freebsd-nq/sys/nfsserver/nfsm_subs.h

187 lines
5.4 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfsm_subs.h 8.2 (Berkeley) 3/30/95
1999-08-28 01:08:13 +00:00
* $FreeBSD$
1994-05-24 10:09:53 +00:00
*/
#ifndef _NFSSERVER_NFSM_SUBS_H_
#define _NFSSERVER_NFSM_SUBS_H_
#include <nfs/nfs_common.h>
#define nfstov_mode(a) (fxdr_unsigned(u_int32_t, (a)) & ALLPERMS)
1994-05-24 10:09:53 +00:00
/*
* These macros do strange and peculiar things to mbuf chains for
* the assistance of the nfs code. To attempt to use them for any
* other purpose will be dangerous. (they make weird assumptions)
*/
/*
* First define what the actual subs. return
*/
#define M_HASCL(m) ((m)->m_flags & M_EXT)
#define NFSMSIZ(m) ((M_HASCL(m))?MCLBYTES: \
(((m)->m_flags & M_PKTHDR)?MHLEN:MLEN))
/*
* Now for the macros that do the simple stuff and call the functions
* for the hard stuff.
* These macros use several vars. declared in nfsm_reqhead and these
* vars. must not be used elsewhere unless you are careful not to corrupt
* them. The vars. starting with pN and tN (N=1,2,3,..) are temporaries
* that may be used so long as the value is not expected to retained
* after a macro.
* I know, this is kind of dorkey, but it makes the actual op functions
* fairly clean and deals with the mess caused by the xdr discriminating
* unions.
*/
/* ************************************* */
/* Dissection phase macros */
int nfsm_srvstrsiz_xx(int *s, int m, struct mbuf **md, caddr_t *dpos);
int nfsm_srvnamesiz_xx(int *s, int m, struct mbuf **md, caddr_t *dpos);
int nfsm_srvmtofh_xx(fhandle_t *f, struct nfsrv_descript *nfsd,
struct mbuf **md, caddr_t *dpos);
int nfsm_srvsattr_xx(struct vattr *a, struct mbuf **md, caddr_t *dpos);
1994-05-24 10:09:53 +00:00
#define nfsm_srvstrsiz(s, m) \
do { \
int t1; \
t1 = nfsm_srvstrsiz_xx(&(s), (m), &md, &dpos); \
if (t1) { \
error = t1; \
nfsm_reply(0); \
} \
} while (0)
1994-05-24 10:09:53 +00:00
#define nfsm_srvnamesiz(s) \
do { \
int t1; \
t1 = nfsm_srvnamesiz_xx(&(s), NFS_MAXNAMLEN, &md, &dpos); \
if (t1) { \
error = t1; \
nfsm_reply(0); \
} \
} while (0)
#define nfsm_srvpathsiz(s) \
do { \
int t1; \
t1 = nfsm_srvnamesiz_xx(&(s), NFS_MAXPATHLEN, &md, &dpos); \
if (t1) { \
error = t1; \
nfsm_reply(0); \
} \
} while (0)
1994-05-24 10:09:53 +00:00
#define nfsm_srvmtofh(f) \
do { \
int t1; \
t1 = nfsm_srvmtofh_xx((f), nfsd, &md, &dpos); \
if (t1) { \
error = t1; \
nfsm_reply(0); \
} \
} while (0)
/* XXX why is this different? */
#define nfsm_srvsattr(a) \
do { \
int t1; \
t1 = nfsm_srvsattr_xx((a), &md, &dpos); \
if (t1) { \
error = t1; \
m_freem(mrep); \
mrep = NULL; \
goto nfsmout; \
} \
} while (0)
1994-05-24 10:09:53 +00:00
/* ************************************* */
/* Prepare the reply */
#define nfsm_reply(s) \
do { \
if (mrep != NULL) { \
m_freem(mrep); \
mrep = NULL; \
} \
mreq = nfs_rephead((s), nfsd, error, &mb, &bpos); \
*mrq = mreq; \
if (error == EBADRPC) { \
error = 0; \
goto nfsmout; \
} \
} while (0)
#define nfsm_writereply(s) \
do { \
mreq = nfs_rephead((s), nfsd, error, &mb, &bpos); \
} while(0)
/* ************************************* */
/* Reply phase macros - add additional reply info */
void nfsm_srvfhtom_xx(fhandle_t *f, int v3, struct mbuf **mb,
caddr_t *bpos);
void nfsm_srvpostop_fh_xx(fhandle_t *f, struct mbuf **mb, caddr_t *bpos);
void nfsm_clget_xx(u_int32_t **tl, struct mbuf *mb, struct mbuf **mp,
The socket code upcalls into the NFS server using the so_upcall mechanism so that early processing on mbufs can be performed before a context switch to the NFS server threads. Because of this, if the socket code is running without Giant, the NFS server also needs to be able to run the upcall code without relying on the presence on Giant. This change modifies the NFS server to run using a "giant code lock" covering operation of the whole subsystem. Work is in progress to move to data-based locking as part of the NFSv4 server changes. Introduce an NFS server subsystem lock, 'nfsd_mtx', and a set of macros to operate on the lock: NFSD_LOCK_ASSERT() Assert nfsd_mtx owned by current thread NFSD_UNLOCK_ASSERT() Assert nfsd_mtx not owned by current thread NFSD_LOCK_DONTCARE() Advisory: this function doesn't care NFSD_LOCK() Lock nfsd_mtx NFSD_UNLOCK() Unlock nfsd_mtx Constify a number of global variables/structures in the NFS server code, as they are not modified and contain constants only: nfsrvv2_procid nfsrv_nfsv3_procid nonidempotent nfsv2_repstat nfsv2_type nfsrv_nfsv3_procid nfsrvv2_procid nfsrv_v2errmap nfsv3err_null nfsv3err_getattr nfsv3err_setattr nfsv3err_lookup nfsv3err_access nfsv3err_readlink nfsv3err_read nfsv3err_write nfsv3err_create nfsv3err_mkdir nfsv3err_symlink nfsv3err_mknod nfsv3err_remove nfsv3err_rmdir nfsv3err_rename nfsv3err_link nfsv3err_readdir nfsv3err_readdirplus nfsv3err_fsstat nfsv3err_fsinfo nfsv3err_pathconf nfsv3err_commit nfsrv_v3errmap There are additional structures that should be constified but due to their being passed into general purpose functions without const arguments, I have not yet converted. In general, acquire nfsd_mtx when accessing any of the global NFS structures, including struct nfssvc_sock, struct nfsd, struct nfsrv_descript. Release nfsd_mtx whenever calling into VFS, and acquire Giant for calls into VFS. Giant is not required for any part of the operation of the NFS server with the exception of calls into VFS. Giant will never by acquired in the upcall code path. However, it may operate entirely covered by Giant, or not. If debug.mpsafenet is set to 0, the system calls will acquire Giant across all operations, and the upcall will assert Giant. As such, by default, this enables locking and allows us to test assertions, but should not cause any substantial new amount of code to be run without Giant. Bugs should manifest in the form of lock assertion failures for now. This approach is similar (but not identical) to modifications to the BSD/OS NFS server code snapshot provided by BSDi as part of their SMPng snapshot. The strategy is almost the same (single lock over the NFS server), but differs in the following ways: - Our NFS client and server code bases don't overlap, which means both fewer bugs and easier locking (thanks Peter!). Also means NFSD_*() as opposed to NFS_*(). - We make broad use of assertions, whereas the BSD/OS code does not. - Made slightly different choices about how to handle macros building packets but operating with side effects. - We acquire Giant only when entering VFS from the NFS server daemon threads. - Serious bugs in BSD/OS implementation corrected -- the snapshot we received was clearly a work in progress. Based on ideas from: BSDi SMPng Snapshot Reviewed by: rick@snowhite.cis.uoguelph.ca Extensive testing by: kris
2004-05-24 04:06:14 +00:00
char **bp, char **be, caddr_t bpos, int droplock);
#define nfsm_srvfhtom(f, v3) \
nfsm_srvfhtom_xx((f), (v3), &mb, &bpos)
#define nfsm_srvpostop_fh(f) \
nfsm_srvpostop_fh_xx((f), &mb, &bpos)
#define nfsm_srvwcc_data(br, b, ar, a) \
nfsm_srvwcc(nfsd, (br), (b), (ar), (a), &mb, &bpos)
#define nfsm_srvpostop_attr(r, a) \
nfsm_srvpostopattr(nfsd, (r), (a), &mb, &bpos)
#define nfsm_srvfillattr(a, f) \
nfsm_srvfattr(nfsd, (a), (f))
#define nfsm_clget \
The socket code upcalls into the NFS server using the so_upcall mechanism so that early processing on mbufs can be performed before a context switch to the NFS server threads. Because of this, if the socket code is running without Giant, the NFS server also needs to be able to run the upcall code without relying on the presence on Giant. This change modifies the NFS server to run using a "giant code lock" covering operation of the whole subsystem. Work is in progress to move to data-based locking as part of the NFSv4 server changes. Introduce an NFS server subsystem lock, 'nfsd_mtx', and a set of macros to operate on the lock: NFSD_LOCK_ASSERT() Assert nfsd_mtx owned by current thread NFSD_UNLOCK_ASSERT() Assert nfsd_mtx not owned by current thread NFSD_LOCK_DONTCARE() Advisory: this function doesn't care NFSD_LOCK() Lock nfsd_mtx NFSD_UNLOCK() Unlock nfsd_mtx Constify a number of global variables/structures in the NFS server code, as they are not modified and contain constants only: nfsrvv2_procid nfsrv_nfsv3_procid nonidempotent nfsv2_repstat nfsv2_type nfsrv_nfsv3_procid nfsrvv2_procid nfsrv_v2errmap nfsv3err_null nfsv3err_getattr nfsv3err_setattr nfsv3err_lookup nfsv3err_access nfsv3err_readlink nfsv3err_read nfsv3err_write nfsv3err_create nfsv3err_mkdir nfsv3err_symlink nfsv3err_mknod nfsv3err_remove nfsv3err_rmdir nfsv3err_rename nfsv3err_link nfsv3err_readdir nfsv3err_readdirplus nfsv3err_fsstat nfsv3err_fsinfo nfsv3err_pathconf nfsv3err_commit nfsrv_v3errmap There are additional structures that should be constified but due to their being passed into general purpose functions without const arguments, I have not yet converted. In general, acquire nfsd_mtx when accessing any of the global NFS structures, including struct nfssvc_sock, struct nfsd, struct nfsrv_descript. Release nfsd_mtx whenever calling into VFS, and acquire Giant for calls into VFS. Giant is not required for any part of the operation of the NFS server with the exception of calls into VFS. Giant will never by acquired in the upcall code path. However, it may operate entirely covered by Giant, or not. If debug.mpsafenet is set to 0, the system calls will acquire Giant across all operations, and the upcall will assert Giant. As such, by default, this enables locking and allows us to test assertions, but should not cause any substantial new amount of code to be run without Giant. Bugs should manifest in the form of lock assertion failures for now. This approach is similar (but not identical) to modifications to the BSD/OS NFS server code snapshot provided by BSDi as part of their SMPng snapshot. The strategy is almost the same (single lock over the NFS server), but differs in the following ways: - Our NFS client and server code bases don't overlap, which means both fewer bugs and easier locking (thanks Peter!). Also means NFSD_*() as opposed to NFS_*(). - We make broad use of assertions, whereas the BSD/OS code does not. - Made slightly different choices about how to handle macros building packets but operating with side effects. - We acquire Giant only when entering VFS from the NFS server daemon threads. - Serious bugs in BSD/OS implementation corrected -- the snapshot we received was clearly a work in progress. Based on ideas from: BSDi SMPng Snapshot Reviewed by: rick@snowhite.cis.uoguelph.ca Extensive testing by: kris
2004-05-24 04:06:14 +00:00
nfsm_clget_xx(&tl, mb, &mp, &bp, &be, bpos, 1)
#define nfsm_clget_nolock \
nfsm_clget_xx(&tl, mb, &mp, &bp, &be, bpos, 0)
#endif