freebsd-nq/sys/netinet6/frag6.c

780 lines
20 KiB
C
Raw Normal View History

/*-
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
2007-12-10 16:03:40 +00:00
*
* $KAME: frag6.c,v 1.33 2002/01/07 11:34:48 kjc Exp $
*/
2007-12-10 16:03:40 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/route.h>
Build on Jeff Roberson's linker-set based dynamic per-CPU allocator (DPCPU), as suggested by Peter Wemm, and implement a new per-virtual network stack memory allocator. Modify vnet to use the allocator instead of monolithic global container structures (vinet, ...). This change solves many binary compatibility problems associated with VIMAGE, and restores ELF symbols for virtualized global variables. Each virtualized global variable exists as a "reference copy", and also once per virtual network stack. Virtualized global variables are tagged at compile-time, placing the in a special linker set, which is loaded into a contiguous region of kernel memory. Virtualized global variables in the base kernel are linked as normal, but those in modules are copied and relocated to a reserved portion of the kernel's vnet region with the help of a the kernel linker. Virtualized global variables exist in per-vnet memory set up when the network stack instance is created, and are initialized statically from the reference copy. Run-time access occurs via an accessor macro, which converts from the current vnet and requested symbol to a per-vnet address. When "options VIMAGE" is not compiled into the kernel, normal global ELF symbols will be used instead and indirection is avoided. This change restores static initialization for network stack global variables, restores support for non-global symbols and types, eliminates the need for many subsystem constructors, eliminates large per-subsystem structures that caused many binary compatibility issues both for monitoring applications (netstat) and kernel modules, removes the per-function INIT_VNET_*() macros throughout the stack, eliminates the need for vnet_symmap ksym(2) munging, and eliminates duplicate definitions of virtualized globals under VIMAGE_GLOBALS. Bump __FreeBSD_version and update UPDATING. Portions submitted by: bz Reviewed by: bz, zec Discussed with: gnn, jamie, jeff, jhb, julian, sam Suggested by: peter Approved by: re (kensmith)
2009-07-14 22:48:30 +00:00
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/icmp6.h>
#include <netinet/in_systm.h> /* for ECN definitions */
#include <netinet/ip.h> /* for ECN definitions */
#include <security/mac/mac_framework.h>
/*
* Define it to get a correct behavior on per-interface statistics.
* You will need to perform an extra routing table lookup, per fragment,
* to do it. This may, or may not be, a performance hit.
*/
#define IN6_IFSTAT_STRICT
2008-01-08 19:08:58 +00:00
static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
static void frag6_deq(struct ip6asfrag *);
static void frag6_insque(struct ip6q *, struct ip6q *);
static void frag6_remque(struct ip6q *);
static void frag6_freef(struct ip6q *);
static struct mtx ip6qlock;
/*
* These fields all protected by ip6qlock.
*/
static VNET_DEFINE(u_int, frag6_nfragpackets);
static VNET_DEFINE(u_int, frag6_nfrags);
static VNET_DEFINE(struct ip6q, ip6q); /* ip6 reassemble queue */
Build on Jeff Roberson's linker-set based dynamic per-CPU allocator (DPCPU), as suggested by Peter Wemm, and implement a new per-virtual network stack memory allocator. Modify vnet to use the allocator instead of monolithic global container structures (vinet, ...). This change solves many binary compatibility problems associated with VIMAGE, and restores ELF symbols for virtualized global variables. Each virtualized global variable exists as a "reference copy", and also once per virtual network stack. Virtualized global variables are tagged at compile-time, placing the in a special linker set, which is loaded into a contiguous region of kernel memory. Virtualized global variables in the base kernel are linked as normal, but those in modules are copied and relocated to a reserved portion of the kernel's vnet region with the help of a the kernel linker. Virtualized global variables exist in per-vnet memory set up when the network stack instance is created, and are initialized statically from the reference copy. Run-time access occurs via an accessor macro, which converts from the current vnet and requested symbol to a per-vnet address. When "options VIMAGE" is not compiled into the kernel, normal global ELF symbols will be used instead and indirection is avoided. This change restores static initialization for network stack global variables, restores support for non-global symbols and types, eliminates the need for many subsystem constructors, eliminates large per-subsystem structures that caused many binary compatibility issues both for monitoring applications (netstat) and kernel modules, removes the per-function INIT_VNET_*() macros throughout the stack, eliminates the need for vnet_symmap ksym(2) munging, and eliminates duplicate definitions of virtualized globals under VIMAGE_GLOBALS. Bump __FreeBSD_version and update UPDATING. Portions submitted by: bz Reviewed by: bz, zec Discussed with: gnn, jamie, jeff, jhb, julian, sam Suggested by: peter Approved by: re (kensmith)
2009-07-14 22:48:30 +00:00
#define V_frag6_nfragpackets VNET(frag6_nfragpackets)
#define V_frag6_nfrags VNET(frag6_nfrags)
#define V_ip6q VNET(ip6q)
#define IP6Q_LOCK_INIT() mtx_init(&ip6qlock, "ip6qlock", NULL, MTX_DEF);
#define IP6Q_LOCK() mtx_lock(&ip6qlock)
#define IP6Q_TRYLOCK() mtx_trylock(&ip6qlock)
#define IP6Q_LOCK_ASSERT() mtx_assert(&ip6qlock, MA_OWNED)
#define IP6Q_UNLOCK() mtx_unlock(&ip6qlock)
2000-12-08 20:09:00 +00:00
static MALLOC_DEFINE(M_FTABLE, "fragment", "fragment reassembly header");
/*
* Initialise reassembly queue and fragment identifier.
*/
static void
frag6_change(void *tag)
{
V_ip6_maxfragpackets = nmbclusters / 4;
V_ip6_maxfrags = nmbclusters / 4;
}
void
frag6_init(void)
{
V_ip6_maxfragpackets = nmbclusters / 4;
V_ip6_maxfrags = nmbclusters / 4;
V_ip6q.ip6q_next = V_ip6q.ip6q_prev = &V_ip6q;
if (!IS_DEFAULT_VNET(curvnet))
return;
EVENTHANDLER_REGISTER(nmbclusters_change,
frag6_change, NULL, EVENTHANDLER_PRI_ANY);
IP6Q_LOCK_INIT();
}
/*
* In RFC2460, fragment and reassembly rule do not agree with each other,
* in terms of next header field handling in fragment header.
* While the sender will use the same value for all of the fragmented packets,
* receiver is suggested not to check the consistency.
*
* fragment rule (p20):
* (2) A Fragment header containing:
* The Next Header value that identifies the first header of
* the Fragmentable Part of the original packet.
* -> next header field is same for all fragments
*
* reassembly rule (p21):
* The Next Header field of the last header of the Unfragmentable
* Part is obtained from the Next Header field of the first
* fragment's Fragment header.
* -> should grab it from the first fragment only
*
* The following note also contradicts with fragment rule - noone is going to
* send different fragment with different next header field.
*
* additional note (p22):
* The Next Header values in the Fragment headers of different
* fragments of the same original packet may differ. Only the value
* from the Offset zero fragment packet is used for reassembly.
* -> should grab it from the first fragment only
*
* There is no explicit reason given in the RFC. Historical reason maybe?
*/
/*
* Fragment input
*/
int
frag6_input(struct mbuf **mp, int *offp, int proto)
{
struct mbuf *m = *mp, *t;
struct ip6_hdr *ip6;
struct ip6_frag *ip6f;
struct ip6q *q6;
struct ip6asfrag *af6, *ip6af, *af6dwn;
#ifdef IN6_IFSTAT_STRICT
struct in6_ifaddr *ia;
#endif
int offset = *offp, nxt, i, next;
int first_frag = 0;
int fragoff, frgpartlen; /* must be larger than u_int16_t */
struct ifnet *dstifp;
u_int8_t ecn, ecn0;
#if 0
char ip6buf[INET6_ADDRSTRLEN];
#endif
ip6 = mtod(m, struct ip6_hdr *);
#ifndef PULLDOWN_TEST
IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), IPPROTO_DONE);
ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
#else
IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
if (ip6f == NULL)
return (IPPROTO_DONE);
#endif
dstifp = NULL;
#ifdef IN6_IFSTAT_STRICT
/* find the destination interface of the packet. */
if ((ia = ip6_getdstifaddr(m)) != NULL) {
dstifp = ia->ia_ifp;
ifa_free(&ia->ia_ifa);
}
#else
/* we are violating the spec, this is not the destination interface */
if ((m->m_flags & M_PKTHDR) != 0)
dstifp = m->m_pkthdr.rcvif;
#endif
/* jumbo payload can't contain a fragment header */
if (ip6->ip6_plen == 0) {
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
in6_ifstat_inc(dstifp, ifs6_reass_fail);
return IPPROTO_DONE;
}
/*
* check whether fragment packet's fragment length is
* multiple of 8 octets.
* sizeof(struct ip6_frag) == 8
* sizeof(struct ip6_hdr) = 40
*/
if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
(((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
offsetof(struct ip6_hdr, ip6_plen));
in6_ifstat_inc(dstifp, ifs6_reass_fail);
return IPPROTO_DONE;
}
V_ip6stat.ip6s_fragments++;
in6_ifstat_inc(dstifp, ifs6_reass_reqd);
/* offset now points to data portion */
offset += sizeof(struct ip6_frag);
IP6Q_LOCK();
/*
* Enforce upper bound on number of fragments.
* If maxfrag is 0, never accept fragments.
* If maxfrag is -1, accept all fragments without limitation.
*/
if (V_ip6_maxfrags < 0)
;
else if (V_frag6_nfrags >= (u_int)V_ip6_maxfrags)
goto dropfrag;
for (q6 = V_ip6q.ip6q_next; q6 != &V_ip6q; q6 = q6->ip6q_next)
if (ip6f->ip6f_ident == q6->ip6q_ident &&
IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)
#ifdef MAC
&& mac_ip6q_match(m, q6)
#endif
)
break;
if (q6 == &V_ip6q) {
/*
* the first fragment to arrive, create a reassembly queue.
*/
first_frag = 1;
/*
* Enforce upper bound on number of fragmented packets
* for which we attempt reassembly;
* If maxfragpackets is 0, never accept fragments.
* If maxfragpackets is -1, accept all fragments without
* limitation.
*/
if (V_ip6_maxfragpackets < 0)
;
else if (V_frag6_nfragpackets >= (u_int)V_ip6_maxfragpackets)
goto dropfrag;
V_frag6_nfragpackets++;
q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FTABLE,
M_NOWAIT);
if (q6 == NULL)
goto dropfrag;
bzero(q6, sizeof(*q6));
#ifdef MAC
if (mac_ip6q_init(q6, M_NOWAIT) != 0) {
free(q6, M_FTABLE);
goto dropfrag;
}
mac_ip6q_create(m, q6);
#endif
frag6_insque(q6, &V_ip6q);
/* ip6q_nxt will be filled afterwards, from 1st fragment */
q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
#ifdef notyet
q6->ip6q_nxtp = (u_char *)nxtp;
#endif
q6->ip6q_ident = ip6f->ip6f_ident;
q6->ip6q_ttl = IPV6_FRAGTTL;
q6->ip6q_src = ip6->ip6_src;
q6->ip6q_dst = ip6->ip6_dst;
q6->ip6q_ecn =
(ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
q6->ip6q_nfrag = 0;
}
/*
* If it's the 1st fragment, record the length of the
* unfragmentable part and the next header of the fragment header.
*/
fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
if (fragoff == 0) {
q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
sizeof(struct ip6_frag);
q6->ip6q_nxt = ip6f->ip6f_nxt;
}
/*
* Check that the reassembled packet would not exceed 65535 bytes
* in size.
* If it would exceed, discard the fragment and return an ICMP error.
*/
frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
if (q6->ip6q_unfrglen >= 0) {
/* The 1st fragment has already arrived. */
if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
offset - sizeof(struct ip6_frag) +
offsetof(struct ip6_frag, ip6f_offlg));
IP6Q_UNLOCK();
return (IPPROTO_DONE);
}
} else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
offset - sizeof(struct ip6_frag) +
offsetof(struct ip6_frag, ip6f_offlg));
IP6Q_UNLOCK();
return (IPPROTO_DONE);
}
/*
* If it's the first fragment, do the above check for each
* fragment already stored in the reassembly queue.
*/
if (fragoff == 0) {
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = af6dwn) {
af6dwn = af6->ip6af_down;
if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
IPV6_MAXPACKET) {
struct mbuf *merr = IP6_REASS_MBUF(af6);
struct ip6_hdr *ip6err;
int erroff = af6->ip6af_offset;
/* dequeue the fragment. */
frag6_deq(af6);
free(af6, M_FTABLE);
/* adjust pointer. */
ip6err = mtod(merr, struct ip6_hdr *);
/*
* Restore source and destination addresses
* in the erroneous IPv6 header.
*/
ip6err->ip6_src = q6->ip6q_src;
ip6err->ip6_dst = q6->ip6q_dst;
icmp6_error(merr, ICMP6_PARAM_PROB,
ICMP6_PARAMPROB_HEADER,
erroff - sizeof(struct ip6_frag) +
offsetof(struct ip6_frag, ip6f_offlg));
}
}
}
ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FTABLE,
M_NOWAIT);
if (ip6af == NULL)
goto dropfrag;
bzero(ip6af, sizeof(*ip6af));
ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
ip6af->ip6af_off = fragoff;
ip6af->ip6af_frglen = frgpartlen;
ip6af->ip6af_offset = offset;
IP6_REASS_MBUF(ip6af) = m;
if (first_frag) {
af6 = (struct ip6asfrag *)q6;
goto insert;
}
/*
* Handle ECN by comparing this segment with the first one;
* if CE is set, do not lose CE.
* drop if CE and not-ECT are mixed for the same packet.
*/
ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
ecn0 = q6->ip6q_ecn;
if (ecn == IPTOS_ECN_CE) {
if (ecn0 == IPTOS_ECN_NOTECT) {
free(ip6af, M_FTABLE);
goto dropfrag;
}
if (ecn0 != IPTOS_ECN_CE)
q6->ip6q_ecn = IPTOS_ECN_CE;
}
if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
free(ip6af, M_FTABLE);
goto dropfrag;
}
/*
* Find a segment which begins after this one does.
*/
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = af6->ip6af_down)
if (af6->ip6af_off > ip6af->ip6af_off)
break;
#if 0
/*
* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming
* segment. If it provides all of our data, drop us.
*/
if (af6->ip6af_up != (struct ip6asfrag *)q6) {
i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
- ip6af->ip6af_off;
if (i > 0) {
if (i >= ip6af->ip6af_frglen)
goto dropfrag;
m_adj(IP6_REASS_MBUF(ip6af), i);
ip6af->ip6af_off += i;
ip6af->ip6af_frglen -= i;
}
}
/*
* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
while (af6 != (struct ip6asfrag *)q6 &&
ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
if (i < af6->ip6af_frglen) {
af6->ip6af_frglen -= i;
af6->ip6af_off += i;
m_adj(IP6_REASS_MBUF(af6), i);
break;
}
af6 = af6->ip6af_down;
m_freem(IP6_REASS_MBUF(af6->ip6af_up));
frag6_deq(af6->ip6af_up);
}
#else
/*
* If the incoming framgent overlaps some existing fragments in
* the reassembly queue, drop it, since it is dangerous to override
* existing fragments from a security point of view.
* We don't know which fragment is the bad guy - here we trust
* fragment that came in earlier, with no real reason.
*
* Note: due to changes after disabling this part, mbuf passed to
* m_adj() below now does not meet the requirement.
*/
if (af6->ip6af_up != (struct ip6asfrag *)q6) {
i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
- ip6af->ip6af_off;
if (i > 0) {
#if 0 /* suppress the noisy log */
log(LOG_ERR, "%d bytes of a fragment from %s "
"overlaps the previous fragment\n",
i, ip6_sprintf(ip6buf, &q6->ip6q_src));
#endif
free(ip6af, M_FTABLE);
goto dropfrag;
}
}
if (af6 != (struct ip6asfrag *)q6) {
i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
if (i > 0) {
#if 0 /* suppress the noisy log */
log(LOG_ERR, "%d bytes of a fragment from %s "
"overlaps the succeeding fragment",
i, ip6_sprintf(ip6buf, &q6->ip6q_src));
#endif
free(ip6af, M_FTABLE);
goto dropfrag;
}
}
#endif
insert:
#ifdef MAC
if (!first_frag)
mac_ip6q_update(m, q6);
#endif
/*
* Stick new segment in its place;
* check for complete reassembly.
* Move to front of packet queue, as we are
* the most recently active fragmented packet.
*/
frag6_enq(ip6af, af6->ip6af_up);
V_frag6_nfrags++;
q6->ip6q_nfrag++;
#if 0 /* xxx */
if (q6 != V_ip6q.ip6q_next) {
frag6_remque(q6);
frag6_insque(q6, &V_ip6q);
}
#endif
next = 0;
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = af6->ip6af_down) {
if (af6->ip6af_off != next) {
IP6Q_UNLOCK();
return IPPROTO_DONE;
}
next += af6->ip6af_frglen;
}
if (af6->ip6af_up->ip6af_mff) {
IP6Q_UNLOCK();
return IPPROTO_DONE;
}
/*
* Reassembly is complete; concatenate fragments.
*/
ip6af = q6->ip6q_down;
t = m = IP6_REASS_MBUF(ip6af);
af6 = ip6af->ip6af_down;
frag6_deq(ip6af);
while (af6 != (struct ip6asfrag *)q6) {
af6dwn = af6->ip6af_down;
frag6_deq(af6);
while (t->m_next)
t = t->m_next;
t->m_next = IP6_REASS_MBUF(af6);
m_adj(t->m_next, af6->ip6af_offset);
free(af6, M_FTABLE);
af6 = af6dwn;
}
/* adjust offset to point where the original next header starts */
offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
free(ip6af, M_FTABLE);
ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr));
if (q6->ip6q_ecn == IPTOS_ECN_CE)
ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
nxt = q6->ip6q_nxt;
#ifdef notyet
*q6->ip6q_nxtp = (u_char)(nxt & 0xff);
#endif
/* Delete frag6 header */
if (m->m_len >= offset + sizeof(struct ip6_frag)) {
/* This is the only possible case with !PULLDOWN_TEST */
ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag),
offset);
m->m_data += sizeof(struct ip6_frag);
m->m_len -= sizeof(struct ip6_frag);
} else {
/* this comes with no copy if the boundary is on cluster */
if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
frag6_remque(q6);
V_frag6_nfrags -= q6->ip6q_nfrag;
#ifdef MAC
mac_ip6q_destroy(q6);
#endif
free(q6, M_FTABLE);
V_frag6_nfragpackets--;
goto dropfrag;
}
m_adj(t, sizeof(struct ip6_frag));
m_cat(m, t);
}
/*
* Store NXT to the original.
*/
{
char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
*prvnxtp = nxt;
}
frag6_remque(q6);
V_frag6_nfrags -= q6->ip6q_nfrag;
#ifdef MAC
mac_ip6q_reassemble(q6, m);
mac_ip6q_destroy(q6);
#endif
free(q6, M_FTABLE);
V_frag6_nfragpackets--;
if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
int plen = 0;
for (t = m; t; t = t->m_next)
plen += t->m_len;
m->m_pkthdr.len = plen;
}
V_ip6stat.ip6s_reassembled++;
in6_ifstat_inc(dstifp, ifs6_reass_ok);
/*
* Tell launch routine the next header
*/
*mp = m;
*offp = offset;
IP6Q_UNLOCK();
return nxt;
dropfrag:
IP6Q_UNLOCK();
in6_ifstat_inc(dstifp, ifs6_reass_fail);
V_ip6stat.ip6s_fragdropped++;
m_freem(m);
return IPPROTO_DONE;
}
/*
* Free a fragment reassembly header and all
* associated datagrams.
*/
void
frag6_freef(struct ip6q *q6)
{
struct ip6asfrag *af6, *down6;
IP6Q_LOCK_ASSERT();
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = down6) {
struct mbuf *m = IP6_REASS_MBUF(af6);
down6 = af6->ip6af_down;
frag6_deq(af6);
/*
* Return ICMP time exceeded error for the 1st fragment.
* Just free other fragments.
*/
if (af6->ip6af_off == 0) {
struct ip6_hdr *ip6;
/* adjust pointer */
ip6 = mtod(m, struct ip6_hdr *);
/* restore source and destination addresses */
ip6->ip6_src = q6->ip6q_src;
ip6->ip6_dst = q6->ip6q_dst;
icmp6_error(m, ICMP6_TIME_EXCEEDED,
ICMP6_TIME_EXCEED_REASSEMBLY, 0);
} else
m_freem(m);
free(af6, M_FTABLE);
}
frag6_remque(q6);
V_frag6_nfrags -= q6->ip6q_nfrag;
#ifdef MAC
mac_ip6q_destroy(q6);
#endif
free(q6, M_FTABLE);
V_frag6_nfragpackets--;
}
/*
* Put an ip fragment on a reassembly chain.
* Like insque, but pointers in middle of structure.
*/
void
frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
{
IP6Q_LOCK_ASSERT();
af6->ip6af_up = up6;
af6->ip6af_down = up6->ip6af_down;
up6->ip6af_down->ip6af_up = af6;
up6->ip6af_down = af6;
}
/*
* To frag6_enq as remque is to insque.
*/
void
frag6_deq(struct ip6asfrag *af6)
{
IP6Q_LOCK_ASSERT();
af6->ip6af_up->ip6af_down = af6->ip6af_down;
af6->ip6af_down->ip6af_up = af6->ip6af_up;
}
void
frag6_insque(struct ip6q *new, struct ip6q *old)
{
IP6Q_LOCK_ASSERT();
new->ip6q_prev = old;
new->ip6q_next = old->ip6q_next;
old->ip6q_next->ip6q_prev= new;
old->ip6q_next = new;
}
void
frag6_remque(struct ip6q *p6)
{
IP6Q_LOCK_ASSERT();
p6->ip6q_prev->ip6q_next = p6->ip6q_next;
p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
}
/*
* IPv6 reassembling timer processing;
* if a timer expires on a reassembly
* queue, discard it.
*/
void
frag6_slowtimo(void)
{
VNET_ITERATOR_DECL(vnet_iter);
struct ip6q *q6;
VNET_LIST_RLOCK_NOSLEEP();
IP6Q_LOCK();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
q6 = V_ip6q.ip6q_next;
if (q6)
while (q6 != &V_ip6q) {
--q6->ip6q_ttl;
q6 = q6->ip6q_next;
if (q6->ip6q_prev->ip6q_ttl == 0) {
V_ip6stat.ip6s_fragtimeout++;
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
frag6_freef(q6->ip6q_prev);
}
}
/*
* If we are over the maximum number of fragments
* (due to the limit being lowered), drain off
* enough to get down to the new limit.
*/
while (V_frag6_nfragpackets > (u_int)V_ip6_maxfragpackets &&
V_ip6q.ip6q_prev) {
V_ip6stat.ip6s_fragoverflow++;
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
frag6_freef(V_ip6q.ip6q_prev);
}
CURVNET_RESTORE();
}
IP6Q_UNLOCK();
VNET_LIST_RUNLOCK_NOSLEEP();
}
/*
* Drain off all datagram fragments.
*/
void
frag6_drain(void)
{
VNET_ITERATOR_DECL(vnet_iter);
VNET_LIST_RLOCK_NOSLEEP();
if (IP6Q_TRYLOCK() == 0) {
VNET_LIST_RUNLOCK_NOSLEEP();
return;
}
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
while (V_ip6q.ip6q_next != &V_ip6q) {
V_ip6stat.ip6s_fragdropped++;
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
frag6_freef(V_ip6q.ip6q_next);
}
CURVNET_RESTORE();
}
IP6Q_UNLOCK();
VNET_LIST_RUNLOCK_NOSLEEP();
}