freebsd-nq/sys/i386/isa/seagate.c

1515 lines
43 KiB
C
Raw Normal View History

/*
* (Free/Net/386)BSD ST01/02, Future Domain TMC-885, TMC-950 SCSI driver for
* Julians SCSI-code
*
* Copyright 1994, Kent Palmkvist (kentp@isy.liu.se)
* Copyright 1994, Robert Knier (rknier@qgraph.com)
* Copyright 1992, 1994 Drew Eckhardt (drew@colorado.edu)
* Copyright 1994, Julian Elischer (julian@tfs.com)
* Copyright 1994-1995, Serge Vakulenko (vak@cronyx.ru)
* Copyright 1995 Stephen Hocking (sysseh@devetir.qld.gov.au)
*
* Others that has contributed by example code is
* Glen Overby (overby@cray.com)
* Tatu Yllnen
* Brian E Litzinger
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE DEVELOPERS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* kentp 940307 alpha version based on newscsi-03 version of Julians SCSI-code
* kentp 940314 Added possibility to not use messages
* rknier 940331 Added fast transfer code
* rknier 940407 Added assembler coded data transfers
* vak 941226 New probe algorithm, based on expected behaviour
* instead of BIOS signatures analysis, better timeout handling,
* new asm fragments for data input/output, target-dependent
* delays, device flags, polling mode, generic cleanup
* vak 950115 Added request-sense ops
* seh 950701 Fixed up Future Domain TMC-885 problems with disconnects,
* weird phases and the like. (we could probably investigate
* what the board's idea of the phases are, but that requires
* doco that I don't have). Note that it is slower than the
* 2.0R driver with both SEA_BLINDTRANSFER & SEA_ASSEMBLER
* defined by a factor of more than 2. I'll look at that later!
* seh 950712 The performance release 8^). Put in the blind transfer code
* from the 2.0R source. Don't use it by commenting out the
* SEA_BLINDTRANSFER below. Note that it only kicks in during
* DATAOUT or DATAIN and then only when the transfer is a
* multiple of BLOCK_SIZE bytes (512). Most devices fit into
* that category, with the possible exception of scanners and
* some of the older MO drives.
*
* $Id: seagate.c,v 1.8 1995/05/30 08:03:04 rgrimes Exp $
*/
/*
* What should really be done:
*
* Restructure interrupt enable/disable code (runs too long with int disabled)
* Add code to handle Future Domain 840, 841, 880 and 881
* Add code to use tagged commands in SCSI2
* Add code to handle slow devices better (sleep if device not disconnecting)
* Fix unnecessary interrupts
*/
/* Note to users trying to share a disk between DOS and unix:
* The ST01/02 is a translating host-adapter. It is not giving DOS
* the same number of heads/tracks/sectors as specified by the disk.
* It is therefore important to look at what numbers DOS thinks the
* disk has. Use these to disklabel your disk in an appropriate manner
*
* About ST02+IDE coexistence: the original Seagate ST02
* BIOS cannot coexist with IDE or any other disk controller
* because it does not share BIOS disk drive numbers (80h, 81h)
* with others. New probing code allows using ST02 controller
* without BIOS: just unplug the ST02 BIOS chip from the board.
*
* Another problem is the floppy adapter on ST02 which could not be
* disabled by jumpers. I commonly use ST02 adapter as a cheap solution
* for atttaching the tape and CD-ROM drives, and an extra floppy controller
* is just a headache. I found a simple workaround: cutting off
* the AEN signal (A11 contact on ISA connector). AEN then goes high and
* disables the floppy adapter port address decoder.
*
* I also had a problem with ST02 conflicting with IDE during
* IDE data write phase. It seems than ST02 makes some noise
* on /IOW line. The /IOW line is used only for floppy controller
* part of ST02, and because I don't need it, I cut off the /IOW (contact B13)
* and it helped. (vak)
*
* Tested on the following hardware:
* Adapter: Seagate ST02
* Disk: HP D1686
* Streamers: Archive Viper 150, Wangtek 5525
* CD-ROMs: Toshiba XM-3401, NEC CDR-25
*
* Maximum data rate is about 270-280 kbytes/sec (on 386DX/40).
* (vak)
*/
#undef DEBUG
#include "sea.h"
#if NSEA > 0
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
1994-10-27 08:03:15 +00:00
#include <sys/devconf.h>
#include <machine/clock.h>
#include <i386/isa/isa_device.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#ifdef DEBUG
# define PRINT(s) printf s
#else
# define PRINT(s) /*void*/
#endif
#define SCB_TABLE_SIZE 8 /* start with 8 scb entries in table */
#define BLOCK_SIZE 512 /* size of READ/WRITE areas on SCSI card */
#define HOST_SCSI_ADDR 7 /* address of the adapter on the SCSI bus */
#define SEA_BLINDTRANSFER 1 /* for quicker than quick xfers */
/*
* Define config flags
*/
#define FLAG_NOPARITY 0x01 /* disable SCSI bus parity check */
/*
* Board CONTROL register
*/
#define CMD_RST 0x01 /* scsi reset */
#define CMD_SEL 0x02 /* scsi select */
#define CMD_BSY 0x04 /* scsi busy */
#define CMD_ATTN 0x08 /* scsi attention */
#define CMD_START_ARB 0x10 /* start arbitration bit */
#define CMD_EN_PARITY 0x20 /* enable scsi parity generation */
#define CMD_INTR 0x40 /* enable scsi interrupts */
#define CMD_DRVR_ENABLE 0x80 /* scsi enable */
/*
* Board STATUS register
*/
#define STAT_BSY 0x01 /* scsi busy */
#define STAT_MSG 0x02 /* scsi msg */
#define STAT_IO 0x04 /* scsi I/O */
#define STAT_CD 0x08 /* scsi C/D */
#define STAT_REQ 0x10 /* scsi req */
#define STAT_SEL 0x20 /* scsi select */
#define STAT_PARITY 0x40 /* parity error bit */
#define STAT_ARB_CMPL 0x80 /* arbitration complete bit */
#define STAT_BITS "\20\1bsy\2msg\3i/o\4c/d\5req\6sel\7parity\10arb"
/*
* SCSI bus phases
*/
#define PHASE_MASK (STAT_MSG | STAT_CD | STAT_IO)
#define PHASE_DATAOUT 0
#define PHASE_DATAIN STAT_IO
#define PHASE_CMDOUT STAT_CD
#define PHASE_STATIN (STAT_CD | STAT_IO)
#define PHASE_MSGOUT (STAT_MSG | STAT_CD)
#define PHASE_MSGIN (STAT_MSG | STAT_CD | STAT_IO)
#define PHASE_NAME(ph) phase_name[(ph)>>2]
static char *phase_name[] = {
"DATAOUT", "Phase1?", "Phase2?", "Phase3?",
"DATAIN", "Phase5?", "Phase6?", "Phase7?",
"CMDOUT", "Phase9?", "MSGOUT", "Phase11?",
"STATIN", "Phase13?", "MSGIN", "Phase15?",
};
/*
* SCSI message codes
*/
#define MSG_COMMAND_COMPLETE 0x00
#define MSG_SAVE_POINTERS 0x02
#define MSG_RESTORE_POINTERS 0x03
#define MSG_DISCONNECT 0x04
#define MSG_ABORT 0x06
#define MSG_MESSAGE_REJECT 0x07
#define MSG_NOP 0x08
#define MSG_BUS_DEV_RESET 0x0c
#define MSG_IDENTIFY(lun) (0xc0 | ((lun) & 0x7))
#define MSG_ISIDENT(m) ((m) & 0x80)
/*
* SCSI control block used to keep info about a scsi command
*/
typedef struct scb {
int flags; /* status of the instruction */
#define SCB_FREE 0x00
#define SCB_ACTIVE 0x01
#define SCB_ABORTED 0x02
#define SCB_TIMEOUT 0x04
#define SCB_ERROR 0x08
#define SCB_TIMECHK 0x10 /* we have set a timeout on this one */
#define SCB_SENSE 0x20 /* sensed data available */
#define SCB_TBUSY 0x40 /* target busy */
struct scb *next; /* in free list */
struct scsi_xfer *xfer; /* the scsi_xfer for this cmd */
u_char *data; /* position in data buffer so far */
int32 datalen; /* bytes remaining to transfer */;
} scb_t;
typedef enum {
CTLR_NONE,
CTLR_SEAGATE,
CTLR_FUTURE_DOMAIN,
} ctlr_t;
/*
* Flags for waiting for REQ deassert during some SCSI bus phases.
*/
typedef struct {
unsigned cmdout1 : 1; /* after CMDOUT[0] byte */
unsigned cmdout : 1; /* after CMDOUT[1..N] bytes */
unsigned msgout : 1; /* after MSGOUT byte */
unsigned statin : 1; /* after STATIN byte */
} phase_t;
/*
* Data structure describing the target state.
*/
typedef struct {
struct adapter *adapter; /* pointer to the adapter structure */
u_char busy; /* mask of busy luns at device target */
u_long perrcnt; /* counter of target parity errors */
phase_t ndelay; /* "don't delay" flags */
phase_t init; /* "initialized" flags */
} target_t;
/*
* Data structure describing current status of the scsi bus. One for each
* controller card.
*/
typedef struct adapter {
ctlr_t type; /* Seagate or Future Domain */
char *name; /* adapter name */
volatile u_char *addr; /* base address for card */
volatile u_char *CONTROL; /* address of control register */
volatile u_char *STATUS; /* address of status register */
volatile u_char *DATA; /* address of data register */
u_char scsi_addr; /* our scsi address, 0..7 */
u_char scsi_id; /* our scsi id mask */
u_char parity; /* parity flag: CMD_EN_PARITY or 0 */
u_char irq; /* IRQ number used or 0 if no IRQ */
u_int timeout_active : 1; /* timeout() active (requested) */
struct scsi_link sc_link; /* struct connecting different data */
scb_t *queue; /* waiting to be issued */
scb_t *disconnected_queue; /* waiting to reconnect */
int numscb; /* number of scsi control blocks */
scb_t *free_scb; /* free scb list */
scb_t scbs[SCB_TABLE_SIZE];
target_t target[8]; /* target state data */
} adapter_t;
adapter_t seadata[NSEA];
#define IS_BUSY(a,b) ((a)->target[(b)->xfer->sc_link->target].busy &\
(1 << (b)->xfer->sc_link->lun))
#define SET_BUSY(a,b) ((a)->target[(b)->xfer->sc_link->target].busy |=\
(1 << (b)->xfer->sc_link->lun))
#define CLEAR_BUSY(a,b) ((a)->target[(b)->xfer->sc_link->target].busy &=\
~(1 << (b)->xfer->sc_link->lun))
/*
* Wait for condition, given as an boolean expression.
* Print the message on timeout.
*/
#define WAITFOR(condition,message) {\
register u_long cnt = 100000; char *msg = message;\
while (cnt-- && ! (condition)) continue;\
if (cnt == -1 && msg)\
printf ("sea: %s timeout\n", msg); }
#define WAITFOR10(condition,message) {\
register u_long cnt = 1000000; char *msg = message;\
while (cnt-- && ! (condition)) continue;\
if (cnt == -1 && msg)\
printf ("sea: %s timeout\n", msg); }
/*
* Seagate adapter does not support in hardware
* waiting for REQ deassert after transferring each data byte.
* We must do it in software.
* The problem is that some SCSI devices deassert REQ so fast that
* we can miss it. We the flag for each target sayind if we should (not)
* wait for REQ deassert. This flag is initialized when the first
* operation on the target is done.
* 1) Test if we don't need to wait for REQ deassert (`nodelay' flag).
* Initially the flag is off, i.e. wait. If the flag is set,
* go to the step 4.
* 2) Wait for REQ deassert (call sea_wait_for_req_deassert function).
* If REQ deassert got, go to the step 4. If REQ did not cleared
* during timeout period, go to the next step.
* 3) If `nodelay' flag did not initialized yet (`init' flag),
* then set `ndelay' flag.
* 4) Set `init' flag. Done.
*/
#define WAITREQ(t,op,cnt) {\
if (! (t)->ndelay.op &&\
! sea_wait_for_req_deassert ((t)->adapter, cnt, #op) &&\
! (t)->init.op)\
(t)->ndelay.op = 1;\
(t)->init.op = 1; }
int seaintr (int unit);
static int sea_probe (struct isa_device *dev);
static int sea_detect (adapter_t *z, struct isa_device *dev);
static int sea_attach (struct isa_device *dev);
static int32 sea_scsi_cmd (struct scsi_xfer *xs);
static u_int32 sea_adapter_info (int unit);
static void sea_timeout (void *scb);
static void seaminphys (struct buf *bp);
static void sea_done (adapter_t *z, scb_t *scb);
static void sea_start (adapter_t *z);
static void sea_information_transfer (adapter_t *z, scb_t *scb);
static int sea_poll (adapter_t *z, scb_t *scb);
static int sea_init (adapter_t *z);
static int sea_reselect (adapter_t *z);
static int sea_select (volatile adapter_t *z, scb_t *scb);
static int sea_abort (adapter_t *z, scb_t *scb);
static void sea_send_abort (adapter_t *z);
static u_char sea_msg_input (adapter_t *z);
static void sea_tick (void *arg);
static int sea_sense (adapter_t *z, scb_t *scb);
static void sea_data_output (adapter_t *z, u_char **pdata, u_long *plen);
static void sea_data_input (adapter_t *z, u_char **pdata, u_long *plen);
static void sea_cmd_output (target_t *z, u_char *cmd, int cmdlen);
static struct scsi_adapter sea_switch = {
sea_scsi_cmd, seaminphys, 0, 0, sea_adapter_info, "sea", {0},
};
static struct scsi_device sea_dev = { NULL, NULL, NULL, NULL, "sea", 0, {0} };
struct isa_driver seadriver = { sea_probe, sea_attach, "sea" };
static char sea_description [80]; /* XXX BOGUS!!! */
static struct kern_devconf sea_kdc[NSEA] = {{
0, 0, 0, "sea", 0, { MDDT_ISA, 0, "bio" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN, &kdc_isa0, 0,
DC_UNCONFIGURED, sea_description,
DC_CLS_MISC /* host adapters aren't special */
} };
/* FD TMC885's can't handle detach & re-attach */
static int sea_select_cmd = CMD_DRVR_ENABLE | CMD_ATTN;
/*
* Check if the device can be found at the port given and if so,
* detect the type of board. Set it up ready for further work.
* Takes the isa_dev structure from autoconf as an argument.
* Returns 1 if card recognized, 0 if errors.
*/
int sea_probe (struct isa_device *dev)
{
adapter_t *z = &seadata[dev->id_unit];
static const addrtab[] = {
0xc8000, 0xca000, 0xcc000, 0xce000, 0xdc000, 0xde000, 0,
};
int i;
if (dev->id_unit)
sea_kdc[dev->id_unit] = sea_kdc[0];
sea_kdc[dev->id_unit].kdc_unit = dev->id_unit;
sea_kdc[dev->id_unit].kdc_isa = dev;
dev_attach (&sea_kdc[dev->id_unit]);
/* Init fields used by our routines */
z->parity = (dev->id_flags & FLAG_NOPARITY) ? 0 : CMD_EN_PARITY;
z->scsi_addr = HOST_SCSI_ADDR;
z->scsi_id = 1 << z->scsi_addr;
z->irq = dev->id_irq ? ffs (dev->id_irq) - 1 : 0;
z->queue = 0;
z->disconnected_queue = 0;
for (i=0; i<8; i++) {
z->target[i].adapter = z;
z->target[i].busy = 0;
}
/* Link up the free list of scbs */
z->numscb = SCB_TABLE_SIZE;
z->free_scb = z->scbs;
for (i=1; i<SCB_TABLE_SIZE; i++)
z->scbs[i-1].next = z->scbs + i;
z->scbs[SCB_TABLE_SIZE-1].next = 0;
/* Detect the adapter. */
dev->id_msize = 0x4000;
if (! dev->id_maddr)
for (i=0; addrtab[i]; ++i) {
dev->id_maddr = (u_char*) KERNBASE + addrtab[i];
if (sea_detect (z, dev))
return (1);
}
else if (sea_detect (z, dev))
return (1);
bzero (z, sizeof (*z));
return (0);
}
int sea_detect (adapter_t *z, struct isa_device *dev)
{
z->addr = dev->id_maddr;
/* Try Seagate. */
z->type = CTLR_SEAGATE;
z->name = "Seagate ST01/ST02";
z->CONTROL = z->addr + 0x1a00; /* ST01/ST02 register offsets */
z->STATUS = z->addr + 0x1a00;
z->DATA = z->addr + 0x1c00;
if (sea_init (z) == 0)
return (1);
/* Try Future Domain. */
z->type = CTLR_FUTURE_DOMAIN;
z->name = "Future Domain TMC-885/TMC-950";
z->CONTROL = z->addr + 0x1c00; /* TMC-885/TMC-950 reg. offsets */
z->STATUS = z->addr + 0x1c00;
z->DATA = z->addr + 0x1e00;
/* FD TMC885's can't handle detach & re-attach */
sea_select_cmd = CMD_DRVR_ENABLE;
/* FD TMC-885 is supposed to be at id 6. How strange. */
z->scsi_addr = HOST_SCSI_ADDR - 1;
z->scsi_id = 1 << z->scsi_addr;
if (sea_init (z) == 0)
return (1);
return (0);
}
/*
* Probe the adapter, and if found, reset the board and the scsi bus.
* Return 0 if the adapter found.
*/
int sea_init (adapter_t *z)
{
volatile u_char *p;
int i, c;
/* Check that STATUS..STATUS+200h are equal. */
p = z->STATUS;
c = *p;
if (c == 0xff)
return (2);
while (++p < z->STATUS+0x200)
if (*p != c)
return (3);
/* Check that DATA..DATA+200h are equal. */
for (p=z->DATA, c= *p++; p<z->DATA+0x200; ++p)
if (*p != c)
return (4);
/* Check that addr..addr+1800h are not writable. */
for (p=z->addr; p<z->addr+0x1800; ++p) {
c = *p;
*p = ~c;
if (*p == ~c) {
*p = c;
return (5);
}
}
/* Check that addr+1800h..addr+1880h are writable. */
for (p=z->addr+0x1800; p<z->addr+0x1880; ++p) {
c = *p;
*p = 0x55;
if (*p != 0x55) {
*p = c;
return (6);
}
*p = 0xaa;
if (*p != 0xaa) {
*p = c;
return (7);
}
}
/* Reset the scsi bus (I don't know if this is needed). */
*z->CONTROL = CMD_RST | CMD_DRVR_ENABLE | z->parity | CMD_INTR;
/* Hold reset for at least 25 microseconds. */
DELAY (25);
/* Check that status cleared. */
if (*z->STATUS != 0) {
*z->CONTROL = 0;
return (8);
}
/* Check that DATA register is writable. */
for (i=0; i<256; ++i) {
*z->DATA = i;
if (*z->DATA != i) {
*z->CONTROL = 0;
return (9);
}
}
/* Enable the adapter. */
*z->CONTROL = CMD_INTR | z->parity;
/* Wait a Bus Clear Delay (800 ns + bus free delay 800 ns). */
DELAY (10);
/* Check that DATA register is NOT writable. */
c = *z->DATA;
for (i=0; i<256; ++i) {
*z->DATA = i;
if (*z->DATA != c) {
*z->CONTROL = 0;
return (10);
}
}
return (0);
}
/*
* Attach all sub-devices we can find.
*/
int sea_attach (struct isa_device *dev)
{
int unit = dev->id_unit;
adapter_t *z = &seadata[unit];
sea_kdc[unit].kdc_state = DC_BUSY; /* host adapters are always busy */
sprintf (sea_description, "%s SCSI controller", z->name);
printf ("\nsea%d: type %s%s\n", unit, z->name,
(dev->id_flags & FLAG_NOPARITY) ? ", no parity" : "");
/* fill in the prototype scsi_link */
z->sc_link.adapter_unit = unit;
z->sc_link.adapter_targ = z->scsi_addr;
z->sc_link.adapter = &sea_switch;
z->sc_link.device = &sea_dev;
1995-05-30 08:16:23 +00:00
/* ask the adapter what subunits are present */
scsi_attachdevs (&(z->sc_link));
return (1);
}
/*
* Return some information to the caller about
* the adapter and its capabilities.
*/
u_int32 sea_adapter_info (int unit)
{
return (1);
}
void seaminphys (struct buf *bp)
{
}
/*
* Catch an interrupt from the adaptor.
*/
int seaintr (int unit)
{
adapter_t *z = &seadata[unit];
PRINT (("sea%d: interrupt status=%b\n", unit, *z->STATUS, STAT_BITS));
sea_start (z);
return (1);
}
/*
* This routine is used in the case when we have no IRQ line (z->irq == 0).
* It is called every timer tick and polls for reconnect from target.
*/
void sea_tick (void *arg)
{
adapter_t *z = arg;
int x = splbio ();
z->timeout_active = 0;
sea_start (z);
if (z->disconnected_queue && ! z->timeout_active) {
timeout (sea_tick, z, 1);
z->timeout_active = 1;
}
splx (x);
}
/*
* Start a scsi operation given the command and the data address.
* Also needs the unit, target and lu. Get a free scb and set it up.
* Call send_scb. Either start timer or wait until done.
*/
int32 sea_scsi_cmd (struct scsi_xfer *xs)
{
int unit = xs->sc_link->adapter_unit, flags = xs->flags, x = 0;
adapter_t *z = &seadata[unit];
scb_t *scb;
PRINT (("sea%d/%d/%d command 0x%x\n", unit, xs->sc_link->target,
xs->sc_link->lun, xs->cmd->opcode));
if (xs->bp)
flags |= SCSI_NOSLEEP;
if (flags & ITSDONE) {
printf ("sea%d: already done?", unit);
xs->flags &= ~ITSDONE;
}
if (! (flags & INUSE)) {
printf ("sea%d: not in use?", unit);
xs->flags |= INUSE;
}
if (flags & SCSI_RESET)
printf ("sea%d: SCSI_RESET not implemented\n", unit);
if (! (flags & SCSI_NOMASK))
x = splbio ();
/* Get a free scb.
* If we can and have to, sleep waiting for one to come free. */
while (! (scb = z->free_scb)) {
if (flags & SCSI_NOSLEEP) {
xs->error = XS_DRIVER_STUFFUP;
if (! (flags & SCSI_NOMASK))
splx (x);
return (TRY_AGAIN_LATER);
}
tsleep ((caddr_t)&z->free_scb, PRIBIO, "seascb", 0);
}
/* Get scb from free list. */
z->free_scb = scb->next;
scb->next = 0;
scb->flags = SCB_ACTIVE;
/* Put all the arguments for the xfer in the scb */
scb->xfer = xs;
scb->datalen = xs->datalen;
scb->data = xs->data;
/* Setup the scb to contain necessary values.
* The interesting values can be read from the xs that is saved.
* I therefore think that the structure can be kept very small.
* The driver doesn't use DMA so the scatter/gather is not needed? */
if (! z->queue) {
scb->next = z->queue;
z->queue = scb;
} else {
scb_t *q;
for (q=z->queue; q->next; q=q->next)
continue;
q->next = scb;
scb->next = 0; /* placed at the end of the queue */
}
/* Try to send this command to the board. */
sea_start (z);
/* Usually return SUCCESSFULLY QUEUED. */
if (! (flags & SCSI_NOMASK)) {
splx (x);
if (xs->flags & ITSDONE)
/* Timeout timer not started, already finished.
* Tried to return COMPLETE but the machine hanged
* with this. */
return (SUCCESSFULLY_QUEUED);
timeout (sea_timeout, (caddr_t) scb, (xs->timeout * hz) / 1000);
scb->flags |= SCB_TIMECHK;
PRINT (("sea%d/%d/%d command queued\n", unit,
xs->sc_link->target, xs->sc_link->lun));
return (SUCCESSFULLY_QUEUED);
}
/* If we can't use interrupts, poll on completion. */
if (! sea_poll (z, scb)) {
/* We timed out, so call the timeout handler manually,
* accounting for the fact that the clock is not running yet
* by taking out the clock queue entry it makes. */
sea_timeout ((void*) scb);
/* Because we are polling, take out the timeout entry
* sea_timeout made. */
untimeout (sea_timeout, (void*) scb);
if (! sea_poll (z, scb))
/* We timed out again... This is bad. Notice that
* this time there is no clock queue entry to remove. */
sea_timeout ((void*) scb);
}
PRINT (("sea%d/%d/%d command %s\n", unit,
xs->sc_link->target, xs->sc_link->lun,
xs->error ? "failed" : "done"));
return (xs->error ? HAD_ERROR : COMPLETE);
}
/*
* Coroutine that runs as long as more work can be done.
* Both scsi_cmd() and intr() will try to start it in
* case it is not running.
* Always called with interrupts disabled.
*/
void sea_start (adapter_t *z)
{
scb_t *q, *prev;
again:
/* First check that if any device has tried
* a reconnect while we have done other things
* with interrupts disabled. */
if (sea_reselect (z))
goto again;
/* Search through the queue for a command
* destined for a target that's not busy. */
for (q=z->queue, prev=0; q; prev=q, q=q->next) {
/* Attempt to establish an I_T_L nexus here. */
if (IS_BUSY (z, q) || ! sea_select (z, q))
continue;
/* Remove the command from the issue queue. */
if (prev)
prev->next = q->next;
else
z->queue = q->next;
q->next = 0;
/* We are connected. Do the task. */
sea_information_transfer (z, q);
goto again;
}
}
void sea_timeout (void *arg)
{
scb_t *scb = (scb_t*) arg;
int unit = scb->xfer->sc_link->adapter_unit;
adapter_t *z = &seadata[unit];
int x = splbio ();
if (! (scb->xfer->flags & SCSI_NOMASK))
printf ("sea%d/%d/%d (%s%d) timed out\n", unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun,
scb->xfer->sc_link->device->name,
scb->xfer->sc_link->dev_unit);
/* If it has been through before, then a previous abort has failed,
* don't try abort again. */
if (! (scb->flags & SCB_ABORTED)) {
sea_abort (z, scb);
/* 2 seconds for the abort */
timeout (sea_timeout, (caddr_t)scb, 2*hz);
scb->flags |= (SCB_ABORTED | SCB_TIMECHK);
} else {
/* abort timed out */
scb->flags |= SCB_ABORTED;
scb->xfer->retries = 0;
sea_done (z, scb);
}
splx (x);
}
/*
* Wait until REQ goes down. This is needed for some devices (CDROMs)
* after every MSGOUT, MSGIN, CMDOUT, STATIN request.
* Return true if REQ deassert found.
*/
static inline int sea_wait_for_req_deassert (adapter_t *z, int cnt, char *msg)
{
asm ("
1: testb $0x10, %2
jz 2f
loop 1b
2:"
: "=c" (cnt) /* output */
: "0" (cnt), "m" (*z->STATUS)); /* input */
if (! cnt) {
PRINT (("sea%d (%s) timeout waiting for !REQ\n",
z->sc_link.adapter_unit, msg));
return (0);
}
/* PRINT (("sea_wait_for_req_deassert %s count=%d\n", msg, cnt)); */
return (1);
}
/*
* Establish I_T_L or I_T_L_Q nexus for new or existing command
* including ARBITRATION, SELECTION, and initial message out
* for IDENTIFY and queue messages.
* Return 1 if selection succeded.
*/
int sea_select (volatile adapter_t *z, scb_t *scb)
{
/* Start arbitration. */
*z->CONTROL = z->parity | CMD_INTR;
*z->DATA = z->scsi_id;
*z->CONTROL = CMD_START_ARB | z->parity;
/* Wait for arbitration to complete. */
WAITFOR (*z->STATUS & STAT_ARB_CMPL, "arbitration");
if (! (*z->STATUS & STAT_ARB_CMPL)) {
if (*z->STATUS & STAT_SEL) {
printf ("sea: arbitration lost\n");
scb->flags |= SCB_ERROR;
} else {
printf ("sea: arbitration timeout\n");
scb->flags |= SCB_TIMEOUT;
}
*z->CONTROL = CMD_INTR | z->parity;
return (0);
}
DELAY (1);
*z->DATA = (1 << scb->xfer->sc_link->target) | z->scsi_id;
*z->CONTROL = sea_select_cmd | CMD_SEL | z->parity;
DELAY (2);
/* Wait for a bsy from target.
* If the target is not present on the bus, we get
* the timeout. Don't PRINT any message -- it's not an error. */
WAITFOR (*z->STATUS & STAT_BSY, 0);
if (! (*z->STATUS & STAT_BSY)) {
/* The target does not respond. Not an error, though. */
PRINT (("sea%d/%d/%d target does not respond\n",
z->sc_link.adapter_unit, scb->xfer->sc_link->target,
scb->xfer->sc_link->lun));
*z->CONTROL = CMD_INTR | z->parity;
scb->flags |= SCB_TIMEOUT;
return (0);
}
/* Try to make the target to take a message from us.
* Should start a MSGOUT phase. */
*z->CONTROL = sea_select_cmd | z->parity;
DELAY (15);
WAITFOR (*z->STATUS & STAT_REQ, 0);
if (z->type == CTLR_FUTURE_DOMAIN)
*z->CONTROL = CMD_INTR | z->parity | CMD_DRVR_ENABLE;
WAITFOR (*z->STATUS & STAT_REQ, 0);
if (! (*z->STATUS & STAT_REQ)) {
PRINT (("sea%d/%d/%d timeout waiting for REQ\n",
z->sc_link.adapter_unit, scb->xfer->sc_link->target,
scb->xfer->sc_link->lun));
scb->flags |= SCB_ERROR;
*z->CONTROL = CMD_INTR | z->parity;
return (0);
}
/* Check for phase mismatch. FD 885 always seems to get this wrong! */
if ((*z->STATUS & PHASE_MASK) != PHASE_MSGOUT && z->type != CTLR_FUTURE_DOMAIN) {
PRINT (("sea%d/%d/%d waiting for MSGOUT: invalid phase %s\n",
z->sc_link.adapter_unit, scb->xfer->sc_link->target,
scb->xfer->sc_link->lun,
PHASE_NAME (*z->STATUS & PHASE_MASK)));
scb->flags |= SCB_ERROR;
*z->CONTROL = CMD_INTR | z->parity;
return (0);
}
/* Allow disconnects. (except for FD controllers) */
if (z->type == CTLR_SEAGATE) {
*z->CONTROL = CMD_DRVR_ENABLE | z->parity;
*z->DATA = MSG_IDENTIFY (scb->xfer->sc_link->lun);
WAITREQ (&z->target[scb->xfer->sc_link->target], msgout, 1000);
}
*z->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | z->parity;
SET_BUSY (z, scb);
return (1);
}
int sea_reselect (adapter_t *z)
{
scb_t *q = 0, *prev = 0;
u_char msg, target_mask, lun;
again:
/* Wait for a device to win the reselection phase. */
/* Signals this by asserting the I/O signal. */
if ((*z->STATUS & (STAT_SEL | STAT_IO | STAT_BSY)) !=
(STAT_SEL | STAT_IO))
return (0);
/* The data bus contains original initiator id ORed with target id. */
/* See that we really are the initiator. */
target_mask = *z->DATA;
if (! (target_mask & z->scsi_id)) {
PRINT (("sea%d reselect not for me: mask=0x%x, status=%b\n",
z->sc_link.adapter_unit, target_mask,
*z->STATUS, STAT_BITS));
goto again;
}
/* Find target who won. */
/* Host responds by asserting the BSY signal. */
/* Target should respond by deasserting the SEL signal. */
target_mask &= ~z->scsi_id;
*z->CONTROL = CMD_DRVR_ENABLE | CMD_BSY | z->parity | CMD_INTR;
WAITFOR (! (*z->STATUS & STAT_SEL), "reselection acknowledge");
/* Remove the busy status. */
/* Target should set the MSGIN phase. */
*z->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | z->parity;
WAITFOR (*z->STATUS & STAT_REQ, "identify message");
/* Hope we get an IDENTIFY message. */
msg = sea_msg_input (z);
if (MSG_ISIDENT (msg)) {
/* Find the command corresponding to the I_T_L or I_T_L_Q
* nexus we just restablished, and remove it from
* the disconnected queue. */
lun = (msg & 7);
for (q=z->disconnected_queue; q; prev=q, q=q->next) {
if (target_mask != (1 << q->xfer->sc_link->target))
continue;
if (lun != q->xfer->sc_link->lun)
continue;
if (prev)
prev->next = q->next;
else
z->disconnected_queue = q->next;
q->next = 0;
PRINT (("sea%d/%d/%d reselect done\n",
z->sc_link.adapter_unit,
ffs (target_mask) - 1, lun));
sea_information_transfer (z, q);
WAITFOR (! (*z->STATUS & STAT_BSY), "reselect !busy");
return (1);
}
} else
printf ("sea%d reselect: expecting IDENTIFY, got 0x%x\n",
z->sc_link.adapter_unit, msg);
/* Since we have an established nexus that we can't
* do anything with, we must abort it. */
sea_send_abort (z);
PRINT (("sea%d reselect aborted\n", z->sc_link.adapter_unit));
WAITFOR (! (*z->STATUS & STAT_BSY), "bus free after reselect abort");
goto again;
}
/*
* Send an abort to the target.
* Return 1 success, 0 on failure.
* Called on splbio level.
*/
int sea_abort (adapter_t *z, scb_t *scb)
{
scb_t *q, **prev;
/* If the command hasn't been issued yet, we simply remove it
* from the issue queue. */
prev = &z->queue;
for (q=z->queue; q; q=q->next) {
if (scb == q) {
(*prev) = q->next;
q->next = 0;
return (1);
}
prev = &q->next;
}
/* If the command is currently disconnected from the bus,
* we reconnect the I_T_L or I_T_L_Q nexus associated with it,
* go into message out, and send an abort message. */
for (q=z->disconnected_queue; q; q=q->next) {
if (scb != q)
continue;
if (! sea_select (z, scb))
return (0);
sea_send_abort (z);
prev = &z->disconnected_queue;
for (q=z->disconnected_queue; q; q=q->next) {
if (scb == q) {
*prev = q->next;
q->next = 0;
/* Set some type of error result
* for the operation. */
return (1);
}
prev = &q->next;
}
}
/* Command not found in any queue. */
return (0);
}
/*
* The task accomplished, mark the i/o control block as done.
* Always called with interrupts disabled.
*/
void sea_done (adapter_t *z, scb_t *scb)
{
struct scsi_xfer *xs = scb->xfer;
if (scb->flags & SCB_TIMECHK)
untimeout (sea_timeout, (caddr_t) scb);
/* How much of the buffer was not touched. */
xs->resid = scb->datalen;
if (scb->flags != SCB_ACTIVE && ! (xs->flags & SCSI_ERR_OK))
if (scb->flags & (SCB_TIMEOUT | SCB_ABORTED))
xs->error = XS_TIMEOUT;
else if (scb->flags & SCB_ERROR)
xs->error = XS_DRIVER_STUFFUP;
else if (scb->flags & SCB_TBUSY)
xs->error = XS_BUSY;
else if (scb->flags & SCB_SENSE)
xs->error = XS_SENSE;
xs->flags |= ITSDONE;
/* Free the control block. */
scb->next = z->free_scb;
z->free_scb = scb;
scb->flags = SCB_FREE;
/* If there were none, wake anybody waiting for one to come free,
* starting with queued entries. */
if (! scb->next)
wakeup ((caddr_t) &z->free_scb);
scsi_done (xs);
}
/*
* Wait for completion of command in polled mode.
* Always called with interrupts masked out.
*/
int sea_poll (adapter_t *z, scb_t *scb)
{
int count;
for (count=0; count<30; ++count) {
DELAY (1000); /* delay for a while */
sea_start (z); /* retry operation */
if (scb->xfer->flags & ITSDONE)
return (1); /* all is done */
if (scb->flags & SCB_TIMEOUT)
return (0); /* no target present */
}
return (0);
}
/*
* Send data to the target.
*/
void sea_data_output (adapter_t *z, u_char **pdata, u_long *plen)
{
volatile u_char *data = *pdata;
volatile u_long len = *plen;
#ifdef SEA_BLINDTRANSFER
if (len && !(len % BLOCK_SIZE)) {
while (len) {
WAITFOR10 (*z->STATUS & STAT_REQ, "blind block read");
asm("
shr $2, %%ecx;
cld;
rep;
movsl; " : :
"D" (z->DATA), "S" (data), "c" (BLOCK_SIZE) :
"cx", "si", "di" );
data += BLOCK_SIZE;
len -= BLOCK_SIZE;
}
} else {
#endif
asm ("cld
1: movb (%%ebx), %%al
xorb $1, %%al
testb $0xf, %%al
jnz 2f
testb $0x10, %%al
jz 1b
lodsb
movb %%al, (%%edi)
loop 1b
2:"
: "=S" (data), "=c" (len) /* output */
: "D" (z->DATA), "b" (z->STATUS), /* input */
"0" (data), "1" (len)
: "eax", "ebx", "edi"); /* clobbered */
#ifdef SEA_BLINDTRANSFER
}
#endif
PRINT (("sea (DATAOUT) send %ld bytes\n", *plen - len));
*plen = len;
*pdata = data;
}
/*
* Receive data from the target.
*/
void sea_data_input (adapter_t *z, u_char **pdata, u_long *plen)
{
volatile u_char *data = *pdata;
volatile u_long len = *plen;
#ifdef SEA_BLINDTRANSFER
if (len && !(len % BLOCK_SIZE)) {
while (len) {
WAITFOR10 (*z->STATUS & STAT_REQ, "blind block read");
asm("
shr $2, %%ecx;
cld;
rep;
movsl; " : :
"S" (z->DATA), "D" (data), "c" (BLOCK_SIZE) :
"cx", "si", "di" );
data += BLOCK_SIZE;
len -= BLOCK_SIZE;
}
} else {
#endif
if (len >= 512) {
asm (" cld
1: movb (%%esi), %%al
xorb $5, %%al
testb $0xf, %%al
jnz 2f
testb $0x10, %%al
jz 1b
movb (%%ebx), %%al
stosb
loop 1b
2:"
: "=D" (data), "=c" (len) /* output */
: "b" (z->DATA), "S" (z->STATUS),
"0" (data), "1" (len) /* input */
: "eax", "ebx", "esi"); /* clobbered */
} else {
asm (" cld
1: movb (%%esi), %%al
xorb $5, %%al
testb $0xf, %%al
jnz 2f
testb $0x10, %%al
jz 1b
movb (%%ebx), %%al
stosb
movb $1000, %%al
3: testb $0x10, (%%esi)
jz 4f
dec %%al
jnz 3b
4: loop 1b
2:"
: "=D" (data), "=c" (len) /* output */
: "b" (z->DATA), "S" (z->STATUS),
"0" (data), "1" (len) /* input */
: "eax", "ebx", "esi"); /* clobbered */
}
#ifdef SEA_BLINDTRANSFER
}
#endif
PRINT (("sea (DATAIN) got %ld bytes\n", *plen - len));
*plen = len;
*pdata = data;
}
/*
* Send the command to the target.
*/
void sea_cmd_output (target_t *t, u_char *cmd, int cmdlen)
{
adapter_t *z = t->adapter;
PRINT (("sea%d send command (%d bytes) ", z->sc_link.adapter_unit,
cmdlen));
PRINT (("%x", *cmd));
*z->DATA = *cmd++;
if (z->type == CTLR_SEAGATE)
WAITREQ (t, cmdout1, 10000);
--cmdlen;
while (cmdlen) {
/* Check for target disconnect. */
u_char sts = *z->STATUS;
if (! (sts & STAT_BSY))
break;
/* Check for phase mismatch. FD 885 seems to get this wrong! */
if ((sts & PHASE_MASK) != PHASE_CMDOUT && z->type != CTLR_FUTURE_DOMAIN) {
printf ("sea: sea_cmd_output: invalid phase %s\n",
PHASE_NAME (sts & PHASE_MASK));
return;
}
/* Wait for REQ. */
if (! (sts & STAT_REQ))
continue;
PRINT (("-%x", *cmd));
*z->DATA = *cmd++;
if (z->type == CTLR_SEAGATE)
WAITREQ (t, cmdout, 1000);
--cmdlen;
}
PRINT (("\n"));
}
/*
* Send the message to the target.
*/
void sea_send_abort (adapter_t *z)
{
u_char sts;
*z->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | CMD_ATTN | z->parity;
/* Wait for REQ, after which the phase bits will be valid. */
WAITFOR (*z->STATUS & STAT_REQ, "abort message");
sts = *z->STATUS;
if (! (sts & STAT_REQ))
goto ret;
/* Check for phase mismatch. */
if ((sts & PHASE_MASK) != PHASE_MSGOUT) {
printf ("sea: sending MSG_ABORT: invalid phase %s\n",
PHASE_NAME (sts & PHASE_MASK));
goto ret;
}
*z->DATA = MSG_ABORT;
sea_wait_for_req_deassert (z, 1000, "MSG_OUTPUT");
PRINT (("sea%d send abort message\n", z->sc_link.adapter_unit));
ret:
*z->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | z->parity;
}
/*
* Get the message from the target.
* Return the length of the received message.
*/
u_char sea_msg_input (adapter_t *z)
{
u_char sts, msg;
/* Wait for REQ, after which the phase bits will be valid. */
WAITFOR (*z->STATUS & STAT_REQ, "message input");
sts = *z->STATUS;
if (! (sts & STAT_REQ))
return (MSG_ABORT);
/* Check for phase mismatch.
* Reached if the target decides that it has finished the transfer. */
if ((sts & PHASE_MASK) != PHASE_MSGIN) {
printf ("sea: sea_msg_input: invalid phase %s\n",
PHASE_NAME (sts & PHASE_MASK));
return (MSG_ABORT);
}
/* Do actual transfer from SCSI bus to/from memory. */
msg = *z->DATA;
sea_wait_for_req_deassert (z, 1000, "MSG_INPUT");
PRINT (("sea%d (MSG_INPUT) got 0x%x\n", z->sc_link.adapter_unit, msg));
return (msg);
}
/*
* Send request-sense op to the target.
* Return 1 success, 0 on failure.
* Called on splbio level.
*/
int sea_sense (adapter_t *z, scb_t *scb)
{
u_char cmd[6], status, msg, *data;
u_long len;
/* Wait for target to disconnect. */
WAITFOR (! (*z->STATUS & STAT_BSY), "sense bus free");
if (*z->STATUS & STAT_BSY)
return (0);
/* Select the target again. */
if (! sea_select (z, scb))
return (0);
/* Wait for CMDOUT phase. */
WAITFOR (*z->STATUS & STAT_REQ, "sense CMDOUT");
if (! (*z->STATUS & STAT_REQ) ||
(*z->STATUS & PHASE_MASK) != PHASE_CMDOUT)
return (0);
/* Send command. */
len = sizeof (scb->xfer->sense);
cmd[0] = REQUEST_SENSE;
cmd[1] = scb->xfer->sc_link->lun << 5;
cmd[2] = 0;
cmd[3] = 0;
cmd[4] = len;
cmd[5] = 0;
sea_cmd_output (&z->target[scb->xfer->sc_link->target],
cmd, sizeof (cmd));
/* Wait for DATAIN phase. */
WAITFOR (*z->STATUS & STAT_REQ, "sense DATAIN");
if (! (*z->STATUS & STAT_REQ) ||
(*z->STATUS & PHASE_MASK) != PHASE_DATAIN)
return (0);
data = (u_char*) &scb->xfer->sense;
sea_data_input (z, &data, &len);
PRINT (("sea%d sense %x-%x-%x-%x-%x-%x-%x-%x\n",
z->sc_link.adapter_unit, scb->xfer->sense.error_code,
scb->xfer->sense.ext.extended.segment,
scb->xfer->sense.ext.extended.flags,
scb->xfer->sense.ext.extended.info[0],
scb->xfer->sense.ext.extended.info[1],
scb->xfer->sense.ext.extended.info[2],
scb->xfer->sense.ext.extended.info[3],
scb->xfer->sense.ext.extended.extra_len));
/* Wait for STATIN phase. */
WAITFOR (*z->STATUS & STAT_REQ, "sense STATIN");
if (! (*z->STATUS & STAT_REQ) ||
(*z->STATUS & PHASE_MASK) != PHASE_STATIN)
return (0);
status = *z->DATA;
/* Wait for MSGIN phase. */
WAITFOR (*z->STATUS & STAT_REQ, "sense MSGIN");
if (! (*z->STATUS & STAT_REQ) ||
(*z->STATUS & PHASE_MASK) != PHASE_MSGIN)
return (0);
msg = *z->DATA;
if (status != 0 || msg != 0)
printf ("sea%d: bad sense status=0x%x, msg=0x%x\n",
z->sc_link.adapter_unit, status, msg);
return (1);
}
/*
* Do the transfer. We know we are connected. Update the flags,
* call sea_done when task accomplished. Dialog controlled by the target.
* Always called with interrupts disabled.
*/
void sea_information_transfer (adapter_t *z, scb_t *scb)
{
u_char *data = scb->data; /* current data buffer */
u_long datalen = scb->datalen; /* current data transfer size */
target_t *t = &z->target[scb->xfer->sc_link->target];
register u_char sts;
u_char msg;
while ((sts = *z->STATUS) & STAT_BSY) {
/* We only have a valid SCSI phase when REQ is asserted. */
if (! (sts & STAT_REQ))
continue;
if (sts & STAT_PARITY) {
int target = scb->xfer->sc_link->target;
if (++z->target[target].perrcnt <= 8)
printf ("sea%d/%d/%d parity error\n",
z->sc_link.adapter_unit, target,
scb->xfer->sc_link->lun);
if (z->target[target].perrcnt == 8)
printf ("sea%d/%d/%d too many parity errors, not logging any more\n",
z->sc_link.adapter_unit, target,
scb->xfer->sc_link->lun);
}
switch (sts & PHASE_MASK) {
case PHASE_DATAOUT:
if (datalen <= 0) {
printf ("sea%d/%d/%d data length underflow\n",
z->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun);
/* send zero byte */
*z->DATA = 0;
break;
}
sea_data_output (z, &data, &datalen);
break;
case PHASE_DATAIN:
if (datalen <= 0) {
/* Get extra data. Some devices (e.g. CDROMs)
* use fixed-length blocks (e.g. 2k),
* even if we need less. */
PRINT (("@"));
sts = *z->DATA;
break;
}
sea_data_input (z, &data, &datalen);
break;
case PHASE_CMDOUT:
sea_cmd_output (t, (u_char*) scb->xfer->cmd,
scb->xfer->cmdlen);
break;
case PHASE_STATIN:
scb->xfer->status = *z->DATA;
if (z->type == CTLR_SEAGATE)
WAITREQ (t, statin, 2000);
PRINT (("sea%d/%d/%d (STATIN) got 0x%x\n",
z->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun,
(u_char) scb->xfer->status));
break;
case PHASE_MSGOUT:
/* Send no-op message. */
*z->DATA = MSG_NOP;
sea_wait_for_req_deassert (z, 1000, "MSGOUT");
PRINT (("sea%d/%d/%d (MSGOUT) send NOP\n",
z->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun));
break;
case PHASE_MSGIN:
/* Don't handle multi-byte messages here, because they
* should not be present here. */
msg = *z->DATA;
sea_wait_for_req_deassert (z, 2000, "MSGIN");
PRINT (("sea%d/%d/%d (MSGIN) got 0x%x\n",
z->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun, msg));
switch (msg) {
case MSG_COMMAND_COMPLETE:
scb->data = data;
scb->datalen = datalen;
/* In the case of check-condition status,
* perform the request-sense op. */
switch (scb->xfer->status & 0x1e) {
case SCSI_CHECK:
if (sea_sense (z, scb))
scb->flags = SCB_SENSE;
break;
case SCSI_BUSY:
scb->flags = SCB_TBUSY;
break;
}
goto done;
case MSG_ABORT:
printf ("sea: command aborted by target\n");
scb->flags = SCB_ABORTED;
goto done;
case MSG_MESSAGE_REJECT:
printf ("sea: message rejected\n");
scb->flags = SCB_ABORTED;
goto done;
case MSG_DISCONNECT:
scb->next = z->disconnected_queue;
z->disconnected_queue = scb;
if (! z->irq && ! z->timeout_active) {
timeout (sea_tick, z, 1);
z->timeout_active = 1;
}
PRINT (("sea%d/%d/%d disconnected\n",
z->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun));
goto ret;
case MSG_SAVE_POINTERS:
scb->data = data;
scb->datalen = datalen;
break;
case MSG_RESTORE_POINTERS:
data = scb->data;
datalen = scb->datalen;
break;
default:
printf ("sea%d/%d/%d unknown message: 0x%x\n",
z->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun, msg);
break;
}
break;
default:
printf ("sea: unknown phase: %b\n", sts, STAT_BITS);
break;
}
}
printf ("sea%d/%d/%d unexpected target disconnect\n",
z->sc_link.adapter_unit, scb->xfer->sc_link->target,
scb->xfer->sc_link->lun);
scb->flags = SCB_ERROR;
done:
CLEAR_BUSY (z, scb);
sea_done (z, scb);
ret:
*z->CONTROL = CMD_INTR | z->parity;
}
#endif /* NSEA */