987 lines
24 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2014 Alexander V. Chernikov. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/sff8436.h>
#include <net/sff8472.h>
#include <math.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "ifconfig.h"
struct i2c_info {
int fd; /* fd to issue SIOCGI2C */
int error; /* Store first error */
int qsfp; /* True if transceiver is QSFP */
int do_diag; /* True if we need to request DDM */
struct ifreq *ifr; /* Pointer to pre-filled ifreq */
};
static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off,
uint8_t len, uint8_t *buf);
static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off,
uint8_t len);
struct _nv {
int v;
const char *n;
};
const char *find_value(struct _nv *x, int value);
const char *find_zero_bit(struct _nv *x, int value, int sz);
/* SFF-8024 Rev. 4.6 Table 4-3: Connector Types */
static struct _nv conn[] = {
{ 0x00, "Unknown" },
{ 0x01, "SC" },
{ 0x02, "Fibre Channel Style 1 copper" },
{ 0x03, "Fibre Channel Style 2 copper" },
{ 0x04, "BNC/TNC" },
{ 0x05, "Fibre Channel coaxial" },
{ 0x06, "Fiber Jack" },
{ 0x07, "LC" },
{ 0x08, "MT-RJ" },
{ 0x09, "MU" },
{ 0x0A, "SG" },
{ 0x0B, "Optical pigtail" },
{ 0x0C, "MPO 1x12 Parallel Optic" },
{ 0x0D, "MPO 2x16 Parallel Optic" },
{ 0x20, "HSSDC II" },
{ 0x21, "Copper pigtail" },
{ 0x22, "RJ45" },
{ 0x23, "No separable connector" },
{ 0x24, "MXC 2x16" },
{ 0x25, "CS optical connector" },
{ 0x26, "Mini CS optical connector" },
{ 0x27, "MPO 2x12 Parallel Optic" },
{ 0x28, "MPO 1x16 Parallel Optic" },
{ 0, NULL }
};
/* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */
/* 10G Ethernet/IB compliance codes, byte 3 */
static struct _nv eth_10g[] = {
{ 0x80, "10G Base-ER" },
{ 0x40, "10G Base-LRM" },
{ 0x20, "10G Base-LR" },
{ 0x10, "10G Base-SR" },
{ 0x08, "1X SX" },
{ 0x04, "1X LX" },
{ 0x02, "1X Copper Active" },
{ 0x01, "1X Copper Passive" },
{ 0, NULL }
};
/* Ethernet compliance codes, byte 6 */
static struct _nv eth_compat[] = {
{ 0x80, "BASE-PX" },
{ 0x40, "BASE-BX10" },
{ 0x20, "100BASE-FX" },
{ 0x10, "100BASE-LX/LX10" },
{ 0x08, "1000BASE-T" },
{ 0x04, "1000BASE-CX" },
{ 0x02, "1000BASE-LX" },
{ 0x01, "1000BASE-SX" },
{ 0, NULL }
};
/* FC link length, byte 7 */
static struct _nv fc_len[] = {
{ 0x80, "very long distance" },
{ 0x40, "short distance" },
{ 0x20, "intermediate distance" },
{ 0x10, "long distance" },
{ 0x08, "medium distance" },
{ 0, NULL }
};
/* Channel/Cable technology, byte 7-8 */
static struct _nv cab_tech[] = {
{ 0x0400, "Shortwave laser (SA)" },
{ 0x0200, "Longwave laser (LC)" },
{ 0x0100, "Electrical inter-enclosure (EL)" },
{ 0x80, "Electrical intra-enclosure (EL)" },
{ 0x40, "Shortwave laser (SN)" },
{ 0x20, "Shortwave laser (SL)" },
{ 0x10, "Longwave laser (LL)" },
{ 0x08, "Active Cable" },
{ 0x04, "Passive Cable" },
{ 0, NULL }
};
/* FC Transmission media, byte 9 */
static struct _nv fc_media[] = {
{ 0x80, "Twin Axial Pair" },
{ 0x40, "Twisted Pair" },
{ 0x20, "Miniature Coax" },
{ 0x10, "Viao Coax" },
{ 0x08, "Miltimode, 62.5um" },
{ 0x04, "Multimode, 50um" },
{ 0x02, "" },
{ 0x01, "Single Mode" },
{ 0, NULL }
};
/* FC Speed, byte 10 */
static struct _nv fc_speed[] = {
{ 0x80, "1200 MBytes/sec" },
{ 0x40, "800 MBytes/sec" },
{ 0x20, "1600 MBytes/sec" },
{ 0x10, "400 MBytes/sec" },
{ 0x08, "3200 MBytes/sec" },
{ 0x04, "200 MBytes/sec" },
{ 0x01, "100 MBytes/sec" },
{ 0, NULL }
};
/* SFF-8436 Rev. 4.8 table 33: Specification compliance */
/* 10/40G Ethernet compliance codes, byte 128 + 3 */
static struct _nv eth_1040g[] = {
{ 0x80, "Extended" },
{ 0x40, "10GBASE-LRM" },
{ 0x20, "10GBASE-LR" },
{ 0x10, "10GBASE-SR" },
{ 0x08, "40GBASE-CR4" },
{ 0x04, "40GBASE-SR4" },
{ 0x02, "40GBASE-LR4" },
{ 0x01, "40G Active Cable" },
{ 0, NULL }
};
#define SFF_8636_EXT_COMPLIANCE 0x80
/* SFF-8024 Rev. 4.6 table 4-4: Extended Specification Compliance */
static struct _nv eth_extended_comp[] = {
{ 0xFF, "Reserved" },
{ 0x55, "128GFC LW" },
{ 0x54, "128GFC SW" },
{ 0x53, "128GFC EA" },
{ 0x52, "64GFC LW" },
{ 0x51, "64GFC SW" },
{ 0x50, "64GFC EA" },
{ 0x4F, "Reserved" },
{ 0x4E, "Reserved" },
{ 0x4D, "Reserved" },
{ 0x4C, "Reserved" },
{ 0x4B, "Reserved" },
{ 0x4A, "Reserved" },
{ 0x49, "Reserved" },
{ 0x48, "Reserved" },
{ 0x47, "Reserved" },
{ 0x46, "200GBASE-LR4" },
{ 0x45, "50GBASE-LR" },
{ 0x44, "200G 1550nm PSM4" },
{ 0x43, "200GBASE-FR4" },
{ 0x42, "50GBASE-FR or 200GBASE-DR4" },
{ 0x41, "50GBASE-SR/100GBASE-SR2/200GBASE-SR4" },
{ 0x40, "50GBASE-CR/100GBASE-CR2/200GBASE-CR4" },
{ 0x3F, "Reserved" },
{ 0x3E, "Reserved" },
{ 0x3D, "Reserved" },
{ 0x3C, "Reserved" },
{ 0x3B, "Reserved" },
{ 0x3A, "Reserved" },
{ 0x39, "Reserved" },
{ 0x38, "Reserved" },
{ 0x37, "Reserved" },
{ 0x36, "Reserved" },
{ 0x35, "Reserved" },
{ 0x34, "Reserved" },
{ 0x33, "50GAUI/100GAUI-2/200GAUI-4 AOC (BER <2.6e-4)" },
{ 0x32, "50GAUI/100GAUI-2/200GAUI-4 ACC (BER <2.6e-4)" },
{ 0x31, "50GAUI/100GAUI-2/200GAUI-4 AOC (BER <1e-6)" },
{ 0x30, "50GAUI/100GAUI-2/200GAUI-4 ACC (BER <1e-6)" },
{ 0x2F, "Reserved" },
{ 0x2E, "Reserved" },
{ 0x2D, "Reserved" },
{ 0x2C, "Reserved" },
{ 0x2B, "Reserved" },
{ 0x2A, "Reserved" },
{ 0x29, "Reserved" },
{ 0x28, "Reserved" },
{ 0x27, "100G-LR" },
{ 0x26, "100G-FR" },
{ 0x25, "100GBASE-DR" },
{ 0x24, "4WDM-40 MSA" },
{ 0x23, "4WDM-20 MSA" },
{ 0x22, "4WDM-10 MSA" },
{ 0x21, "100G PAM4 BiDi" },
{ 0x20, "100G SWDM4" },
{ 0x1F, "40G SWDM4" },
{ 0x1E, "2.5GBASE-T" },
{ 0x1D, "5GBASE-T" },
{ 0x1C, "10GBASE-T Short Reach" },
{ 0x1B, "100G 1550nm WDM" },
{ 0x1A, "100GE-DWDM2" },
{ 0x19, "100G ACC or 25GAUI C2M ACC" },
{ 0x18, "100G AOC or 25GAUI C2M AOC" },
{ 0x17, "100G CLR4" },
{ 0x16, "10GBASE-T with SFI electrical interface" },
{ 0x15, "G959.1 profile P1L1-2D2" },
{ 0x14, "G959.1 profile P1S1-2D2" },
{ 0x13, "G959.1 profile P1I1-2D1" },
{ 0x12, "40G PSM4 Parallel SMF" },
{ 0x11, "4 x 10GBASE-SR" },
{ 0x10, "40GBASE-ER4" },
{ 0x0F, "Reserved" },
{ 0x0E, "Reserved" },
{ 0x0D, "25GBASE-CR CA-25G-N" },
{ 0x0C, "25GBASE-CR CA-25G-S" },
{ 0x0B, "100GBASE-CR4 or 25GBASE-CR CA-L" },
{ 0x0A, "Reserved" },
{ 0x09, "Obsolete" },
{ 0x08, "100G ACC (Active Copper Cable) or 25GAUI C2M ACC" },
{ 0x07, "100G PSM4 Parallel SMF" },
{ 0x06, "100G CWDM4" },
{ 0x05, "100GBASE-SR10" },
{ 0x04, "100GBASE-ER4 or 25GBASE-ER" },
{ 0x03, "100GBASE-LR4 or 25GBASE-LR" },
{ 0x02, "100GBASE-SR4 or 25GBASE-SR" },
{ 0x01, "100G AOC (Active Optical Cable) or 25GAUI C2M AOC" },
{ 0x00, "Unspecified" }
};
/* SFF-8636 Rev. 2.9 table 6.3: Revision compliance */
static struct _nv rev_compl[] = {
{ 0x1, "SFF-8436 rev <=4.8" },
{ 0x2, "SFF-8436 rev <=4.8" },
{ 0x3, "SFF-8636 rev <=1.3" },
{ 0x4, "SFF-8636 rev <=1.4" },
{ 0x5, "SFF-8636 rev <=1.5" },
{ 0x6, "SFF-8636 rev <=2.0" },
{ 0x7, "SFF-8636 rev <=2.7" },
{ 0x8, "SFF-8636 rev >=2.8" },
{ 0x0, "Unspecified" }
};
const char *
find_value(struct _nv *x, int value)
{
for (; x->n != NULL; x++)
if (x->v == value)
return (x->n);
return (NULL);
}
const char *
find_zero_bit(struct _nv *x, int value, int sz)
{
int v, m;
const char *s;
v = 1;
for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) {
if ((value & v) == 0)
continue;
if ((s = find_value(x, value & v)) != NULL) {
value &= ~v;
return (s);
}
}
return (NULL);
}
static void
convert_sff_identifier(char *buf, size_t size, uint8_t value)
{
const char *x;
x = NULL;
if (value <= SFF_8024_ID_LAST)
x = sff_8024_id[value];
2014-08-16 22:55:58 +00:00
else {
if (value > 0x80)
x = "Vendor specific";
else
x = "Reserved";
}
snprintf(buf, size, "%s", x);
}
static void
convert_sff_connector(char *buf, size_t size, uint8_t value)
{
const char *x;
if ((x = find_value(conn, value)) == NULL) {
if (value >= 0x0D && value <= 0x1F)
x = "Unallocated";
else if (value >= 0x24 && value <= 0x7F)
x = "Unallocated";
else
x = "Vendor specific";
}
snprintf(buf, size, "%s", x);
}
static void
convert_sff_rev_compliance(char *buf, size_t size, uint8_t value)
{
const char *x;
if (value > 0x07)
x = "Unallocated";
else
x = find_value(rev_compl, value);
snprintf(buf, size, "%s", x);
}
static void
get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &data);
convert_sff_identifier(buf, size, data);
}
static void
get_sfp_connector(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &data);
convert_sff_connector(buf, size, data);
}
static void
get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &data);
convert_sff_identifier(buf, size, data);
}
static void
get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &data);
convert_sff_connector(buf, size, data);
}
static void
printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[12];
const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed;
tech_class = NULL;
tech_len = NULL;
tech_tech = NULL;
tech_media = NULL;
tech_speed = NULL;
/* Read bytes 3-10 at once */
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]);
2014-08-16 22:55:58 +00:00
/* Check 10G ethernet first */
tech_class = find_zero_bit(eth_10g, xbuf[3], 1);
if (tech_class == NULL) {
/* No match. Try 1G */
tech_class = find_zero_bit(eth_compat, xbuf[6], 1);
}
tech_len = find_zero_bit(fc_len, xbuf[7], 1);
tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2);
tech_media = find_zero_bit(fc_media, xbuf[9], 1);
tech_speed = find_zero_bit(fc_speed, xbuf[10], 1);
printf("Class: %s\n", tech_class);
printf("Length: %s\n", tech_len);
printf("Tech: %s\n", tech_tech);
printf("Media: %s\n", tech_media);
printf("Speed: %s\n", tech_speed);
}
static void
get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
{
const char *tech_class;
uint8_t code;
/* Use extended compliance code if it's valid */
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS, 1, &code);
if (code != 0)
tech_class = find_value(eth_extended_comp, code);
else {
/* Next, check 10G Ethernet/IB CCs */
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code);
tech_class = find_zero_bit(eth_10g, code, 1);
if (tech_class == NULL) {
/* No match. Try Ethernet 1G */
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3,
1, (caddr_t)&code);
tech_class = find_zero_bit(eth_compat, code, 1);
}
}
if (tech_class == NULL)
tech_class = "Unknown";
snprintf(buf, size, "%s", tech_class);
}
static void
get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
{
const char *tech_class;
uint8_t code;
read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code);
/* Check for extended specification compliance */
if (code & SFF_8636_EXT_COMPLIANCE) {
read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, &code);
tech_class = find_value(eth_extended_comp, code);
} else
/* Check 10/40G Ethernet class only */
tech_class = find_zero_bit(eth_1040g, code, 1);
if (tech_class == NULL)
tech_class = "Unknown";
snprintf(buf, size, "%s", tech_class);
}
/*
* Print SFF-8472/SFF-8436 string to supplied buffer.
* All (vendor-specific) strings are padded right with '0x20'.
*/
static void
convert_sff_name(char *buf, size_t size, char *xbuf)
{
char *p;
for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
;
*p = '\0';
snprintf(buf, size, "%s", xbuf);
}
static void
convert_sff_date(char *buf, size_t size, char *xbuf)
{
snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1],
xbuf[2], xbuf[3], xbuf[4], xbuf[5]);
}
static void
get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[6];
memset(xbuf, 0, sizeof(xbuf));
/* Date code, see Table 3.8 for description */
read_i2c(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, (uint8_t *)xbuf);
convert_sff_date(buf, size, xbuf);
}
static void
get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[6];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, (uint8_t *)xbuf);
convert_sff_date(buf, size, xbuf);
}
static void
print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[80];
memset(xbuf, 0, sizeof(xbuf));
if (ii->qsfp != 0) {
get_qsfp_vendor_name(ii, xbuf, 20);
get_qsfp_vendor_pn(ii, &xbuf[20], 20);
get_qsfp_vendor_sn(ii, &xbuf[40], 20);
get_qsfp_vendor_date(ii, &xbuf[60], 20);
} else {
get_sfp_vendor_name(ii, xbuf, 20);
get_sfp_vendor_pn(ii, &xbuf[20], 20);
get_sfp_vendor_sn(ii, &xbuf[40], 20);
get_sfp_vendor_date(ii, &xbuf[60], 20);
}
snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s",
xbuf, &xbuf[20], &xbuf[40], &xbuf[60]);
}
/*
* Converts internal templerature (SFF-8472, SFF-8436)
* 16-bit unsigned value to human-readable representation:
*
* Internally measured Module temperature are represented
* as a 16-bit signed twos complement value in increments of
* 1/256 degrees Celsius, yielding a total range of 128C to +128C
* that is considered valid between 40 and +125C.
*
*/
static void
convert_sff_temp(char *buf, size_t size, uint8_t *xbuf)
{
double d;
d = (double)xbuf[0];
d += (double)xbuf[1] / 256;
snprintf(buf, size, "%.2f C", d);
}
/*
* Retrieves supplied voltage (SFF-8472, SFF-8436).
* 16-bit usigned value, treated as range 0..+6.55 Volts
*/
static void
convert_sff_voltage(char *buf, size_t size, uint8_t *xbuf)
{
double d;
d = (double)((xbuf[0] << 8) | xbuf[1]);
snprintf(buf, size, "%.2f Volts", d / 10000);
}
2014-08-16 22:55:58 +00:00
/*
* Converts value in @xbuf to both milliwats and dBm
* human representation.
*/
static void
convert_sff_power(struct i2c_info *ii, char *buf, size_t size, uint8_t *xbuf)
{
uint16_t mW;
double dbm;
mW = (xbuf[0] << 8) + xbuf[1];
/* Convert mw to dbm */
dbm = 10.0 * log10(1.0 * mW / 10000);
/*
* Assume internally-calibrated data.
* This is always true for SFF-8346, and explicitly
* checked for SFF-8472.
*/
/* Table 3.9, bit 5 is set, internally calibrated */
snprintf(buf, size, "%d.%02d mW (%.2f dBm)",
mW / 10000, (mW % 10000) / 100, dbm);
}
static void
get_sfp_temp(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf);
convert_sff_temp(buf, size, xbuf);
}
static void
get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf);
convert_sff_voltage(buf, size, xbuf);
}
static int
get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf);
if ((xbuf[0] == 0xFF && xbuf[1] == 0xFF) || (xbuf[0] == 0 && xbuf[1] == 0))
return (-1);
convert_sff_temp(buf, size, xbuf);
return (0);
}
static void
get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf);
convert_sff_voltage(buf, size, xbuf);
}
static void
get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan-1)*2, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan-1)*2, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_qsfp_rev_compliance(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf;
xbuf = 0;
read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &xbuf);
convert_sff_rev_compliance(buf, size, xbuf);
}
static uint32_t
get_qsfp_br(struct i2c_info *ii)
{
uint8_t xbuf;
uint32_t rate;
xbuf = 0;
read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &xbuf);
rate = xbuf * 100;
if (xbuf == 0xFF) {
read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &xbuf);
rate = xbuf * 250;
}
return (rate);
}
/*
* Reads i2c data from opened kernel socket.
*/
static int
read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len,
uint8_t *buf)
{
struct ifi2creq req;
int i, l;
if (ii->error != 0)
return (ii->error);
ii->ifr->ifr_data = (caddr_t)&req;
i = 0;
l = 0;
memset(&req, 0, sizeof(req));
req.dev_addr = addr;
req.offset = off;
req.len = len;
while (len > 0) {
l = MIN(sizeof(req.data), len);
req.len = l;
if (ioctl(ii->fd, SIOCGI2C, ii->ifr) != 0) {
ii->error = errno;
return (errno);
}
memcpy(&buf[i], req.data, l);
len -= l;
i += l;
req.offset += l;
}
return (0);
}
static void
dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len)
{
unsigned char buf[16];
int i, read;
while (len > 0) {
memset(buf, 0, sizeof(buf));
read = MIN(sizeof(buf), len);
read_i2c(ii, addr, off, read, buf);
if (ii->error != 0) {
fprintf(stderr, "Error reading i2c info\n");
return;
}
printf("\t");
for (i = 0; i < read; i++)
printf("%02X ", buf[i]);
printf("\n");
len -= read;
off += read;
}
}
static void
print_qsfp_status(struct i2c_info *ii, int verbose)
{
char buf[80], buf2[40], buf3[40];
uint32_t bitrate;
int i;
ii->qsfp = 1;
/* Transceiver type */
get_qsfp_identifier(ii, buf, sizeof(buf));
get_qsfp_transceiver_class(ii, buf2, sizeof(buf2));
get_qsfp_connector(ii, buf3, sizeof(buf3));
if (ii->error == 0)
printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
print_sfp_vendor(ii, buf, sizeof(buf));
if (ii->error == 0)
printf("\t%s\n", buf);
if (verbose > 1) {
get_qsfp_rev_compliance(ii, buf, sizeof(buf));
if (ii->error == 0)
printf("\tcompliance level: %s\n", buf);
bitrate = get_qsfp_br(ii);
if (ii->error == 0 && bitrate > 0)
printf("\tnominal bitrate: %u Mbps\n", bitrate);
}
/*
* The standards in this area are not clear when the
* additional measurements are present or not. Use a valid
* temperature reading as an indicator for the presence of
* voltage and TX/RX power measurements.
*/
if (get_qsfp_temp(ii, buf, sizeof(buf)) == 0) {
get_qsfp_voltage(ii, buf2, sizeof(buf2));
printf("\tmodule temperature: %s voltage: %s\n", buf, buf2);
for (i = 1; i <= 4; i++) {
get_qsfp_rx_power(ii, buf, sizeof(buf), i);
get_qsfp_tx_power(ii, buf2, sizeof(buf2), i);
printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2);
}
}
if (verbose > 2) {
printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n");
dump_i2c_data(ii, SFF_8436_BASE, 128, 128);
printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n");
dump_i2c_data(ii, SFF_8436_BASE, 0, 82);
}
}
static void
print_sfp_status(struct i2c_info *ii, int verbose)
{
char buf[80], buf2[40], buf3[40];
uint8_t diag_type, flags;
/* Read diagnostic monitoring type */
read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type);
if (ii->error != 0)
return;
/*
* Read monitoring data IFF it is supplied AND is
* internally calibrated
*/
flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL;
if ((diag_type & flags) == flags)
ii->do_diag = 1;
/* Transceiver type */
get_sfp_identifier(ii, buf, sizeof(buf));
get_sfp_transceiver_class(ii, buf2, sizeof(buf2));
get_sfp_connector(ii, buf3, sizeof(buf3));
if (ii->error == 0)
printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
print_sfp_vendor(ii, buf, sizeof(buf));
if (ii->error == 0)
printf("\t%s\n", buf);
if (verbose > 5)
printf_sfp_transceiver_descr(ii, buf, sizeof(buf));
/*
* Request current measurements iff they are provided:
*/
if (ii->do_diag != 0) {
get_sfp_temp(ii, buf, sizeof(buf));
get_sfp_voltage(ii, buf2, sizeof(buf2));
printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2);
get_sfp_rx_power(ii, buf, sizeof(buf));
get_sfp_tx_power(ii, buf2, sizeof(buf2));
printf("\tRX: %s TX: %s\n", buf, buf2);
}
if (verbose > 2) {
printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n");
dump_i2c_data(ii, SFF_8472_BASE, 0, 128);
}
}
void
sfp_status(int s, struct ifreq *ifr, int verbose)
{
struct i2c_info ii;
uint8_t id_byte;
/* Prepare necessary into pass to i2c reader */
memset(&ii, 0, sizeof(ii));
ii.fd = s;
ii.ifr = ifr;
/*
* Try to read byte 0 from i2c:
* Both SFF-8472 and SFF-8436 use it as
* 'identification byte'.
* Stop reading status on zero as value -
* this might happen in case of empty transceiver slot.
*/
id_byte = 0;
read_i2c(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte);
if (ii.error != 0 || id_byte == 0)
return;
switch (id_byte) {
case SFF_8024_ID_QSFP:
case SFF_8024_ID_QSFPPLUS:
case SFF_8024_ID_QSFP28:
print_qsfp_status(&ii, verbose);
break;
default:
print_sfp_status(&ii, verbose);
}
}