freebsd-nq/sys/netatm/atm_device.c

881 lines
17 KiB
C
Raw Normal View History

/*
*
* ===================================
* HARP | Host ATM Research Platform
* ===================================
*
*
* This Host ATM Research Platform ("HARP") file (the "Software") is
* made available by Network Computing Services, Inc. ("NetworkCS")
* "AS IS". NetworkCS does not provide maintenance, improvements or
* support of any kind.
*
* NETWORKCS MAKES NO WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED,
* INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE, AS TO ANY ELEMENT OF THE
* SOFTWARE OR ANY SUPPORT PROVIDED IN CONNECTION WITH THIS SOFTWARE.
* In no event shall NetworkCS be responsible for any damages, including
* but not limited to consequential damages, arising from or relating to
* any use of the Software or related support.
*
* Copyright 1994-1998 Network Computing Services, Inc.
*
* Copies of this Software may be made, however, the above copyright
* notice must be reproduced on all copies.
*
1999-08-28 01:08:13 +00:00
* @(#) $FreeBSD$
*
*/
/*
* Core ATM Services
* -----------------
*
* ATM device support functions
*
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <netatm/port.h>
#include <netatm/queue.h>
#include <netatm/atm.h>
#include <netatm/atm_sys.h>
#include <netatm/atm_sap.h>
#include <netatm/atm_cm.h>
#include <netatm/atm_if.h>
#include <netatm/atm_vc.h>
#include <netatm/atm_stack.h>
#include <netatm/atm_pcb.h>
#include <netatm/atm_var.h>
#ifndef lint
1999-08-28 01:08:13 +00:00
__RCSID("@(#) $FreeBSD$");
#endif
/*
* Private structures for managing allocated kernel memory resources
*
* For each allocation of kernel memory, one Mem_ent will be used.
* The Mem_ent structures will be allocated in blocks inside of a
* Mem_blk structure.
*/
#define MEM_NMEMENT 10 /* How many Mem_ent's in a Mem_blk */
struct mem_ent {
void *me_kaddr; /* Allocated memory address */
u_int me_ksize; /* Allocated memory length */
void *me_uaddr; /* Memory address returned to caller */
u_int me_flags; /* Flags (see below) */
};
typedef struct mem_ent Mem_ent;
/*
* Memory entry flags
*/
#define MEF_NONCACHE 1 /* Memory is noncacheable */
struct mem_blk {
struct mem_blk *mb_next; /* Next block in chain */
Mem_ent mb_mement[MEM_NMEMENT]; /* Allocated memory entries */
};
typedef struct mem_blk Mem_blk;
static Mem_blk *atm_mem_head = NULL;
static struct t_atm_cause atm_dev_cause = {
T_ATM_ITU_CODING,
T_ATM_LOC_USER,
T_ATM_CAUSE_VPCI_VCI_ASSIGNMENT_FAILURE,
{0, 0, 0, 0}
};
/*
* ATM Device Stack Instantiation
*
* Called at splnet.
*
* Arguments
* ssp pointer to array of stack definition pointers
* for connection
* ssp[0] points to upper layer's stack definition
* ssp[1] points to this layer's stack definition
* ssp[2] points to lower layer's stack definition
* cvcp pointer to connection vcc for this stack
*
* Returns
* 0 instantiation successful
* err instantiation failed - reason indicated
*
*/
int
atm_dev_inst(ssp, cvcp)
struct stack_defn **ssp;
Atm_connvc *cvcp;
{
Cmn_unit *cup = (Cmn_unit *)cvcp->cvc_attr.nif->nif_pif;
Cmn_vcc *cvp;
int err;
/*
* Check to see if device has been initialized
*/
if ((cup->cu_flags & CUF_INITED) == 0)
return ( EIO );
/*
* Validate lower SAP
*/
/*
* Device driver is the lowest layer - no need to validate
*/
/*
* Validate PVC vpi.vci
*/
if (cvcp->cvc_attr.called.addr.address_format == T_ATM_PVC_ADDR) {
/*
* Look through existing circuits - return error if found
*/
Atm_addr_pvc *pp;
pp = (Atm_addr_pvc *)cvcp->cvc_attr.called.addr.address;
if (atm_dev_vcc_find(cup, ATM_PVC_GET_VPI(pp),
ATM_PVC_GET_VCI(pp), 0))
return ( EADDRINUSE );
}
/*
* Validate our SAP type
*/
switch ((*(ssp+1))->sd_sap) {
case SAP_CPCS_AAL3_4:
case SAP_CPCS_AAL5:
case SAP_ATM:
break;
default:
return (EINVAL);
}
/*
* Allocate a VCC control block
*/
if ( ( cvp = (Cmn_vcc *)atm_allocate(cup->cu_vcc_pool) ) == NULL )
return ( ENOMEM );
cvp->cv_state = CVS_INST;
cvp->cv_toku = (*ssp)->sd_toku;
cvp->cv_upper = (*ssp)->sd_upper;
cvp->cv_connvc = cvcp;
/*
* Let device have a look at the connection request
*/
err = (*cup->cu_instvcc)(cup, cvp);
if (err) {
atm_free((caddr_t)cvp);
return (err);
}
/*
* Looks good so far, so link in device VCC
*/
LINK2TAIL ( cvp, Cmn_vcc, cup->cu_vcc, cv_next );
/*
* Save my token
*/
(*++ssp)->sd_toku = cvp;
/*
* Pass instantiation down the stack
*/
/*
* No need - we're the lowest point.
*/
/* err = (*(ssp + 1))->sd_inst(ssp, cvcp); */
/*
* Save the lower layer's interface info
*/
/*
* No need - we're the lowest point
*/
/* cvp->cv_lower = (*++ssp)->sd_lower; */
/* cvp->cv_tok1 = (*ssp)->sd_toku; */
return (0);
}
/*
* ATM Device Stack Command Handler
*
* Arguments
* cmd stack command code
* tok session token (Cmn_vcc)
* arg1 command specific argument
* arg2 command specific argument
*
* Returns
* none
*
*/
/*ARGSUSED*/
void
atm_dev_lower(cmd, tok, arg1, arg2)
int cmd;
void *tok;
int arg1;
int arg2;
{
Cmn_vcc *cvp = (Cmn_vcc *)tok;
Atm_connvc *cvcp = cvp->cv_connvc;
Cmn_unit *cup = (Cmn_unit *)cvcp->cvc_attr.nif->nif_pif;
struct vccb *vcp;
u_int state;
int s;
switch ( cmd ) {
case CPCS_INIT:
/*
* Sanity check
*/
if ( cvp->cv_state != CVS_INST ) {
log ( LOG_ERR,
"atm_dev_lower: INIT: tok=%p, state=%d\n",
tok, cvp->cv_state );
break;
}
vcp = cvp->cv_connvc->cvc_vcc;
/*
* Validate SVC vpi.vci
*/
if ( vcp->vc_type & VCC_SVC ) {
if (atm_dev_vcc_find(cup, vcp->vc_vpi, vcp->vc_vci,
vcp->vc_type & (VCC_IN | VCC_OUT))
!= cvp){
log ( LOG_ERR,
"atm_dev_lower: dup SVC (%d,%d) tok=%p\n",
vcp->vc_vpi, vcp->vc_vci, tok );
atm_cm_abort(cvp->cv_connvc, &atm_dev_cause);
break;
}
}
/*
* Tell the device to open the VCC
*/
cvp->cv_state = CVS_INITED;
s = splimp();
if ((*cup->cu_openvcc)(cup, cvp)) {
atm_cm_abort(cvp->cv_connvc, &atm_dev_cause);
(void) splx(s);
break;
}
(void) splx(s);
break;
case CPCS_TERM: {
KBuffer *m, *prev, *next;
int *ip;
s = splimp();
/*
* Disconnect the VCC - ignore return code
*/
if ((cvp->cv_state == CVS_INITED) ||
(cvp->cv_state == CVS_ACTIVE)) {
(void) (*cup->cu_closevcc)(cup, cvp);
}
cvp->cv_state = CVS_TERM;
/*
* Remove from interface list
*/
UNLINK ( cvp, Cmn_vcc, cup->cu_vcc, cv_next );
/*
* Free any buffers from this VCC on the ATM interrupt queue
*/
prev = NULL;
IF_LOCK(&atm_intrq);
for (m = atm_intrq.ifq_head; m; m = next) {
next = KB_QNEXT(m);
/*
* See if this entry is for the terminating VCC
*/
KB_DATASTART(m, ip, int *);
ip++;
if (*ip == (int)cvp) {
/*
* Yep, so dequeue the entry
*/
if (prev == NULL)
atm_intrq.ifq_head = next;
else
KB_QNEXT(prev) = next;
if (next == NULL)
atm_intrq.ifq_tail = prev;
atm_intrq.ifq_len--;
/*
* Free the unwanted buffers
*/
KB_FREEALL(m);
} else {
prev = m;
}
}
IF_UNLOCK(&atm_intrq);
(void) splx(s);
/*
* Free VCC resources
*/
(void) atm_free((caddr_t)cvp);
break;
}
case CPCS_UNITDATA_INV:
/*
* Sanity check
*
* Use temp state variable since we dont want to lock out
* interrupts, but initial VC activation interrupt may
* happen here, changing state somewhere in the middle.
*/
state = cvp->cv_state;
if ((state != CVS_ACTIVE) &&
(state != CVS_INITED)) {
log ( LOG_ERR,
"atm_dev_lower: UNITDATA: tok=%p, state=%d\n",
tok, state );
KB_FREEALL((KBuffer *)arg1);
break;
}
/*
* Hand the data off to the device
*/
(*cup->cu_output)(cup, cvp, (KBuffer *)arg1);
break;
case CPCS_UABORT_INV:
log ( LOG_ERR,
"atm_dev_lower: unimplemented stack cmd 0x%x, tok=%p\n",
cmd, tok );
break;
default:
log ( LOG_ERR,
"atm_dev_lower: unknown stack cmd 0x%x, tok=%p\n",
cmd, tok );
}
return;
}
/*
* Allocate kernel memory block
*
* This function will allocate a kernel memory block of the type specified
* in the flags parameter. The returned address will point to a memory
* block of the requested size and alignment. The memory block will also
* be zeroed. The alloc/free functions will manage/mask both the OS-specific
* kernel memory management requirements and the bookkeeping required to
* deal with data alignment issues.
*
* This function should not be called from interrupt level.
*
* Arguments:
* size size of memory block to allocate
* align data alignment requirement
* flags allocation flags (ATM_DEV_*)
*
* Returns:
* uaddr pointer to aligned memory block
* NULL unable to allocate memory
*
*/
void *
atm_dev_alloc(size, align, flags)
u_int size;
u_int align;
u_int flags;
{
Mem_blk *mbp;
Mem_ent *mep;
u_int kalign, ksize;
int s, i;
s = splimp();
/*
* Find a free Mem_ent
*/
mep = NULL;
for (mbp = atm_mem_head; mbp && mep == NULL; mbp = mbp->mb_next) {
for (i = 0; i < MEM_NMEMENT; i++) {
if (mbp->mb_mement[i].me_uaddr == NULL) {
mep = &mbp->mb_mement[i];
break;
}
}
}
/*
* If there are no free Mem_ent's, then allocate a new Mem_blk
* and link it into the chain
*/
if (mep == NULL) {
mbp = (Mem_blk *) KM_ALLOC(sizeof(Mem_blk), M_DEVBUF, M_NOWAIT);
if (mbp == NULL) {
log(LOG_ERR, "atm_dev_alloc: Mem_blk failure\n");
(void) splx(s);
return (NULL);
}
KM_ZERO(mbp, sizeof(Mem_blk));
mbp->mb_next = atm_mem_head;
atm_mem_head = mbp;
mep = mbp->mb_mement;
}
/*
* Now we need to get the kernel's allocation alignment minimum
*
* This is obviously very OS-specific stuff
*/
kalign = MINALLOCSIZE;
/*
* Figure out how much memory we must allocate to satify the
* user's size and alignment needs
*/
if (align <= kalign)
ksize = size;
else
ksize = size + align - kalign;
/*
* Finally, go get the memory
*/
if (flags & ATM_DEV_NONCACHE) {
mep->me_kaddr = KM_ALLOC(ksize, M_DEVBUF, M_NOWAIT);
} else {
mep->me_kaddr = KM_ALLOC(ksize, M_DEVBUF, M_NOWAIT);
}
if (mep->me_kaddr == NULL) {
log(LOG_ERR, "atm_dev_alloc: %skernel memory unavailable\n",
(flags & ATM_DEV_NONCACHE) ? "non-cacheable " : "");
(void) splx(s);
return (NULL);
}
/*
* Calculate correct alignment address to pass back to user
*/
mep->me_uaddr = (void *) roundup((u_int)mep->me_kaddr, align);
mep->me_ksize = ksize;
mep->me_flags = flags;
/*
* Clear memory for user
*/
KM_ZERO(mep->me_uaddr, size);
ATM_DEBUG4("atm_dev_alloc: size=%d, align=%d, flags=%d, uaddr=%p\n",
size, align, flags, mep->me_uaddr);
(void) splx(s);
return (mep->me_uaddr);
}
/*
* Free kernel memory block
*
* This function will free a kernel memory block previously allocated by
* the atm_dev_alloc function.
*
* This function should not be called from interrupt level.
*
* Arguments:
* uaddr pointer to allocated aligned memory block
*
* Returns:
* none
*
*/
void
atm_dev_free(uaddr)
void *uaddr;
{
Mem_blk *mbp;
Mem_ent *mep;
int s, i;
ATM_DEBUG1("atm_dev_free: uaddr=%p\n", uaddr);
s = splimp();
/*
* Protect ourselves...
*/
if (uaddr == NULL)
panic("atm_dev_free: trying to free null address");
/*
* Find our associated entry
*/
mep = NULL;
for (mbp = atm_mem_head; mbp && mep == NULL; mbp = mbp->mb_next) {
for (i = 0; i < MEM_NMEMENT; i++) {
if (mbp->mb_mement[i].me_uaddr == uaddr) {
mep = &mbp->mb_mement[i];
break;
}
}
}
/*
* If we didn't find our entry, then unceremoniously let the caller
* know they screwed up (it certainly couldn't be a bug here...)
*/
if (mep == NULL)
panic("atm_dev_free: trying to free unknown address");
/*
* Give the memory space back to the kernel
*/
if (mep->me_flags & ATM_DEV_NONCACHE) {
KM_FREE(mep->me_kaddr, mep->me_ksize, M_DEVBUF);
} else {
KM_FREE(mep->me_kaddr, mep->me_ksize, M_DEVBUF);
}
/*
* Free our entry
*/
mep->me_uaddr = NULL;
(void) splx(s);
return;
}
#ifdef sun4m
typedef int (*func_t)();
/*
* Map an address into DVMA space
*
* This function will take a kernel virtual address and map it to
* a DMA virtual address which can be used during SBus DMA cycles.
*
* Arguments:
* addr kernel virtual address
* len length of DVMA space requested
* flags allocation flags (ATM_DEV_*)
*
* Returns:
* a DVMA address
* NULL unable to map into DMA space
*
*/
void *
atm_dma_map(addr, len, flags)
caddr_t addr;
int len;
int flags;
{
if (flags & ATM_DEV_NONCACHE)
/*
* Non-cacheable memory is already DMA'able
*/
return ((void *)addr);
else
return ((void *)mb_nbmapalloc(bigsbusmap, addr, len,
MDR_BIGSBUS|MB_CANTWAIT, (func_t)NULL, (caddr_t)NULL));
}
/*
* Free a DVMA map address
*
* This function will free DVMA map resources (addresses) previously
* allocated with atm_dma_map().
*
* Arguments:
* addr DMA virtual address
* flags allocation flags (ATM_DEV_*)
*
* Returns:
* none
*
*/
void
atm_dma_free(addr, flags)
caddr_t addr;
int flags;
{
if ((flags & ATM_DEV_NONCACHE) == 0)
mb_mapfree(bigsbusmap, (int)&addr);
return;
}
#endif /* sun4m */
/*
* Compress buffer chain
*
* This function will compress a supplied buffer chain into a minimum number
* of kernel buffers. Typically, this function will be used because the
* number of buffers in an output buffer chain is too large for a device's
* DMA capabilities. This should only be called as a last resort, since
* all the data copying will surely kill any hopes of decent performance.
*
* Arguments:
* m pointer to source buffer chain
*
* Returns:
* n pointer to compressed buffer chain
*
*/
KBuffer *
atm_dev_compress(m)
KBuffer *m;
{
KBuffer *n, *n0, **np;
int len, space;
caddr_t src, dst;
n = n0 = NULL;
np = &n0;
dst = NULL;
space = 0;
/*
* Copy each source buffer into compressed chain
*/
while (m) {
if (space == 0) {
/*
* Allocate another buffer for compressed chain
*/
KB_ALLOCEXT(n, ATM_DEV_CMPR_LG, KB_F_NOWAIT, KB_T_DATA);
if (n) {
space = ATM_DEV_CMPR_LG;
} else {
KB_ALLOC(n, ATM_DEV_CMPR_SM, KB_F_NOWAIT,
KB_T_DATA);
if (n) {
space = ATM_DEV_CMPR_SM;
} else {
/*
* Unable to get any new buffers, so
* just return the partially compressed
* chain and hope...
*/
*np = m;
break;
}
}
KB_HEADSET(n, 0);
KB_LEN(n) = 0;
KB_BFRSTART(n, dst, caddr_t);
*np = n;
np = &KB_NEXT(n);
}
/*
* Copy what we can from source buffer
*/
len = MIN(space, KB_LEN(m));
KB_DATASTART(m, src, caddr_t);
KM_COPY(src, dst, len);
/*
* Adjust for copied data
*/
dst += len;
space -= len;
KB_HEADADJ(m, -len);
KB_TAILADJ(n, len);
/*
* If we've exhausted our current source buffer, free it
* and move to the next one
*/
if (KB_LEN(m) == 0) {
KB_FREEONE(m, m);
}
}
return (n0);
}
/*
* Locate VCC entry
*
* This function will return the VCC entry for a specified interface and
* VPI/VCI value.
*
* Arguments:
* cup pointer to interface unit structure
* vpi VPI value
* vci VCI value
* type VCC type
*
* Returns:
* vcp pointer to located VCC entry matching
* NULL no VCC found
*
*/
Cmn_vcc *
atm_dev_vcc_find(cup, vpi, vci, type)
Cmn_unit *cup;
u_int vpi;
u_int vci;
u_int type;
{
Cmn_vcc *cvp;
int s = splnet();
/*
* Go find VCC
*
* (Probably should stick in a hash table some time)
*/
for (cvp = cup->cu_vcc; cvp; cvp = cvp->cv_next) {
struct vccb *vcp;
vcp = cvp->cv_connvc->cvc_vcc;
if ((vcp->vc_vci == vci) && (vcp->vc_vpi == vpi) &&
((vcp->vc_type & type) == type))
break;
}
(void) splx(s);
return (cvp);
}
#ifdef notdef
/*
* Module unloading notification
*
* This function must be called just prior to unloading the module from
* memory. All allocated memory will be freed here and anything else that
* needs cleaning up.
*
* Arguments:
* none
*
* Returns:
* none
*
*/
void
atm_unload()
{
Mem_blk *mbp;
Mem_ent *mep;
int s, i;
s = splimp();
/*
* Free up all of our memory management storage
*/
while (mbp = atm_mem_head) {
/*
* Make sure users have freed up all of their memory
*/
for (i = 0; i < MEM_NMEMENT; i++) {
if (mbp->mb_mement[i].me_uaddr != NULL) {
panic("atm_unload: unfreed memory");
}
}
atm_mem_head = mbp->mb_next;
/*
* Hand this block back to the kernel
*/
KM_FREE((caddr_t) mbp, sizeof(Mem_blk), M_DEVBUF);
}
(void) splx(s);
return;
}
#endif /* notdef */
/*
* Print a PDU
*
* Arguments:
* cup pointer to device unit
* cvp pointer to VCC control block
* m pointer to pdu buffer chain
* msg pointer to message string
*
* Returns:
* none
*
*/
void
atm_dev_pdu_print(cup, cvp, m, msg)
Cmn_unit *cup;
Cmn_vcc *cvp;
KBuffer *m;
char *msg;
{
char buf[128];
snprintf(buf, sizeof(buf), "%s vcc=(%d,%d)", msg,
cvp->cv_connvc->cvc_vcc->vc_vpi,
cvp->cv_connvc->cvc_vcc->vc_vci);
atm_pdu_print(m, buf);
}