freebsd-nq/sys/dev/fdt/fdt_common.c

768 lines
16 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2009-2010 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Semihalf under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/limits.h>
#include <machine/fdt.h>
#include <machine/resource.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/openfirm.h>
#include "ofw_bus_if.h"
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
#define FDT_COMPAT_LEN 255
#define FDT_TYPE_LEN 64
#define FDT_REG_CELLS 4
vm_paddr_t fdt_immr_pa;
vm_offset_t fdt_immr_va;
vm_offset_t fdt_immr_size;
int
fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
{
pcell_t ranges[6], *rangesptr;
pcell_t addr_cells, size_cells, par_addr_cells;
int len, tuple_size, tuples;
if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
return (ENXIO);
/*
* Process 'ranges' property.
*/
par_addr_cells = fdt_parent_addr_cells(node);
if (par_addr_cells > 2)
return (ERANGE);
len = OF_getproplen(node, "ranges");
if (len > sizeof(ranges))
return (ENOMEM);
if (len == 0) {
*base = 0;
*size = ULONG_MAX;
return (0);
}
if (!(range_id < len))
return (ERANGE);
if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
return (EINVAL);
tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
size_cells);
tuples = len / tuple_size;
if (fdt_ranges_verify(ranges, tuples, par_addr_cells,
addr_cells, size_cells)) {
return (ERANGE);
}
*base = 0;
*size = 0;
rangesptr = &ranges[range_id];
*base = fdt_data_get((void *)rangesptr, addr_cells);
rangesptr += addr_cells;
*base += fdt_data_get((void *)rangesptr, par_addr_cells);
rangesptr += par_addr_cells;
*size = fdt_data_get((void *)rangesptr, size_cells);
return (0);
}
int
fdt_immr_addr(vm_offset_t immr_va)
{
phandle_t node;
u_long base, size;
int r;
/*
* Try to access the SOC node directly i.e. through /aliases/.
*/
if ((node = OF_finddevice("soc")) != 0)
if (fdt_is_compatible_strict(node, "simple-bus"))
goto moveon;
/*
* Find the node the long way.
*/
if ((node = OF_finddevice("/")) == 0)
return (ENXIO);
if ((node = fdt_find_compatible(node, "simple-bus", 1)) == 0)
return (ENXIO);
moveon:
if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
fdt_immr_pa = base;
fdt_immr_va = immr_va;
fdt_immr_size = size;
}
return (r);
}
/*
* This routine is an early-usage version of the ofw_bus_is_compatible() when
* the ofw_bus I/F is not available (like early console routines and similar).
* Note the buffer has to be on the stack since malloc() is usually not
* available in such cases either.
*/
int
fdt_is_compatible(phandle_t node, const char *compatstr)
{
char buf[FDT_COMPAT_LEN];
char *compat;
int len, onelen, l, rv;
if ((len = OF_getproplen(node, "compatible")) <= 0)
return (0);
compat = (char *)&buf;
bzero(compat, FDT_COMPAT_LEN);
if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
return (0);
onelen = strlen(compatstr);
rv = 0;
while (len > 0) {
if (strncasecmp(compat, compatstr, onelen) == 0) {
/* Found it. */
rv = 1;
break;
}
/* Slide to the next sub-string. */
l = strlen(compat) + 1;
compat += l;
len -= l;
}
return (rv);
}
int
fdt_is_compatible_strict(phandle_t node, const char *compatible)
{
char compat[FDT_COMPAT_LEN];
if (OF_getproplen(node, "compatible") <= 0)
return (0);
if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
return (0);
if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
/* This fits. */
return (1);
return (0);
}
phandle_t
fdt_find_compatible(phandle_t start, const char *compat, int strict)
{
phandle_t child;
/*
* Traverse all children of 'start' node, and find first with
* matching 'compatible' property.
*/
for (child = OF_child(start); child != 0; child = OF_peer(child))
if (fdt_is_compatible(child, compat)) {
if (strict)
if (!fdt_is_compatible_strict(child, compat))
continue;
return (child);
}
return (0);
}
int
fdt_is_enabled(phandle_t node)
{
char *stat;
int ena, len;
len = OF_getprop_alloc(node, "status", sizeof(char),
(void **)&stat);
if (len <= 0)
/* It is OK if no 'status' property. */
return (1);
/* Anything other than 'okay' means disabled. */
ena = 0;
if (strncmp((char *)stat, "okay", len) == 0)
ena = 1;
free(stat, M_OFWPROP);
return (ena);
}
int
fdt_is_type(phandle_t node, const char *typestr)
{
char type[FDT_TYPE_LEN];
if (OF_getproplen(node, "device_type") <= 0)
return (0);
if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
return (0);
if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
/* This fits. */
return (1);
return (0);
}
int
fdt_parent_addr_cells(phandle_t node)
{
pcell_t addr_cells;
/* Find out #address-cells of the superior bus. */
if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
sizeof(addr_cells)) <= 0)
addr_cells = 2;
return ((int)fdt32_to_cpu(addr_cells));
}
int
fdt_data_verify(void *data, int cells)
{
uint64_t d64;
if (cells > 1) {
d64 = fdt64_to_cpu(*((uint64_t *)data));
if (((d64 >> 32) & 0xffffffffull) != 0 || cells > 2)
return (ERANGE);
}
return (0);
}
int
fdt_pm_is_enabled(phandle_t node)
{
int ret;
ret = 1;
#if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
ret = fdt_pm(node);
#endif
return (ret);
}
u_long
fdt_data_get(void *data, int cells)
{
if (cells == 1)
return (fdt32_to_cpu(*((uint32_t *)data)));
return (fdt64_to_cpu(*((uint64_t *)data)));
}
int
fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
{
pcell_t cell;
int cell_size;
/*
* Retrieve #{address,size}-cells.
*/
cell_size = sizeof(cell);
if (OF_getprop(node, "#address-cells", &cell, cell_size) < cell_size)
cell = 2;
*addr_cells = fdt32_to_cpu((int)cell);
if (OF_getprop(node, "#size-cells", &cell, cell_size) < cell_size)
cell = 1;
*size_cells = fdt32_to_cpu((int)cell);
if (*addr_cells > 3 || *size_cells > 2)
return (ERANGE);
return (0);
}
int
fdt_ranges_verify(pcell_t *ranges, int tuples, int par_addr_cells,
int this_addr_cells, int this_size_cells)
{
int i, rv, ulsz;
if (par_addr_cells > 2 || this_addr_cells > 2 || this_size_cells > 2)
return (ERANGE);
/*
* This is the max size the resource manager can handle for addresses
* and sizes.
*/
ulsz = sizeof(u_long);
if (par_addr_cells <= ulsz && this_addr_cells <= ulsz &&
this_size_cells <= ulsz)
/* We can handle everything */
return (0);
rv = 0;
for (i = 0; i < tuples; i++) {
if (fdt_data_verify((void *)ranges, par_addr_cells))
goto err;
ranges += par_addr_cells;
if (fdt_data_verify((void *)ranges, this_addr_cells))
goto err;
ranges += this_addr_cells;
if (fdt_data_verify((void *)ranges, this_size_cells))
goto err;
ranges += this_size_cells;
}
return (0);
err:
debugf("using address range >%d-bit not supported\n", ulsz * 8);
return (ERANGE);
}
int
fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
u_long *count)
{
/* Address portion. */
if (fdt_data_verify((void *)data, addr_cells))
return (ERANGE);
*start = fdt_data_get((void *)data, addr_cells);
data += addr_cells;
/* Size portion. */
if (fdt_data_verify((void *)data, size_cells))
return (ERANGE);
*count = fdt_data_get((void *)data, size_cells);
return (0);
}
int
fdt_regsize(phandle_t node, u_long *base, u_long *size)
{
pcell_t reg[4];
int addr_cells, len, size_cells;
if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
return (ENXIO);
if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
return (ENOMEM);
len = OF_getprop(node, "reg", &reg, sizeof(reg));
if (len <= 0)
return (EINVAL);
*base = fdt_data_get(&reg[0], addr_cells);
*size = fdt_data_get(&reg[addr_cells], size_cells);
return (0);
}
int
fdt_reg_to_rl(phandle_t node, struct resource_list *rl)
{
u_long end, count, start;
pcell_t *reg, *regptr;
pcell_t addr_cells, size_cells;
int tuple_size, tuples;
int i, rv;
long busaddr, bussize;
if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0)
return (ENXIO);
if (fdt_get_range(OF_parent(node), 0, &busaddr, &bussize)) {
busaddr = 0;
bussize = 0;
}
tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)&reg);
debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells);
debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size);
if (tuples <= 0)
/* No 'reg' property in this node. */
return (0);
regptr = reg;
for (i = 0; i < tuples; i++) {
rv = fdt_data_to_res(reg, addr_cells, size_cells, &start,
&count);
if (rv != 0) {
resource_list_free(rl);
goto out;
}
reg += addr_cells + size_cells;
/* Calculate address range relative to base. */
start += busaddr;
end = start + count - 1;
debugf("reg addr start = %lx, end = %lx, count = %lx\n", start,
end, count);
resource_list_add(rl, SYS_RES_MEMORY, i, start, end,
count);
}
rv = 0;
out:
free(regptr, M_OFWPROP);
return (rv);
}
int
fdt_intr_decode(phandle_t intr_parent, pcell_t *intr, int *interrupt,
int *trig, int *pol)
{
fdt_pic_decode_t intr_decode;
int i, rv;
for (i = 0; fdt_pic_table[i] != NULL; i++) {
/* XXX check if pic_handle has interrupt-controller prop? */
intr_decode = fdt_pic_table[i];
rv = intr_decode(intr_parent, intr, interrupt, trig, pol);
if (rv == 0)
/* This was recognized as our PIC and decoded. */
return (0);
}
return (ENXIO);
}
int
fdt_intr_to_rl(phandle_t node, struct resource_list *rl,
struct fdt_sense_level *intr_sl)
{
phandle_t intr_par;
ihandle_t iph;
pcell_t *intr;
pcell_t intr_cells;
int interrupt, trig, pol;
int i, intr_num, irq, rv;
if (OF_getproplen(node, "interrupts") <= 0)
/* Node does not have 'interrupts' property. */
return (0);
/*
* Find #interrupt-cells of the interrupt domain.
*/
if (OF_getprop(node, "interrupt-parent", &iph, sizeof(iph)) <= 0) {
debugf("no intr-parent phandle\n");
intr_par = OF_parent(node);
} else {
iph = fdt32_to_cpu(iph);
intr_par = OF_instance_to_package(iph);
}
if (OF_getprop(intr_par, "#interrupt-cells", &intr_cells,
sizeof(intr_cells)) <= 0) {
debugf("no intr-cells defined, defaulting to 1\n");
intr_cells = 1;
}
else
intr_cells = fdt32_to_cpu(intr_cells);
intr_num = OF_getprop_alloc(node, "interrupts",
intr_cells * sizeof(pcell_t), (void **)&intr);
if (intr_num <= 0 || intr_num > DI_MAX_INTR_NUM)
return (ERANGE);
rv = 0;
for (i = 0; i < intr_num; i++) {
interrupt = -1;
trig = pol = 0;
if (fdt_intr_decode(intr_par, &intr[i * intr_cells],
&interrupt, &trig, &pol) != 0) {
rv = ENXIO;
goto out;
}
if (interrupt < 0) {
rv = ERANGE;
goto out;
}
debugf("decoded intr = %d, trig = %d, pol = %d\n", interrupt,
trig, pol);
intr_sl[i].trig = trig;
intr_sl[i].pol = pol;
irq = FDT_MAP_IRQ(intr_par, interrupt);
resource_list_add(rl, SYS_RES_IRQ, i, irq, irq, 1);
}
out:
free(intr, M_OFWPROP);
return (rv);
}
int
fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
{
phandle_t phy_node;
ihandle_t phy_ihandle;
pcell_t phy_handle, phy_reg;
uint32_t i;
device_t parent, child;
if (OF_getprop(node, "phy-handle", (void *)&phy_handle,
sizeof(phy_handle)) <= 0)
return (ENXIO);
phy_ihandle = (ihandle_t)phy_handle;
phy_ihandle = fdt32_to_cpu(phy_ihandle);
phy_node = OF_instance_to_package(phy_ihandle);
if (OF_getprop(phy_node, "reg", (void *)&phy_reg,
sizeof(phy_reg)) <= 0)
return (ENXIO);
*phy_addr = fdt32_to_cpu(phy_reg);
/*
* Search for softc used to communicate with phy.
*/
/*
* Step 1: Search for ancestor of the phy-node with a "phy-handle"
* property set.
*/
phy_node = OF_parent(phy_node);
while (phy_node != 0) {
if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
sizeof(phy_handle)) > 0)
break;
phy_node = OF_parent(phy_node);
}
if (phy_node == 0)
return (ENXIO);
/*
* Step 2: For each device with the same parent and name as ours
* compare its node with the one found in step 1, ancestor of phy
* node (stored in phy_node).
*/
parent = device_get_parent(dev);
i = 0;
child = device_find_child(parent, device_get_name(dev), i);
while (child != NULL) {
if (ofw_bus_get_node(child) == phy_node)
break;
i++;
child = device_find_child(parent, device_get_name(dev), i);
}
if (child == NULL)
return (ENXIO);
/*
* Use softc of the device found.
*/
*phy_sc = (void *)device_get_softc(child);
return (0);
}
int
fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
{
pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
pcell_t *reservep;
phandle_t memory, root;
uint32_t memory_size;
int addr_cells, size_cells;
int i, max_size, res_len, rv, tuple_size, tuples;
max_size = sizeof(reserve);
root = OF_finddevice("/");
memory = OF_finddevice("/memory");
if (memory == -1) {
rv = ENXIO;
goto out;
}
if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
&size_cells)) != 0)
goto out;
if (addr_cells > 2) {
rv = ERANGE;
goto out;
}
tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
res_len = OF_getproplen(root, "memreserve");
if (res_len <= 0 || res_len > sizeof(reserve)) {
rv = ERANGE;
goto out;
}
if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
rv = ENXIO;
goto out;
}
memory_size = 0;
tuples = res_len / tuple_size;
reservep = (pcell_t *)&reserve;
for (i = 0; i < tuples; i++) {
rv = fdt_data_to_res(reservep, addr_cells, size_cells,
(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
if (rv != 0)
goto out;
reservep += addr_cells + size_cells;
}
*mrcnt = i;
rv = 0;
out:
return (rv);
}
int
fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint32_t *memsize)
{
pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
pcell_t *regp;
phandle_t memory;
uint32_t memory_size;
int addr_cells, size_cells;
int i, max_size, reg_len, rv, tuple_size, tuples;
max_size = sizeof(reg);
memory = OF_finddevice("/memory");
if (memory == -1) {
rv = ENXIO;
goto out;
}
if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
&size_cells)) != 0)
goto out;
if (addr_cells > 2) {
rv = ERANGE;
goto out;
}
tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
reg_len = OF_getproplen(memory, "reg");
if (reg_len <= 0 || reg_len > sizeof(reg)) {
rv = ERANGE;
goto out;
}
if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
rv = ENXIO;
goto out;
}
memory_size = 0;
tuples = reg_len / tuple_size;
regp = (pcell_t *)&reg;
for (i = 0; i < tuples; i++) {
rv = fdt_data_to_res(regp, addr_cells, size_cells,
(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
if (rv != 0)
goto out;
regp += addr_cells + size_cells;
memory_size += mr[i].mr_size;
}
if (memory_size == 0) {
rv = ERANGE;
goto out;
}
*mrcnt = i;
*memsize = memory_size;
rv = 0;
out:
return (rv);
}
int
fdt_get_unit(device_t dev)
{
const char * name;
name = ofw_bus_get_name(dev);
name = strchr(name, '@') + 1;
return (strtol(name,NULL,0));
}