There's no way to know... */
ts = result;
}
}
#endif
return ts;
}