freebsd-nq/sys/dev/isci/scil/sati_unmap.c

610 lines
23 KiB
C
Raw Normal View History

/*-
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/**
* @file
* @brief This file contains the method implementations required to
* translate the SCSI unmap command.
*/
#if !defined(DISABLE_SATI_UNMAP)
#include <dev/isci/scil/sati_unmap.h>
#include <dev/isci/scil/sati_callbacks.h>
#include <dev/isci/scil/sati_translator_sequence.h>
#include <dev/isci/scil/sati_util.h>
#include <dev/isci/scil/intel_ata.h>
#include <dev/isci/scil/intel_scsi.h>
#include <dev/isci/scil/intel_sat.h>
//******************************************************************************
//* P R I V A T E M E T H O D S
//******************************************************************************
/**
* @brief This method translates a given number of DSM
* requests into DSM blocks based on the devices logical block size
*
* @return Number of DSM blocks required for the DSM descriptor count
*/
U32 sati_unmap_calculate_dsm_blocks(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
U32 dsm_descriptor_count
)
{
U32 blocks = (dsm_descriptor_count * sizeof(TRIM_PAIR))/sequence->device->logical_block_size;
if ((dsm_descriptor_count * sizeof(TRIM_PAIR)) % sequence->device->logical_block_size)
{
blocks++;
}
return blocks;
}
/**
* @brief This method performs the SCSI Unmap command translation
* functionality.
* This includes:
* - setting the command register
* - setting the device head register
* - filling in fields in the SATI_TRANSLATOR_SEQUENCE object.
* For more information on the parameters passed to this method,
* please reference sati_translate_command().
*
* @return Indicate if the method was successfully completed.
* @retval SATI_SUCCESS This is returned in all other cases.
*/
SATI_STATUS sati_unmap_construct(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
void * scsi_io,
void * ata_io,
U32 sector_count
)
{
U8 * h2d_register_fis = sati_cb_get_h2d_register_fis_address(ata_io);
U8 * d2h_register_fis = sati_cb_get_d2h_register_fis_address(ata_io);
sati_set_ata_command(h2d_register_fis, ATA_DATA_SET_MANAGEMENT);
sati_set_ata_features(h2d_register_fis, 0x01);
sati_set_ata_sector_count(h2d_register_fis, (U8)sector_count);
sati_set_ata_device_head(h2d_register_fis, ATA_DEV_HEAD_REG_LBA_MODE_ENABLE);
// Set the completion status since the core will not do that for
// the udma fast path.
sati_set_ata_status(d2h_register_fis, 0x00);
// Set up the direction and protocol for SCIC
sequence->data_direction = SATI_DATA_DIRECTION_OUT;
sequence->protocol = SAT_PROTOCOL_UDMA_DATA_OUT;
// The UNMAP translation will always require a callback
// on every response so it can free memory if an error
// occurs.
sequence->is_translate_response_required = TRUE;
ASSERT(sector_count < 0x100);
return SATI_SUCCESS;
}
/**
* @brief This method updates the unmap sequence state to the next
* unmap descriptor
*
* @return Indicate if the method was successfully completed.
* @retval SATI_SUCCESS This is returned in all other cases.
*/
SATI_STATUS sati_unmap_load_next_descriptor(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
void * scsi_io
)
{
SATI_UNMAP_PROCESSING_STATE_T * unmap_process_state;
U32 index;
U8 unmap_block_descriptor[16];
unmap_process_state = &sequence->command_specific_data.unmap_process_state;
// Load the next descriptor
for(index = unmap_process_state->current_unmap_block_descriptor_index;
index < unmap_process_state->current_unmap_block_descriptor_index +
SATI_UNMAP_SIZEOF_SCSI_UNMAP_BLOCK_DESCRIPTOR;
index++)
{
sati_get_data_byte(sequence,
scsi_io,
index,
&unmap_block_descriptor[index-unmap_process_state->current_unmap_block_descriptor_index]);
}
// Update the internal state for the next translation pass
unmap_process_state->current_lba_count = (unmap_block_descriptor[8] << 24) |
(unmap_block_descriptor[9] << 16) |
(unmap_block_descriptor[10] << 8) |
(unmap_block_descriptor[11]);
unmap_process_state->current_lba = ((SATI_LBA)(unmap_block_descriptor[0]) << 56) |
((SATI_LBA)(unmap_block_descriptor[1]) << 48) |
((SATI_LBA)(unmap_block_descriptor[2]) << 40) |
((SATI_LBA)(unmap_block_descriptor[3]) << 32) |
((SATI_LBA)(unmap_block_descriptor[4]) << 24) |
((SATI_LBA)(unmap_block_descriptor[5]) << 16) |
((SATI_LBA)(unmap_block_descriptor[6]) << 8) |
((SATI_LBA)(unmap_block_descriptor[7]));
unmap_process_state->next_lba = 0;
// Update the index for the next descriptor to translate
unmap_process_state->current_unmap_block_descriptor_index += SATI_UNMAP_SIZEOF_SCSI_UNMAP_BLOCK_DESCRIPTOR;
return SATI_SUCCESS;
}
/**
* @brief This method determines the max number of blocks of DSM data
* that can be satisfied by the device and the SW
*
* @return Number of blocks supported
* @retval Number of blocks supported
*/
U32 sati_unmap_get_max_buffer_size_in_blocks(
SATI_TRANSLATOR_SEQUENCE_T * sequence
)
{
// Currently this SATI implementation only supports a single
// 4k block of memory for the DMA write operation for simplicity
// (no need to handle more than one SG element).
// Since most run time UNMAP requests use 1K or less buffer space,
// there is no performance degradation with only supporting a
// single physical page. For best results allocate the maximum
// amount of memory the device can handle up to the maximum of 4K.
return MIN(SATI_DSM_MAX_BUFFER_SIZE/sequence->device->logical_block_size,
sequence->device->max_lba_range_entry_blocks);
}
/**
* @brief This method will be called before starting the first unmap translation
*
* @return Indicate if the translation was successful.
* @retval SATI_SUCCESS This is returned if the command translation was
* successful and no further processing.
* @retval SATI_COMPLETE - The initial processing was completed successfully
* @retval SATI_FAILURE_CHECK_RESPONSE_DATA - Failed the initial processing
*/
SATI_STATUS sati_unmap_initial_processing(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
void * scsi_io,
void * ata_io
)
{
SATI_UNMAP_PROCESSING_STATE_T * unmap_process_state;
U8 * cdb;
U16 unmap_length;
U32 descriptor_length;
U32 index;
U32 max_dsm_blocks;
U8 unmap_param_list[8];
unmap_process_state = &sequence->command_specific_data.unmap_process_state;
// Set up the sequence type for unmap translation
sequence->type = SATI_SEQUENCE_UNMAP;
// Make sure the device is TRIM capable
if ((sequence->device->capabilities & SATI_DEVICE_CAP_DSM_TRIM_SUPPORT)
!= SATI_DEVICE_CAP_DSM_TRIM_SUPPORT)
{
// Can't send TRIM request to device that does not support it
sati_scsi_sense_data_construct(
sequence,
scsi_io,
SCSI_STATUS_CHECK_CONDITION,
SCSI_SENSE_ILLEGAL_REQUEST,
SCSI_ASC_INVALID_FIELD_IN_CDB,
SCSI_ASCQ_INVALID_FIELD_IN_CDB
);
return SATI_FAILURE_CHECK_RESPONSE_DATA;
}
// get the amount of data being sent from the cdb
cdb = sati_cb_get_cdb_address(scsi_io);
unmap_length = (sati_get_cdb_byte(cdb, 7) << 8) | sati_get_cdb_byte(cdb, 8);
// If nothing has been requested return success now.
if (unmap_length == 0)
{
// SAT: This is not an error
return SATI_SUCCESS;
}
if (unmap_length < SATI_UNMAP_SIZEOF_SCSI_UNMAP_PARAMETER_LIST)
{
// Not enough length specified in the CDB
sati_scsi_sense_data_construct(
sequence,
scsi_io,
SCSI_STATUS_CHECK_CONDITION,
SCSI_SENSE_ILLEGAL_REQUEST,
SCSI_ASC_INVALID_FIELD_IN_CDB,
SCSI_ASCQ_INVALID_FIELD_IN_CDB
);
return SATI_FAILURE_CHECK_RESPONSE_DATA;
}
sequence->allocation_length = unmap_length;
// Get the unmap parameter header
for(index = 0; index < SATI_UNMAP_SIZEOF_SCSI_UNMAP_PARAMETER_LIST; index++)
{
sati_get_data_byte(sequence, scsi_io, index, &unmap_param_list[index]);
}
descriptor_length = (unmap_param_list[2] << 8) | unmap_param_list[3];
// Check length again
if (descriptor_length == 0)
{
// SAT: This is not an error
return SATI_SUCCESS;
}
if ((U32)(unmap_length - SATI_UNMAP_SIZEOF_SCSI_UNMAP_PARAMETER_LIST) < descriptor_length)
{
// Not enough length specified in the CDB
sati_scsi_sense_data_construct(
sequence,
scsi_io,
SCSI_STATUS_CHECK_CONDITION,
SCSI_SENSE_ILLEGAL_REQUEST,
SCSI_ASC_INVALID_FIELD_IN_CDB,
SCSI_ASCQ_INVALID_FIELD_IN_CDB
);
return SATI_FAILURE_CHECK_RESPONSE_DATA;
}
// Save the maximum unmap block descriptors in this request
unmap_process_state->max_unmap_block_descriptors =
descriptor_length/SATI_UNMAP_SIZEOF_SCSI_UNMAP_BLOCK_DESCRIPTOR;
// Determine the maximum size of the write buffer that will be required
// for the translation in terms of number of blocks
max_dsm_blocks = sati_unmap_get_max_buffer_size_in_blocks(sequence);
// Save the maximum number of DSM descriptors we can send during the translation
unmap_process_state->max_lba_range_entries =
(max_dsm_blocks*sequence->device->logical_block_size)/sizeof(TRIM_PAIR);
// Get the write buffer for the translation
sati_cb_allocate_dma_buffer(
scsi_io,
max_dsm_blocks*sequence->device->logical_block_size,
&(unmap_process_state->virtual_unmap_buffer),
&(unmap_process_state->physical_unmap_buffer_low),
&(unmap_process_state->physical_unmap_buffer_high));
// Makes sure we have a buffer
if (unmap_process_state->virtual_unmap_buffer == NULL)
{
// Resource failure
sati_scsi_sense_data_construct(
sequence,
scsi_io,
SCSI_STATUS_BUSY,
SCSI_SENSE_NO_SENSE,
SCSI_ASC_NO_ADDITIONAL_SENSE,
SCSI_ASCQ_NO_ADDITIONAL_SENSE
);
return SATI_FAILURE_CHECK_RESPONSE_DATA;
}
// Get the first SGL entry. This code will only use one 4K page so will
// only utilize the first sge.
sati_cb_sgl_next_sge(scsi_io,
ata_io,
NULL,
&(unmap_process_state->unmap_buffer_sgl_pair));
// Load the first descriptor to start the translation loop
unmap_process_state->current_unmap_block_descriptor_index =
SATI_UNMAP_SIZEOF_SCSI_UNMAP_PARAMETER_LIST;
sati_unmap_load_next_descriptor(sequence,scsi_io);
// Next state will be incomplete since translation
// will require a callback and possibly more requests.
sequence->state = SATI_SEQUENCE_STATE_INCOMPLETE;
return SATI_COMPLETE;
}
/**
* @brief This method will process each unmap sequence.
*
* @return Indicate if the translation was successful.
* @retval SATI_SUCCESS
*/
SATI_STATUS sati_unmap_process(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
void * scsi_io,
void * ata_io
)
{
SATI_UNMAP_PROCESSING_STATE_T * unmap_process_state;
SATI_LBA dsm_descriptor_lba_count;
U32 dsm_descriptor;
U32 dsm_bytes;
U32 dsm_remainder_bytes;
U32 dsm_blocks;
U32 max_dsm_blocks;
unmap_process_state = &sequence->command_specific_data.unmap_process_state;
// Set up the starting address of the buffer for this portion of the translation
unmap_process_state->current_dsm_descriptor = unmap_process_state->virtual_unmap_buffer;
dsm_descriptor = 0;
// Translate as much as we can
while ((dsm_descriptor < unmap_process_state->max_lba_range_entries) &&
(unmap_process_state->current_lba_count > 0)) {
// See if the LBA count will fit in to a single descriptor
if (unmap_process_state->current_lba_count > SATI_DSM_MAX_SECTOR_COUNT) {
// Can't fit all of the lbas for this descriptor in to
// one DSM request. Adjust the current LbaCount and total
// remaining for the next descriptor
dsm_descriptor_lba_count = SATI_DSM_MAX_SECTOR_COUNT;
unmap_process_state->current_lba_count -= SATI_DSM_MAX_SECTOR_COUNT;
unmap_process_state->next_lba =
unmap_process_state->current_lba + SATI_DSM_MAX_SECTOR_COUNT;
} else {
// It all fits in to one descriptor
dsm_descriptor_lba_count = unmap_process_state->current_lba_count;
unmap_process_state->current_lba_count = 0;
}
// Fill in the ATA DSM descriptor
((PTRIM_PAIR)(unmap_process_state->current_dsm_descriptor))->sector_address =
unmap_process_state->current_lba;
((PTRIM_PAIR)(unmap_process_state->current_dsm_descriptor))->sector_count =
dsm_descriptor_lba_count;
// See if we can move on to the next descriptor
if (unmap_process_state->current_lba_count == 0) {
// See if there is another descriptor
--unmap_process_state->max_unmap_block_descriptors;
if (unmap_process_state->max_unmap_block_descriptors > 0) {
// Move on to the next descriptor
sati_unmap_load_next_descriptor(sequence,scsi_io);
}
} else {
// Move to the next LBA in this descriptor
unmap_process_state->current_lba = unmap_process_state->next_lba;
}
// Make sure the LBA does not exceed 48 bits...
ASSERT(unmap_process_state->current_lba <= SATI_DSM_MAX_SECTOR_ADDRESS);
// Increment the number of descriptors used and point to the next entry
dsm_descriptor++;
unmap_process_state->current_dsm_descriptor =
(U8 *)(unmap_process_state->current_dsm_descriptor) + sizeof(TRIM_PAIR);
}
// Calculate number of blocks we have filled in
dsm_blocks = sati_unmap_calculate_dsm_blocks(sequence,dsm_descriptor);
dsm_bytes = dsm_blocks * sequence->device->logical_block_size;
max_dsm_blocks = sati_unmap_get_max_buffer_size_in_blocks(sequence);
// The current_dsm_descriptor points to the next location in the buffer
// Get the remaining bytes from the last translated descriptor
// to the end of the 4k buffer.
dsm_remainder_bytes = sequence->device->logical_block_size;
dsm_remainder_bytes -= (U32)((POINTER_UINT)unmap_process_state->current_dsm_descriptor &
(sequence->device->logical_block_size-1));
// If there was no remainder, the complete buffer was filled in.
if (dsm_remainder_bytes != sequence->device->logical_block_size)
{
// Add on the remaining unfilled blocks
dsm_remainder_bytes += (sequence->device->logical_block_size * (max_dsm_blocks - dsm_blocks));
// According to ATA-8, if the DSM buffer is not completely filled with
// valid DSM descriptor data, the remaining portion of the
// buffer must be filled in with zeros.
memset((U8 *)unmap_process_state->current_dsm_descriptor, 0, dsm_remainder_bytes);
}
// Tell scic to utilize this sgl pair for write DMA processing of
// the SCSI UNMAP translation with the total number of bytes for this transfer
sati_cb_sge_write(unmap_process_state->unmap_buffer_sgl_pair,
unmap_process_state->physical_unmap_buffer_low,
unmap_process_state->physical_unmap_buffer_high,
dsm_bytes);
// Construct the unmap ATA request
sati_unmap_construct(sequence,
scsi_io,
ata_io,
dsm_blocks);
// Determine sequence next state based on whether there is more translation
// to complete
if (unmap_process_state->current_lba_count == 0)
{
// used for completion routine to determine if there is more processing
sequence->state = SATI_SEQUENCE_STATE_FINAL;
}
// This requests has already translated the SGL, have SCIC skip SGL translataion
return SATI_SUCCESS_SGL_TRANSLATED;
}
//******************************************************************************
//* P U B L I C M E T H O D S
//******************************************************************************
/**
* @brief This method will handle termination of the
* SCSI unmap translation and frees previously allocated
* dma buffer.
*
* @return None
*/
void sati_unmap_terminate(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
void * scsi_io,
void * ata_io
)
{
SATI_UNMAP_PROCESSING_STATE_T * unmap_process_state;
unmap_process_state = &sequence->command_specific_data.unmap_process_state;
if (unmap_process_state->virtual_unmap_buffer != NULL)
{
sati_cb_free_dma_buffer(scsi_io, unmap_process_state->virtual_unmap_buffer);
unmap_process_state->virtual_unmap_buffer = NULL;
}
}
/**
* @brief This method will translate the SCSI Unmap command
* into corresponding ATA commands. Depending upon the capabilities
* supported by the target different ATA commands can be selected.
* Additionally, in some cases more than a single ATA command may
* be required.
*
* @return Indicate if the command translation succeeded.
* @retval SATI_SUCCESS This is returned if the command translation was
* successful.
* @retval SATI_COMPLETE This is returned if the command translation was
* successful and no ATA commands need to be set.
* @retval SATI_FAILURE_CHECK_RESPONSE_DATA This value is returned if
* sense data has been created as a result of something specified
* in the parameter data fields.
*/
SATI_STATUS sati_unmap_translate_command(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
void * scsi_io,
void * ata_io
)
{
SATI_STATUS status = SATI_FAILURE_CHECK_RESPONSE_DATA;
SATI_UNMAP_PROCESSING_STATE_T * unmap_process_state;
unmap_process_state = &sequence->command_specific_data.unmap_process_state;
// Determine if this is the first step in the unmap sequence
if ( sequence->state == SATI_SEQUENCE_STATE_INITIAL )
{
status = sati_unmap_initial_processing(sequence,scsi_io,ata_io);
if (status != SATI_COMPLETE)
{
return status;
}
}
// Translate the next portion of the UNMAP request
return sati_unmap_process(sequence, scsi_io, ata_io);
}
/**
* @brief This method will translate the ATA command register FIS
* response into an appropriate SCSI response for Unmap.
* For more information on the parameters passed to this method,
* please reference sati_translate_response().
*
* @return Indicate if the response translation succeeded.
* @retval SATI_SUCCESS This is returned if the command translation was
* successful.
* @retval SATI_COMPLETE This is returned if the command translation was
* successful and no ATA commands need to be set.
* @retval SATI_FAILURE_CHECK_RESPONSE_DATA This value is returned if
* sense data has been created as a result of something specified
* in the parameter data fields.
*/
SATI_STATUS sati_unmap_translate_response(
SATI_TRANSLATOR_SEQUENCE_T * sequence,
void * scsi_io,
void * ata_io
)
{
U8 * register_fis = sati_cb_get_d2h_register_fis_address(ata_io);
SATI_UNMAP_PROCESSING_STATE_T * unmap_process_state;
SATI_STATUS sati_status = SATI_COMPLETE;
unmap_process_state = &sequence->command_specific_data.unmap_process_state;
if (sati_get_ata_status(register_fis) & ATA_STATUS_REG_ERROR_BIT)
{
sequence->state = SATI_SEQUENCE_STATE_FINAL;
sati_scsi_sense_data_construct(
sequence,
scsi_io,
SCSI_STATUS_CHECK_CONDITION,
SCSI_SENSE_ABORTED_COMMAND,
SCSI_ASC_NO_ADDITIONAL_SENSE,
SCSI_ASCQ_NO_ADDITIONAL_SENSE
);
// All done, terminate the translation
sati_unmap_terminate(sequence, scsi_io, ata_io);
}
else
{
if (sequence->state != SATI_SEQUENCE_STATE_INCOMPLETE)
{
// All done, terminate the translation
sati_unmap_terminate(sequence, scsi_io, ata_io);
}
else
{
// Still translating
sati_status = SATI_SEQUENCE_STATE_INCOMPLETE;
}
}
return sati_status;
}
#endif // !defined(DISABLE_SATI_UNMAP)