2210 lines
62 KiB
C
Raw Normal View History

2012-07-04 14:24:26 +00:00
/*
* validator/autotrust.c - RFC5011 trust anchor management for unbound.
*
* Copyright (c) 2009, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* Contains autotrust implementation. The implementation was taken from
* the autotrust daemon (BSD licensed), written by Matthijs Mekking.
* It was modified to fit into unbound. The state table process is the same.
*/
#include "config.h"
#include <ldns/ldns.h>
#include "validator/autotrust.h"
#include "validator/val_anchor.h"
#include "validator/val_utils.h"
#include "validator/val_sigcrypt.h"
#include "util/data/dname.h"
#include "util/data/packed_rrset.h"
#include "util/log.h"
#include "util/module.h"
#include "util/net_help.h"
#include "util/config_file.h"
#include "util/regional.h"
#include "util/random.h"
#include "util/data/msgparse.h"
#include "services/mesh.h"
#include "services/cache/rrset.h"
#include "validator/val_kcache.h"
/** number of times a key must be seen before it can become valid */
#define MIN_PENDINGCOUNT 2
/** Event: Revoked */
static void do_revoked(struct module_env* env, struct autr_ta* anchor, int* c);
struct autr_global_data* autr_global_create(void)
{
struct autr_global_data* global;
global = (struct autr_global_data*)malloc(sizeof(*global));
if(!global)
return NULL;
rbtree_init(&global->probe, &probetree_cmp);
return global;
}
void autr_global_delete(struct autr_global_data* global)
{
if(!global)
return;
/* elements deleted by parent */
memset(global, 0, sizeof(*global));
free(global);
}
int probetree_cmp(const void* x, const void* y)
{
struct trust_anchor* a = (struct trust_anchor*)x;
struct trust_anchor* b = (struct trust_anchor*)y;
log_assert(a->autr && b->autr);
if(a->autr->next_probe_time < b->autr->next_probe_time)
return -1;
if(a->autr->next_probe_time > b->autr->next_probe_time)
return 1;
/* time is equal, sort on trust point identity */
return anchor_cmp(x, y);
}
size_t
autr_get_num_anchors(struct val_anchors* anchors)
{
size_t res = 0;
if(!anchors)
return 0;
lock_basic_lock(&anchors->lock);
if(anchors->autr)
res = anchors->autr->probe.count;
lock_basic_unlock(&anchors->lock);
return res;
}
/** Position in string */
static int
position_in_string(char *str, const char* sub)
{
char* pos = strstr(str, sub);
if(pos)
return (int)(pos-str)+(int)strlen(sub);
return -1;
}
/** Debug routine to print pretty key information */
static void
verbose_key(struct autr_ta* ta, enum verbosity_value level,
const char* format, ...) ATTR_FORMAT(printf, 3, 4);
/**
* Implementation of debug pretty key print
* @param ta: trust anchor key with DNSKEY data.
* @param level: verbosity level to print at.
* @param format: printf style format string.
*/
static void
verbose_key(struct autr_ta* ta, enum verbosity_value level,
const char* format, ...)
{
va_list args;
va_start(args, format);
if(verbosity >= level) {
char* str = ldns_rdf2str(ldns_rr_owner(ta->rr));
int keytag = (int)ldns_calc_keytag(ta->rr);
char msg[MAXSYSLOGMSGLEN];
vsnprintf(msg, sizeof(msg), format, args);
verbose(level, "%s key %d %s", str?str:"??", keytag, msg);
free(str);
}
va_end(args);
}
/**
* Parse comments
* @param str: to parse
* @param ta: trust key autotrust metadata
* @return false on failure.
*/
static int
parse_comments(char* str, struct autr_ta* ta)
{
int len = (int)strlen(str), pos = 0, timestamp = 0;
char* comment = (char*) malloc(sizeof(char)*len+1);
char* comments = comment;
if(!comment) {
log_err("malloc failure in parse");
return 0;
}
/* skip over whitespace and data at start of line */
while (*str != '\0' && *str != ';')
str++;
if (*str == ';')
str++;
/* copy comments */
while (*str != '\0')
{
*comments = *str;
comments++;
str++;
}
*comments = '\0';
comments = comment;
/* read state */
pos = position_in_string(comments, "state=");
if (pos >= (int) strlen(comments))
{
log_err("parse error");
free(comment);
return 0;
}
if (pos <= 0)
ta->s = AUTR_STATE_VALID;
else
{
int s = (int) comments[pos] - '0';
switch(s)
{
case AUTR_STATE_START:
case AUTR_STATE_ADDPEND:
case AUTR_STATE_VALID:
case AUTR_STATE_MISSING:
case AUTR_STATE_REVOKED:
case AUTR_STATE_REMOVED:
ta->s = s;
break;
default:
verbose_key(ta, VERB_OPS, "has undefined "
"state, considered NewKey");
ta->s = AUTR_STATE_START;
break;
}
}
/* read pending count */
pos = position_in_string(comments, "count=");
if (pos >= (int) strlen(comments))
{
log_err("parse error");
free(comment);
return 0;
}
if (pos <= 0)
ta->pending_count = 0;
else
{
comments += pos;
ta->pending_count = (uint8_t)atoi(comments);
}
/* read last change */
pos = position_in_string(comments, "lastchange=");
if (pos >= (int) strlen(comments))
{
log_err("parse error");
free(comment);
return 0;
}
if (pos >= 0)
{
comments += pos;
timestamp = atoi(comments);
}
if (pos < 0 || !timestamp)
ta->last_change = 0;
else
ta->last_change = (uint32_t)timestamp;
free(comment);
return 1;
}
/** Check if a line contains data (besides comments) */
static int
str_contains_data(char* str, char comment)
{
while (*str != '\0') {
if (*str == comment || *str == '\n')
return 0;
if (*str != ' ' && *str != '\t')
return 1;
str++;
}
return 0;
}
/** Get DNSKEY flags */
static int
dnskey_flags(ldns_rr* rr)
{
if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY)
return 0;
return (int)ldns_read_uint16(ldns_rdf_data(ldns_rr_dnskey_flags(rr)));
}
/** Check if KSK DNSKEY */
static int
rr_is_dnskey_sep(ldns_rr* rr)
{
return (dnskey_flags(rr)&DNSKEY_BIT_SEP);
}
/** Check if REVOKED DNSKEY */
static int
rr_is_dnskey_revoked(ldns_rr* rr)
{
return (dnskey_flags(rr)&LDNS_KEY_REVOKE_KEY);
}
/** create ta */
static struct autr_ta*
autr_ta_create(ldns_rr* rr)
{
struct autr_ta* ta = (struct autr_ta*)calloc(1, sizeof(*ta));
if(!ta) {
ldns_rr_free(rr);
return NULL;
}
ta->rr = rr;
return ta;
}
/** create tp */
static struct trust_anchor*
autr_tp_create(struct val_anchors* anchors, ldns_rdf* own, uint16_t dc)
{
struct trust_anchor* tp = (struct trust_anchor*)calloc(1, sizeof(*tp));
if(!tp) return NULL;
tp->name = memdup(ldns_rdf_data(own), ldns_rdf_size(own));
if(!tp->name) {
free(tp);
return NULL;
}
tp->namelen = ldns_rdf_size(own);
tp->namelabs = dname_count_labels(tp->name);
tp->node.key = tp;
tp->dclass = dc;
tp->autr = (struct autr_point_data*)calloc(1, sizeof(*tp->autr));
if(!tp->autr) {
free(tp->name);
free(tp);
return NULL;
}
tp->autr->pnode.key = tp;
lock_basic_lock(&anchors->lock);
if(!rbtree_insert(anchors->tree, &tp->node)) {
lock_basic_unlock(&anchors->lock);
log_err("trust anchor presented twice");
free(tp->name);
free(tp->autr);
free(tp);
return NULL;
}
if(!rbtree_insert(&anchors->autr->probe, &tp->autr->pnode)) {
(void)rbtree_delete(anchors->tree, tp);
lock_basic_unlock(&anchors->lock);
log_err("trust anchor in probetree twice");
free(tp->name);
free(tp->autr);
free(tp);
return NULL;
}
lock_basic_unlock(&anchors->lock);
lock_basic_init(&tp->lock);
lock_protect(&tp->lock, tp, sizeof(*tp));
lock_protect(&tp->lock, tp->autr, sizeof(*tp->autr));
return tp;
}
/** delete assembled rrsets */
static void
autr_rrset_delete(struct ub_packed_rrset_key* r)
{
if(r) {
free(r->rk.dname);
free(r->entry.data);
free(r);
}
}
void autr_point_delete(struct trust_anchor* tp)
{
if(!tp)
return;
lock_unprotect(&tp->lock, tp);
lock_unprotect(&tp->lock, tp->autr);
lock_basic_destroy(&tp->lock);
autr_rrset_delete(tp->ds_rrset);
autr_rrset_delete(tp->dnskey_rrset);
if(tp->autr) {
struct autr_ta* p = tp->autr->keys, *np;
while(p) {
np = p->next;
ldns_rr_free(p->rr);
free(p);
p = np;
}
free(tp->autr->file);
free(tp->autr);
}
free(tp->name);
free(tp);
}
/** find or add a new trust point for autotrust */
static struct trust_anchor*
find_add_tp(struct val_anchors* anchors, ldns_rr* rr)
{
struct trust_anchor* tp;
ldns_rdf* own = ldns_rr_owner(rr);
tp = anchor_find(anchors, ldns_rdf_data(own),
dname_count_labels(ldns_rdf_data(own)),
ldns_rdf_size(own), ldns_rr_get_class(rr));
if(tp) {
if(!tp->autr) {
log_err("anchor cannot be with and without autotrust");
lock_basic_unlock(&tp->lock);
return NULL;
}
return tp;
}
tp = autr_tp_create(anchors, ldns_rr_owner(rr), ldns_rr_get_class(rr));
lock_basic_lock(&tp->lock);
return tp;
}
/** Add trust anchor from RR */
static struct autr_ta*
add_trustanchor_frm_rr(struct val_anchors* anchors, ldns_rr* rr,
struct trust_anchor** tp)
{
struct autr_ta* ta = autr_ta_create(rr);
if(!ta)
return NULL;
*tp = find_add_tp(anchors, rr);
if(!*tp) {
ldns_rr_free(ta->rr);
free(ta);
return NULL;
}
/* add ta to tp */
ta->next = (*tp)->autr->keys;
(*tp)->autr->keys = ta;
lock_basic_unlock(&(*tp)->lock);
return ta;
}
/**
* Add new trust anchor from a string in file.
* @param anchors: all anchors
* @param str: string with anchor and comments, if any comments.
* @param tp: trust point returned.
* @param origin: what to use for @
* @param prev: previous rr name
* @param skip: if true, the result is NULL, but not an error, skip it.
* @return new key in trust point.
*/
static struct autr_ta*
add_trustanchor_frm_str(struct val_anchors* anchors, char* str,
struct trust_anchor** tp, ldns_rdf* origin, ldns_rdf** prev, int* skip)
{
ldns_rr* rr;
ldns_status lstatus;
if (!str_contains_data(str, ';')) {
*skip = 1;
return NULL; /* empty line */
}
if (LDNS_STATUS_OK !=
(lstatus = ldns_rr_new_frm_str(&rr, str, 0, origin, prev)))
{
log_err("ldns error while converting string to RR: %s",
ldns_get_errorstr_by_id(lstatus));
return NULL;
}
if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY &&
ldns_rr_get_type(rr) != LDNS_RR_TYPE_DS) {
ldns_rr_free(rr);
*skip = 1;
return NULL; /* only DS and DNSKEY allowed */
}
return add_trustanchor_frm_rr(anchors, rr, tp);
}
/**
* Load single anchor
* @param anchors: all points.
* @param str: comments line
* @param fname: filename
2013-04-05 09:06:26 +00:00
* @param origin: the $ORIGIN.
2012-07-04 14:24:26 +00:00
* @param prev: passed to ldns.
* @param skip: if true, the result is NULL, but not an error, skip it.
* @return false on failure, otherwise the tp read.
*/
static struct trust_anchor*
load_trustanchor(struct val_anchors* anchors, char* str, const char* fname,
ldns_rdf* origin, ldns_rdf** prev, int* skip)
{
struct autr_ta* ta = NULL;
struct trust_anchor* tp = NULL;
ta = add_trustanchor_frm_str(anchors, str, &tp, origin, prev, skip);
if(!ta)
return NULL;
lock_basic_lock(&tp->lock);
if(!parse_comments(str, ta)) {
lock_basic_unlock(&tp->lock);
return NULL;
}
if(!tp->autr->file) {
tp->autr->file = strdup(fname);
if(!tp->autr->file) {
lock_basic_unlock(&tp->lock);
log_err("malloc failure");
return NULL;
}
}
lock_basic_unlock(&tp->lock);
return tp;
}
/**
* Assemble the trust anchors into DS and DNSKEY packed rrsets.
* Uses only VALID and MISSING DNSKEYs.
* Read the ldns_rrs and builds packed rrsets
* @param tp: the trust point. Must be locked.
* @return false on malloc failure.
*/
static int
autr_assemble(struct trust_anchor* tp)
{
ldns_rr_list* ds, *dnskey;
struct autr_ta* ta;
struct ub_packed_rrset_key* ubds=NULL, *ubdnskey=NULL;
ds = ldns_rr_list_new();
dnskey = ldns_rr_list_new();
if(!ds || !dnskey) {
ldns_rr_list_free(ds);
ldns_rr_list_free(dnskey);
return 0;
}
for(ta = tp->autr->keys; ta; ta = ta->next) {
if(ldns_rr_get_type(ta->rr) == LDNS_RR_TYPE_DS) {
if(!ldns_rr_list_push_rr(ds, ta->rr)) {
ldns_rr_list_free(ds);
ldns_rr_list_free(dnskey);
return 0;
}
} else if(ta->s == AUTR_STATE_VALID ||
ta->s == AUTR_STATE_MISSING) {
if(!ldns_rr_list_push_rr(dnskey, ta->rr)) {
ldns_rr_list_free(ds);
ldns_rr_list_free(dnskey);
return 0;
}
}
}
/* make packed rrset keys - malloced with no ID number, they
* are not in the cache */
/* make packed rrset data (if there is a key) */
if(ldns_rr_list_rr_count(ds) > 0) {
ubds = ub_packed_rrset_heap_key(ds);
if(!ubds)
goto error_cleanup;
ubds->entry.data = packed_rrset_heap_data(ds);
if(!ubds->entry.data)
goto error_cleanup;
}
if(ldns_rr_list_rr_count(dnskey) > 0) {
ubdnskey = ub_packed_rrset_heap_key(dnskey);
if(!ubdnskey)
goto error_cleanup;
ubdnskey->entry.data = packed_rrset_heap_data(dnskey);
if(!ubdnskey->entry.data) {
error_cleanup:
autr_rrset_delete(ubds);
autr_rrset_delete(ubdnskey);
ldns_rr_list_free(ds);
ldns_rr_list_free(dnskey);
return 0;
}
}
/* we have prepared the new keys so nothing can go wrong any more.
* And we are sure we cannot be left without trustanchor after
* any errors. Put in the new keys and remove old ones. */
/* free the old data */
autr_rrset_delete(tp->ds_rrset);
autr_rrset_delete(tp->dnskey_rrset);
/* assign the data to replace the old */
tp->ds_rrset = ubds;
tp->dnskey_rrset = ubdnskey;
tp->numDS = ldns_rr_list_rr_count(ds);
tp->numDNSKEY = ldns_rr_list_rr_count(dnskey);
ldns_rr_list_free(ds);
ldns_rr_list_free(dnskey);
return 1;
}
/** parse integer */
static unsigned int
parse_int(char* line, int* ret)
{
char *e;
unsigned int x = (unsigned int)strtol(line, &e, 10);
if(line == e) {
*ret = -1; /* parse error */
return 0;
}
*ret = 1; /* matched */
return x;
}
/** parse id sequence for anchor */
static struct trust_anchor*
parse_id(struct val_anchors* anchors, char* line)
{
struct trust_anchor *tp;
int r;
ldns_rdf* rdf;
uint16_t dclass;
/* read the owner name */
char* next = strchr(line, ' ');
if(!next)
return NULL;
next[0] = 0;
rdf = ldns_dname_new_frm_str(line);
if(!rdf)
return NULL;
/* read the class */
dclass = parse_int(next+1, &r);
if(r == -1) {
ldns_rdf_deep_free(rdf);
return NULL;
}
/* find the trust point */
tp = autr_tp_create(anchors, rdf, dclass);
ldns_rdf_deep_free(rdf);
return tp;
}
/**
* Parse variable from trustanchor header
* @param line: to parse
* @param anchors: the anchor is added to this, if "id:" is seen.
* @param anchor: the anchor as result value or previously returned anchor
* value to read the variable lines into.
* @return: 0 no match, -1 failed syntax error, +1 success line read.
* +2 revoked trust anchor file.
*/
static int
parse_var_line(char* line, struct val_anchors* anchors,
struct trust_anchor** anchor)
{
struct trust_anchor* tp = *anchor;
int r = 0;
if(strncmp(line, ";;id: ", 6) == 0) {
*anchor = parse_id(anchors, line+6);
if(!*anchor) return -1;
else return 1;
} else if(strncmp(line, ";;REVOKED", 9) == 0) {
if(tp) {
log_err("REVOKED statement must be at start of file");
return -1;
}
return 2;
} else if(strncmp(line, ";;last_queried: ", 16) == 0) {
if(!tp) return -1;
lock_basic_lock(&tp->lock);
tp->autr->last_queried = (time_t)parse_int(line+16, &r);
lock_basic_unlock(&tp->lock);
} else if(strncmp(line, ";;last_success: ", 16) == 0) {
if(!tp) return -1;
lock_basic_lock(&tp->lock);
tp->autr->last_success = (time_t)parse_int(line+16, &r);
lock_basic_unlock(&tp->lock);
} else if(strncmp(line, ";;next_probe_time: ", 19) == 0) {
if(!tp) return -1;
lock_basic_lock(&anchors->lock);
lock_basic_lock(&tp->lock);
(void)rbtree_delete(&anchors->autr->probe, tp);
tp->autr->next_probe_time = (time_t)parse_int(line+19, &r);
(void)rbtree_insert(&anchors->autr->probe, &tp->autr->pnode);
lock_basic_unlock(&tp->lock);
lock_basic_unlock(&anchors->lock);
} else if(strncmp(line, ";;query_failed: ", 16) == 0) {
if(!tp) return -1;
lock_basic_lock(&tp->lock);
tp->autr->query_failed = (uint8_t)parse_int(line+16, &r);
lock_basic_unlock(&tp->lock);
} else if(strncmp(line, ";;query_interval: ", 18) == 0) {
if(!tp) return -1;
lock_basic_lock(&tp->lock);
tp->autr->query_interval = (uint32_t)parse_int(line+18, &r);
lock_basic_unlock(&tp->lock);
} else if(strncmp(line, ";;retry_time: ", 14) == 0) {
if(!tp) return -1;
lock_basic_lock(&tp->lock);
tp->autr->retry_time = (uint32_t)parse_int(line+14, &r);
lock_basic_unlock(&tp->lock);
}
return r;
}
/** handle origin lines */
static int
handle_origin(char* line, ldns_rdf** origin)
{
while(isspace((int)*line))
line++;
if(strncmp(line, "$ORIGIN", 7) != 0)
return 0;
ldns_rdf_deep_free(*origin);
line += 7;
while(isspace((int)*line))
line++;
*origin = ldns_dname_new_frm_str(line);
if(!*origin)
log_warn("malloc failure or parse error in $ORIGIN");
return 1;
}
/** Read one line and put multiline RRs onto one line string */
static int
read_multiline(char* buf, size_t len, FILE* in, int* linenr)
{
char* pos = buf;
size_t left = len;
int depth = 0;
buf[len-1] = 0;
while(left > 0 && fgets(pos, (int)left, in) != NULL) {
size_t i, poslen = strlen(pos);
(*linenr)++;
/* check what the new depth is after the line */
/* this routine cannot handle braces inside quotes,
say for TXT records, but this routine only has to read keys */
for(i=0; i<poslen; i++) {
if(pos[i] == '(') {
depth++;
} else if(pos[i] == ')') {
if(depth == 0) {
log_err("mismatch: too many ')'");
return -1;
}
depth--;
} else if(pos[i] == ';') {
break;
}
}
/* normal oneline or last line: keeps newline and comments */
if(depth == 0) {
return 1;
}
/* more lines expected, snip off comments and newline */
if(poslen>0)
pos[poslen-1] = 0; /* strip newline */
if(strchr(pos, ';'))
strchr(pos, ';')[0] = 0; /* strip comments */
/* move to paste other lines behind this one */
poslen = strlen(pos);
pos += poslen;
left -= poslen;
/* the newline is changed into a space */
if(left <= 2 /* space and eos */) {
log_err("line too long");
return -1;
}
pos[0] = ' ';
pos[1] = 0;
pos += 1;
left -= 1;
}
if(depth != 0) {
log_err("mismatch: too many '('");
return -1;
}
if(pos != buf)
return 1;
return 0;
}
int autr_read_file(struct val_anchors* anchors, const char* nm)
{
/* the file descriptor */
FILE* fd;
/* keep track of line numbers */
int line_nr = 0;
/* single line */
char line[10240];
/* trust point being read */
struct trust_anchor *tp = NULL, *tp2;
int r;
/* for $ORIGIN parsing */
ldns_rdf *origin=NULL, *prev=NULL;
if (!(fd = fopen(nm, "r"))) {
log_err("unable to open %s for reading: %s",
nm, strerror(errno));
return 0;
}
verbose(VERB_ALGO, "reading autotrust anchor file %s", nm);
while ( (r=read_multiline(line, sizeof(line), fd, &line_nr)) != 0) {
if(r == -1 || (r = parse_var_line(line, anchors, &tp)) == -1) {
log_err("could not parse auto-trust-anchor-file "
"%s line %d", nm, line_nr);
fclose(fd);
ldns_rdf_deep_free(origin);
ldns_rdf_deep_free(prev);
return 0;
} else if(r == 1) {
continue;
} else if(r == 2) {
log_warn("trust anchor %s has been revoked", nm);
fclose(fd);
ldns_rdf_deep_free(origin);
ldns_rdf_deep_free(prev);
return 1;
}
if (!str_contains_data(line, ';'))
continue; /* empty lines allowed */
if(handle_origin(line, &origin))
continue;
r = 0;
if(!(tp2=load_trustanchor(anchors, line, nm, origin, &prev,
&r))) {
if(!r) log_err("failed to load trust anchor from %s "
"at line %i, skipping", nm, line_nr);
/* try to do the rest */
continue;
}
if(tp && tp != tp2) {
log_err("file %s has mismatching data inside: "
"the file may only contain keys for one name, "
"remove keys for other domain names", nm);
fclose(fd);
ldns_rdf_deep_free(origin);
ldns_rdf_deep_free(prev);
return 0;
}
tp = tp2;
}
fclose(fd);
ldns_rdf_deep_free(origin);
ldns_rdf_deep_free(prev);
if(!tp) {
log_err("failed to read %s", nm);
return 0;
}
/* now assemble the data into DNSKEY and DS packed rrsets */
lock_basic_lock(&tp->lock);
if(!autr_assemble(tp)) {
lock_basic_unlock(&tp->lock);
log_err("malloc failure assembling %s", nm);
return 0;
}
lock_basic_unlock(&tp->lock);
return 1;
}
/** string for a trustanchor state */
static const char*
trustanchor_state2str(autr_state_t s)
{
switch (s) {
case AUTR_STATE_START: return " START ";
case AUTR_STATE_ADDPEND: return " ADDPEND ";
case AUTR_STATE_VALID: return " VALID ";
case AUTR_STATE_MISSING: return " MISSING ";
case AUTR_STATE_REVOKED: return " REVOKED ";
case AUTR_STATE_REMOVED: return " REMOVED ";
}
return " UNKNOWN ";
}
/** print ID to file */
static int
print_id(FILE* out, char* fname, struct module_env* env,
uint8_t* nm, size_t nmlen, uint16_t dclass)
{
ldns_rdf rdf;
#ifdef UNBOUND_DEBUG
ldns_status s;
#endif
memset(&rdf, 0, sizeof(rdf));
ldns_rdf_set_data(&rdf, nm);
ldns_rdf_set_size(&rdf, nmlen);
ldns_rdf_set_type(&rdf, LDNS_RDF_TYPE_DNAME);
ldns_buffer_clear(env->scratch_buffer);
#ifdef UNBOUND_DEBUG
s =
#endif
ldns_rdf2buffer_str_dname(env->scratch_buffer, &rdf);
log_assert(s == LDNS_STATUS_OK);
ldns_buffer_write_u8(env->scratch_buffer, 0);
ldns_buffer_flip(env->scratch_buffer);
if(fprintf(out, ";;id: %s %d\n",
(char*)ldns_buffer_begin(env->scratch_buffer),
(int)dclass) < 0) {
log_err("could not write to %s: %s", fname, strerror(errno));
return 0;
}
return 1;
}
static int
autr_write_contents(FILE* out, char* fn, struct module_env* env,
struct trust_anchor* tp)
{
char tmi[32];
struct autr_ta* ta;
char* str;
/* write pretty header */
if(fprintf(out, "; autotrust trust anchor file\n") < 0) {
log_err("could not write to %s: %s", fn, strerror(errno));
return 0;
}
if(tp->autr->revoked) {
if(fprintf(out, ";;REVOKED\n") < 0 ||
fprintf(out, "; The zone has all keys revoked, and is\n"
"; considered as if it has no trust anchors.\n"
"; the remainder of the file is the last probe.\n"
"; to restart the trust anchor, overwrite this file.\n"
"; with one containing valid DNSKEYs or DSes.\n") < 0) {
log_err("could not write to %s: %s", fn, strerror(errno));
return 0;
}
}
if(!print_id(out, fn, env, tp->name, tp->namelen, tp->dclass)) {
return 0;
}
if(fprintf(out, ";;last_queried: %u ;;%s",
(unsigned int)tp->autr->last_queried,
ctime_r(&(tp->autr->last_queried), tmi)) < 0 ||
fprintf(out, ";;last_success: %u ;;%s",
(unsigned int)tp->autr->last_success,
ctime_r(&(tp->autr->last_success), tmi)) < 0 ||
fprintf(out, ";;next_probe_time: %u ;;%s",
(unsigned int)tp->autr->next_probe_time,
ctime_r(&(tp->autr->next_probe_time), tmi)) < 0 ||
fprintf(out, ";;query_failed: %d\n", (int)tp->autr->query_failed)<0
|| fprintf(out, ";;query_interval: %d\n",
(int)tp->autr->query_interval) < 0 ||
fprintf(out, ";;retry_time: %d\n", (int)tp->autr->retry_time) < 0) {
log_err("could not write to %s: %s", fn, strerror(errno));
return 0;
}
/* write anchors */
for(ta=tp->autr->keys; ta; ta=ta->next) {
/* by default do not store START and REMOVED keys */
if(ta->s == AUTR_STATE_START)
continue;
if(ta->s == AUTR_STATE_REMOVED)
continue;
/* only store keys */
if(ldns_rr_get_type(ta->rr) != LDNS_RR_TYPE_DNSKEY)
continue;
str = ldns_rr2str(ta->rr);
if(!str || !str[0]) {
free(str);
log_err("malloc failure writing %s", fn);
return 0;
}
str[strlen(str)-1] = 0; /* remove newline */
if(fprintf(out, "%s ;;state=%d [%s] ;;count=%d "
";;lastchange=%u ;;%s", str, (int)ta->s,
trustanchor_state2str(ta->s), (int)ta->pending_count,
(unsigned int)ta->last_change,
ctime_r(&(ta->last_change), tmi)) < 0) {
log_err("could not write to %s: %s", fn, strerror(errno));
free(str);
return 0;
}
free(str);
}
return 1;
}
void autr_write_file(struct module_env* env, struct trust_anchor* tp)
{
FILE* out;
char* fname = tp->autr->file;
char tempf[2048];
log_assert(tp->autr);
/* unique name with pid number and thread number */
snprintf(tempf, sizeof(tempf), "%s.%d-%d", fname, (int)getpid(),
env&&env->worker?*(int*)env->worker:0);
verbose(VERB_ALGO, "autotrust: write to disk: %s", tempf);
out = fopen(tempf, "w");
if(!out) {
log_err("could not open autotrust file for writing, %s: %s",
tempf, strerror(errno));
return;
}
if(!autr_write_contents(out, tempf, env, tp)) {
/* failed to write contents (completely) */
fclose(out);
unlink(tempf);
log_err("could not completely write: %s", fname);
return;
}
/* success; overwrite actual file */
fclose(out);
verbose(VERB_ALGO, "autotrust: replaced %s", fname);
#ifdef UB_ON_WINDOWS
(void)unlink(fname); /* windows does not replace file with rename() */
#endif
if(rename(tempf, fname) < 0) {
log_err("rename(%s to %s): %s", tempf, fname, strerror(errno));
}
}
/**
* Verify if dnskey works for trust point
* @param env: environment (with time) for verification
* @param ve: validator environment (with options) for verification.
* @param tp: trust point to verify with
* @param rrset: DNSKEY rrset to verify.
* @return false on failure, true if verification successful.
*/
static int
verify_dnskey(struct module_env* env, struct val_env* ve,
struct trust_anchor* tp, struct ub_packed_rrset_key* rrset)
{
char* reason = NULL;
uint8_t sigalg[ALGO_NEEDS_MAX+1];
int downprot = 1;
enum sec_status sec = val_verify_DNSKEY_with_TA(env, ve, rrset,
tp->ds_rrset, tp->dnskey_rrset, downprot?sigalg:NULL, &reason);
/* sigalg is ignored, it returns algorithms signalled to exist, but
* in 5011 there are no other rrsets to check. if downprot is
* enabled, then it checks that the DNSKEY is signed with all
* algorithms available in the trust store. */
verbose(VERB_ALGO, "autotrust: validate DNSKEY with anchor: %s",
sec_status_to_string(sec));
return sec == sec_status_secure;
}
/** Find minimum expiration interval from signatures */
static uint32_t
min_expiry(struct module_env* env, ldns_rr_list* rrset)
{
size_t i;
uint32_t t, r = 15 * 24 * 3600; /* 15 days max */
for(i=0; i<ldns_rr_list_rr_count(rrset); i++) {
ldns_rr* rr = ldns_rr_list_rr(rrset, i);
if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_RRSIG)
continue;
t = ldns_rdf2native_int32(ldns_rr_rrsig_expiration(rr));
if(t - *env->now > 0) {
t -= *env->now;
if(t < r)
r = t;
}
}
return r;
}
/** Is rr self-signed revoked key */
static int
rr_is_selfsigned_revoked(struct module_env* env, struct val_env* ve,
struct ub_packed_rrset_key* dnskey_rrset, size_t i)
{
enum sec_status sec;
char* reason = NULL;
verbose(VERB_ALGO, "seen REVOKE flag, check self-signed, rr %d",
(int)i);
/* no algorithm downgrade protection necessary, if it is selfsigned
* revoked it can be removed. */
sec = dnskey_verify_rrset(env, ve, dnskey_rrset, dnskey_rrset, i,
&reason);
return (sec == sec_status_secure);
}
/** Set fetched value */
static void
seen_trustanchor(struct autr_ta* ta, uint8_t seen)
{
ta->fetched = seen;
if(ta->pending_count < 250) /* no numerical overflow, please */
ta->pending_count++;
}
/** set revoked value */
static void
seen_revoked_trustanchor(struct autr_ta* ta, uint8_t revoked)
{
ta->revoked = revoked;
}
/** revoke a trust anchor */
static void
revoke_dnskey(struct autr_ta* ta, int off)
{
ldns_rdf* rdf;
uint16_t flags;
log_assert(ta && ta->rr);
if(ldns_rr_get_type(ta->rr) != LDNS_RR_TYPE_DNSKEY)
return;
rdf = ldns_rr_dnskey_flags(ta->rr);
flags = ldns_read_uint16(ldns_rdf_data(rdf));
if (off && (flags&LDNS_KEY_REVOKE_KEY))
flags ^= LDNS_KEY_REVOKE_KEY; /* flip */
else
flags |= LDNS_KEY_REVOKE_KEY;
ldns_write_uint16(ldns_rdf_data(rdf), flags);
}
/** Compare two RR buffers skipping the REVOKED bit */
static int
ldns_rr_compare_wire_skip_revbit(ldns_buffer* rr1_buf, ldns_buffer* rr2_buf)
{
size_t rr1_len, rr2_len, min_len, i, offset;
rr1_len = ldns_buffer_capacity(rr1_buf);
rr2_len = ldns_buffer_capacity(rr2_buf);
/* jump past dname (checked in earlier part) and especially past TTL */
offset = 0;
while (offset < rr1_len && *ldns_buffer_at(rr1_buf, offset) != 0)
offset += *ldns_buffer_at(rr1_buf, offset) + 1;
/* jump to rdata section (PAST the rdata length field) */
offset += 11; /* 0-dname-end + type + class + ttl + rdatalen */
min_len = (rr1_len < rr2_len) ? rr1_len : rr2_len;
/* compare RRs RDATA byte for byte. */
for(i = offset; i < min_len; i++)
{
uint8_t *rdf1, *rdf2;
rdf1 = ldns_buffer_at(rr1_buf, i);
rdf2 = ldns_buffer_at(rr2_buf, i);
if (i==(offset+1))
{
/* this is the second part of the flags field */
*rdf1 = *rdf1 | LDNS_KEY_REVOKE_KEY;
*rdf2 = *rdf2 | LDNS_KEY_REVOKE_KEY;
}
if (*rdf1 < *rdf2) return -1;
else if (*rdf1 > *rdf2) return 1;
}
return 0;
}
/** Compare two RRs skipping the REVOKED bit */
static int
ldns_rr_compare_skip_revbit(const ldns_rr* rr1, const ldns_rr* rr2, int* result)
{
size_t rr1_len, rr2_len;
ldns_buffer* rr1_buf;
ldns_buffer* rr2_buf;
*result = ldns_rr_compare_no_rdata(rr1, rr2);
if (*result == 0)
{
rr1_len = ldns_rr_uncompressed_size(rr1);
rr2_len = ldns_rr_uncompressed_size(rr2);
rr1_buf = ldns_buffer_new(rr1_len);
rr2_buf = ldns_buffer_new(rr2_len);
if(!rr1_buf || !rr2_buf) {
ldns_buffer_free(rr1_buf);
ldns_buffer_free(rr2_buf);
return 0;
}
if (ldns_rr2buffer_wire_canonical(rr1_buf, rr1,
LDNS_SECTION_ANY) != LDNS_STATUS_OK)
{
ldns_buffer_free(rr1_buf);
ldns_buffer_free(rr2_buf);
return 0;
}
if (ldns_rr2buffer_wire_canonical(rr2_buf, rr2,
LDNS_SECTION_ANY) != LDNS_STATUS_OK) {
ldns_buffer_free(rr1_buf);
ldns_buffer_free(rr2_buf);
return 0;
}
*result = ldns_rr_compare_wire_skip_revbit(rr1_buf, rr2_buf);
ldns_buffer_free(rr1_buf);
ldns_buffer_free(rr2_buf);
}
return 1;
}
/** compare two trust anchors */
static int
ta_compare(ldns_rr* a, ldns_rr* b, int* result)
{
if (!a && !b) *result = 0;
else if (!a) *result = -1;
else if (!b) *result = 1;
else if (ldns_rr_get_type(a) != ldns_rr_get_type(b))
*result = (int)ldns_rr_get_type(a) - (int)ldns_rr_get_type(b);
else if (ldns_rr_get_type(a) == LDNS_RR_TYPE_DNSKEY) {
if(!ldns_rr_compare_skip_revbit(a, b, result))
return 0;
}
else if (ldns_rr_get_type(a) == LDNS_RR_TYPE_DS)
*result = ldns_rr_compare(a, b);
else *result = -1;
return 1;
}
/**
* Find key
* @param tp: to search in
* @param rr: to look for
* @param result: returns NULL or the ta key looked for.
* @return false on malloc failure during search. if true examine result.
*/
static int
find_key(struct trust_anchor* tp, ldns_rr* rr, struct autr_ta** result)
{
struct autr_ta* ta;
int ret;
if(!tp || !rr)
return 0;
for(ta=tp->autr->keys; ta; ta=ta->next) {
if(!ta_compare(ta->rr, rr, &ret))
return 0;
if(ret == 0) {
*result = ta;
return 1;
}
}
*result = NULL;
return 1;
}
/** add key and clone RR and tp already locked */
static struct autr_ta*
add_key(struct trust_anchor* tp, ldns_rr* rr)
{
ldns_rr* c;
struct autr_ta* ta;
c = ldns_rr_clone(rr);
if(!c) return NULL;
ta = autr_ta_create(c);
if(!ta) {
ldns_rr_free(c);
return NULL;
}
/* link in, tp already locked */
ta->next = tp->autr->keys;
tp->autr->keys = ta;
return ta;
}
/** get TTL from DNSKEY rrset */
static uint32_t
key_ttl(struct ub_packed_rrset_key* k)
{
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
return d->ttl;
}
/** update the time values for the trustpoint */
static void
set_tp_times(struct trust_anchor* tp, uint32_t rrsig_exp_interval,
uint32_t origttl, int* changed)
{
uint32_t x, qi = tp->autr->query_interval, rt = tp->autr->retry_time;
/* x = MIN(15days, ttl/2, expire/2) */
x = 15 * 24 * 3600;
if(origttl/2 < x)
x = origttl/2;
if(rrsig_exp_interval/2 < x)
x = rrsig_exp_interval/2;
/* MAX(1hr, x) */
if(x < 3600)
tp->autr->query_interval = 3600;
else tp->autr->query_interval = x;
/* x= MIN(1day, ttl/10, expire/10) */
x = 24 * 3600;
if(origttl/10 < x)
x = origttl/10;
if(rrsig_exp_interval/10 < x)
x = rrsig_exp_interval/10;
/* MAX(1hr, x) */
if(x < 3600)
tp->autr->retry_time = 3600;
else tp->autr->retry_time = x;
if(qi != tp->autr->query_interval || rt != tp->autr->retry_time) {
*changed = 1;
verbose(VERB_ALGO, "orig_ttl is %d", (int)origttl);
verbose(VERB_ALGO, "rrsig_exp_interval is %d",
(int)rrsig_exp_interval);
verbose(VERB_ALGO, "query_interval: %d, retry_time: %d",
(int)tp->autr->query_interval,
(int)tp->autr->retry_time);
}
}
/** init events to zero */
static void
init_events(struct trust_anchor* tp)
{
struct autr_ta* ta;
for(ta=tp->autr->keys; ta; ta=ta->next) {
ta->fetched = 0;
}
}
/** check for revoked keys without trusting any other information */
static void
check_contains_revoked(struct module_env* env, struct val_env* ve,
struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset,
int* changed)
{
ldns_rr_list* r = packed_rrset_to_rr_list(dnskey_rrset,
env->scratch_buffer);
size_t i;
if(!r) {
log_err("malloc failure");
return;
}
for(i=0; i<ldns_rr_list_rr_count(r); i++) {
ldns_rr* rr = ldns_rr_list_rr(r, i);
struct autr_ta* ta = NULL;
if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY)
continue;
if(!rr_is_dnskey_sep(rr) || !rr_is_dnskey_revoked(rr))
continue; /* not a revoked KSK */
if(!find_key(tp, rr, &ta)) {
log_err("malloc failure");
continue; /* malloc fail in compare*/
}
if(!ta)
continue; /* key not found */
if(rr_is_selfsigned_revoked(env, ve, dnskey_rrset, i)) {
/* checked if there is an rrsig signed by this key. */
log_assert(dnskey_calc_keytag(dnskey_rrset, i) ==
ldns_calc_keytag(rr)); /* checks conversion*/
verbose_key(ta, VERB_ALGO, "is self-signed revoked");
if(!ta->revoked)
*changed = 1;
seen_revoked_trustanchor(ta, 1);
do_revoked(env, ta, changed);
}
}
ldns_rr_list_deep_free(r);
}
/** See if a DNSKEY is verified by one of the DSes */
static int
key_matches_a_ds(struct module_env* env, struct val_env* ve,
struct ub_packed_rrset_key* dnskey_rrset, size_t key_idx,
struct ub_packed_rrset_key* ds_rrset)
{
struct packed_rrset_data* dd = (struct packed_rrset_data*)
ds_rrset->entry.data;
size_t ds_idx, num = dd->count;
int d = val_favorite_ds_algo(ds_rrset);
char* reason = "";
for(ds_idx=0; ds_idx<num; ds_idx++) {
if(!ds_digest_algo_is_supported(ds_rrset, ds_idx) ||
!ds_key_algo_is_supported(ds_rrset, ds_idx) ||
ds_get_digest_algo(ds_rrset, ds_idx) != d)
continue;
if(ds_get_key_algo(ds_rrset, ds_idx)
!= dnskey_get_algo(dnskey_rrset, key_idx)
|| dnskey_calc_keytag(dnskey_rrset, key_idx)
!= ds_get_keytag(ds_rrset, ds_idx)) {
continue;
}
if(!ds_digest_match_dnskey(env, dnskey_rrset, key_idx,
ds_rrset, ds_idx)) {
verbose(VERB_ALGO, "DS match attempt failed");
continue;
}
if(dnskey_verify_rrset(env, ve, dnskey_rrset,
dnskey_rrset, key_idx, &reason) == sec_status_secure) {
return 1;
} else {
verbose(VERB_ALGO, "DS match failed because the key "
"does not verify the keyset: %s", reason);
}
}
return 0;
}
/** Set update events */
static int
update_events(struct module_env* env, struct val_env* ve,
struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset,
int* changed)
{
ldns_rr_list* r = packed_rrset_to_rr_list(dnskey_rrset,
env->scratch_buffer);
size_t i;
if(!r)
return 0;
init_events(tp);
for(i=0; i<ldns_rr_list_rr_count(r); i++) {
ldns_rr* rr = ldns_rr_list_rr(r, i);
struct autr_ta* ta = NULL;
if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY)
continue;
if(!rr_is_dnskey_sep(rr))
continue;
if(rr_is_dnskey_revoked(rr)) {
/* self-signed revoked keys already detected before,
* other revoked keys are not 'added' again */
continue;
}
/* is a key of this type supported?. Note rr_list and
* packed_rrset are in the same order. */
if(!dnskey_algo_is_supported(dnskey_rrset, i)) {
/* skip unknown algorithm key, it is useless to us */
log_nametypeclass(VERB_DETAIL, "trust point has "
"unsupported algorithm at",
tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
continue;
}
/* is it new? if revocation bit set, find the unrevoked key */
if(!find_key(tp, rr, &ta)) {
ldns_rr_list_deep_free(r); /* malloc fail in compare*/
return 0;
}
if(!ta) {
ta = add_key(tp, rr);
*changed = 1;
/* first time seen, do we have DSes? if match: VALID */
if(ta && tp->ds_rrset && key_matches_a_ds(env, ve,
dnskey_rrset, i, tp->ds_rrset)) {
verbose_key(ta, VERB_ALGO, "verified by DS");
ta->s = AUTR_STATE_VALID;
}
}
if(!ta) {
ldns_rr_list_deep_free(r);
return 0;
}
seen_trustanchor(ta, 1);
verbose_key(ta, VERB_ALGO, "in DNS response");
}
set_tp_times(tp, min_expiry(env, r), key_ttl(dnskey_rrset), changed);
ldns_rr_list_deep_free(r);
return 1;
}
/**
* Check if the holddown time has already exceeded
* setting: add-holddown: add holddown timer
* setting: del-holddown: del holddown timer
* @param env: environment with current time
* @param ta: trust anchor to check for.
* @param holddown: the timer value
* @return number of seconds the holddown has passed.
*/
static int
check_holddown(struct module_env* env, struct autr_ta* ta,
unsigned int holddown)
{
unsigned int elapsed;
if((unsigned)*env->now < (unsigned)ta->last_change) {
log_warn("time goes backwards. delaying key holddown");
return 0;
}
elapsed = (unsigned)*env->now - (unsigned)ta->last_change;
if (elapsed > holddown) {
return (int) (elapsed-holddown);
}
verbose_key(ta, VERB_ALGO, "holddown time %d seconds to go",
(int) (holddown-elapsed));
return 0;
}
/** Set last_change to now */
static void
reset_holddown(struct module_env* env, struct autr_ta* ta, int* changed)
{
ta->last_change = *env->now;
*changed = 1;
}
/** Set the state for this trust anchor */
static void
set_trustanchor_state(struct module_env* env, struct autr_ta* ta, int* changed,
autr_state_t s)
{
verbose_key(ta, VERB_ALGO, "update: %s to %s",
trustanchor_state2str(ta->s), trustanchor_state2str(s));
ta->s = s;
reset_holddown(env, ta, changed);
}
/** Event: NewKey */
static void
do_newkey(struct module_env* env, struct autr_ta* anchor, int* c)
{
if (anchor->s == AUTR_STATE_START)
set_trustanchor_state(env, anchor, c, AUTR_STATE_ADDPEND);
}
/** Event: AddTime */
static void
do_addtime(struct module_env* env, struct autr_ta* anchor, int* c)
{
/* This not according to RFC, this is 30 days, but the RFC demands
* MAX(30days, TTL expire time of first DNSKEY set with this key),
* The value may be too small if a very large TTL was used. */
int exceeded = check_holddown(env, anchor, env->cfg->add_holddown);
if (exceeded && anchor->s == AUTR_STATE_ADDPEND) {
verbose_key(anchor, VERB_ALGO, "add-holddown time exceeded "
"%d seconds ago, and pending-count %d", exceeded,
anchor->pending_count);
if(anchor->pending_count >= MIN_PENDINGCOUNT) {
set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID);
anchor->pending_count = 0;
return;
}
verbose_key(anchor, VERB_ALGO, "add-holddown time sanity check "
"failed (pending count: %d)", anchor->pending_count);
}
}
/** Event: RemTime */
static void
do_remtime(struct module_env* env, struct autr_ta* anchor, int* c)
{
int exceeded = check_holddown(env, anchor, env->cfg->del_holddown);
if(exceeded && anchor->s == AUTR_STATE_REVOKED) {
verbose_key(anchor, VERB_ALGO, "del-holddown time exceeded "
"%d seconds ago", exceeded);
set_trustanchor_state(env, anchor, c, AUTR_STATE_REMOVED);
}
}
/** Event: KeyRem */
static void
do_keyrem(struct module_env* env, struct autr_ta* anchor, int* c)
{
if(anchor->s == AUTR_STATE_ADDPEND) {
set_trustanchor_state(env, anchor, c, AUTR_STATE_START);
anchor->pending_count = 0;
} else if(anchor->s == AUTR_STATE_VALID)
set_trustanchor_state(env, anchor, c, AUTR_STATE_MISSING);
}
/** Event: KeyPres */
static void
do_keypres(struct module_env* env, struct autr_ta* anchor, int* c)
{
if(anchor->s == AUTR_STATE_MISSING)
set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID);
}
/* Event: Revoked */
static void
do_revoked(struct module_env* env, struct autr_ta* anchor, int* c)
{
if(anchor->s == AUTR_STATE_VALID || anchor->s == AUTR_STATE_MISSING) {
set_trustanchor_state(env, anchor, c, AUTR_STATE_REVOKED);
verbose_key(anchor, VERB_ALGO, "old id, prior to revocation");
revoke_dnskey(anchor, 0);
verbose_key(anchor, VERB_ALGO, "new id, after revocation");
}
}
/** Do statestable transition matrix for anchor */
static void
anchor_state_update(struct module_env* env, struct autr_ta* anchor, int* c)
{
log_assert(anchor);
switch(anchor->s) {
/* START */
case AUTR_STATE_START:
/* NewKey: ADDPEND */
if (anchor->fetched)
do_newkey(env, anchor, c);
break;
/* ADDPEND */
case AUTR_STATE_ADDPEND:
/* KeyRem: START */
if (!anchor->fetched)
do_keyrem(env, anchor, c);
/* AddTime: VALID */
else do_addtime(env, anchor, c);
break;
/* VALID */
case AUTR_STATE_VALID:
/* RevBit: REVOKED */
if (anchor->revoked)
do_revoked(env, anchor, c);
/* KeyRem: MISSING */
else if (!anchor->fetched)
do_keyrem(env, anchor, c);
else if(!anchor->last_change) {
verbose_key(anchor, VERB_ALGO, "first seen");
reset_holddown(env, anchor, c);
}
break;
/* MISSING */
case AUTR_STATE_MISSING:
/* RevBit: REVOKED */
if (anchor->revoked)
do_revoked(env, anchor, c);
/* KeyPres */
else if (anchor->fetched)
do_keypres(env, anchor, c);
break;
/* REVOKED */
case AUTR_STATE_REVOKED:
if (anchor->fetched)
reset_holddown(env, anchor, c);
/* RemTime: REMOVED */
else do_remtime(env, anchor, c);
break;
/* REMOVED */
case AUTR_STATE_REMOVED:
default:
break;
}
}
/** if ZSK init then trust KSKs */
static int
init_zsk_to_ksk(struct module_env* env, struct trust_anchor* tp, int* changed)
{
/* search for VALID ZSKs */
struct autr_ta* anchor;
int validzsk = 0;
int validksk = 0;
for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
/* last_change test makes sure it was manually configured */
if (ldns_rr_get_type(anchor->rr) == LDNS_RR_TYPE_DNSKEY &&
anchor->last_change == 0 &&
!rr_is_dnskey_sep(anchor->rr) &&
anchor->s == AUTR_STATE_VALID)
validzsk++;
}
if(validzsk == 0)
return 0;
for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
if (rr_is_dnskey_sep(anchor->rr) &&
anchor->s == AUTR_STATE_ADDPEND) {
verbose_key(anchor, VERB_ALGO, "trust KSK from "
"ZSK(config)");
set_trustanchor_state(env, anchor, changed,
AUTR_STATE_VALID);
validksk++;
}
}
return validksk;
}
/** Remove missing trustanchors so the list does not grow forever */
static void
remove_missing_trustanchors(struct module_env* env, struct trust_anchor* tp,
int* changed)
{
struct autr_ta* anchor;
int exceeded;
int valid = 0;
/* see if we have anchors that are valid */
for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
/* Only do KSKs */
if (!rr_is_dnskey_sep(anchor->rr))
continue;
if (anchor->s == AUTR_STATE_VALID)
valid++;
}
/* if there are no SEP Valid anchors, see if we started out with
* a ZSK (last-change=0) anchor, which is VALID and there are KSKs
* now that can be made valid. Do this immediately because there
* is no guarantee that the ZSKs get announced long enough. Usually
* this is immediately after init with a ZSK trusted, unless the domain
* was not advertising any KSKs at all. In which case we perfectly
* track the zero number of KSKs. */
if(valid == 0) {
valid = init_zsk_to_ksk(env, tp, changed);
if(valid == 0)
return;
}
for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
/* ignore ZSKs if newly added */
if(anchor->s == AUTR_STATE_START)
continue;
/* remove ZSKs if a KSK is present */
if (!rr_is_dnskey_sep(anchor->rr)) {
if(valid > 0) {
verbose_key(anchor, VERB_ALGO, "remove ZSK "
"[%d key(s) VALID]", valid);
set_trustanchor_state(env, anchor, changed,
AUTR_STATE_REMOVED);
}
continue;
}
/* Only do MISSING keys */
if (anchor->s != AUTR_STATE_MISSING)
continue;
if(env->cfg->keep_missing == 0)
continue; /* keep forever */
exceeded = check_holddown(env, anchor, env->cfg->keep_missing);
/* If keep_missing has exceeded and we still have more than
* one valid KSK: remove missing trust anchor */
if (exceeded && valid > 0) {
verbose_key(anchor, VERB_ALGO, "keep-missing time "
"exceeded %d seconds ago, [%d key(s) VALID]",
exceeded, valid);
set_trustanchor_state(env, anchor, changed,
AUTR_STATE_REMOVED);
}
}
}
/** Do the statetable from RFC5011 transition matrix */
static int
do_statetable(struct module_env* env, struct trust_anchor* tp, int* changed)
{
struct autr_ta* anchor;
for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
/* Only do KSKs */
if(!rr_is_dnskey_sep(anchor->rr))
continue;
anchor_state_update(env, anchor, changed);
}
remove_missing_trustanchors(env, tp, changed);
return 1;
}
/** See if time alone makes ADDPEND to VALID transition */
static void
autr_holddown_exceed(struct module_env* env, struct trust_anchor* tp, int* c)
{
struct autr_ta* anchor;
for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
if(rr_is_dnskey_sep(anchor->rr) &&
anchor->s == AUTR_STATE_ADDPEND)
do_addtime(env, anchor, c);
}
}
/** cleanup key list */
static void
autr_cleanup_keys(struct trust_anchor* tp)
{
struct autr_ta* p, **prevp;
prevp = &tp->autr->keys;
p = tp->autr->keys;
while(p) {
/* do we want to remove this key? */
if(p->s == AUTR_STATE_START || p->s == AUTR_STATE_REMOVED ||
ldns_rr_get_type(p->rr) != LDNS_RR_TYPE_DNSKEY) {
struct autr_ta* np = p->next;
/* remove */
ldns_rr_free(p->rr);
free(p);
/* snip and go to next item */
*prevp = np;
p = np;
continue;
}
/* remove pending counts if no longer pending */
if(p->s != AUTR_STATE_ADDPEND)
p->pending_count = 0;
prevp = &p->next;
p = p->next;
}
}
/** calculate next probe time */
static time_t
calc_next_probe(struct module_env* env, uint32_t wait)
{
/* make it random, 90-100% */
uint32_t rnd, rest;
if(wait < 3600)
wait = 3600;
rnd = wait/10;
rest = wait-rnd;
rnd = (uint32_t)ub_random_max(env->rnd, (long int)rnd);
return (time_t)(*env->now + rest + rnd);
}
/** what is first probe time (anchors must be locked) */
static time_t
wait_probe_time(struct val_anchors* anchors)
{
rbnode_t* t = rbtree_first(&anchors->autr->probe);
if(t != RBTREE_NULL)
return ((struct trust_anchor*)t->key)->autr->next_probe_time;
return 0;
}
/** reset worker timer */
static void
reset_worker_timer(struct module_env* env)
{
struct timeval tv;
#ifndef S_SPLINT_S
uint32_t next = (uint32_t)wait_probe_time(env->anchors);
/* in case this is libunbound, no timer */
if(!env->probe_timer)
return;
if(next > *env->now)
tv.tv_sec = (time_t)(next - *env->now);
else tv.tv_sec = 0;
#endif
tv.tv_usec = 0;
comm_timer_set(env->probe_timer, &tv);
verbose(VERB_ALGO, "scheduled next probe in %d sec", (int)tv.tv_sec);
}
/** set next probe for trust anchor */
static int
set_next_probe(struct module_env* env, struct trust_anchor* tp,
struct ub_packed_rrset_key* dnskey_rrset)
{
struct trust_anchor key, *tp2;
time_t mold, mnew;
/* use memory allocated in rrset for temporary name storage */
key.node.key = &key;
key.name = dnskey_rrset->rk.dname;
key.namelen = dnskey_rrset->rk.dname_len;
key.namelabs = dname_count_labels(key.name);
key.dclass = tp->dclass;
lock_basic_unlock(&tp->lock);
/* fetch tp again and lock anchors, so that we can modify the trees */
lock_basic_lock(&env->anchors->lock);
tp2 = (struct trust_anchor*)rbtree_search(env->anchors->tree, &key);
if(!tp2) {
verbose(VERB_ALGO, "trustpoint was deleted in set_next_probe");
lock_basic_unlock(&env->anchors->lock);
return 0;
}
log_assert(tp == tp2);
lock_basic_lock(&tp->lock);
/* schedule */
mold = wait_probe_time(env->anchors);
(void)rbtree_delete(&env->anchors->autr->probe, tp);
tp->autr->next_probe_time = calc_next_probe(env,
tp->autr->query_interval);
(void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode);
mnew = wait_probe_time(env->anchors);
lock_basic_unlock(&env->anchors->lock);
verbose(VERB_ALGO, "next probe set in %d seconds",
(int)tp->autr->next_probe_time - (int)*env->now);
if(mold != mnew) {
reset_worker_timer(env);
}
return 1;
}
/** Revoke and Delete a trust point */
static void
autr_tp_remove(struct module_env* env, struct trust_anchor* tp,
struct ub_packed_rrset_key* dnskey_rrset)
{
2013-04-05 09:06:26 +00:00
struct trust_anchor* del_tp;
2012-07-04 14:24:26 +00:00
struct trust_anchor key;
struct autr_point_data pd;
time_t mold, mnew;
log_nametypeclass(VERB_OPS, "trust point was revoked",
tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
tp->autr->revoked = 1;
/* use space allocated for dnskey_rrset to save name of anchor */
memset(&key, 0, sizeof(key));
memset(&pd, 0, sizeof(pd));
key.autr = &pd;
key.node.key = &key;
pd.pnode.key = &key;
pd.next_probe_time = tp->autr->next_probe_time;
key.name = dnskey_rrset->rk.dname;
key.namelen = tp->namelen;
key.namelabs = tp->namelabs;
key.dclass = tp->dclass;
/* unlock */
lock_basic_unlock(&tp->lock);
/* take from tree. It could be deleted by someone else,hence (void). */
lock_basic_lock(&env->anchors->lock);
2013-04-05 09:06:26 +00:00
del_tp = (struct trust_anchor*)rbtree_delete(env->anchors->tree, &key);
2012-07-04 14:24:26 +00:00
mold = wait_probe_time(env->anchors);
(void)rbtree_delete(&env->anchors->autr->probe, &key);
mnew = wait_probe_time(env->anchors);
anchors_init_parents_locked(env->anchors);
lock_basic_unlock(&env->anchors->lock);
2013-04-05 09:06:26 +00:00
/* if !del_tp then the trust point is no longer present in the tree,
* it was deleted by someone else, who will write the zonefile and
* clean up the structure */
if(del_tp) {
/* save on disk */
del_tp->autr->next_probe_time = 0; /* no more probing for it */
autr_write_file(env, del_tp);
2012-07-04 14:24:26 +00:00
2013-04-05 09:06:26 +00:00
/* delete */
autr_point_delete(del_tp);
}
2012-07-04 14:24:26 +00:00
if(mold != mnew) {
reset_worker_timer(env);
}
}
int autr_process_prime(struct module_env* env, struct val_env* ve,
struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset)
{
int changed = 0;
log_assert(tp && tp->autr);
/* autotrust update trust anchors */
/* the tp is locked, and stays locked unless it is deleted */
/* we could just catch the anchor here while another thread
* is busy deleting it. Just unlock and let the other do its job */
if(tp->autr->revoked) {
log_nametypeclass(VERB_ALGO, "autotrust not processed, "
"trust point revoked", tp->name,
LDNS_RR_TYPE_DNSKEY, tp->dclass);
lock_basic_unlock(&tp->lock);
return 0; /* it is revoked */
}
/* query_dnskeys(): */
tp->autr->last_queried = *env->now;
log_nametypeclass(VERB_ALGO, "autotrust process for",
tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
/* see if time alone makes some keys valid */
autr_holddown_exceed(env, tp, &changed);
if(changed) {
verbose(VERB_ALGO, "autotrust: morekeys, reassemble");
if(!autr_assemble(tp)) {
log_err("malloc failure assembling autotrust keys");
return 1; /* unchanged */
}
}
/* did we get any data? */
if(!dnskey_rrset) {
verbose(VERB_ALGO, "autotrust: no dnskey rrset");
/* no update of query_failed, because then we would have
* to write to disk. But we cannot because we maybe are
* still 'initialising' with DS records, that we cannot write
* in the full format (which only contains KSKs). */
return 1; /* trust point exists */
}
/* check for revoked keys to remove immediately */
check_contains_revoked(env, ve, tp, dnskey_rrset, &changed);
if(changed) {
verbose(VERB_ALGO, "autotrust: revokedkeys, reassemble");
if(!autr_assemble(tp)) {
log_err("malloc failure assembling autotrust keys");
return 1; /* unchanged */
}
if(!tp->ds_rrset && !tp->dnskey_rrset) {
/* no more keys, all are revoked */
/* this is a success for this probe attempt */
tp->autr->last_success = *env->now;
autr_tp_remove(env, tp, dnskey_rrset);
return 0; /* trust point removed */
}
}
/* verify the dnskey rrset and see if it is valid. */
if(!verify_dnskey(env, ve, tp, dnskey_rrset)) {
verbose(VERB_ALGO, "autotrust: dnskey did not verify.");
/* only increase failure count if this is not the first prime,
* this means there was a previous succesful probe */
if(tp->autr->last_success) {
tp->autr->query_failed += 1;
autr_write_file(env, tp);
}
return 1; /* trust point exists */
}
tp->autr->last_success = *env->now;
tp->autr->query_failed = 0;
/* Add new trust anchors to the data structure
* - note which trust anchors are seen this probe.
* Set trustpoint query_interval and retry_time.
* - find minimum rrsig expiration interval
*/
if(!update_events(env, ve, tp, dnskey_rrset, &changed)) {
log_err("malloc failure in autotrust update_events. "
"trust point unchanged.");
return 1; /* trust point unchanged, so exists */
}
/* - for every SEP key do the 5011 statetable.
* - remove missing trustanchors (if veryold and we have new anchors).
*/
if(!do_statetable(env, tp, &changed)) {
log_err("malloc failure in autotrust do_statetable. "
"trust point unchanged.");
return 1; /* trust point unchanged, so exists */
}
autr_cleanup_keys(tp);
if(!set_next_probe(env, tp, dnskey_rrset))
return 0; /* trust point does not exist */
autr_write_file(env, tp);
if(changed) {
verbose(VERB_ALGO, "autotrust: changed, reassemble");
if(!autr_assemble(tp)) {
log_err("malloc failure assembling autotrust keys");
return 1; /* unchanged */
}
if(!tp->ds_rrset && !tp->dnskey_rrset) {
/* no more keys, all are revoked */
autr_tp_remove(env, tp, dnskey_rrset);
return 0; /* trust point removed */
}
} else verbose(VERB_ALGO, "autotrust: no changes");
return 1; /* trust point exists */
}
/** debug print a trust anchor key */
static void
autr_debug_print_ta(struct autr_ta* ta)
{
char buf[32];
char* str = ldns_rr2str(ta->rr);
if(!str) {
log_info("out of memory in debug_print_ta");
return;
}
if(str && str[0]) str[strlen(str)-1]=0; /* remove newline */
ctime_r(&ta->last_change, buf);
if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
log_info("[%s] %s ;;state:%d ;;pending_count:%d%s%s last:%s",
trustanchor_state2str(ta->s), str, ta->s, ta->pending_count,
ta->fetched?" fetched":"", ta->revoked?" revoked":"", buf);
free(str);
}
/** debug print a trust point */
static void
autr_debug_print_tp(struct trust_anchor* tp)
{
struct autr_ta* ta;
char buf[257];
if(!tp->autr)
return;
dname_str(tp->name, buf);
log_info("trust point %s : %d", buf, (int)tp->dclass);
log_info("assembled %d DS and %d DNSKEYs",
(int)tp->numDS, (int)tp->numDNSKEY);
if(0) { /* turned off because it prints to stderr */
ldns_buffer* bf = ldns_buffer_new(70000);
ldns_rr_list* list;
if(tp->ds_rrset) {
list = packed_rrset_to_rr_list(tp->ds_rrset, bf);
ldns_rr_list_print(stderr, list);
ldns_rr_list_deep_free(list);
}
if(tp->dnskey_rrset) {
list = packed_rrset_to_rr_list(tp->dnskey_rrset, bf);
ldns_rr_list_print(stderr, list);
ldns_rr_list_deep_free(list);
}
ldns_buffer_free(bf);
}
log_info("file %s", tp->autr->file);
ctime_r(&tp->autr->last_queried, buf);
if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
log_info("last_queried: %u %s", (unsigned)tp->autr->last_queried, buf);
ctime_r(&tp->autr->last_success, buf);
if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
log_info("last_success: %u %s", (unsigned)tp->autr->last_success, buf);
ctime_r(&tp->autr->next_probe_time, buf);
if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
log_info("next_probe_time: %u %s", (unsigned)tp->autr->next_probe_time,
buf);
log_info("query_interval: %u", (unsigned)tp->autr->query_interval);
log_info("retry_time: %u", (unsigned)tp->autr->retry_time);
log_info("query_failed: %u", (unsigned)tp->autr->query_failed);
for(ta=tp->autr->keys; ta; ta=ta->next) {
autr_debug_print_ta(ta);
}
}
void
autr_debug_print(struct val_anchors* anchors)
{
struct trust_anchor* tp;
lock_basic_lock(&anchors->lock);
RBTREE_FOR(tp, struct trust_anchor*, anchors->tree) {
lock_basic_lock(&tp->lock);
autr_debug_print_tp(tp);
lock_basic_unlock(&tp->lock);
}
lock_basic_unlock(&anchors->lock);
}
void probe_answer_cb(void* arg, int ATTR_UNUSED(rcode),
ldns_buffer* ATTR_UNUSED(buf), enum sec_status ATTR_UNUSED(sec),
char* ATTR_UNUSED(why_bogus))
{
/* retry was set before the query was done,
* re-querytime is set when query succeeded, but that may not
* have reset this timer because the query could have been
* handled by another thread. In that case, this callback would
* get called after the original timeout is done.
* By not resetting the timer, it may probe more often, but not
* less often.
* Unless the new lookup resulted in smaller TTLs and thus smaller
* timeout values. In that case one old TTL could be mistakenly done.
*/
struct module_env* env = (struct module_env*)arg;
verbose(VERB_ALGO, "autotrust probe answer cb");
reset_worker_timer(env);
}
/** probe a trust anchor DNSKEY and unlocks tp */
static void
probe_anchor(struct module_env* env, struct trust_anchor* tp)
{
struct query_info qinfo;
uint16_t qflags = BIT_RD;
struct edns_data edns;
ldns_buffer* buf = env->scratch_buffer;
qinfo.qname = regional_alloc_init(env->scratch, tp->name, tp->namelen);
if(!qinfo.qname) {
log_err("out of memory making 5011 probe");
return;
}
qinfo.qname_len = tp->namelen;
qinfo.qtype = LDNS_RR_TYPE_DNSKEY;
qinfo.qclass = tp->dclass;
log_query_info(VERB_ALGO, "autotrust probe", &qinfo);
verbose(VERB_ALGO, "retry probe set in %d seconds",
(int)tp->autr->next_probe_time - (int)*env->now);
edns.edns_present = 1;
edns.ext_rcode = 0;
edns.edns_version = 0;
edns.bits = EDNS_DO;
if(ldns_buffer_capacity(buf) < 65535)
edns.udp_size = (uint16_t)ldns_buffer_capacity(buf);
else edns.udp_size = 65535;
/* can't hold the lock while mesh_run is processing */
lock_basic_unlock(&tp->lock);
/* delete the DNSKEY from rrset and key cache so an active probe
* is done. First the rrset so another thread does not use it
* to recreate the key entry in a race condition. */
rrset_cache_remove(env->rrset_cache, qinfo.qname, qinfo.qname_len,
qinfo.qtype, qinfo.qclass, 0);
key_cache_remove(env->key_cache, qinfo.qname, qinfo.qname_len,
qinfo.qclass);
if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0,
&probe_answer_cb, env)) {
log_err("out of memory making 5011 probe");
}
}
/** fetch first to-probe trust-anchor and lock it and set retrytime */
static struct trust_anchor*
todo_probe(struct module_env* env, uint32_t* next)
{
struct trust_anchor* tp;
rbnode_t* el;
/* get first one */
lock_basic_lock(&env->anchors->lock);
if( (el=rbtree_first(&env->anchors->autr->probe)) == RBTREE_NULL) {
/* in case of revoked anchors */
lock_basic_unlock(&env->anchors->lock);
return NULL;
}
tp = (struct trust_anchor*)el->key;
lock_basic_lock(&tp->lock);
/* is it eligible? */
if((uint32_t)tp->autr->next_probe_time > *env->now) {
/* no more to probe */
*next = (uint32_t)tp->autr->next_probe_time - *env->now;
lock_basic_unlock(&tp->lock);
lock_basic_unlock(&env->anchors->lock);
return NULL;
}
/* reset its next probe time */
(void)rbtree_delete(&env->anchors->autr->probe, tp);
tp->autr->next_probe_time = calc_next_probe(env, tp->autr->retry_time);
(void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode);
lock_basic_unlock(&env->anchors->lock);
return tp;
}
uint32_t
autr_probe_timer(struct module_env* env)
{
struct trust_anchor* tp;
uint32_t next_probe = 3600;
int num = 0;
verbose(VERB_ALGO, "autotrust probe timer callback");
/* while there are still anchors to probe */
while( (tp = todo_probe(env, &next_probe)) ) {
/* make a probe for this anchor */
probe_anchor(env, tp);
num++;
}
regional_free_all(env->scratch);
if(num == 0)
return 0; /* no trust points to probe */
verbose(VERB_ALGO, "autotrust probe timer %d callbacks done", num);
return next_probe;
}