freebsd-nq/sys/dev/iwn/if_iwn.c

4495 lines
123 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2007
* Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008
* Benjamin Close <benjsc@FreeBSD.org>
* Copyright (c) 2008 Sam Leffler, Errno Consulting
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/endian.h>
#include <sys/firmware.h>
#include <sys/limits.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <dev/iwn/if_iwnreg.h>
#include <dev/iwn/if_iwnvar.h>
static int iwn_probe(device_t);
static int iwn_attach(device_t);
static int iwn_detach(device_t);
static int iwn_cleanup(device_t);
static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void iwn_vap_delete(struct ieee80211vap *);
static int iwn_shutdown(device_t);
static int iwn_suspend(device_t);
static int iwn_resume(device_t);
static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
void **, bus_size_t, bus_size_t, int);
static void iwn_dma_contig_free(struct iwn_dma_info *);
int iwn_alloc_shared(struct iwn_softc *);
void iwn_free_shared(struct iwn_softc *);
int iwn_alloc_kw(struct iwn_softc *);
void iwn_free_kw(struct iwn_softc *);
int iwn_alloc_fwmem(struct iwn_softc *);
void iwn_free_fwmem(struct iwn_softc *);
struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
void iwn_free_rbuf(void *, void *);
int iwn_alloc_rpool(struct iwn_softc *);
void iwn_free_rpool(struct iwn_softc *);
int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
int);
void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
const uint8_t [IEEE80211_ADDR_LEN]);
void iwn_newassoc(struct ieee80211_node *, int);
int iwn_media_change(struct ifnet *);
int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
void iwn_mem_lock(struct iwn_softc *);
void iwn_mem_unlock(struct iwn_softc *);
uint32_t iwn_mem_read(struct iwn_softc *, uint32_t);
void iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
void iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
const uint32_t *, int);
int iwn_eeprom_lock(struct iwn_softc *);
void iwn_eeprom_unlock(struct iwn_softc *);
int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
int iwn_transfer_microcode(struct iwn_softc *, const uint8_t *, int);
int iwn_transfer_firmware(struct iwn_softc *);
int iwn_load_firmware(struct iwn_softc *);
void iwn_unload_firmware(struct iwn_softc *);
static void iwn_timer_timeout(void *);
static void iwn_calib_reset(struct iwn_softc *);
void iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
void iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
void iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
void iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
void iwn_notif_intr(struct iwn_softc *);
void iwn_intr(void *);
void iwn_read_eeprom(struct iwn_softc *,
uint8_t macaddr[IEEE80211_ADDR_LEN]);
static void iwn_read_eeprom_channels(struct iwn_softc *);
void iwn_print_power_group(struct iwn_softc *, int);
uint8_t iwn_plcp_signal(int);
int iwn_tx_data(struct iwn_softc *, struct mbuf *,
struct ieee80211_node *, struct iwn_tx_ring *);
void iwn_start(struct ifnet *);
void iwn_start_locked(struct ifnet *);
static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void iwn_watchdog(struct iwn_softc *);
int iwn_ioctl(struct ifnet *, u_long, caddr_t);
int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
int iwn_set_link_quality(struct iwn_softc *, uint8_t,
const struct ieee80211_channel *, int);
int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
const struct ieee80211_key *);
int iwn_wme_update(struct ieee80211com *);
void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
int iwn_set_critical_temp(struct iwn_softc *);
void iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
void iwn_power_calibration(struct iwn_softc *, int);
int iwn_set_txpower(struct iwn_softc *,
struct ieee80211_channel *, int);
int8_t iwn_get_rssi(struct iwn_softc *, const struct iwn_rx_stat *);
int iwn_get_noise(const struct iwn_rx_general_stats *);
int iwn_get_temperature(struct iwn_softc *);
int iwn_init_sensitivity(struct iwn_softc *);
void iwn_compute_differential_gain(struct iwn_softc *,
const struct iwn_rx_general_stats *);
void iwn_tune_sensitivity(struct iwn_softc *,
const struct iwn_rx_stats *);
int iwn_send_sensitivity(struct iwn_softc *);
int iwn_auth(struct iwn_softc *, struct ieee80211vap *);
int iwn_run(struct iwn_softc *, struct ieee80211vap *);
int iwn_scan(struct iwn_softc *);
int iwn_config(struct iwn_softc *);
void iwn_post_alive(struct iwn_softc *);
void iwn_stop_master(struct iwn_softc *);
int iwn_reset(struct iwn_softc *);
void iwn_hw_config(struct iwn_softc *);
void iwn_init_locked(struct iwn_softc *);
void iwn_init(void *);
void iwn_stop_locked(struct iwn_softc *);
void iwn_stop(struct iwn_softc *);
static void iwn_scan_start(struct ieee80211com *);
static void iwn_scan_end(struct ieee80211com *);
static void iwn_set_channel(struct ieee80211com *);
static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
static void iwn_scan_mindwell(struct ieee80211_scan_state *);
static void iwn_hwreset(void *, int);
static void iwn_radioon(void *, int);
static void iwn_radiooff(void *, int);
static void iwn_sysctlattach(struct iwn_softc *);
#define IWN_DEBUG
#ifdef IWN_DEBUG
enum {
IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */
IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */
IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */
IWN_DEBUG_RESET = 0x00000010, /* reset processing */
IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */
IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */
IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */
IWN_DEBUG_INTR = 0x00000100, /* ISR */
IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */
IWN_DEBUG_NODE = 0x00000400, /* node management */
IWN_DEBUG_LED = 0x00000800, /* led management */
IWN_DEBUG_CMD = 0x00001000, /* cmd submission */
IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */
IWN_DEBUG_ANY = 0xffffffff
};
#define DPRINTF(sc, m, fmt, ...) do { \
if (sc->sc_debug & (m)) \
printf(fmt, __VA_ARGS__); \
} while (0)
static const char *iwn_intr_str(uint8_t);
#else
#define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
#endif
struct iwn_ident {
uint16_t vendor;
uint16_t device;
const char *name;
};
static const struct iwn_ident iwn_ident_table [] = {
{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
{ 0, 0, NULL }
};
static int
iwn_probe(device_t dev)
{
const struct iwn_ident *ident;
for (ident = iwn_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return 0;
}
}
return ENXIO;
}
static int
iwn_attach(device_t dev)
{
struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
int i, error, result;
uint8_t macaddr[IEEE80211_ADDR_LEN];
sc->sc_dev = dev;
/* XXX */
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
device_printf(dev, "chip is in D%d power mode "
"-- setting to D0\n", pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
}
/* clear device specific PCI configuration register 0x41 */
pci_write_config(dev, 0x41, 0, 1);
/* enable bus-mastering */
pci_enable_busmaster(dev);
sc->mem_rid= PCIR_BAR(0);
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem == NULL ) {
device_printf(dev, "could not allocate memory resources\n");
error = ENOMEM;
return error;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
sc->irq_rid = 0;
if ((result = pci_msi_count(dev)) == 1 &&
pci_alloc_msi(dev, &result) == 0)
sc->irq_rid = 1;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
error = ENOMEM;
return error;
}
IWN_LOCK_INIT(sc);
callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
TASK_INIT(&sc->sc_reinit_task, 0, iwn_hwreset, sc );
TASK_INIT(&sc->sc_radioon_task, 0, iwn_radioon, sc );
TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radiooff, sc );
/*
* Put adapter into a known state.
*/
error = iwn_reset(sc);
if (error != 0) {
device_printf(dev,
"could not reset adapter, error %d\n", error);
goto fail;
}
/*
* Allocate DMA memory for firmware transfers.
*/
error = iwn_alloc_fwmem(sc);
if (error != 0) {
device_printf(dev,
"could not allocate firmware memory, error %d\n", error);
goto fail;
}
/*
* Allocate a "keep warm" page.
*/
error = iwn_alloc_kw(sc);
if (error != 0) {
device_printf(dev,
"could not allocate keep-warm page, error %d\n", error);
goto fail;
}
/*
* Allocate shared area (communication area).
*/
error = iwn_alloc_shared(sc);
if (error != 0) {
device_printf(dev,
"could not allocate shared area, error %d\n", error);
goto fail;
}
/*
* Allocate Tx rings.
*/
for (i = 0; i < IWN_NTXQUEUES; i++) {
error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
if (error != 0) {
device_printf(dev,
"could not allocate Tx ring %d, error %d\n",
i, error);
goto fail;
}
}
error = iwn_alloc_rx_ring(sc, &sc->rxq);
if (error != 0 ){
device_printf(dev,
"could not allocate Rx ring, error %d\n", error);
goto fail;
}
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
goto fail;
}
ic = ifp->if_l2com;
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
#if 0
| IEEE80211_C_BGSCAN /* background scanning */
| IEEE80211_C_IBSS /* ibss/adhoc mode */
#endif
| IEEE80211_C_WME /* WME */
;
#if 0
/* XXX disable until HT channel setup works */
ic->ic_htcaps =
IEEE80211_HTCAP_SMPS_ENA /* SM PS mode enabled */
| IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width */
| IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */
| IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */
| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
| IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */
/* s/w capabilities */
| IEEE80211_HTC_HT /* HT operation */
| IEEE80211_HTC_AMPDU /* tx A-MPDU */
| IEEE80211_HTC_AMSDU /* tx A-MSDU */
;
#endif
/* read supported channels and MAC address from EEPROM */
iwn_read_eeprom(sc, macaddr);
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwn_init;
ifp->if_ioctl = iwn_ioctl;
ifp->if_start = iwn_start;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ieee80211_ifattach(ic, macaddr);
ic->ic_vap_create = iwn_vap_create;
ic->ic_vap_delete = iwn_vap_delete;
ic->ic_raw_xmit = iwn_raw_xmit;
ic->ic_node_alloc = iwn_node_alloc;
ic->ic_newassoc = iwn_newassoc;
ic->ic_wme.wme_update = iwn_wme_update;
ic->ic_scan_start = iwn_scan_start;
ic->ic_scan_end = iwn_scan_end;
ic->ic_set_channel = iwn_set_channel;
ic->ic_scan_curchan = iwn_scan_curchan;
ic->ic_scan_mindwell = iwn_scan_mindwell;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
IWN_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
IWN_RX_RADIOTAP_PRESENT);
iwn_sysctlattach(sc);
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, iwn_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt, error %d\n", error);
goto fail;
}
ieee80211_announce(ic);
return 0;
fail:
iwn_cleanup(dev);
return error;
}
static int
iwn_detach(device_t dev)
{
iwn_cleanup(dev);
return 0;
}
/*
* Cleanup any device resources that were allocated
*/
int
iwn_cleanup(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
int i;
ieee80211_draintask(ic, &sc->sc_reinit_task);
ieee80211_draintask(ic, &sc->sc_radioon_task);
ieee80211_draintask(ic, &sc->sc_radiooff_task);
if (ifp != NULL) {
iwn_stop(sc);
callout_drain(&sc->sc_timer_to);
ieee80211_ifdetach(ic);
}
iwn_unload_firmware(sc);
iwn_free_rx_ring(sc, &sc->rxq);
for (i = 0; i < IWN_NTXQUEUES; i++)
iwn_free_tx_ring(sc, &sc->txq[i]);
iwn_free_kw(sc);
iwn_free_fwmem(sc);
if (sc->irq != NULL) {
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
if (sc->irq_rid == 1)
pci_release_msi(dev);
}
if (sc->mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
if (ifp != NULL)
if_free(ifp);
IWN_LOCK_DESTROY(sc);
return 0;
}
static struct ieee80211vap *
iwn_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct iwn_vap *ivp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (ivp == NULL)
return NULL;
vap = &ivp->iv_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
vap->iv_bmissthreshold = 10; /* override default */
/* override with driver methods */
ivp->iv_newstate = vap->iv_newstate;
vap->iv_newstate = iwn_newstate;
ieee80211_amrr_init(&ivp->iv_amrr, vap,
IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
500 /*ms*/);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
ic->ic_opmode = opmode;
return vap;
}
static void
iwn_vap_delete(struct ieee80211vap *vap)
{
struct iwn_vap *ivp = IWN_VAP(vap);
ieee80211_amrr_cleanup(&ivp->iv_amrr);
ieee80211_vap_detach(vap);
free(ivp, M_80211_VAP);
}
static int
iwn_shutdown(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
iwn_stop(sc);
return 0;
}
static int
iwn_suspend(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
iwn_stop(sc);
return 0;
}
static int
iwn_resume(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
pci_write_config(dev, 0x41, 0, 1);
if (ifp->if_flags & IFF_UP)
iwn_init(sc);
return 0;
}
static void
iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
void **kvap, bus_size_t size, bus_size_t alignment, int flags)
{
int error, lalignment, i;
/*
* FreeBSD can't guarrenty 16k alignment at the moment (11/2007) so
* we allocate an extra 12k with 4k alignement and walk through
* it trying to find where the alignment is. It's a nasty fix for
* a bigger problem.
*/
DPRINTF(sc, IWN_DEBUG_RESET,
"Size: %zd - alignment %zd\n", size, alignment);
if (alignment == 0x4000) {
size += 12*1024;
lalignment = 4096;
DPRINTF(sc, IWN_DEBUG_RESET, "%s\n",
"Attempting to find a 16k boundary");
} else
lalignment = alignment;
dma->size = size;
dma->tag = NULL;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), lalignment,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1, size, flags, NULL, NULL, &dma->tag);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: bus_dma_tag_create failed, error %d\n",
__func__, error);
goto fail;
}
error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
flags | BUS_DMA_ZERO, &dma->map);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: bus_dmamem_alloc failed, error %d\n",
__func__, error);
goto fail;
}
if (alignment == 0x4000) {
for (i = 0; i < 3 && (((uintptr_t)dma->vaddr) & 0x3fff); i++) {
DPRINTF(sc, IWN_DEBUG_RESET, "%s\n",
"Memory Unaligned, shifting pointer by 4k");
dma->vaddr += 4096;
size -= 4096;
}
if ((((uintptr_t)dma->vaddr ) & (alignment-1))) {
DPRINTF(sc, IWN_DEBUG_ANY,
"%s: failed to align memory, vaddr %p, align %zd\n",
__func__, dma->vaddr, alignment);
error = ENOMEM;
goto fail;
}
}
error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
size, iwn_dma_map_addr, &dma->paddr, flags);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: bus_dmamap_load failed, error %d\n", __func__, error);
goto fail;
}
if (kvap != NULL)
*kvap = dma->vaddr;
return 0;
fail:
iwn_dma_contig_free(dma);
return error;
}
static void
iwn_dma_contig_free(struct iwn_dma_info *dma)
{
if (dma->tag != NULL) {
if (dma->map != NULL) {
if (dma->paddr == 0) {
bus_dmamap_sync(dma->tag, dma->map,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
}
bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
}
bus_dma_tag_destroy(dma->tag);
}
}
int
iwn_alloc_shared(struct iwn_softc *sc)
{
/* must be aligned on a 1KB boundary */
return iwn_dma_contig_alloc(sc, &sc->shared_dma,
(void **)&sc->shared, sizeof (struct iwn_shared), 1024,
BUS_DMA_NOWAIT);
}
void
iwn_free_shared(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->shared_dma);
}
int
iwn_alloc_kw(struct iwn_softc *sc)
{
/* must be aligned on a 4k boundary */
return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL,
PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
}
void
iwn_free_kw(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->kw_dma);
}
int
iwn_alloc_fwmem(struct iwn_softc *sc)
{
/* allocate enough contiguous space to store text and data */
return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
BUS_DMA_NOWAIT);
}
void
iwn_free_fwmem(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->fw_dma);
}
int
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int i, error;
ring->cur = 0;
error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
(void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t),
IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate rx ring DMA memory, error %d\n",
__func__, error);
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: bus_dma_tag_create_failed, error %d\n",
__func__, error);
goto fail;
}
/*
* Setup Rx buffers.
*/
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
struct mbuf *m;
bus_addr_t paddr;
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: bus_dmamap_create failed, error %d\n",
__func__, error);
goto fail;
}
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
if (m == NULL) {
device_printf(sc->sc_dev,
"%s: could not allocate rx mbuf\n", __func__);
error = ENOMEM;
goto fail;
}
/* map page */
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(m, caddr_t), MJUMPAGESIZE,
iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev,
"%s: bus_dmamap_load failed, error %d\n",
__func__, error);
m_freem(m);
error = ENOMEM; /* XXX unique code */
goto fail;
}
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
data->m = m;
/* Rx buffers are aligned on a 256-byte boundary */
ring->desc[i] = htole32(paddr >> 8);
}
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
return 0;
fail:
iwn_free_rx_ring(sc, ring);
return error;
}
void
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int ntries;
iwn_mem_lock(sc);
IWN_WRITE(sc, IWN_RX_CONFIG, 0);
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
break;
DELAY(10);
}
#ifdef IWN_DEBUG
if (ntries == 100)
DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "timeout resetting Rx ring");
#endif
iwn_mem_unlock(sc);
ring->cur = 0;
}
void
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
for (i = 0; i < IWN_RX_RING_COUNT; i++)
if (ring->data[i].m != NULL)
m_freem(ring->data[i].m);
}
int
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
{
bus_size_t size;
int i, error;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
(void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate tx ring DMA memory, error %d\n",
__func__, error);
goto fail;
}
size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
(void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate tx cmd DMA memory, error %d\n",
__func__, error);
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: bus_dma_tag_create_failed, error %d\n",
__func__, error);
goto fail;
}
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: bus_dmamap_create failed, error %d\n",
__func__, error);
goto fail;
}
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
}
return 0;
fail:
iwn_free_tx_ring(sc, ring);
return error;
}
void
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
uint32_t tmp;
int i, ntries;
iwn_mem_lock(sc);
IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
for (ntries = 0; ntries < 20; ntries++) {
tmp = IWN_READ(sc, IWN_TX_STATUS);
if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
break;
DELAY(10);
}
#ifdef IWN_DEBUG
if (ntries == 20)
DPRINTF(sc, IWN_DEBUG_RESET,
"%s: timeout resetting Tx ring %d\n", __func__, ring->qid);
#endif
iwn_mem_unlock(sc);
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
ring->queued = 0;
ring->cur = 0;
}
void
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->cmd_dma);
if (ring->data != NULL) {
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
}
}
}
struct ieee80211_node *
iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
}
void
iwn_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ieee80211vap *vap = ni->ni_vap;
ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
&IWN_NODE(ni)->amn, ni);
}
int
iwn_media_change(struct ifnet *ifp)
{
int error = ieee80211_media_change(ifp);
/* NB: only the fixed rate can change and that doesn't need a reset */
return (error == ENETRESET ? 0 : error);
}
int
iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct iwn_vap *ivp = IWN_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct iwn_softc *sc = ic->ic_ifp->if_softc;
int error;
DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
IWN_LOCK(sc);
callout_stop(&sc->sc_timer_to);
if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
/* !AUTH -> AUTH requires adapter config */
error = iwn_auth(sc, vap);
}
if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
/*
* !RUN -> RUN requires setting the association id
* which is done with a firmware cmd. We also defer
* starting the timers until that work is done.
*/
error = iwn_run(sc, vap);
}
if (nstate == IEEE80211_S_RUN) {
/*
* RUN -> RUN transition; just restart the timers.
*/
iwn_calib_reset(sc);
}
IWN_UNLOCK(sc);
IEEE80211_LOCK(ic);
return ivp->iv_newstate(vap, nstate, arg);
}
/*
* Grab exclusive access to NIC memory.
*/
void
iwn_mem_lock(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = IWN_READ(sc, IWN_GPIO_CTL);
IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
/* spin until we actually get the lock */
for (ntries = 0; ntries < 1000; ntries++) {
if ((IWN_READ(sc, IWN_GPIO_CTL) &
(IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 1000)
device_printf(sc->sc_dev,
"%s: could not lock memory\n", __func__);
}
/*
* Release lock on NIC memory.
*/
void
iwn_mem_unlock(struct iwn_softc *sc)
{
uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
}
uint32_t
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
return IWN_READ(sc, IWN_READ_MEM_DATA);
}
void
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
}
void
iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
const uint32_t *data, int wlen)
{
for (; wlen > 0; wlen--, data++, addr += 4)
iwn_mem_write(sc, addr, *data);
}
int
iwn_eeprom_lock(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = IWN_READ(sc, IWN_HWCONFIG);
IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
/* spin until we actually get the lock */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
void
iwn_eeprom_unlock(struct iwn_softc *sc)
{
uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
}
/*
* Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
* instead of using the traditional bit-bang method.
*/
int
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
{
uint8_t *out = data;
uint32_t val;
int ntries, tmp;
iwn_mem_lock(sc);
for (; len > 0; len -= 2, addr++) {
IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
tmp = IWN_READ(sc, IWN_EEPROM_CTL);
IWN_WRITE(sc, IWN_EEPROM_CTL, tmp & ~IWN_EEPROM_MSK );
for (ntries = 0; ntries < 10; ntries++) {
if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
IWN_EEPROM_READY)
break;
DELAY(5);
}
if (ntries == 10) {
device_printf(sc->sc_dev,"could not read EEPROM\n");
return ETIMEDOUT;
}
*out++ = val >> 16;
if (len > 1)
*out++ = val >> 24;
}
iwn_mem_unlock(sc);
return 0;
}
/*
* The firmware boot code is small and is intended to be copied directly into
* the NIC internal memory.
*/
int
iwn_transfer_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
{
int ntries;
size /= sizeof (uint32_t);
iwn_mem_lock(sc);
/* copy microcode image into NIC memory */
iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
(const uint32_t *)ucode, size);
iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
/* run microcode */
iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
/* wait for transfer to complete */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
break;
DELAY(10);
}
if (ntries == 1000) {
iwn_mem_unlock(sc);
device_printf(sc->sc_dev,
"%s: could not load boot firmware\n", __func__);
return ETIMEDOUT;
}
iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
iwn_mem_unlock(sc);
return 0;
}
int
iwn_load_firmware(struct iwn_softc *sc)
{
int error;
KASSERT(sc->fw_fp == NULL, ("firmware already loaded"));
IWN_UNLOCK(sc);
/* load firmware image from disk */
sc->fw_fp = firmware_get("iwnfw");
if (sc->fw_fp == NULL) {
device_printf(sc->sc_dev,
"%s: could not load firmare image \"iwnfw\"\n", __func__);
error = EINVAL;
} else
error = 0;
IWN_LOCK(sc);
return error;
}
int
iwn_transfer_firmware(struct iwn_softc *sc)
{
struct iwn_dma_info *dma = &sc->fw_dma;
const struct iwn_firmware_hdr *hdr;
const uint8_t *init_text, *init_data, *main_text, *main_data;
const uint8_t *boot_text;
uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
uint32_t boot_textsz;
int error = 0;
const struct firmware *fp = sc->fw_fp;
/* extract firmware header information */
if (fp->datasize < sizeof (struct iwn_firmware_hdr)) {
device_printf(sc->sc_dev,
"%s: truncated firmware header: %zu bytes, expecting %zu\n",
__func__, fp->datasize, sizeof (struct iwn_firmware_hdr));
error = EINVAL;
goto fail;
}
hdr = (const struct iwn_firmware_hdr *)fp->data;
main_textsz = le32toh(hdr->main_textsz);
main_datasz = le32toh(hdr->main_datasz);
init_textsz = le32toh(hdr->init_textsz);
init_datasz = le32toh(hdr->init_datasz);
boot_textsz = le32toh(hdr->boot_textsz);
/* sanity-check firmware segments sizes */
if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
(boot_textsz & 3) != 0) {
device_printf(sc->sc_dev,
"%s: invalid firmware header, main [%d,%d], init [%d,%d] "
"boot %d\n", __func__, main_textsz, main_datasz,
init_textsz, init_datasz, boot_textsz);
error = EINVAL;
goto fail;
}
/* check that all firmware segments are present */
if (fp->datasize < sizeof (struct iwn_firmware_hdr) + main_textsz +
main_datasz + init_textsz + init_datasz + boot_textsz) {
device_printf(sc->sc_dev, "%s: firmware file too short: "
"%zu bytes, main [%d, %d], init [%d,%d] boot %d\n",
__func__, fp->datasize, main_textsz, main_datasz,
init_textsz, init_datasz, boot_textsz);
error = EINVAL;
goto fail;
}
/* get pointers to firmware segments */
main_text = (const uint8_t *)(hdr + 1);
main_data = main_text + main_textsz;
init_text = main_data + main_datasz;
init_data = init_text + init_textsz;
boot_text = init_data + init_datasz;
/* copy initialization images into pre-allocated DMA-safe memory */
memcpy(dma->vaddr, init_data, init_datasz);
memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
/* tell adapter where to find initialization images */
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
(dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
iwn_mem_unlock(sc);
/* load firmware boot code */
error = iwn_transfer_microcode(sc, boot_text, boot_textsz);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not load boot firmware, error %d\n",
__func__, error);
goto fail;
}
/* now press "execute" ;-) */
IWN_WRITE(sc, IWN_RESET, 0);
/* wait at most one second for first alive notification */
error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
if (error != 0) {
/* this isn't what was supposed to happen.. */
device_printf(sc->sc_dev,
"%s: timeout waiting for first alive notice, error %d\n",
__func__, error);
goto fail;
}
/* copy runtime images into pre-allocated DMA-safe memory */
memcpy(dma->vaddr, main_data, main_datasz);
memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
/* tell adapter where to find runtime images */
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
(dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
iwn_mem_unlock(sc);
/* wait at most one second for second alive notification */
error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
if (error != 0) {
/* this isn't what was supposed to happen.. */
device_printf(sc->sc_dev,
"%s: timeout waiting for second alive notice, error %d\n",
__func__, error);
goto fail;
}
return 0;
fail:
return error;
}
void
iwn_unload_firmware(struct iwn_softc *sc)
{
if (sc->fw_fp != NULL) {
firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
sc->fw_fp = NULL;
}
}
static void
iwn_timer_timeout(void *arg)
{
struct iwn_softc *sc = arg;
IWN_LOCK_ASSERT(sc);
if (sc->calib_cnt && --sc->calib_cnt == 0) {
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
"send statistics request");
(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
sc->calib_cnt = 60; /* do calibration every 60s */
}
iwn_watchdog(sc); /* NB: piggyback tx watchdog */
callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
}
static void
iwn_calib_reset(struct iwn_softc *sc)
{
callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
sc->calib_cnt = 60; /* do calibration every 60s */
}
void
iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_rx_stat *stat;
DPRINTF(sc, IWN_DEBUG_RECV, "%s\n", "received AMPDU stats");
/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
stat = (struct iwn_rx_stat *)(desc + 1);
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
sc->last_rx_valid = 1;
}
static __inline int
maprate(int iwnrate)
{
switch (iwnrate) {
/* CCK rates */
case 10: return 2;
case 20: return 4;
case 55: return 11;
case 110: return 22;
/* OFDM rates */
case 0xd: return 12;
case 0xf: return 18;
case 0x5: return 24;
case 0x7: return 36;
case 0x9: return 48;
case 0xb: return 72;
case 0x1: return 96;
case 0x3: return 108;
/* XXX MCS */
}
/* unknown rate: should not happen */
return 0;
}
void
iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_rx_ring *ring = &sc->rxq;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *mnew;
struct iwn_rx_stat *stat;
caddr_t head;
uint32_t *tail;
int8_t rssi, nf;
int len, error;
bus_addr_t paddr;
if (desc->type == IWN_AMPDU_RX_DONE) {
/* check for prior AMPDU_RX_START */
if (!sc->last_rx_valid) {
DPRINTF(sc, IWN_DEBUG_ANY,
"%s: missing AMPDU_RX_START\n", __func__);
ifp->if_ierrors++;
return;
}
sc->last_rx_valid = 0;
stat = &sc->last_rx_stat;
} else
stat = (struct iwn_rx_stat *)(desc + 1);
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
device_printf(sc->sc_dev,
"%s: invalid rx statistic header, len %d\n",
__func__, stat->cfg_phy_len);
ifp->if_ierrors++;
return;
}
if (desc->type == IWN_AMPDU_RX_DONE) {
struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1);
head = (caddr_t)(ampdu + 1);
len = le16toh(ampdu->len);
} else {
head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
len = le16toh(stat->len);
}
/* discard Rx frames with bad CRC early */
tail = (uint32_t *)(head + len);
if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
__func__, le32toh(*tail));
ifp->if_ierrors++;
return;
}
if (len < sizeof (struct ieee80211_frame)) {
DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
__func__, len);
ifp->if_ierrors++;
return;
}
/* XXX don't need mbuf, just dma buffer */
mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
if (mnew == NULL) {
DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
__func__);
ifp->if_ierrors++;
return;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(mnew, caddr_t), MJUMPAGESIZE,
iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev,
"%s: bus_dmamap_load failed, error %d\n", __func__, error);
m_freem(mnew);
ifp->if_ierrors++;
return;
}
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
/* finalize mbuf and swap in new one */
m = data->m;
m->m_pkthdr.rcvif = ifp;
m->m_data = head;
m->m_pkthdr.len = m->m_len = len;
data->m = mnew;
/* update Rx descriptor */
ring->desc[ring->cur] = htole32(paddr >> 8);
rssi = iwn_get_rssi(sc, stat);
/* grab a reference to the source node */
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
(ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
if (ieee80211_radiotap_active(ic)) {
struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_tsft = htole64(stat->tstamp);
tap->wr_flags = 0;
if (stat->flags & htole16(IWN_CONFIG_SHPREAMBLE))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
tap->wr_rate = maprate(stat->rate);
tap->wr_dbm_antsignal = rssi;
tap->wr_dbm_antnoise = nf;
}
IWN_UNLOCK(sc);
/* send the frame to the 802.11 layer */
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi - nf, nf);
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi - nf, nf);
IWN_LOCK(sc);
}
void
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwn_calib_state *calib = &sc->calib;
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
/* beacon stats are meaningful only when associated and not scanning */
if (vap->iv_state != IEEE80211_S_RUN ||
(ic->ic_flags & IEEE80211_F_SCAN))
return;
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
iwn_calib_reset(sc);
/* test if temperature has changed */
if (stats->general.temp != sc->rawtemp) {
int temp;
sc->rawtemp = stats->general.temp;
temp = iwn_get_temperature(sc);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
__func__, temp);
/* update Tx power if need be */
iwn_power_calibration(sc, temp);
}
if (desc->type != IWN_BEACON_STATISTICS)
return; /* reply to a statistics request */
sc->noise = iwn_get_noise(&stats->rx.general);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
/* test that RSSI and noise are present in stats report */
if (stats->rx.general.flags != htole32(1)) {
DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
"received statistics without RSSI");
return;
}
if (calib->state == IWN_CALIB_STATE_ASSOC)
iwn_compute_differential_gain(sc, &stats->rx.general);
else if (calib->state == IWN_CALIB_STATE_RUN)
iwn_tune_sensitivity(sc, &stats->rx);
}
void
iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct ifnet *ifp = sc->sc_ifp;
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
struct iwn_tx_data *data = &ring->data[desc->idx];
struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
struct iwn_node *wn = IWN_NODE(data->ni);
struct mbuf *m;
struct ieee80211_node *ni;
uint32_t status;
KASSERT(data->ni != NULL, ("no node"));
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
"qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
__func__, desc->qid, desc->idx, stat->ntries,
stat->nkill, stat->rate, le16toh(stat->duration),
le32toh(stat->status));
/*
* Update rate control statistics for the node.
*/
status = le32toh(stat->status) & 0xff;
if (status & 0x80) {
DPRINTF(sc, IWN_DEBUG_ANY, "%s: status 0x%x\n",
__func__, le32toh(stat->status));
ifp->if_oerrors++;
ieee80211_amrr_tx_complete(&wn->amn,
IEEE80211_AMRR_FAILURE, stat->ntries);
} else {
ieee80211_amrr_tx_complete(&wn->amn,
IEEE80211_AMRR_SUCCESS, stat->ntries);
}
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m = data->m, data->m = NULL;
ni = data->ni, data->ni = NULL;
if (m->m_flags & M_TXCB) {
/*
* Channels marked for "radar" require traffic to be received
* to unlock before we can transmit. Until traffic is seen
* any attempt to transmit is returned immediately with status
* set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily
* happen on first authenticate after scanning. To workaround
* this we ignore a failure of this sort in AUTH state so the
* 802.11 layer will fall back to using a timeout to wait for
* the AUTH reply. This allows the firmware time to see
* traffic so a subsequent retry of AUTH succeeds. It's
* unclear why the firmware does not maintain state for
* channels recently visited as this would allow immediate
* use of the channel after a scan (where we see traffic).
*/
if (status == IWN_TX_FAIL_TX_LOCKED &&
ni->ni_vap->iv_state == IEEE80211_S_AUTH)
ieee80211_process_callback(ni, m, 0);
else
ieee80211_process_callback(ni, m,
(status & IWN_TX_FAIL) != 0);
}
m_freem(m);
ieee80211_free_node(ni);
ring->queued--;
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
iwn_start_locked(ifp);
}
void
iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_data *data;
if ((desc->qid & 0xf) != 4)
return; /* not a command ack */
data = &ring->data[desc->idx];
/* if the command was mapped in a mbuf, free it */
if (data->m != NULL) {
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->cmd[desc->idx]);
}
void
iwn_notif_intr(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint16_t hw;
hw = le16toh(sc->shared->closed_count) & 0xfff;
while (sc->rxq.cur != hw) {
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
DPRINTF(sc, IWN_DEBUG_RECV,
"%s: qid %x idx %d flags %x type %d(%s) len %d\n",
__func__, desc->qid, desc->idx, desc->flags,
desc->type, iwn_intr_str(desc->type),
le16toh(desc->len));
if (!(desc->qid & 0x80)) /* reply to a command */
iwn_cmd_intr(sc, desc);
switch (desc->type) {
case IWN_RX_DONE:
case IWN_AMPDU_RX_DONE:
iwn_rx_intr(sc, desc, data);
break;
case IWN_AMPDU_RX_START:
iwn_ampdu_rx_start(sc, desc);
break;
case IWN_TX_DONE:
/* a 802.11 frame has been transmitted */
iwn_tx_intr(sc, desc);
break;
case IWN_RX_STATISTICS:
case IWN_BEACON_STATISTICS:
iwn_rx_statistics(sc, desc);
break;
case IWN_BEACON_MISSED: {
struct iwn_beacon_missed *miss =
(struct iwn_beacon_missed *)(desc + 1);
int misses = le32toh(miss->consecutive);
/* XXX not sure why we're notified w/ zero */
if (misses == 0)
break;
DPRINTF(sc, IWN_DEBUG_STATE,
"%s: beacons missed %d/%d\n", __func__,
misses, le32toh(miss->total));
/*
* If more than 5 consecutive beacons are missed,
* reinitialize the sensitivity state machine.
*/
if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
(void) iwn_init_sensitivity(sc);
if (misses >= vap->iv_bmissthreshold)
ieee80211_beacon_miss(ic);
break;
}
case IWN_UC_READY: {
struct iwn_ucode_info *uc =
(struct iwn_ucode_info *)(desc + 1);
/* the microcontroller is ready */
DPRINTF(sc, IWN_DEBUG_RESET,
"microcode alive notification version=%d.%d "
"subtype=%x alive=%x\n", uc->major, uc->minor,
uc->subtype, le32toh(uc->valid));
if (le32toh(uc->valid) != 1) {
device_printf(sc->sc_dev,
"microcontroller initialization failed");
break;
}
if (uc->subtype == IWN_UCODE_INIT) {
/* save microcontroller's report */
memcpy(&sc->ucode_info, uc, sizeof (*uc));
}
break;
}
case IWN_STATE_CHANGED: {
uint32_t *status = (uint32_t *)(desc + 1);
/*
* State change allows hardware switch change to be
* noted. However, we handle this in iwn_intr as we
* get both the enable/disble intr.
*/
DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
le32toh(*status));
break;
}
case IWN_START_SCAN: {
struct iwn_start_scan *scan =
(struct iwn_start_scan *)(desc + 1);
DPRINTF(sc, IWN_DEBUG_ANY,
"%s: scanning channel %d status %x\n",
__func__, scan->chan, le32toh(scan->status));
break;
}
case IWN_STOP_SCAN: {
struct iwn_stop_scan *scan =
(struct iwn_stop_scan *)(desc + 1);
DPRINTF(sc, IWN_DEBUG_STATE,
"scan finished nchan=%d status=%d chan=%d\n",
scan->nchan, scan->status, scan->chan);
ieee80211_scan_next(vap);
break;
}
}
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
}
/* tell the firmware what we have processed */
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
}
static void
iwn_rftoggle_intr(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
IWN_LOCK_ASSERT(sc);
device_printf(sc->sc_dev, "RF switch: radio %s\n",
(tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
if (tmp & IWN_GPIO_RF_ENABLED)
ieee80211_runtask(ic, &sc->sc_radioon_task);
else
ieee80211_runtask(ic, &sc->sc_radiooff_task);
}
static void
iwn_error_intr(struct iwn_softc *sc, uint32_t r1, uint32_t r2)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
IWN_LOCK_ASSERT(sc);
device_printf(sc->sc_dev, "error, INTR=%b STATUS=0x%x\n",
r1, IWN_INTR_BITS, r2);
if (vap != NULL)
ieee80211_cancel_scan(vap);
ieee80211_runtask(ic, &sc->sc_reinit_task);
}
void
iwn_intr(void *arg)
{
struct iwn_softc *sc = arg;
uint32_t r1, r2;
IWN_LOCK(sc);
/* disable interrupts */
IWN_WRITE(sc, IWN_MASK, 0);
r1 = IWN_READ(sc, IWN_INTR);
r2 = IWN_READ(sc, IWN_INTR_STATUS);
if (r1 == 0 && r2 == 0) {
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
goto done; /* not for us */
}
if (r1 == 0xffffffff)
goto done; /* hardware gone */
/* ack interrupts */
IWN_WRITE(sc, IWN_INTR, r1);
IWN_WRITE(sc, IWN_INTR_STATUS, r2);
DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
if (r1 & IWN_RF_TOGGLED)
iwn_rftoggle_intr(sc);
if (r1 & IWN_CT_REACHED)
device_printf(sc->sc_dev, "critical temperature reached!\n");
if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
iwn_error_intr(sc, r1, r2);
goto done;
}
if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR))
iwn_notif_intr(sc);
if (r1 & IWN_ALIVE_INTR)
wakeup(sc);
/* re-enable interrupts */
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
done:
IWN_UNLOCK(sc);
}
uint8_t
iwn_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 10;
case 4: return 20;
case 11: return 55;
case 22: return 110;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
/* R1-R4, (u)ral is R4-R1 */
case 12: return 0xd;
case 18: return 0xf;
case 24: return 0x5;
case 36: return 0x7;
case 48: return 0x9;
case 72: return 0xb;
case 96: return 0x1;
case 108: return 0x3;
case 120: return 0x3;
}
/* unknown rate (should not get there) */
return 0;
}
/* determine if a given rate is CCK or OFDM */
#define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
int
iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
struct iwn_tx_ring *ring)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = sc->sc_ifp;
const struct ieee80211_txparam *tp;
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
bus_addr_t paddr;
uint32_t flags;
uint16_t timeout;
uint8_t type;
u_int hdrlen;
struct mbuf *mnew;
int rate, error, pad, nsegs, i, ismcast, id;
bus_dma_segment_t segs[IWN_MAX_SCATTER];
IWN_LOCK_ASSERT(sc);
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
hdrlen = ieee80211_anyhdrsize(wh);
/* pick a tx rate */
/* XXX ni_chan */
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
if (type == IEEE80211_FC0_TYPE_MGT)
rate = tp->mgmtrate;
else if (ismcast)
rate = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = tp->ucastrate;
else {
(void) ieee80211_amrr_choose(ni, &IWN_NODE(ni)->amn);
rate = ni->ni_txrate;
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
} else
k = NULL;
if (ieee80211_radiotap_active_vap(vap)) {
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
if (k != NULL)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
ieee80211_radiotap_tx(vap, m0);
}
flags = IWN_TX_AUTO_SEQ;
/* XXX honor ACM */
if (!ismcast)
flags |= IWN_TX_NEED_ACK;
if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
id = IWN_ID_BROADCAST;
else
id = IWN_ID_BSS;
/* check if RTS/CTS or CTS-to-self protection must be used */
if (!ismcast) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (m0->m_pkthdr.len+IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
IWN_RATE_IS_OFDM(rate)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
}
}
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/* tell h/w to set timestamp in probe responses */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= IWN_TX_INSERT_TSTAMP;
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
timeout = htole16(3);
else
timeout = htole16(2);
} else
timeout = htole16(0);
if (hdrlen & 3) {
/* first segment's length must be a multiple of 4 */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
/* NB: no need to bzero tx, all fields are reinitialized here */
tx->id = id;
tx->flags = htole32(flags);
tx->len = htole16(m0->m_pkthdr.len);
tx->rate = iwn_plcp_signal(rate);
tx->rts_ntries = 60; /* XXX? */
tx->data_ntries = 15; /* XXX? */
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
tx->timeout = timeout;
if (k != NULL) {
/* XXX fill in */;
} else
tx->security = 0;
/* XXX alternate between Ant A and Ant B ? */
tx->rflags = IWN_RFLAG_ANT_B;
if (tx->id == IWN_ID_BROADCAST) {
tx->ridx = IWN_MAX_TX_RETRIES - 1;
if (!IWN_RATE_IS_OFDM(rate))
tx->rflags |= IWN_RFLAG_CCK;
} else {
tx->ridx = 0;
/* tell adapter to ignore rflags */
tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
}
/* copy and trim IEEE802.11 header */
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
if (error == EFBIG) {
/* too many fragments, linearize */
mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
if (mnew == NULL) {
IWN_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: could not defrag mbuf\n", __func__);
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
}
if (error != 0) {
IWN_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
__func__, error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
__func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
tx->loaddr = htole32(paddr + 4 +
offsetof(struct iwn_cmd_data, ntries));
tx->hiaddr = 0; /* limit to 32-bit physical addresses */
/* first scatter/gather segment is used by the tx data command */
IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
for (i = 1; i <= nsegs; i++) {
IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
segs[i - 1].ds_len);
}
sc->shared->len[ring->qid][ring->cur] =
htole16(hdrlen + m0->m_pkthdr.len + 8);
if (ring->cur < IWN_TX_WINDOW)
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
htole16(hdrlen + m0->m_pkthdr.len + 8);
ring->queued++;
/* kick Tx ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
ifp->if_opackets++;
sc->sc_tx_timer = 5;
return 0;
}
void
iwn_start(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
IWN_LOCK(sc);
iwn_start_locked(ifp);
IWN_UNLOCK(sc);
}
void
iwn_start_locked(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct iwn_tx_ring *txq;
struct mbuf *m;
int pri;
IWN_LOCK_ASSERT(sc);
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
pri = M_WME_GETAC(m);
txq = &sc->txq[pri];
if (txq->queued >= IWN_TX_RING_COUNT - 8) {
/* XXX not right */
/* ring is nearly full, stop flow */
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
if (iwn_tx_data(sc, m, ni, txq) != 0) {
ifp->if_oerrors++;
ieee80211_free_node(ni);
break;
}
}
}
static int
iwn_tx_handoff(struct iwn_softc *sc,
struct iwn_tx_ring *ring,
struct iwn_tx_cmd *cmd,
struct iwn_cmd_data *tx,
struct ieee80211_node *ni,
struct mbuf *m0, u_int hdrlen, int pad)
{
struct ifnet *ifp = sc->sc_ifp;
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
bus_addr_t paddr;
struct mbuf *mnew;
int error, nsegs, i;
bus_dma_segment_t segs[IWN_MAX_SCATTER];
/* copy and trim IEEE802.11 header */
memcpy((uint8_t *)(tx + 1), mtod(m0, uint8_t *), hdrlen);
m_adj(m0, hdrlen);
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
if (error == EFBIG) {
/* too many fragments, linearize */
mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
if (mnew == NULL) {
IWN_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: could not defrag mbuf\n", __func__);
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
}
if (error != 0) {
IWN_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
__func__, error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
__func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
tx->loaddr = htole32(paddr + 4 +
offsetof(struct iwn_cmd_data, ntries));
tx->hiaddr = 0; /* limit to 32-bit physical addresses */
/* first scatter/gather segment is used by the tx data command */
IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
for (i = 1; i <= nsegs; i++) {
IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
segs[i - 1].ds_len);
}
sc->shared->len[ring->qid][ring->cur] =
htole16(hdrlen + m0->m_pkthdr.len + 8);
if (ring->cur < IWN_TX_WINDOW)
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
htole16(hdrlen + m0->m_pkthdr.len + 8);
ring->queued++;
/* kick Tx ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
ifp->if_opackets++;
sc->sc_tx_timer = 5;
return 0;
}
static int
iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni, struct iwn_tx_ring *ring,
const struct ieee80211_bpf_params *params)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
struct ieee80211_frame *wh;
uint32_t flags;
uint8_t type, subtype;
u_int hdrlen;
int rate, pad;
IWN_LOCK_ASSERT(sc);
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
hdrlen = ieee80211_anyhdrsize(wh);
flags = IWN_TX_AUTO_SEQ;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= IWN_TX_NEED_ACK;
if (params->ibp_flags & IEEE80211_BPF_RTS)
flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
if (params->ibp_flags & IEEE80211_BPF_CTS)
flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
if (type == IEEE80211_FC0_TYPE_MGT &&
subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
/* tell h/w to set timestamp in probe responses */
flags |= IWN_TX_INSERT_TSTAMP;
}
if (hdrlen & 3) {
/* first segment's length must be a multiple of 4 */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
/* pick a tx rate */
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
/* XXX fall back to mcast/mgmt rate? */
m_freem(m0);
return EINVAL;
}
if (ieee80211_radiotap_active_vap(vap)) {
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
ieee80211_radiotap_tx(vap, m0);
}
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
/* NB: no need to bzero tx, all fields are reinitialized here */
tx->id = IWN_ID_BROADCAST;
tx->flags = htole32(flags);
tx->len = htole16(m0->m_pkthdr.len);
tx->rate = iwn_plcp_signal(rate);
tx->rts_ntries = params->ibp_try1; /* XXX? */
tx->data_ntries = params->ibp_try0;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
/* XXX use try count? */
if (type == IEEE80211_FC0_TYPE_MGT) {
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
tx->security = 0;
/* XXX alternate between Ant A and Ant B ? */
tx->rflags = IWN_RFLAG_ANT_B; /* XXX params->ibp_pri >> 2 */
tx->ridx = IWN_MAX_TX_RETRIES - 1;
if (!IWN_RATE_IS_OFDM(rate))
tx->rflags |= IWN_RFLAG_CCK;
return iwn_tx_handoff(sc, ring, cmd, tx, ni, m0, hdrlen, pad);
}
static int
iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
struct iwn_tx_ring *txq;
int error;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ieee80211_free_node(ni);
m_freem(m);
return ENETDOWN;
}
IWN_LOCK(sc);
if (params == NULL)
txq = &sc->txq[M_WME_GETAC(m)];
else
txq = &sc->txq[params->ibp_pri & 3];
if (txq->queued >= IWN_TX_RING_COUNT - 8) {
/* XXX not right */
/* ring is nearly full, stop flow */
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
error = iwn_tx_data(sc, m, ni, txq);
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
error = iwn_tx_data_raw(sc, m, ni, txq, params);
}
if (error != 0) {
/* NB: m is reclaimed on tx failure */
ieee80211_free_node(ni);
ifp->if_oerrors++;
}
IWN_UNLOCK(sc);
return error;
}
static void
iwn_watchdog(struct iwn_softc *sc)
{
if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if_printf(ifp, "device timeout\n");
ieee80211_runtask(ic, &sc->sc_reinit_task);
}
}
int
iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
IWN_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
iwn_init_locked(sc);
startall = 1;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
iwn_stop_locked(sc);
}
IWN_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
}
void
iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
{
char domain[4];
uint16_t val;
int i, error;
if ((error = iwn_eeprom_lock(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not lock EEPROM, error %d\n", __func__, error);
return;
}
/* read and print regulatory domain */
iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
device_printf(sc->sc_dev,"Reg Domain: %.4s", domain);
/* read and print MAC address */
iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
printf(", address %6D\n", macaddr, ":");
/* read the list of authorized channels */
iwn_read_eeprom_channels(sc);
/* read maximum allowed Tx power for 2GHz and 5GHz bands */
iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
sc->maxpwr2GHz = val & 0xff;
sc->maxpwr5GHz = val >> 8;
/* check that EEPROM values are correct */
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
sc->maxpwr5GHz = 38;
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
sc->maxpwr2GHz = 38;
DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
sc->maxpwr2GHz, sc->maxpwr5GHz);
/* read voltage at which samples were taken */
iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
sc->eeprom_voltage = (int16_t)le16toh(val);
DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
sc->eeprom_voltage);
/* read power groups */
iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
#ifdef IWN_DEBUG
if (sc->sc_debug & IWN_DEBUG_ANY) {
for (i = 0; i < IWN_NBANDS; i++)
iwn_print_power_group(sc, i);
}
#endif
iwn_eeprom_unlock(sc);
}
struct iwn_chan_band {
uint32_t addr; /* offset in EEPROM */
uint32_t flags; /* net80211 flags */
uint8_t nchan;
#define IWN_MAX_CHAN_PER_BAND 14
uint8_t chan[IWN_MAX_CHAN_PER_BAND];
};
static void
iwn_read_eeprom_band(struct iwn_softc *sc, const struct iwn_chan_band *band)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
struct ieee80211_channel *c;
int i, chan, flags;
iwn_read_prom_data(sc, band->addr, channels,
band->nchan * sizeof (struct iwn_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
DPRINTF(sc, IWN_DEBUG_RESET,
"skip chan %d flags 0x%x maxpwr %d\n",
band->chan[i], channels[i].flags,
channels[i].maxpwr);
continue;
}
chan = band->chan[i];
/* translate EEPROM flags to net80211 */
flags = 0;
if ((channels[i].flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
flags |= IEEE80211_CHAN_PASSIVE;
if ((channels[i].flags & IWN_EEPROM_CHAN_IBSS) == 0)
flags |= IEEE80211_CHAN_NOADHOC;
if (channels[i].flags & IWN_EEPROM_CHAN_RADAR) {
flags |= IEEE80211_CHAN_DFS;
/* XXX apparently IBSS may still be marked */
flags |= IEEE80211_CHAN_NOADHOC;
}
DPRINTF(sc, IWN_DEBUG_RESET,
"add chan %d flags 0x%x maxpwr %d\n",
chan, channels[i].flags, channels[i].maxpwr);
c = &ic->ic_channels[ic->ic_nchans++];
c->ic_ieee = chan;
c->ic_freq = ieee80211_ieee2mhz(chan, band->flags);
c->ic_maxregpower = channels[i].maxpwr;
c->ic_maxpower = 2*c->ic_maxregpower;
if (band->flags & IEEE80211_CHAN_2GHZ) {
/* G =>'s B is supported */
c->ic_flags = IEEE80211_CHAN_B | flags;
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = c[-1];
c->ic_flags = IEEE80211_CHAN_G | flags;
} else { /* 5GHz band */
c->ic_flags = IEEE80211_CHAN_A | flags;
}
/* XXX no constraints on using HT20 */
/* add HT20, HT40 added separately */
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = c[-1];
c->ic_flags |= IEEE80211_CHAN_HT20;
/* XXX NARROW =>'s 1/2 and 1/4 width? */
}
}
static void
iwn_read_eeprom_ht40(struct iwn_softc *sc, const struct iwn_chan_band *band)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
struct ieee80211_channel *c, *cent, *extc;
int i;
iwn_read_prom_data(sc, band->addr, channels,
band->nchan * sizeof (struct iwn_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
!(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
DPRINTF(sc, IWN_DEBUG_RESET,
"skip chan %d flags 0x%x maxpwr %d\n",
band->chan[i], channels[i].flags,
channels[i].maxpwr);
continue;
}
/*
* Each entry defines an HT40 channel pair; find the
* center channel, then the extension channel above.
*/
cent = ieee80211_find_channel_byieee(ic, band->chan[i],
band->flags & ~IEEE80211_CHAN_HT);
if (cent == NULL) { /* XXX shouldn't happen */
device_printf(sc->sc_dev,
"%s: no entry for channel %d\n",
__func__, band->chan[i]);
continue;
}
extc = ieee80211_find_channel(ic, cent->ic_freq+20,
band->flags & ~IEEE80211_CHAN_HT);
if (extc == NULL) {
DPRINTF(sc, IWN_DEBUG_RESET,
"skip chan %d, extension channel not found\n",
band->chan[i]);
continue;
}
DPRINTF(sc, IWN_DEBUG_RESET,
"add ht40 chan %d flags 0x%x maxpwr %d\n",
band->chan[i], channels[i].flags, channels[i].maxpwr);
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = cent[0];
c->ic_extieee = extc->ic_ieee;
c->ic_flags &= ~IEEE80211_CHAN_HT;
c->ic_flags |= IEEE80211_CHAN_HT40U;
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = extc[0];
c->ic_extieee = cent->ic_ieee;
c->ic_flags &= ~IEEE80211_CHAN_HT;
c->ic_flags |= IEEE80211_CHAN_HT40D;
}
}
static void
iwn_read_eeprom_channels(struct iwn_softc *sc)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
static const struct iwn_chan_band iwn_bands[] = {
{ IWN_EEPROM_BAND1, IEEE80211_CHAN_G, 14,
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 } },
{ IWN_EEPROM_BAND2, IEEE80211_CHAN_A, 13,
{ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 } },
{ IWN_EEPROM_BAND3, IEEE80211_CHAN_A, 12,
{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 } },
{ IWN_EEPROM_BAND4, IEEE80211_CHAN_A, 11,
{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 } },
{ IWN_EEPROM_BAND5, IEEE80211_CHAN_A, 6,
{ 145, 149, 153, 157, 161, 165 } },
{ IWN_EEPROM_BAND6, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40, 7,
{ 1, 2, 3, 4, 5, 6, 7 } },
{ IWN_EEPROM_BAND7, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40, 11,
{ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 } }
};
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
int i;
/* read the list of authorized channels */
for (i = 0; i < N(iwn_bands)-2; i++)
iwn_read_eeprom_band(sc, &iwn_bands[i]);
for (; i < N(iwn_bands); i++)
iwn_read_eeprom_ht40(sc, &iwn_bands[i]);
ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
#undef N
}
#ifdef IWN_DEBUG
void
iwn_print_power_group(struct iwn_softc *sc, int i)
{
struct iwn_eeprom_band *band = &sc->bands[i];
struct iwn_eeprom_chan_samples *chans = band->chans;
int j, c;
printf("===band %d===\n", i);
printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
printf("chan1 num=%d\n", chans[0].num);
for (c = 0; c < IWN_NTXCHAINS; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
printf("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[0].samples[c][j].temp,
chans[0].samples[c][j].gain,
chans[0].samples[c][j].power,
chans[0].samples[c][j].pa_det);
}
}
printf("chan2 num=%d\n", chans[1].num);
for (c = 0; c < IWN_NTXCHAINS; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
printf("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[1].samples[c][j].temp,
chans[1].samples[c][j].gain,
chans[1].samples[c][j].power,
chans[1].samples[c][j].pa_det);
}
}
}
#endif
/*
* Send a command to the firmware.
*/
int
iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_cmd *cmd;
bus_addr_t paddr;
IWN_LOCK_ASSERT(sc);
KASSERT(size <= sizeof cmd->data, ("Command too big"));
desc = &ring->desc[ring->cur];
cmd = &ring->cmd[ring->cur];
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
memcpy(cmd->data, buf, size);
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
IWN_SET_DESC_NSEGS(desc, 1);
IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
sc->shared->len[ring->qid][ring->cur] = htole16(8);
if (ring->cur < IWN_TX_WINDOW) {
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
htole16(8);
}
DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
__func__, iwn_intr_str(cmd->code), cmd->code,
cmd->flags, cmd->qid, cmd->idx);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
return async ? 0 : msleep(cmd, &sc->sc_mtx, PCATCH, "iwncmd", hz);
}
static const uint8_t iwn_ridx_to_plcp[] = {
10, 20, 55, 110, /* CCK */
0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
};
static const uint8_t iwn_siso_mcs_to_plcp[] = {
0, 0, 0, 0, /* CCK */
0, 0, 1, 2, 3, 4, 5, 6, 7 /* HT */
};
static const uint8_t iwn_mimo_mcs_to_plcp[] = {
0, 0, 0, 0, /* CCK */
8, 8, 9, 10, 11, 12, 13, 14, 15 /* HT */
};
static const uint8_t iwn_prev_ridx[] = {
/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
0, 0, 1, 5, /* CCK */
2, 4, 3, 6, 7, 8, 9, 10, 10 /* OFDM */
};
/*
* Configure hardware link parameters for the specified
* node operating on the specified channel.
*/
int
iwn_set_link_quality(struct iwn_softc *sc, uint8_t id,
const struct ieee80211_channel *c, int async)
{
struct iwn_cmd_link_quality lq;
int i, ridx;
memset(&lq, 0, sizeof(lq));
lq.id = id;
if (IEEE80211_IS_CHAN_HT(c)) {
lq.mimo = 1;
lq.ssmask = 0x1;
} else
lq.ssmask = 0x2;
if (id == IWN_ID_BSS)
ridx = IWN_RATE_OFDM54;
else if (IEEE80211_IS_CHAN_A(c))
ridx = IWN_RATE_OFDM6;
else
ridx = IWN_RATE_CCK1;
for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
/* XXX toggle antenna for retry patterns */
if (IEEE80211_IS_CHAN_HT40(c)) {
lq.table[i].rate = iwn_mimo_mcs_to_plcp[ridx]
| IWN_RATE_MCS;
lq.table[i].rflags = IWN_RFLAG_HT
| IWN_RFLAG_HT40
| IWN_RFLAG_ANT_A;
/* XXX shortGI */
} else if (IEEE80211_IS_CHAN_HT(c)) {
lq.table[i].rate = iwn_siso_mcs_to_plcp[ridx]
| IWN_RATE_MCS;
lq.table[i].rflags = IWN_RFLAG_HT
| IWN_RFLAG_ANT_A;
/* XXX shortGI */
} else {
lq.table[i].rate = iwn_ridx_to_plcp[ridx];
if (ridx <= IWN_RATE_CCK11)
lq.table[i].rflags = IWN_RFLAG_CCK;
lq.table[i].rflags |= IWN_RFLAG_ANT_B;
}
ridx = iwn_prev_ridx[ridx];
}
lq.dsmask = 0x3;
lq.ampdu_disable = 3;
lq.ampdu_limit = htole16(4000);
#ifdef IWN_DEBUG
if (sc->sc_debug & IWN_DEBUG_STATE) {
printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
__func__, id, lq.mimo, lq.ssmask);
printf("%s:", __func__);
for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
printf(" %d:%x", lq.table[i].rate, lq.table[i].rflags);
printf("\n");
}
#endif
return iwn_cmd(sc, IWN_CMD_TX_LINK_QUALITY, &lq, sizeof(lq), async);
}
#if 0
/*
* Install a pairwise key into the hardware.
*/
int
iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
const struct ieee80211_key *k)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_node_info node;
if (k->k_flags & IEEE80211_KEY_GROUP)
return 0;
memset(&node, 0, sizeof node);
switch (k->k_cipher) {
case IEEE80211_CIPHER_CCMP:
node.security = htole16(IWN_CIPHER_CCMP);
memcpy(node.key, k->k_key, k->k_len);
break;
default:
return 0;
}
node.id = IWN_ID_BSS;
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_KEY;
return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
}
#endif
int
iwn_wme_update(struct ieee80211com *ic)
{
#define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
#define IWN_TXOP_TO_US(v) (v<<5)
struct iwn_softc *sc = ic->ic_ifp->if_softc;
struct iwn_edca_params cmd;
int i;
memset(&cmd, 0, sizeof cmd);
cmd.flags = htole32(IWN_EDCA_UPDATE);
for (i = 0; i < WME_NUM_AC; i++) {
const struct wmeParams *wmep =
&ic->ic_wme.wme_chanParams.cap_wmeParams[i];
cmd.ac[i].aifsn = wmep->wmep_aifsn;
cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
cmd.ac[i].txoplimit =
htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
}
IWN_LOCK(sc);
(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
IWN_UNLOCK(sc);
return 0;
#undef IWN_TXOP_TO_US
#undef IWN_EXP2
}
void
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct iwn_cmd_led led;
led.which = which;
led.unit = htole32(100000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
(void) iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
}
/*
* Set the critical temperature at which the firmware will automatically stop
* the radio transmitter.
*/
int
iwn_set_critical_temp(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
struct iwn_critical_temp crit;
uint32_t r1, r2, r3, temp;
r1 = le32toh(uc->temp[0].chan20MHz);
r2 = le32toh(uc->temp[1].chan20MHz);
r3 = le32toh(uc->temp[2].chan20MHz);
/* inverse function of iwn_get_temperature() */
temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259;
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
memset(&crit, 0, sizeof crit);
crit.tempR = htole32(temp);
DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %u\n", temp);
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
}
void
iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_cmd_tsf tsf;
uint64_t val, mod;
memset(&tsf, 0, sizeof tsf);
memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
tsf.bintval = htole16(ni->ni_intval);
tsf.lintval = htole16(10);
/* XXX all wrong */
/* compute remaining time until next beacon */
val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2008-04-30 00:11:08 +00:00
DPRINTF(sc, IWN_DEBUG_ANY, "%s: val = %ju %s\n", __func__,
val, val == 0 ? "correcting" : "");
if (val == 0)
val = 1;
mod = le64toh(tsf.tstamp) % val;
tsf.binitval = htole32((uint32_t)(val - mod));
2008-04-30 00:11:08 +00:00
DPRINTF(sc, IWN_DEBUG_RESET, "TSF bintval=%u tstamp=%ju, init=%u\n",
ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod));
if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
device_printf(sc->sc_dev,
"%s: could not enable TSF\n", __func__);
}
void
iwn_power_calibration(struct iwn_softc *sc, int temp)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
#if 0
KASSERT(ic->ic_state == IEEE80211_S_RUN, ("not running"));
#endif
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
__func__, sc->temp, temp);
/* adjust Tx power if need be (delta >= 3<>C) */
if (abs(temp - sc->temp) < 3)
return;
sc->temp = temp;
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set Tx power for channel %d\n",
__func__, ieee80211_chan2ieee(ic, ic->ic_bsschan));
if (iwn_set_txpower(sc, ic->ic_bsschan, 1) != 0) {
/* just warn, too bad for the automatic calibration... */
device_printf(sc->sc_dev,
"%s: could not adjust Tx power\n", __func__);
}
}
/*
* Set Tx power for a given channel (each rate has its own power settings).
* This function takes into account the regulatory information from EEPROM,
* the current temperature and the current voltage.
*/
int
iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
{
/* fixed-point arithmetic division using a n-bit fractional part */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* linear interpolation */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_ucode_info *uc = &sc->ucode_info;
struct iwn_cmd_txpower cmd;
struct iwn_eeprom_chan_samples *chans;
const uint8_t *rf_gain, *dsp_gain;
int32_t vdiff, tdiff;
int i, c, grp, maxpwr;
u_int chan;
/* get channel number */
chan = ieee80211_chan2ieee(ic, ch);
memset(&cmd, 0, sizeof cmd);
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
cmd.chan = chan;
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
maxpwr = sc->maxpwr5GHz;
rf_gain = iwn_rf_gain_5ghz;
dsp_gain = iwn_dsp_gain_5ghz;
} else {
maxpwr = sc->maxpwr2GHz;
rf_gain = iwn_rf_gain_2ghz;
dsp_gain = iwn_dsp_gain_2ghz;
}
/* compute voltage compensation */
vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
if (vdiff > 0)
vdiff *= 2;
if (abs(vdiff) > 2)
vdiff = 0;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
__func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
/* get channel's attenuation group */
if (chan <= 20) /* 1-20 */
grp = 4;
else if (chan <= 43) /* 34-43 */
grp = 0;
else if (chan <= 70) /* 44-70 */
grp = 1;
else if (chan <= 124) /* 71-124 */
grp = 2;
else /* 125-200 */
grp = 3;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
/* get channel's sub-band */
for (i = 0; i < IWN_NBANDS; i++)
if (sc->bands[i].lo != 0 &&
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
break;
chans = sc->bands[i].chans;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: chan %d sub-band=%d\n", __func__, chan, i);
for (c = 0; c < IWN_NTXCHAINS; c++) {
uint8_t power, gain, temp;
int maxchpwr, pwr, ridx, idx;
power = interpolate(chan,
chans[0].num, chans[0].samples[c][1].power,
chans[1].num, chans[1].samples[c][1].power, 1);
gain = interpolate(chan,
chans[0].num, chans[0].samples[c][1].gain,
chans[1].num, chans[1].samples[c][1].gain, 1);
temp = interpolate(chan,
chans[0].num, chans[0].samples[c][1].temp,
chans[1].num, chans[1].samples[c][1].temp, 1);
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: Tx chain %d: power=%d gain=%d temp=%d\n",
__func__, c, power, gain, temp);
/* compute temperature compensation */
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
__func__, tdiff, sc->temp, temp);
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
maxchpwr = ch->ic_maxpower;
if ((ridx / 8) & 1) {
/* MIMO: decrease Tx power (-3dB) */
maxchpwr -= 6;
}
pwr = maxpwr - 10;
/* decrease power for highest OFDM rates */
if ((ridx % 8) == 5) /* 48Mbit/s */
pwr -= 5;
else if ((ridx % 8) == 6) /* 54Mbit/s */
pwr -= 7;
else if ((ridx % 8) == 7) /* 60Mbit/s */
pwr -= 10;
if (pwr > maxchpwr)
pwr = maxchpwr;
idx = gain - (pwr - power) - tdiff - vdiff;
if ((ridx / 8) & 1) /* MIMO */
idx += (int32_t)le32toh(uc->atten[grp][c]);
if (cmd.band == 0)
idx += 9; /* 5GHz */
if (ridx == IWN_RIDX_MAX)
idx += 5; /* CCK */
/* make sure idx stays in a valid range */
if (idx < 0)
idx = 0;
else if (idx > IWN_MAX_PWR_INDEX)
idx = IWN_MAX_PWR_INDEX;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: Tx chain %d, rate idx %d: power=%d\n",
__func__, c, ridx, idx);
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
}
}
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: set tx power for chan %d\n", __func__, chan);
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
#undef interpolate
#undef fdivround
}
/*
* Get the best (maximum) RSSI among the
* connected antennas and convert to dBm.
*/
int8_t
iwn_get_rssi(struct iwn_softc *sc, const struct iwn_rx_stat *stat)
{
int mask, agc, rssi;
mask = (le16toh(stat->antenna) >> 4) & 0x7;
agc = (le16toh(stat->agc) >> 7) & 0x7f;
rssi = 0;
#if 0
if (mask & (1 << 0)) /* Ant A */
rssi = max(rssi, stat->rssi[0]);
if (mask & (1 << 1)) /* Ant B */
rssi = max(rssi, stat->rssi[2]);
if (mask & (1 << 2)) /* Ant C */
rssi = max(rssi, stat->rssi[4]);
#else
rssi = max(rssi, stat->rssi[0]);
rssi = max(rssi, stat->rssi[2]);
rssi = max(rssi, stat->rssi[4]);
#endif
DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
"result %d\n", __func__, agc, mask,
stat->rssi[0], stat->rssi[2], stat->rssi[4],
rssi - agc - IWN_RSSI_TO_DBM);
return rssi - agc - IWN_RSSI_TO_DBM;
}
/*
* Get the average noise among Rx antennas (in dBm).
*/
int
iwn_get_noise(const struct iwn_rx_general_stats *stats)
{
int i, total, nbant, noise;
total = nbant = 0;
for (i = 0; i < 3; i++) {
noise = le32toh(stats->noise[i]) & 0xff;
if (noise != 0) {
total += noise;
nbant++;
}
}
/* there should be at least one antenna but check anyway */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
/*
* Read temperature (in degC) from the on-board thermal sensor.
*/
int
iwn_get_temperature(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
int32_t r1, r2, r3, r4, temp;
r1 = le32toh(uc->temp[0].chan20MHz);
r2 = le32toh(uc->temp[1].chan20MHz);
r3 = le32toh(uc->temp[2].chan20MHz);
r4 = le32toh(sc->rawtemp);
if (r1 == r3) /* prevents division by 0 (should not happen) */
return 0;
/* sign-extend 23-bit R4 value to 32-bit */
r4 = (r4 << 8) >> 8;
/* compute temperature */
temp = (259 * (r4 - r2)) / (r3 - r1);
temp = (temp * 97) / 100 + 8;
return IWN_KTOC(temp);
}
/*
* Initialize sensitivity calibration state machine.
*/
int
iwn_init_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_cmd cmd;
int error;
/* reset calibration state */
memset(calib, 0, sizeof (*calib));
calib->state = IWN_CALIB_STATE_INIT;
calib->cck_state = IWN_CCK_STATE_HIFA;
/* initial values taken from the reference driver */
calib->corr_ofdm_x1 = 105;
calib->corr_ofdm_mrc_x1 = 220;
calib->corr_ofdm_x4 = 90;
calib->corr_ofdm_mrc_x4 = 170;
calib->corr_cck_x4 = 125;
calib->corr_cck_mrc_x4 = 200;
calib->energy_cck = 100;
/* write initial sensitivity values */
error = iwn_send_sensitivity(sc);
if (error != 0)
return error;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN_SET_DIFF_GAIN;
/* differential gains initially set to 0 for all 3 antennas */
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
}
/*
* Collect noise and RSSI statistics for the first 20 beacons received
* after association and use them to determine connected antennas and
* set differential gains.
*/
void
iwn_compute_differential_gain(struct iwn_softc *sc,
const struct iwn_rx_general_stats *stats)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_cmd cmd;
int i, val;
/* accumulate RSSI and noise for all 3 antennas */
for (i = 0; i < 3; i++) {
calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
}
/* we update differential gain only once after 20 beacons */
if (++calib->nbeacons < 20)
return;
/* determine antenna with highest average RSSI */
val = max(calib->rssi[0], calib->rssi[1]);
val = max(calib->rssi[2], val);
/* determine which antennas are connected */
sc->antmsk = 0;
for (i = 0; i < 3; i++)
if (val - calib->rssi[i] <= 15 * 20)
sc->antmsk |= 1 << i;
/* if neither Ant A and Ant B are connected.. */
if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
sc->antmsk |= 1 << 1; /* ..mark Ant B as connected! */
/* get minimal noise among connected antennas */
val = INT_MAX; /* ok, there's at least one */
for (i = 0; i < 3; i++)
if (sc->antmsk & (1 << i))
val = min(calib->noise[i], val);
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN_SET_DIFF_GAIN;
/* set differential gains for connected antennas */
for (i = 0; i < 3; i++) {
if (sc->antmsk & (1 << i)) {
cmd.gain[i] = (calib->noise[i] - val) / 30;
/* limit differential gain to 3 */
cmd.gain[i] = min(cmd.gain[i], 3);
cmd.gain[i] |= IWN_GAIN_SET;
}
}
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: set differential gains Ant A/B/C: %x/%x/%x (%x)\n",
__func__,cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk);
if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
calib->state = IWN_CALIB_STATE_RUN;
}
/*
* Tune RF Rx sensitivity based on the number of false alarms detected
* during the last beacon period.
*/
void
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
{
#define inc_clip(val, inc, max) \
if ((val) < (max)) { \
if ((val) < (max) - (inc)) \
(val) += (inc); \
else \
(val) = (max); \
needs_update = 1; \
}
#define dec_clip(val, dec, min) \
if ((val) > (min)) { \
if ((val) > (min) + (dec)) \
(val) -= (dec); \
else \
(val) = (min); \
needs_update = 1; \
}
struct iwn_calib_state *calib = &sc->calib;
uint32_t val, rxena, fa;
uint32_t energy[3], energy_min;
uint8_t noise[3], noise_ref;
int i, needs_update = 0;
/* check that we've been enabled long enough */
if ((rxena = le32toh(stats->general.load)) == 0)
return;
/* compute number of false alarms since last call for OFDM */
fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
fa *= 200 * 1024; /* 200TU */
/* save counters values for next call */
calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
calib->fa_ofdm = le32toh(stats->ofdm.fa);
if (fa > 50 * rxena) {
/* high false alarm count, decrease sensitivity */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: OFDM high false alarm count: %u\n", __func__, fa);
inc_clip(calib->corr_ofdm_x1, 1, 140);
inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
inc_clip(calib->corr_ofdm_x4, 1, 120);
inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
} else if (fa < 5 * rxena) {
/* low false alarm count, increase sensitivity */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: OFDM low false alarm count: %u\n", __func__, fa);
dec_clip(calib->corr_ofdm_x1, 1, 105);
dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
dec_clip(calib->corr_ofdm_x4, 1, 85);
dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
}
/* compute maximum noise among 3 antennas */
for (i = 0; i < 3; i++)
noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
val = max(noise[0], noise[1]);
val = max(noise[2], val);
/* insert it into our samples table */
calib->noise_samples[calib->cur_noise_sample] = val;
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
/* compute maximum noise among last 20 samples */
noise_ref = calib->noise_samples[0];
for (i = 1; i < 20; i++)
noise_ref = max(noise_ref, calib->noise_samples[i]);
/* compute maximum energy among 3 antennas */
for (i = 0; i < 3; i++)
energy[i] = le32toh(stats->general.energy[i]);
val = min(energy[0], energy[1]);
val = min(energy[2], val);
/* insert it into our samples table */
calib->energy_samples[calib->cur_energy_sample] = val;
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
/* compute minimum energy among last 10 samples */
energy_min = calib->energy_samples[0];
for (i = 1; i < 10; i++)
energy_min = max(energy_min, calib->energy_samples[i]);
energy_min += 6;
/* compute number of false alarms since last call for CCK */
fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
fa += le32toh(stats->cck.fa) - calib->fa_cck;
fa *= 200 * 1024; /* 200TU */
/* save counters values for next call */
calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
calib->fa_cck = le32toh(stats->cck.fa);
if (fa > 50 * rxena) {
/* high false alarm count, decrease sensitivity */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: CCK high false alarm count: %u\n", __func__, fa);
calib->cck_state = IWN_CCK_STATE_HIFA;
calib->low_fa = 0;
if (calib->corr_cck_x4 > 160) {
calib->noise_ref = noise_ref;
if (calib->energy_cck > 2)
dec_clip(calib->energy_cck, 2, energy_min);
}
if (calib->corr_cck_x4 < 160) {
calib->corr_cck_x4 = 161;
needs_update = 1;
} else
inc_clip(calib->corr_cck_x4, 3, 200);
inc_clip(calib->corr_cck_mrc_x4, 3, 400);
} else if (fa < 5 * rxena) {
/* low false alarm count, increase sensitivity */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: CCK low false alarm count: %u\n", __func__, fa);
calib->cck_state = IWN_CCK_STATE_LOFA;
calib->low_fa++;
if (calib->cck_state != 0 &&
((calib->noise_ref - noise_ref) > 2 ||
calib->low_fa > 100)) {
inc_clip(calib->energy_cck, 2, 97);
dec_clip(calib->corr_cck_x4, 3, 125);
dec_clip(calib->corr_cck_mrc_x4, 3, 200);
}
} else {
/* not worth to increase or decrease sensitivity */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: CCK normal false alarm count: %u\n", __func__, fa);
calib->low_fa = 0;
calib->noise_ref = noise_ref;
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
/* previous interval had many false alarms */
dec_clip(calib->energy_cck, 8, energy_min);
}
calib->cck_state = IWN_CCK_STATE_INIT;
}
if (needs_update)
(void)iwn_send_sensitivity(sc);
#undef dec_clip
#undef inc_clip
}
int
iwn_send_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_sensitivity_cmd cmd;
memset(&cmd, 0, sizeof cmd);
cmd.which = IWN_SENSITIVITY_WORKTBL;
/* OFDM modulation */
cmd.corr_ofdm_x1 = htole16(calib->corr_ofdm_x1);
cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1);
cmd.corr_ofdm_x4 = htole16(calib->corr_ofdm_x4);
cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4);
cmd.energy_ofdm = htole16(100);
cmd.energy_ofdm_th = htole16(62);
/* CCK modulation */
cmd.corr_cck_x4 = htole16(calib->corr_cck_x4);
cmd.corr_cck_mrc_x4 = htole16(calib->corr_cck_mrc_x4);
cmd.energy_cck = htole16(calib->energy_cck);
/* Barker modulation: use default values */
cmd.corr_barker = htole16(190);
cmd.corr_barker_mrc = htole16(390);
DPRINTF(sc, IWN_DEBUG_RESET,
"%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4,
calib->corr_ofdm_mrc_x4, calib->corr_cck_x4,
calib->corr_cck_mrc_x4, calib->energy_cck);
return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
}
int
iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni = vap->iv_bss;
struct iwn_node_info node;
int error;
sc->calib.state = IWN_CALIB_STATE_INIT;
/* update adapter's configuration */
sc->config.associd = 0;
IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
sc->config.flags = htole32(IWN_CONFIG_TSF);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
sc->config.cck_mask = 0;
sc->config.ofdm_mask = 0x15;
} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
sc->config.cck_mask = 0x03;
sc->config.ofdm_mask = 0;
} else {
/* XXX assume 802.11b/g */
sc->config.cck_mask = 0x0f;
sc->config.ofdm_mask = 0x15;
}
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
sc->config.filter &= ~htole32(IWN_FILTER_BSS);
DPRINTF(sc, IWN_DEBUG_STATE,
"%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
"ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
"myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
__func__,
le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
sc->config.cck_mask, sc->config.ofdm_mask,
sc->config.ht_single_mask, sc->config.ht_dual_mask,
le16toh(sc->config.rxchain),
sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
le16toh(sc->config.associd), le32toh(sc->config.filter));
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
sizeof (struct iwn_config), 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not configure, error %d\n", __func__, error);
return error;
}
sc->sc_curchan = ic->ic_curchan;
/* configuration has changed, set Tx power accordingly */
error = iwn_set_txpower(sc, ni->ni_chan, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not set Tx power, error %d\n", __func__, error);
return error;
}
/*
* Reconfiguring clears the adapter's nodes table so we must
* add the broadcast node again.
*/
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
node.id = IWN_ID_BROADCAST;
DPRINTF(sc, IWN_DEBUG_STATE, "%s: add broadcast node\n", __func__);
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not add broadcast node, error %d\n",
__func__, error);
return error;
}
error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not setup MRR for broadcast node, error %d\n",
__func__, error);
return error;
}
return 0;
}
/*
* Configure the adapter for associated state.
*/
int
iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
{
#define MS(v,x) (((v) & x) >> x##_S)
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni = vap->iv_bss;
struct iwn_node_info node;
int error, maxrxampdu, ampdudensity;
sc->calib.state = IWN_CALIB_STATE_INIT;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* link LED blinks while monitoring */
iwn_set_led(sc, IWN_LED_LINK, 5, 5);
return 0;
}
iwn_enable_tsf(sc, ni);
/* update adapter's configuration */
sc->config.associd = htole16(IEEE80211_AID(ni->ni_associd));
/* short preamble/slot time are negotiated when associating */
sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
sc->config.flags &= ~htole32(IWN_CONFIG_HT);
if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
sc->config.flags |= htole32(IWN_CONFIG_HT40U);
else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
sc->config.flags |= htole32(IWN_CONFIG_HT40D);
else
sc->config.flags |= htole32(IWN_CONFIG_HT20);
sc->config.rxchain = htole16(
(3 << IWN_RXCHAIN_VALID_S)
| (3 << IWN_RXCHAIN_MIMO_CNT_S)
| (1 << IWN_RXCHAIN_CNT_S)
| IWN_RXCHAIN_MIMO_FORCE);
maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
} else
maxrxampdu = ampdudensity = 0;
sc->config.filter |= htole32(IWN_FILTER_BSS);
DPRINTF(sc, IWN_DEBUG_STATE,
"%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
"ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
"myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
__func__,
le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
sc->config.cck_mask, sc->config.ofdm_mask,
sc->config.ht_single_mask, sc->config.ht_dual_mask,
le16toh(sc->config.rxchain),
sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
le16toh(sc->config.associd), le32toh(sc->config.filter));
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
sizeof (struct iwn_config), 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not update configuration, error %d\n",
__func__, error);
return error;
}
sc->sc_curchan = ni->ni_chan;
/* configuration has changed, set Tx power accordingly */
error = iwn_set_txpower(sc, ni->ni_chan, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not set Tx power, error %d\n", __func__, error);
return error;
}
/* add BSS node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
node.id = IWN_ID_BSS;
node.htflags = htole32(
(maxrxampdu << IWN_MAXRXAMPDU_S) |
(ampdudensity << IWN_MPDUDENSITY_S));
DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
__func__, node.id, le32toh(node.htflags));
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
if (error != 0) {
device_printf(sc->sc_dev,"could not add BSS node\n");
return error;
}
error = iwn_set_link_quality(sc, node.id, ni->ni_chan, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not setup MRR for node %d, error %d\n",
__func__, node.id, error);
return error;
}
error = iwn_init_sensitivity(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not set sensitivity, error %d\n",
__func__, error);
return error;
}
/* start/restart periodic calibration timer */
sc->calib.state = IWN_CALIB_STATE_ASSOC;
iwn_calib_reset(sc);
/* link LED always on while associated */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
return 0;
#undef MS
}
/*
* Send a scan request to the firmware. Since this command is huge, we map it
* into a mbuf instead of using the pre-allocated set of commands.
*/
int
iwn_scan(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
struct iwn_scan_hdr *hdr;
struct iwn_scan_essid *essid;
struct iwn_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
enum ieee80211_phymode mode;
uint8_t *frm;
int pktlen, error, nrates;
bus_addr_t physaddr;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
/* XXX malloc */
data->m = m_getcl(M_DONTWAIT, MT_DATA, 0);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"%s: could not allocate mbuf for scan command\n", __func__);
return ENOMEM;
}
cmd = mtod(data->m, struct iwn_tx_cmd *);
cmd->code = IWN_CMD_SCAN;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
hdr = (struct iwn_scan_hdr *)cmd->data;
memset(hdr, 0, sizeof (struct iwn_scan_hdr));
/* XXX use scan state */
/*
* Move to the next channel if no packets are received within 5 msecs
* after sending the probe request (this helps to reduce the duration
* of active scans).
*/
hdr->quiet = htole16(5); /* timeout in milliseconds */
hdr->plcp_threshold = htole16(1); /* min # of packets */
/* select Ant B and Ant C for scanning */
hdr->rxchain = htole16(0x3e1 | (7 << IWN_RXCHAIN_VALID_S));
tx = (struct iwn_cmd_data *)(hdr + 1);
memset(tx, 0, sizeof (struct iwn_cmd_data));
tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); /* XXX */
tx->id = IWN_ID_BROADCAST;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
tx->rflags = IWN_RFLAG_ANT_B;
if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
hdr->crc_threshold = htole16(1);
/* send probe requests at 6Mbps */
tx->rate = iwn_ridx_to_plcp[IWN_RATE_OFDM6];
} else {
hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
/* send probe requests at 1Mbps */
tx->rate = iwn_ridx_to_plcp[IWN_RATE_CCK1];
tx->rflags |= IWN_RFLAG_CCK;
}
essid = (struct iwn_scan_essid *)(tx + 1);
memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
essid[0].id = IEEE80211_ELEMID_SSID;
essid[0].len = ss->ss_ssid[0].len;
memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)&essid[4];
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
*(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
*(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
frm = (uint8_t *)(wh + 1);
/* add SSID IE */
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = ss->ss_ssid[0].len;
memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
frm += ss->ss_ssid[0].len;
mode = ieee80211_chan2mode(ic->ic_curchan);
rs = &ic->ic_sup_rates[mode];
/* add supported rates IE */
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->rs_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
frm += nrates;
/* add supported xrates IE */
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = (uint8_t)nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
/* setup length of probe request */
tx->len = htole16(frm - (uint8_t *)wh);
c = ic->ic_curchan;
chan = (struct iwn_scan_chan *)frm;
chan->chan = ieee80211_chan2ieee(ic, c);
chan->flags = 0;
if ((c->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) {
chan->flags |= IWN_CHAN_ACTIVE;
if (ss->ss_nssid > 0)
chan->flags |= IWN_CHAN_DIRECT;
}
chan->dsp_gain = 0x6e;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->rf_gain = 0x3b;
chan->active = htole16(10);
chan->passive = htole16(110);
} else {
chan->rf_gain = 0x28;
chan->active = htole16(20);
chan->passive = htole16(120);
}
DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x "
"dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
chan->active, chan->passive);
hdr->nchan++;
chan++;
frm += sizeof (struct iwn_scan_chan);
hdr->len = htole16(frm - (uint8_t *)hdr);
pktlen = frm - (uint8_t *)cmd;
error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
iwn_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not map scan command, error %d\n",
__func__, error);
m_freem(data->m);
data->m = NULL;
return error;
}
IWN_SET_DESC_NSEGS(desc, 1);
IWN_SET_DESC_SEG(desc, 0, physaddr, pktlen);
sc->shared->len[ring->qid][ring->cur] = htole16(8);
if (ring->cur < IWN_TX_WINDOW)
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
htole16(8);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
return 0; /* will be notified async. of failure/success */
}
int
iwn_config(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_power power;
struct iwn_bluetooth bluetooth;
struct iwn_node_info node;
int error;
/* set power mode */
memset(&power, 0, sizeof power);
power.flags = htole16(IWN_POWER_CAM | 0x8);
DPRINTF(sc, IWN_DEBUG_RESET, "%s: set power mode\n", __func__);
error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not set power mode, error %d\n",
__func__, error);
return error;
}
/* configure bluetooth coexistence */
memset(&bluetooth, 0, sizeof bluetooth);
bluetooth.flags = 3;
bluetooth.lead = 0xaa;
bluetooth.kill = 1;
DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
__func__);
error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not configure bluetooth coexistence, error %d\n",
__func__, error);
return error;
}
/* configure adapter */
memset(&sc->config, 0, sizeof (struct iwn_config));
IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
IEEE80211_ADDR_COPY(sc->config.wlap, IF_LLADDR(ifp));
/* set default channel */
sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
sc->config.flags = htole32(IWN_CONFIG_TSF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
sc->config.filter = 0;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->config.mode = IWN_MODE_STA;
sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
sc->config.mode = IWN_MODE_IBSS;
break;
case IEEE80211_M_HOSTAP:
sc->config.mode = IWN_MODE_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->config.mode = IWN_MODE_MONITOR;
sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
return EINVAL;
}
sc->config.cck_mask = 0x0f; /* not yet negotiated */
sc->config.ofdm_mask = 0xff; /* not yet negotiated */
sc->config.ht_single_mask = 0xff;
sc->config.ht_dual_mask = 0xff;
sc->config.rxchain = htole16(0x2800 | (7 << IWN_RXCHAIN_VALID_S));
DPRINTF(sc, IWN_DEBUG_STATE,
"%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
"ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
"myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
__func__,
le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
sc->config.cck_mask, sc->config.ofdm_mask,
sc->config.ht_single_mask, sc->config.ht_dual_mask,
le16toh(sc->config.rxchain),
sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
le16toh(sc->config.associd), le32toh(sc->config.filter));
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
sizeof (struct iwn_config), 0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: configure command failed, error %d\n",
__func__, error);
return error;
}
sc->sc_curchan = ic->ic_curchan;
/* configuration has changed, set Tx power accordingly */
error = iwn_set_txpower(sc, ic->ic_curchan, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not set Tx power, error %d\n", __func__, error);
return error;
}
/* add broadcast node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ic->ic_ifp->if_broadcastaddr);
node.id = IWN_ID_BROADCAST;
node.rate = iwn_plcp_signal(2);
DPRINTF(sc, IWN_DEBUG_RESET, "%s: add broadcast node\n", __func__);
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not add broadcast node, error %d\n",
__func__, error);
return error;
}
error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not setup MRR for node %d, error %d\n",
__func__, node.id, error);
return error;
}
error = iwn_set_critical_temp(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not set critical temperature, error %d\n",
__func__, error);
return error;
}
return 0;
}
/*
* Do post-alive initialization of the NIC (after firmware upload).
*/
void
iwn_post_alive(struct iwn_softc *sc)
{
uint32_t base;
uint16_t offset;
int qid;
iwn_mem_lock(sc);
/* clear SRAM */
base = iwn_mem_read(sc, IWN_SRAM_BASE);
for (offset = 0x380; offset < 0x520; offset += 4) {
IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
IWN_WRITE(sc, IWN_MEM_WDATA, 0);
}
/* shared area is aligned on a 1K boundary */
iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
/* set sched. window size */
IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
IWN_WRITE(sc, IWN_MEM_WDATA, 64);
/* set sched. frame limit */
IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
IWN_WRITE(sc, IWN_MEM_WDATA, 10 << 16);
}
/* enable interrupts for all 16 queues */
iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
/* identify active Tx rings (0-7) */
iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
for (qid = 0; qid < 7; qid++) {
iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
IWN_TXQ_STATUS_ACTIVE | qid << 1);
}
iwn_mem_unlock(sc);
}
void
iwn_stop_master(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = IWN_READ(sc, IWN_RESET);
IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
tmp = IWN_READ(sc, IWN_GPIO_CTL);
if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
return; /* already asleep */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 100)
device_printf(sc->sc_dev,
"%s: timeout waiting for master\n", __func__);
}
int
iwn_reset(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
/* clear any pending interrupts */
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
tmp = IWN_READ(sc, IWN_CHICKEN);
IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
tmp = IWN_READ(sc, IWN_GPIO_CTL);
IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"%s: timeout waiting for clock stabilization\n", __func__);
return ETIMEDOUT;
}
return 0;
}
void
iwn_hw_config(struct iwn_softc *sc)
{
uint32_t tmp, hw;
/* enable interrupts mitigation */
IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
/* voodoo from the reference driver */
tmp = pci_read_config(sc->sc_dev, PCIR_REVID,1);
if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
/* enable "no snoop" field */
tmp = pci_read_config(sc->sc_dev, 0xe8, 1);
tmp &= ~IWN_DIS_NOSNOOP;
/* clear device specific PCI configuration register 0x41 */
pci_write_config(sc->sc_dev, 0xe8, tmp, 1);
}
/* disable L1 entry to work around a hardware bug */
tmp = pci_read_config(sc->sc_dev, 0xf0, 1);
tmp &= ~IWN_ENA_L1;
pci_write_config(sc->sc_dev, 0xf0, tmp, 1 );
hw = IWN_READ(sc, IWN_HWCONFIG);
IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
iwn_mem_lock(sc);
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
DELAY(5);
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
iwn_mem_unlock(sc);
}
void
iwn_init_locked(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint32_t tmp;
int error, qid;
IWN_LOCK_ASSERT(sc);
/* load the firmware */
if (sc->fw_fp == NULL && (error = iwn_load_firmware(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not load firmware, error %d\n", __func__, error);
return;
}
error = iwn_reset(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not reset adapter, error %d\n", __func__, error);
return;
}
iwn_mem_lock(sc);
iwn_mem_read(sc, IWN_CLOCK_CTL);
iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
iwn_mem_read(sc, IWN_CLOCK_CTL);
iwn_mem_unlock(sc);
DELAY(20);
iwn_mem_lock(sc);
tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
iwn_mem_unlock(sc);
iwn_mem_lock(sc);
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
iwn_mem_unlock(sc);
iwn_hw_config(sc);
/* init Rx ring */
iwn_mem_lock(sc);
IWN_WRITE(sc, IWN_RX_CONFIG, 0);
IWN_WRITE(sc, IWN_RX_WIDX, 0);
/* Rx ring is aligned on a 256-byte boundary */
IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
/* shared area is aligned on a 16-byte boundary */
IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
offsetof(struct iwn_shared, closed_count)) >> 4);
IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
iwn_mem_unlock(sc);
IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
/* set physical address of "keep warm" page */
IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
/* init Tx rings */
for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
struct iwn_tx_ring *txq = &sc->txq[qid];
IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
}
iwn_mem_unlock(sc);
/* clear "radio off" and "disable command" bits (reversed logic) */
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
/* clear any pending interrupts */
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
/* enable interrupts */
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
/* not sure why/if this is necessary... */
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
/* check that the radio is not disabled by RF switch */
if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
device_printf(sc->sc_dev,
"radio is disabled by hardware switch\n");
return;
}
error = iwn_transfer_firmware(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not load firmware, error %d\n", __func__, error);
return;
}
/* firmware has notified us that it is alive.. */
iwn_post_alive(sc); /* ..do post alive initialization */
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
sc->temp = iwn_get_temperature(sc);
DPRINTF(sc, IWN_DEBUG_RESET, "%s: temperature=%d\n",
__func__, sc->temp);
error = iwn_config(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not configure device, error %d\n",
__func__, error);
return;
}
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
}
void
iwn_init(void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
IWN_LOCK(sc);
iwn_init_locked(sc);
IWN_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic);
}
void
iwn_stop_locked(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint32_t tmp;
int i;
IWN_LOCK_ASSERT(sc);
IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
sc->sc_tx_timer = 0;
callout_stop(&sc->sc_timer_to);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* disable interrupts */
IWN_WRITE(sc, IWN_MASK, 0);
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
/* reset all Tx rings */
for (i = 0; i < IWN_NTXQUEUES; i++)
iwn_reset_tx_ring(sc, &sc->txq[i]);
/* reset Rx ring */
iwn_reset_rx_ring(sc, &sc->rxq);
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
iwn_mem_unlock(sc);
DELAY(5);
iwn_stop_master(sc);
tmp = IWN_READ(sc, IWN_RESET);
IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
}
void
iwn_stop(struct iwn_softc *sc)
{
IWN_LOCK(sc);
iwn_stop_locked(sc);
IWN_UNLOCK(sc);
}
/*
* Callback from net80211 to start a scan.
*/
static void
iwn_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
IWN_LOCK(sc);
/* make the link LED blink while we're scanning */
iwn_set_led(sc, IWN_LED_LINK, 20, 2);
IWN_UNLOCK(sc);
}
/*
* Callback from net80211 to terminate a scan.
*/
static void
iwn_scan_end(struct ieee80211com *ic)
{
/* ignore */
}
/*
* Callback from net80211 to force a channel change.
*/
static void
iwn_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211vap *vap;
const struct ieee80211_channel *c = ic->ic_curchan;
int error;
vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
IWN_LOCK(sc);
if (c != sc->sc_curchan) {
sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
error = iwn_config(sc);
if (error != 0) {
DPRINTF(sc, IWN_DEBUG_STATE,
"%s: set chan failed, cancel scan\n",
__func__);
//XXX Handle failed scan correctly
ieee80211_cancel_scan(vap);
}
}
IWN_UNLOCK(sc);
}
/*
* Callback from net80211 to start scanning of the current channel.
*/
static void
iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
{
struct ieee80211vap *vap = ss->ss_vap;
struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
int error;
IWN_LOCK(sc);
error = iwn_scan(sc);
IWN_UNLOCK(sc);
if (error != 0)
ieee80211_cancel_scan(vap);
}
/*
* Callback from net80211 to handle the minimum dwell time being met.
* The intent is to terminate the scan but we just let the firmware
* notify us when it's finished as we have no safe way to abort it.
*/
static void
iwn_scan_mindwell(struct ieee80211_scan_state *ss)
{
/* NB: don't try to abort scan; wait for firmware to finish */
}
static void
iwn_hwreset(void *arg0, int pending)
{
struct iwn_softc *sc = arg0;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
iwn_init(sc);
ieee80211_notify_radio(ic, 1);
}
static void
iwn_radioon(void *arg0, int pending)
{
struct iwn_softc *sc = arg0;
iwn_init(sc);
}
static void
iwn_radiooff(void *arg0, int pending)
{
struct iwn_softc *sc = arg0;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
IWN_LOCK(sc);
ieee80211_notify_radio(ic, 0);
iwn_stop_locked(sc);
IWN_UNLOCK(sc);
}
static void
iwn_sysctlattach(struct iwn_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
#ifdef IWN_DEBUG
sc->sc_debug = 0;
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
#endif
}
#ifdef IWN_DEBUG
static const char *
iwn_intr_str(uint8_t cmd)
{
switch (cmd) {
/* Notifications */
case IWN_UC_READY: return "UC_READY";
case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE";
case IWN_TX_DONE: return "TX_DONE";
case IWN_START_SCAN: return "START_SCAN";
case IWN_STOP_SCAN: return "STOP_SCAN";
case IWN_RX_STATISTICS: return "RX_STATS";
case IWN_BEACON_STATISTICS: return "BEACON_STATS";
case IWN_STATE_CHANGED: return "STATE_CHANGED";
case IWN_BEACON_MISSED: return "BEACON_MISSED";
case IWN_AMPDU_RX_START: return "AMPDU_RX_START";
case IWN_AMPDU_RX_DONE: return "AMPDU_RX_DONE";
case IWN_RX_DONE: return "RX_DONE";
/* Command Notifications */
case IWN_CMD_CONFIGURE: return "IWN_CMD_CONFIGURE";
case IWN_CMD_ASSOCIATE: return "IWN_CMD_ASSOCIATE";
case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS";
case IWN_CMD_TSF: return "IWN_CMD_TSF";
case IWN_CMD_TX_LINK_QUALITY: return "IWN_CMD_TX_LINK_QUALITY";
case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED";
case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE";
case IWN_CMD_SCAN: return "IWN_CMD_SCAN";
case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER";
case IWN_CMD_BLUETOOTH: return "IWN_CMD_BLUETOOTH";
case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP";
case IWN_SENSITIVITY: return "IWN_SENSITIVITY";
case IWN_PHY_CALIB: return "IWN_PHY_CALIB";
}
return "UNKNOWN INTR NOTIF/CMD";
}
#endif /* IWN_DEBUG */
static device_method_t iwn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, iwn_probe),
DEVMETHOD(device_attach, iwn_attach),
DEVMETHOD(device_detach, iwn_detach),
DEVMETHOD(device_shutdown, iwn_shutdown),
DEVMETHOD(device_suspend, iwn_suspend),
DEVMETHOD(device_resume, iwn_resume),
{ 0, 0 }
};
static driver_t iwn_driver = {
"iwn",
iwn_methods,
sizeof (struct iwn_softc)
};
static devclass_t iwn_devclass;
DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
MODULE_DEPEND(iwn, pci, 1, 1, 1);
MODULE_DEPEND(iwn, firmware, 1, 1, 1);
MODULE_DEPEND(iwn, wlan, 1, 1, 1);
MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);