2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
2017-02-02 22:13:41 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
2010-05-28 20:45:14 +00:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2017-01-26 22:43:28 +00:00
|
|
|
* Copyright (c) 2011, 2016 by Delphix. All rights reserved.
|
2015-04-01 13:07:48 +00:00
|
|
|
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
|
2014-02-05 17:34:18 +00:00
|
|
|
* Copyright (c) 2014 RackTop Systems.
|
2015-04-02 03:44:32 +00:00
|
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
2014-03-22 09:07:14 +00:00
|
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
2016-06-09 19:29:09 +00:00
|
|
|
* Copyright 2016, OmniTI Computer Consulting, Inc. All rights reserved.
|
2017-02-02 22:13:41 +00:00
|
|
|
* Copyright 2017 Nexenta Systems, Inc.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/dmu_objset.h>
|
|
|
|
#include <sys/dsl_dataset.h>
|
|
|
|
#include <sys/dsl_dir.h>
|
|
|
|
#include <sys/dsl_prop.h>
|
|
|
|
#include <sys/dsl_synctask.h>
|
|
|
|
#include <sys/dmu_traverse.h>
|
2012-05-09 22:05:14 +00:00
|
|
|
#include <sys/dmu_impl.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#include <sys/dmu_tx.h>
|
|
|
|
#include <sys/arc.h>
|
|
|
|
#include <sys/zio.h>
|
|
|
|
#include <sys/zap.h>
|
2012-12-13 23:24:15 +00:00
|
|
|
#include <sys/zfeature.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#include <sys/unique.h>
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/zfs_ioctl.h>
|
|
|
|
#include <sys/spa.h>
|
2008-12-03 20:09:06 +00:00
|
|
|
#include <sys/zfs_znode.h>
|
2010-08-26 21:24:34 +00:00
|
|
|
#include <sys/zfs_onexit.h>
|
2009-08-18 18:43:27 +00:00
|
|
|
#include <sys/zvol.h>
|
2010-05-28 20:45:14 +00:00
|
|
|
#include <sys/dsl_scan.h>
|
|
|
|
#include <sys/dsl_deadlist.h>
|
2013-09-04 12:00:57 +00:00
|
|
|
#include <sys/dsl_destroy.h>
|
|
|
|
#include <sys/dsl_userhold.h>
|
2013-12-11 22:33:41 +00:00
|
|
|
#include <sys/dsl_bookmark.h>
|
2016-06-07 16:16:52 +00:00
|
|
|
#include <sys/policy.h>
|
2016-01-06 21:22:48 +00:00
|
|
|
#include <sys/dmu_send.h>
|
|
|
|
#include <sys/zio_compress.h>
|
|
|
|
#include <zfs_fletcher.h>
|
2016-06-15 22:47:05 +00:00
|
|
|
#include <sys/zio_checksum.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2014-11-03 20:15:08 +00:00
|
|
|
/*
|
|
|
|
* The SPA supports block sizes up to 16MB. However, very large blocks
|
|
|
|
* can have an impact on i/o latency (e.g. tying up a spinning disk for
|
|
|
|
* ~300ms), and also potentially on the memory allocator. Therefore,
|
|
|
|
* we do not allow the recordsize to be set larger than zfs_max_recordsize
|
|
|
|
* (default 1MB). Larger blocks can be created by changing this tunable,
|
|
|
|
* and pools with larger blocks can always be imported and used, regardless
|
|
|
|
* of this setting.
|
|
|
|
*/
|
|
|
|
int zfs_max_recordsize = 1 * 1024 * 1024;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
#define SWITCH64(x, y) \
|
|
|
|
{ \
|
|
|
|
uint64_t __tmp = (x); \
|
|
|
|
(x) = (y); \
|
|
|
|
(y) = __tmp; \
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
#define DS_REF_MAX (1ULL << 62)
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
extern inline dsl_dataset_phys_t *dsl_dataset_phys(dsl_dataset_t *ds);
|
|
|
|
|
2016-06-09 19:29:09 +00:00
|
|
|
extern int spa_asize_inflation;
|
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
static zil_header_t zero_zil;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
2017-01-03 17:31:18 +00:00
|
|
|
* Figure out how much of this delta should be propagated to the dsl_dir
|
2008-11-20 20:01:55 +00:00
|
|
|
* layer. If there's a refreservation, that space has already been
|
|
|
|
* partially accounted for in our ancestors.
|
|
|
|
*/
|
|
|
|
static int64_t
|
|
|
|
parent_delta(dsl_dataset_t *ds, int64_t delta)
|
|
|
|
{
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys_t *ds_phys;
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t old_bytes, new_bytes;
|
|
|
|
|
|
|
|
if (ds->ds_reserved == 0)
|
|
|
|
return (delta);
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
ds_phys = dsl_dataset_phys(ds);
|
|
|
|
old_bytes = MAX(ds_phys->ds_unique_bytes, ds->ds_reserved);
|
|
|
|
new_bytes = MAX(ds_phys->ds_unique_bytes + delta, ds->ds_reserved);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
ASSERT3U(ABS((int64_t)(new_bytes - old_bytes)), <=, ABS(delta));
|
|
|
|
return (new_bytes - old_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2010-08-26 16:52:39 +00:00
|
|
|
int used, compressed, uncompressed;
|
2008-11-20 20:01:55 +00:00
|
|
|
int64_t delta;
|
2016-06-15 22:47:05 +00:00
|
|
|
spa_feature_t f;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-08-26 16:52:39 +00:00
|
|
|
used = bp_get_dsize_sync(tx->tx_pool->dp_spa, bp);
|
|
|
|
compressed = BP_GET_PSIZE(bp);
|
|
|
|
uncompressed = BP_GET_UCSIZE(bp);
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
dprintf_bp(bp, "ds=%p", ds);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
/* It could have been compressed away to nothing */
|
|
|
|
if (BP_IS_HOLE(bp))
|
|
|
|
return;
|
|
|
|
ASSERT(BP_GET_TYPE(bp) != DMU_OT_NONE);
|
2012-12-13 23:24:15 +00:00
|
|
|
ASSERT(DMU_OT_IS_VALID(BP_GET_TYPE(bp)));
|
2008-11-20 20:01:55 +00:00
|
|
|
if (ds == NULL) {
|
2012-12-15 00:13:40 +00:00
|
|
|
dsl_pool_mos_diduse_space(tx->tx_pool,
|
|
|
|
used, compressed, uncompressed);
|
2008-11-20 20:01:55 +00:00
|
|
|
return;
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
ASSERT3U(bp->blk_birth, >, dsl_dataset_phys(ds)->ds_prev_snap_txg);
|
2013-08-22 17:51:47 +00:00
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_enter(&ds->ds_lock);
|
|
|
|
delta = parent_delta(ds, used);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_referenced_bytes += used;
|
|
|
|
dsl_dataset_phys(ds)->ds_compressed_bytes += compressed;
|
|
|
|
dsl_dataset_phys(ds)->ds_uncompressed_bytes += uncompressed;
|
|
|
|
dsl_dataset_phys(ds)->ds_unique_bytes += used;
|
2016-06-15 22:47:05 +00:00
|
|
|
|
2015-07-24 16:53:55 +00:00
|
|
|
if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) {
|
|
|
|
ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_BLOCKS] =
|
|
|
|
B_TRUE;
|
|
|
|
}
|
2016-06-15 22:47:05 +00:00
|
|
|
|
|
|
|
f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
|
|
|
|
if (f != SPA_FEATURE_NONE)
|
|
|
|
ds->ds_feature_activation_needed[f] = B_TRUE;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, delta,
|
|
|
|
compressed, uncompressed, tx);
|
|
|
|
dsl_dir_transfer_space(ds->ds_dir, used - delta,
|
|
|
|
DD_USED_REFRSRV, DD_USED_HEAD, tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
int
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx,
|
|
|
|
boolean_t async)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-12-09 18:37:51 +00:00
|
|
|
int used = bp_get_dsize_sync(tx->tx_pool->dp_spa, bp);
|
|
|
|
int compressed = BP_GET_PSIZE(bp);
|
|
|
|
int uncompressed = BP_GET_UCSIZE(bp);
|
2010-08-26 16:52:39 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (BP_IS_HOLE(bp))
|
2008-12-03 20:09:06 +00:00
|
|
|
return (0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
ASSERT(bp->blk_birth <= tx->tx_txg);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (ds == NULL) {
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_free(tx->tx_pool, tx->tx_txg, bp);
|
2012-12-15 00:13:40 +00:00
|
|
|
dsl_pool_mos_diduse_space(tx->tx_pool,
|
|
|
|
-used, -compressed, -uncompressed);
|
2008-12-03 20:09:06 +00:00
|
|
|
return (used);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
ASSERT3P(tx->tx_pool, ==, ds->ds_dir->dd_pool);
|
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
ASSERT(!ds->ds_is_snapshot);
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (bp->blk_birth > dsl_dataset_phys(ds)->ds_prev_snap_txg) {
|
2008-11-20 20:01:55 +00:00
|
|
|
int64_t delta;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
dprintf_bp(bp, "freeing ds=%llu", ds->ds_object);
|
|
|
|
dsl_free(tx->tx_pool, tx->tx_txg, bp);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
mutex_enter(&ds->ds_lock);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT(dsl_dataset_phys(ds)->ds_unique_bytes >= used ||
|
2008-11-20 20:01:55 +00:00
|
|
|
!DS_UNIQUE_IS_ACCURATE(ds));
|
|
|
|
delta = parent_delta(ds, -used);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_unique_bytes -= used;
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD,
|
2008-11-20 20:01:55 +00:00
|
|
|
delta, -compressed, -uncompressed, tx);
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dir_transfer_space(ds->ds_dir, -used - delta,
|
|
|
|
DD_USED_REFRSRV, DD_USED_HEAD, tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
} else {
|
|
|
|
dprintf_bp(bp, "putting on dead list: %s", "");
|
2010-05-28 20:45:14 +00:00
|
|
|
if (async) {
|
|
|
|
/*
|
|
|
|
* We are here as part of zio's write done callback,
|
|
|
|
* which means we're a zio interrupt thread. We can't
|
|
|
|
* call dsl_deadlist_insert() now because it may block
|
|
|
|
* waiting for I/O. Instead, put bp on the deferred
|
|
|
|
* queue and let dsl_pool_sync() finish the job.
|
|
|
|
*/
|
|
|
|
bplist_append(&ds->ds_pending_deadlist, bp);
|
|
|
|
} else {
|
|
|
|
dsl_deadlist_insert(&ds->ds_deadlist, bp, tx);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
ASSERT3U(ds->ds_prev->ds_object, ==,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj);
|
|
|
|
ASSERT(dsl_dataset_phys(ds->ds_prev)->ds_num_children > 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
/* if (bp->blk_birth > prev prev snap txg) prev unique += bs */
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj ==
|
2008-11-20 20:01:55 +00:00
|
|
|
ds->ds_object && bp->blk_birth >
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds->ds_prev)->ds_prev_snap_txg) {
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
|
|
|
|
mutex_enter(&ds->ds_prev->ds_lock);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds->ds_prev)->ds_unique_bytes += used;
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_exit(&ds->ds_prev->ds_lock);
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
if (bp->blk_birth > ds->ds_dir->dd_origin_txg) {
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dir_transfer_space(ds->ds_dir, used,
|
|
|
|
DD_USED_HEAD, DD_USED_SNAP, tx);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
mutex_enter(&ds->ds_lock);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_referenced_bytes, >=, used);
|
|
|
|
dsl_dataset_phys(ds)->ds_referenced_bytes -= used;
|
|
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_compressed_bytes, >=, compressed);
|
|
|
|
dsl_dataset_phys(ds)->ds_compressed_bytes -= compressed;
|
|
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_uncompressed_bytes, >=, uncompressed);
|
|
|
|
dsl_dataset_phys(ds)->ds_uncompressed_bytes -= uncompressed;
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
|
|
|
return (used);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2017-01-26 22:43:28 +00:00
|
|
|
/*
|
|
|
|
* We have to release the fsid syncronously or we risk that a subsequent
|
|
|
|
* mount of the same dataset will fail to unique_insert the fsid. This
|
|
|
|
* failure would manifest itself as the fsid of this dataset changing
|
|
|
|
* between mounts which makes NFS clients quite unhappy.
|
|
|
|
*/
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
2017-01-26 22:43:28 +00:00
|
|
|
dsl_dataset_evict_sync(void *dbu)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2015-04-02 03:44:32 +00:00
|
|
|
dsl_dataset_t *ds = dbu;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(ds->ds_owner == NULL);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
unique_remove(ds->ds_fsid_guid);
|
2017-01-26 22:43:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dsl_dataset_evict_async(void *dbu)
|
|
|
|
{
|
|
|
|
dsl_dataset_t *ds = dbu;
|
|
|
|
|
|
|
|
ASSERT(ds->ds_owner == NULL);
|
|
|
|
|
|
|
|
ds->ds_dbuf = NULL;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (ds->ds_objset != NULL)
|
|
|
|
dmu_objset_evict(ds->ds_objset);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (ds->ds_prev) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds->ds_prev, ds);
|
2008-11-20 20:01:55 +00:00
|
|
|
ds->ds_prev = NULL;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
bplist_destroy(&ds->ds_pending_deadlist);
|
2015-04-02 03:44:32 +00:00
|
|
|
if (ds->ds_deadlist.dl_os != NULL)
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_deadlist_close(&ds->ds_deadlist);
|
2008-12-03 20:09:06 +00:00
|
|
|
if (ds->ds_dir)
|
2015-04-02 03:44:32 +00:00
|
|
|
dsl_dir_async_rele(ds->ds_dir, ds);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
ASSERT(!list_link_active(&ds->ds_synced_link));
|
|
|
|
|
2015-11-04 23:00:58 +00:00
|
|
|
list_destroy(&ds->ds_prop_cbs);
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_destroy(&ds->ds_lock);
|
|
|
|
mutex_destroy(&ds->ds_opening_lock);
|
2015-04-01 13:49:14 +00:00
|
|
|
mutex_destroy(&ds->ds_sendstream_lock);
|
2013-09-04 12:00:57 +00:00
|
|
|
refcount_destroy(&ds->ds_longholds);
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_destroy(&ds->ds_bp_rwlock);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
kmem_free(ds, sizeof (dsl_dataset_t));
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
int
|
2008-11-20 20:01:55 +00:00
|
|
|
dsl_dataset_get_snapname(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
dsl_dataset_phys_t *headphys;
|
|
|
|
int err;
|
|
|
|
dmu_buf_t *headdbuf;
|
|
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
|
|
|
|
if (ds->ds_snapname[0])
|
|
|
|
return (0);
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0)
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
err = dmu_bonus_hold(mos, dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj,
|
2008-11-20 20:01:55 +00:00
|
|
|
FTAG, &headdbuf);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0)
|
2008-11-20 20:01:55 +00:00
|
|
|
return (err);
|
|
|
|
headphys = headdbuf->db_data;
|
|
|
|
err = zap_value_search(dp->dp_meta_objset,
|
|
|
|
headphys->ds_snapnames_zapobj, ds->ds_object, 0, ds->ds_snapname);
|
2015-08-23 14:58:11 +00:00
|
|
|
if (err != 0 && zfs_recover == B_TRUE) {
|
|
|
|
err = 0;
|
|
|
|
(void) snprintf(ds->ds_snapname, sizeof (ds->ds_snapname),
|
|
|
|
"SNAPOBJ=%llu-ERR=%d",
|
|
|
|
(unsigned long long)ds->ds_object, err);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_rele(headdbuf, FTAG);
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
2013-01-25 22:57:53 +00:00
|
|
|
int
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name, uint64_t *value)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2008-12-03 20:09:06 +00:00
|
|
|
objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
|
2015-04-01 15:14:34 +00:00
|
|
|
uint64_t snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj;
|
2017-02-02 22:13:41 +00:00
|
|
|
matchtype_t mt = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
int err;
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_flags & DS_FLAG_CI_DATASET)
|
2017-02-02 22:13:41 +00:00
|
|
|
mt = MT_NORMALIZE;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
err = zap_lookup_norm(mos, snapobj, name, 8, 1,
|
2008-11-20 20:01:55 +00:00
|
|
|
value, mt, NULL, 0, NULL);
|
2017-02-02 22:13:41 +00:00
|
|
|
if (err == ENOTSUP && (mt & MT_NORMALIZE))
|
2008-12-03 20:09:06 +00:00
|
|
|
err = zap_lookup(mos, snapobj, name, 8, 1, value);
|
2008-11-20 20:01:55 +00:00
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
int
|
2015-04-01 13:07:48 +00:00
|
|
|
dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx,
|
|
|
|
boolean_t adj_cnt)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2008-12-03 20:09:06 +00:00
|
|
|
objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
|
2015-04-01 15:14:34 +00:00
|
|
|
uint64_t snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj;
|
2017-02-02 22:13:41 +00:00
|
|
|
matchtype_t mt = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
int err;
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_dir_snap_cmtime_update(ds->ds_dir);
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_flags & DS_FLAG_CI_DATASET)
|
2017-02-02 22:13:41 +00:00
|
|
|
mt = MT_NORMALIZE;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
err = zap_remove_norm(mos, snapobj, name, mt, tx);
|
2017-02-02 22:13:41 +00:00
|
|
|
if (err == ENOTSUP && (mt & MT_NORMALIZE))
|
2008-12-03 20:09:06 +00:00
|
|
|
err = zap_remove(mos, snapobj, name, tx);
|
2015-04-01 13:07:48 +00:00
|
|
|
|
|
|
|
if (err == 0 && adj_cnt)
|
|
|
|
dsl_fs_ss_count_adjust(ds->ds_dir, -1,
|
|
|
|
DD_FIELD_SNAPSHOT_COUNT, tx);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
2015-04-02 11:59:15 +00:00
|
|
|
boolean_t
|
|
|
|
dsl_dataset_try_add_ref(dsl_pool_t *dp, dsl_dataset_t *ds, void *tag)
|
|
|
|
{
|
2015-04-02 12:00:07 +00:00
|
|
|
dmu_buf_t *dbuf = ds->ds_dbuf;
|
|
|
|
boolean_t result = B_FALSE;
|
|
|
|
|
|
|
|
if (dbuf != NULL && dmu_buf_try_add_ref(dbuf, dp->dp_meta_objset,
|
|
|
|
ds->ds_object, DMU_BONUS_BLKID, tag)) {
|
|
|
|
|
|
|
|
if (ds == dmu_buf_get_user(dbuf))
|
|
|
|
result = B_TRUE;
|
|
|
|
else
|
|
|
|
dmu_buf_rele(dbuf, tag);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (result);
|
2015-04-02 11:59:15 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
int
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_hold_obj_flags(dsl_pool_t *dp, uint64_t dsobj,
|
|
|
|
ds_hold_flags_t flags, void *tag, dsl_dataset_t **dsp)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
dmu_buf_t *dbuf;
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
int err;
|
2010-08-26 21:24:34 +00:00
|
|
|
dmu_object_info_t doi;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(dsl_pool_config_held(dp));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
err = dmu_bonus_hold(mos, dsobj, tag, &dbuf);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0)
|
2008-11-20 20:01:55 +00:00
|
|
|
return (err);
|
2010-08-26 21:24:34 +00:00
|
|
|
|
|
|
|
/* Make sure dsobj has the correct object type. */
|
|
|
|
dmu_object_info_from_db(dbuf, &doi);
|
2013-10-08 17:13:05 +00:00
|
|
|
if (doi.doi_bonus_type != DMU_OT_DSL_DATASET) {
|
2013-06-11 17:13:38 +00:00
|
|
|
dmu_buf_rele(dbuf, tag);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2013-06-11 17:13:38 +00:00
|
|
|
}
|
2010-08-26 21:24:34 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
ds = dmu_buf_get_user(dbuf);
|
|
|
|
if (ds == NULL) {
|
2010-08-26 16:58:04 +00:00
|
|
|
dsl_dataset_t *winner = NULL;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2014-11-21 00:09:39 +00:00
|
|
|
ds = kmem_zalloc(sizeof (dsl_dataset_t), KM_SLEEP);
|
2008-11-20 20:01:55 +00:00
|
|
|
ds->ds_dbuf = dbuf;
|
|
|
|
ds->ds_object = dsobj;
|
2015-04-02 03:44:32 +00:00
|
|
|
ds->ds_is_snapshot = dsl_dataset_phys(ds)->ds_num_children != 0;
|
2010-08-26 17:26:44 +00:00
|
|
|
list_link_init(&ds->ds_synced_link);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
mutex_init(&ds->ds_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
mutex_init(&ds->ds_opening_lock, NULL, MUTEX_DEFAULT, NULL);
|
2012-05-09 22:05:14 +00:00
|
|
|
mutex_init(&ds->ds_sendstream_lock, NULL, MUTEX_DEFAULT, NULL);
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_init(&ds->ds_bp_rwlock, B_FALSE);
|
2013-09-04 12:00:57 +00:00
|
|
|
refcount_create(&ds->ds_longholds);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
bplist_create(&ds->ds_pending_deadlist);
|
|
|
|
dsl_deadlist_open(&ds->ds_deadlist,
|
2015-04-01 15:14:34 +00:00
|
|
|
mos, dsl_dataset_phys(ds)->ds_deadlist_obj);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2012-05-09 22:05:14 +00:00
|
|
|
list_create(&ds->ds_sendstreams, sizeof (dmu_sendarg_t),
|
|
|
|
offsetof(dmu_sendarg_t, dsa_link));
|
|
|
|
|
2015-11-04 23:00:58 +00:00
|
|
|
list_create(&ds->ds_prop_cbs, sizeof (dsl_prop_cb_record_t),
|
|
|
|
offsetof(dsl_prop_cb_record_t, cbr_ds_node));
|
|
|
|
|
2014-11-03 20:15:08 +00:00
|
|
|
if (doi.doi_type == DMU_OTN_ZAP_METADATA) {
|
2015-07-24 16:53:55 +00:00
|
|
|
spa_feature_t f;
|
|
|
|
|
|
|
|
for (f = 0; f < SPA_FEATURES; f++) {
|
|
|
|
if (!(spa_feature_table[f].fi_flags &
|
|
|
|
ZFEATURE_FLAG_PER_DATASET))
|
|
|
|
continue;
|
|
|
|
err = zap_contains(mos, dsobj,
|
|
|
|
spa_feature_table[f].fi_guid);
|
|
|
|
if (err == 0) {
|
|
|
|
ds->ds_feature_inuse[f] = B_TRUE;
|
|
|
|
} else {
|
|
|
|
ASSERT3U(err, ==, ENOENT);
|
|
|
|
err = 0;
|
|
|
|
}
|
2015-05-12 17:23:45 +00:00
|
|
|
}
|
2014-11-03 20:15:08 +00:00
|
|
|
}
|
|
|
|
|
2015-07-24 16:53:55 +00:00
|
|
|
err = dsl_dir_hold_obj(dp,
|
|
|
|
dsl_dataset_phys(ds)->ds_dir_obj, NULL, ds, &ds->ds_dir);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0) {
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_destroy(&ds->ds_lock);
|
|
|
|
mutex_destroy(&ds->ds_opening_lock);
|
2015-04-01 13:49:14 +00:00
|
|
|
mutex_destroy(&ds->ds_sendstream_lock);
|
2013-09-04 12:00:57 +00:00
|
|
|
refcount_destroy(&ds->ds_longholds);
|
2010-05-28 20:45:14 +00:00
|
|
|
bplist_destroy(&ds->ds_pending_deadlist);
|
|
|
|
dsl_deadlist_close(&ds->ds_deadlist);
|
2008-11-20 20:01:55 +00:00
|
|
|
kmem_free(ds, sizeof (dsl_dataset_t));
|
|
|
|
dmu_buf_rele(dbuf, tag);
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
if (!ds->ds_is_snapshot) {
|
2008-11-20 20:01:55 +00:00
|
|
|
ds->ds_snapname[0] = '\0';
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
|
2013-09-04 12:00:57 +00:00
|
|
|
err = dsl_dataset_hold_obj(dp,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
2008-12-03 20:09:06 +00:00
|
|
|
ds, &ds->ds_prev);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2013-12-11 22:33:41 +00:00
|
|
|
if (doi.doi_type == DMU_OTN_ZAP_METADATA) {
|
|
|
|
int zaperr = zap_lookup(mos, ds->ds_object,
|
|
|
|
DS_FIELD_BOOKMARK_NAMES,
|
|
|
|
sizeof (ds->ds_bookmarks), 1,
|
|
|
|
&ds->ds_bookmarks);
|
|
|
|
if (zaperr != ENOENT)
|
|
|
|
VERIFY0(zaperr);
|
|
|
|
}
|
2009-08-18 18:43:27 +00:00
|
|
|
} else {
|
|
|
|
if (zfs_flags & ZFS_DEBUG_SNAPNAMES)
|
|
|
|
err = dsl_dataset_get_snapname(ds);
|
2015-04-01 15:14:34 +00:00
|
|
|
if (err == 0 &&
|
|
|
|
dsl_dataset_phys(ds)->ds_userrefs_obj != 0) {
|
2009-08-18 18:43:27 +00:00
|
|
|
err = zap_count(
|
|
|
|
ds->ds_dir->dd_pool->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_userrefs_obj,
|
2009-08-18 18:43:27 +00:00
|
|
|
&ds->ds_userrefs);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
if (err == 0 && !ds->ds_is_snapshot) {
|
2013-09-04 12:00:57 +00:00
|
|
|
err = dsl_prop_get_int_ds(ds,
|
|
|
|
zfs_prop_to_name(ZFS_PROP_REFRESERVATION),
|
|
|
|
&ds->ds_reserved);
|
2008-11-20 20:01:55 +00:00
|
|
|
if (err == 0) {
|
2013-09-04 12:00:57 +00:00
|
|
|
err = dsl_prop_get_int_ds(ds,
|
|
|
|
zfs_prop_to_name(ZFS_PROP_REFQUOTA),
|
|
|
|
&ds->ds_quota);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ds->ds_reserved = ds->ds_quota = 0;
|
|
|
|
}
|
|
|
|
|
2017-01-26 22:43:28 +00:00
|
|
|
dmu_buf_init_user(&ds->ds_dbu, dsl_dataset_evict_sync,
|
|
|
|
dsl_dataset_evict_async, &ds->ds_dbuf);
|
2015-04-02 03:44:32 +00:00
|
|
|
if (err == 0)
|
|
|
|
winner = dmu_buf_set_user_ie(dbuf, &ds->ds_dbu);
|
|
|
|
|
|
|
|
if (err != 0 || winner != NULL) {
|
2010-05-28 20:45:14 +00:00
|
|
|
bplist_destroy(&ds->ds_pending_deadlist);
|
|
|
|
dsl_deadlist_close(&ds->ds_deadlist);
|
2008-12-03 20:09:06 +00:00
|
|
|
if (ds->ds_prev)
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds->ds_prev, ds);
|
|
|
|
dsl_dir_rele(ds->ds_dir, ds);
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_destroy(&ds->ds_lock);
|
|
|
|
mutex_destroy(&ds->ds_opening_lock);
|
2015-04-01 13:49:14 +00:00
|
|
|
mutex_destroy(&ds->ds_sendstream_lock);
|
2013-09-04 12:00:57 +00:00
|
|
|
refcount_destroy(&ds->ds_longholds);
|
2008-11-20 20:01:55 +00:00
|
|
|
kmem_free(ds, sizeof (dsl_dataset_t));
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0) {
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_rele(dbuf, tag);
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
ds = winner;
|
|
|
|
} else {
|
|
|
|
ds->ds_fsid_guid =
|
2015-04-01 15:14:34 +00:00
|
|
|
unique_insert(dsl_dataset_phys(ds)->ds_fsid_guid);
|
2017-01-26 22:43:28 +00:00
|
|
|
if (ds->ds_fsid_guid !=
|
|
|
|
dsl_dataset_phys(ds)->ds_fsid_guid) {
|
|
|
|
zfs_dbgmsg("ds_fsid_guid changed from "
|
|
|
|
"%llx to %llx for pool %s dataset id %llu",
|
|
|
|
(long long)
|
|
|
|
dsl_dataset_phys(ds)->ds_fsid_guid,
|
|
|
|
(long long)ds->ds_fsid_guid,
|
|
|
|
spa_name(dp->dp_spa),
|
|
|
|
dsobj);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT3P(ds->ds_dbuf, ==, dbuf);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3P(dsl_dataset_phys(ds), ==, dbuf->db_data);
|
|
|
|
ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0 ||
|
2008-12-03 20:09:06 +00:00
|
|
|
spa_version(dp->dp_spa) < SPA_VERSION_ORIGIN ||
|
|
|
|
dp->dp_origin_snap == NULL || ds == dp->dp_origin_snap);
|
2008-11-20 20:01:55 +00:00
|
|
|
*dsp = ds;
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
|
|
|
|
if ((flags & DS_HOLD_FLAG_DECRYPT) && ds->ds_dir->dd_crypto_obj != 0) {
|
|
|
|
err = spa_keystore_create_mapping(dp->dp_spa, ds, ds);
|
|
|
|
if (err != 0) {
|
|
|
|
dsl_dataset_rele(ds, tag);
|
|
|
|
return (SET_ERROR(EACCES));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
int
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_hold_obj(dsl_pool_t *dp, uint64_t dsobj, void *tag,
|
|
|
|
dsl_dataset_t **dsp)
|
|
|
|
{
|
|
|
|
return (dsl_dataset_hold_obj_flags(dp, dsobj, 0, tag, dsp));
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dsl_dataset_hold_flags(dsl_pool_t *dp, const char *name, ds_hold_flags_t flags,
|
2010-05-28 20:45:14 +00:00
|
|
|
void *tag, dsl_dataset_t **dsp)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
dsl_dir_t *dd;
|
2008-12-03 20:09:06 +00:00
|
|
|
const char *snapname;
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t obj;
|
|
|
|
int err = 0;
|
2015-12-22 01:31:57 +00:00
|
|
|
dsl_dataset_t *ds;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
err = dsl_dir_hold(dp, name, FTAG, &dd, &snapname);
|
|
|
|
if (err != 0)
|
2008-11-20 20:01:55 +00:00
|
|
|
return (err);
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(dsl_pool_config_held(dp));
|
2015-04-01 15:14:34 +00:00
|
|
|
obj = dsl_dir_phys(dd)->dd_head_dataset_obj;
|
2013-09-04 12:00:57 +00:00
|
|
|
if (obj != 0)
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
err = dsl_dataset_hold_obj_flags(dp, obj, flags, tag, &ds);
|
2008-12-03 20:09:06 +00:00
|
|
|
else
|
2013-03-08 18:41:28 +00:00
|
|
|
err = SET_ERROR(ENOENT);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/* we may be looking for a snapshot */
|
|
|
|
if (err == 0 && snapname != NULL) {
|
2015-12-22 01:31:57 +00:00
|
|
|
dsl_dataset_t *snap_ds;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
if (*snapname++ != '@') {
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_rele_flags(ds, flags, tag);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dir_rele(dd, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOENT));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
dprintf("looking for snapshot '%s'\n", snapname);
|
2015-12-22 01:31:57 +00:00
|
|
|
err = dsl_dataset_snap_lookup(ds, snapname, &obj);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
if (err == 0) {
|
|
|
|
err = dsl_dataset_hold_obj_flags(dp, obj, flags, tag,
|
|
|
|
&snap_ds);
|
|
|
|
}
|
|
|
|
dsl_dataset_rele_flags(ds, flags, tag);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err == 0) {
|
2015-12-22 01:31:57 +00:00
|
|
|
mutex_enter(&snap_ds->ds_lock);
|
|
|
|
if (snap_ds->ds_snapname[0] == 0)
|
|
|
|
(void) strlcpy(snap_ds->ds_snapname, snapname,
|
|
|
|
sizeof (snap_ds->ds_snapname));
|
|
|
|
mutex_exit(&snap_ds->ds_lock);
|
|
|
|
ds = snap_ds;
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
2015-12-22 01:31:57 +00:00
|
|
|
if (err == 0)
|
|
|
|
*dsp = ds;
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dir_rele(dd, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_hold(dsl_pool_t *dp, const char *name, void *tag,
|
|
|
|
dsl_dataset_t **dsp)
|
|
|
|
{
|
|
|
|
return (dsl_dataset_hold_flags(dp, name, 0, tag, dsp));
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dsl_dataset_own_obj(dsl_pool_t *dp, uint64_t dsobj, ds_hold_flags_t flags,
|
2010-05-28 20:45:14 +00:00
|
|
|
void *tag, dsl_dataset_t **dsp)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
int err = dsl_dataset_hold_obj_flags(dp, dsobj, flags, tag, dsp);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0)
|
|
|
|
return (err);
|
|
|
|
if (!dsl_dataset_tryown(*dsp, tag)) {
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_rele_flags(*dsp, flags, tag);
|
2013-09-04 12:00:57 +00:00
|
|
|
*dsp = NULL;
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EBUSY));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_own(dsl_pool_t *dp, const char *name, ds_hold_flags_t flags,
|
2013-09-04 12:00:57 +00:00
|
|
|
void *tag, dsl_dataset_t **dsp)
|
|
|
|
{
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
int err = dsl_dataset_hold_flags(dp, name, flags, tag, dsp);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0)
|
2008-12-03 20:09:06 +00:00
|
|
|
return (err);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (!dsl_dataset_tryown(*dsp, tag)) {
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_rele_flags(*dsp, flags, tag);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EBUSY));
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
|
|
|
return (0);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* See the comment above dsl_pool_hold() for details. In summary, a long
|
|
|
|
* hold is used to prevent destruction of a dataset while the pool hold
|
|
|
|
* is dropped, allowing other concurrent operations (e.g. spa_sync()).
|
|
|
|
*
|
|
|
|
* The dataset and pool must be held when this function is called. After it
|
|
|
|
* is called, the pool hold may be released while the dataset is still held
|
|
|
|
* and accessed.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag)
|
|
|
|
{
|
|
|
|
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
|
|
|
|
(void) refcount_add(&ds->ds_longholds, tag);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag)
|
|
|
|
{
|
|
|
|
(void) refcount_remove(&ds->ds_longholds, tag);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return B_TRUE if there are any long holds on this dataset. */
|
|
|
|
boolean_t
|
|
|
|
dsl_dataset_long_held(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
return (!refcount_is_zero(&ds->ds_longholds));
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_name(dsl_dataset_t *ds, char *name)
|
|
|
|
{
|
|
|
|
if (ds == NULL) {
|
|
|
|
(void) strcpy(name, "mos");
|
|
|
|
} else {
|
|
|
|
dsl_dir_name(ds->ds_dir, name);
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_get_snapname(ds));
|
2008-11-20 20:01:55 +00:00
|
|
|
if (ds->ds_snapname[0]) {
|
2016-06-15 21:28:36 +00:00
|
|
|
VERIFY3U(strlcat(name, "@", ZFS_MAX_DATASET_NAME_LEN),
|
|
|
|
<, ZFS_MAX_DATASET_NAME_LEN);
|
2008-12-03 20:09:06 +00:00
|
|
|
/*
|
|
|
|
* We use a "recursive" mutex so that we
|
|
|
|
* can call dprintf_ds() with ds_lock held.
|
|
|
|
*/
|
2008-11-20 20:01:55 +00:00
|
|
|
if (!MUTEX_HELD(&ds->ds_lock)) {
|
|
|
|
mutex_enter(&ds->ds_lock);
|
2016-06-15 21:28:36 +00:00
|
|
|
VERIFY3U(strlcat(name, ds->ds_snapname,
|
|
|
|
ZFS_MAX_DATASET_NAME_LEN), <,
|
|
|
|
ZFS_MAX_DATASET_NAME_LEN);
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
|
|
|
} else {
|
2016-06-15 21:28:36 +00:00
|
|
|
VERIFY3U(strlcat(name, ds->ds_snapname,
|
|
|
|
ZFS_MAX_DATASET_NAME_LEN), <,
|
|
|
|
ZFS_MAX_DATASET_NAME_LEN);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-06-15 21:28:36 +00:00
|
|
|
int
|
|
|
|
dsl_dataset_namelen(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
int len;
|
|
|
|
VERIFY0(dsl_dataset_get_snapname(ds));
|
|
|
|
mutex_enter(&ds->ds_lock);
|
2016-12-09 18:52:08 +00:00
|
|
|
len = strlen(ds->ds_snapname);
|
|
|
|
/* add '@' if ds is a snap */
|
|
|
|
if (len > 0)
|
|
|
|
len++;
|
|
|
|
len += dsl_dir_namelen(ds->ds_dir);
|
2016-06-15 21:28:36 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
|
|
|
return (len);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
void
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_rele_flags(dsl_dataset_t *ds, ds_hold_flags_t flags, void *tag)
|
2008-12-03 20:09:06 +00:00
|
|
|
{
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
if (ds->ds_dir != NULL && ds->ds_dir->dd_crypto_obj != 0 &&
|
|
|
|
(flags & DS_HOLD_FLAG_DECRYPT)) {
|
|
|
|
(void) spa_keystore_remove_mapping(ds->ds_dir->dd_pool->dp_spa,
|
|
|
|
ds->ds_object, ds);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dmu_buf_rele(ds->ds_dbuf, tag);
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_rele(dsl_dataset_t *ds, void *tag)
|
|
|
|
{
|
|
|
|
dsl_dataset_rele_flags(ds, 0, tag);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_dataset_disown(dsl_dataset_t *ds, ds_hold_flags_t flags, void *tag)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2015-04-01 15:13:28 +00:00
|
|
|
ASSERT3P(ds->ds_owner, ==, tag);
|
|
|
|
ASSERT(ds->ds_dbuf != NULL);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_enter(&ds->ds_lock);
|
2008-12-03 20:09:06 +00:00
|
|
|
ds->ds_owner = NULL;
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_long_rele(ds, tag);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_rele_flags(ds, flags, tag);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
boolean_t
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_tryown(dsl_dataset_t *ds, void *tag)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2008-12-03 20:09:06 +00:00
|
|
|
boolean_t gotit = FALSE;
|
|
|
|
|
2016-01-06 21:22:48 +00:00
|
|
|
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_enter(&ds->ds_lock);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (ds->ds_owner == NULL && !DS_IS_INCONSISTENT(ds)) {
|
2010-05-28 20:45:14 +00:00
|
|
|
ds->ds_owner = tag;
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_long_hold(ds, tag);
|
2008-12-03 20:09:06 +00:00
|
|
|
gotit = TRUE;
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
mutex_exit(&ds->ds_lock);
|
2008-12-03 20:09:06 +00:00
|
|
|
return (gotit);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2016-01-06 21:22:48 +00:00
|
|
|
boolean_t
|
|
|
|
dsl_dataset_has_owner(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
boolean_t rv;
|
|
|
|
mutex_enter(&ds->ds_lock);
|
|
|
|
rv = (ds->ds_owner != NULL);
|
|
|
|
mutex_exit(&ds->ds_lock);
|
|
|
|
return (rv);
|
|
|
|
}
|
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
void
|
2015-07-24 16:53:55 +00:00
|
|
|
dsl_dataset_activate_feature(uint64_t dsobj, spa_feature_t f, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
|
|
objset_t *mos = dmu_tx_pool(tx)->dp_meta_objset;
|
|
|
|
uint64_t zero = 0;
|
|
|
|
|
|
|
|
VERIFY(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET);
|
|
|
|
|
|
|
|
spa_feature_incr(spa, f, tx);
|
|
|
|
dmu_object_zapify(mos, dsobj, DMU_OT_DSL_DATASET, tx);
|
|
|
|
|
|
|
|
VERIFY0(zap_add(mos, dsobj, spa_feature_table[f].fi_guid,
|
|
|
|
sizeof (zero), 1, &zero, tx));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_dataset_deactivate_feature(uint64_t dsobj, spa_feature_t f, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
|
|
objset_t *mos = dmu_tx_pool(tx)->dp_meta_objset;
|
|
|
|
|
|
|
|
VERIFY(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET);
|
|
|
|
|
|
|
|
VERIFY0(zap_remove(mos, dsobj, spa_feature_table[f].fi_guid, tx));
|
|
|
|
spa_feature_decr(spa, f, tx);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin,
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_crypto_params_t *dcp, uint64_t flags, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
dsl_pool_t *dp = dd->dd_pool;
|
|
|
|
dmu_buf_t *dbuf;
|
|
|
|
dsl_dataset_phys_t *dsphys;
|
|
|
|
uint64_t dsobj;
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
if (origin == NULL)
|
|
|
|
origin = dp->dp_origin_snap;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
ASSERT(origin == NULL || origin->ds_dir->dd_pool == dp);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT(origin == NULL || dsl_dataset_phys(origin)->ds_num_children > 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT(dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0,
|
|
|
|
DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx);
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf));
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_will_dirty(dbuf, tx);
|
|
|
|
dsphys = dbuf->db_data;
|
2008-12-03 20:09:06 +00:00
|
|
|
bzero(dsphys, sizeof (dsl_dataset_phys_t));
|
2008-11-20 20:01:55 +00:00
|
|
|
dsphys->ds_dir_obj = dd->dd_object;
|
|
|
|
dsphys->ds_flags = flags;
|
|
|
|
dsphys->ds_fsid_guid = unique_create();
|
|
|
|
(void) random_get_pseudo_bytes((void*)&dsphys->ds_guid,
|
|
|
|
sizeof (dsphys->ds_guid));
|
|
|
|
dsphys->ds_snapnames_zapobj =
|
|
|
|
zap_create_norm(mos, U8_TEXTPREP_TOUPPER, DMU_OT_DSL_DS_SNAP_MAP,
|
|
|
|
DMU_OT_NONE, 0, tx);
|
|
|
|
dsphys->ds_creation_time = gethrestime_sec();
|
2008-12-03 20:09:06 +00:00
|
|
|
dsphys->ds_creation_txg = tx->tx_txg == TXG_INITIAL ? 1 : tx->tx_txg;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (origin == NULL) {
|
|
|
|
dsphys->ds_deadlist_obj = dsl_deadlist_alloc(mos, tx);
|
|
|
|
} else {
|
2015-07-24 16:53:55 +00:00
|
|
|
spa_feature_t f;
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_t *ohds; /* head of the origin snapshot */
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
dsphys->ds_prev_snap_obj = origin->ds_object;
|
|
|
|
dsphys->ds_prev_snap_txg =
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin)->ds_creation_txg;
|
2012-12-13 23:24:15 +00:00
|
|
|
dsphys->ds_referenced_bytes =
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin)->ds_referenced_bytes;
|
2008-11-20 20:01:55 +00:00
|
|
|
dsphys->ds_compressed_bytes =
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin)->ds_compressed_bytes;
|
2008-11-20 20:01:55 +00:00
|
|
|
dsphys->ds_uncompressed_bytes =
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin)->ds_uncompressed_bytes;
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_enter(&origin->ds_bp_rwlock, RW_READER, FTAG);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsphys->ds_bp = dsl_dataset_phys(origin)->ds_bp;
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_exit(&origin->ds_bp_rwlock, FTAG);
|
2014-09-12 03:45:50 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Inherit flags that describe the dataset's contents
|
|
|
|
* (INCONSISTENT) or properties (Case Insensitive).
|
|
|
|
*/
|
2015-04-01 15:14:34 +00:00
|
|
|
dsphys->ds_flags |= dsl_dataset_phys(origin)->ds_flags &
|
2014-09-12 03:45:50 +00:00
|
|
|
(DS_FLAG_INCONSISTENT | DS_FLAG_CI_DATASET);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-07-24 16:53:55 +00:00
|
|
|
for (f = 0; f < SPA_FEATURES; f++) {
|
|
|
|
if (origin->ds_feature_inuse[f])
|
|
|
|
dsl_dataset_activate_feature(dsobj, f, tx);
|
|
|
|
}
|
2014-11-03 20:15:08 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_will_dirty(origin->ds_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin)->ds_num_children++;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(origin->ds_dir)->dd_head_dataset_obj,
|
|
|
|
FTAG, &ohds));
|
2010-05-28 20:45:14 +00:00
|
|
|
dsphys->ds_deadlist_obj = dsl_deadlist_clone(&ohds->ds_deadlist,
|
|
|
|
dsphys->ds_prev_snap_txg, dsphys->ds_prev_snap_obj, tx);
|
|
|
|
dsl_dataset_rele(ohds, FTAG);
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_NEXT_CLONES) {
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(origin)->ds_next_clones_obj == 0) {
|
|
|
|
dsl_dataset_phys(origin)->ds_next_clones_obj =
|
2008-12-03 20:09:06 +00:00
|
|
|
zap_create(mos,
|
|
|
|
DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
|
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_add_int(mos,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin)->ds_next_clones_obj,
|
|
|
|
dsobj, tx));
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_will_dirty(dd->dd_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(dd)->dd_origin_obj = origin->ds_object;
|
2010-05-28 20:45:14 +00:00
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
|
2010-05-28 20:45:14 +00:00
|
|
|
dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(origin->ds_dir)->dd_clones =
|
2010-05-28 20:45:14 +00:00
|
|
|
zap_create(mos,
|
|
|
|
DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
|
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_add_int(mos,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(origin->ds_dir)->dd_clones,
|
|
|
|
dsobj, tx));
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
/* handle encryption */
|
|
|
|
dsl_dataset_create_crypt_sync(dsobj, dd, origin, dcp, tx);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE)
|
|
|
|
dsphys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE;
|
|
|
|
|
|
|
|
dmu_buf_rele(dbuf, FTAG);
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(dd->dd_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(dd)->dd_head_dataset_obj = dsobj;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
return (dsobj);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
dsl_dataset_zero_zil(dsl_dataset_t *ds, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
objset_t *os;
|
|
|
|
|
|
|
|
VERIFY0(dmu_objset_from_ds(ds, &os));
|
2016-11-21 23:09:54 +00:00
|
|
|
if (bcmp(&os->os_zil_header, &zero_zil, sizeof (zero_zil)) != 0) {
|
|
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
|
|
zio_t *zio;
|
|
|
|
|
|
|
|
bzero(&os->os_zil_header, sizeof (os->os_zil_header));
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
if (os->os_encrypted)
|
|
|
|
os->os_next_write_raw = B_TRUE;
|
2016-11-21 23:09:54 +00:00
|
|
|
|
|
|
|
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
|
|
dsl_dataset_sync(ds, zio, tx);
|
|
|
|
VERIFY0(zio_wait(zio));
|
|
|
|
|
|
|
|
/* dsl_dataset_sync_done will drop this reference. */
|
|
|
|
dmu_buf_add_ref(ds->ds_dbuf, ds);
|
|
|
|
dsl_dataset_sync_done(ds, tx);
|
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t
|
|
|
|
dsl_dataset_create_sync(dsl_dir_t *pdd, const char *lastname,
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_t *origin, uint64_t flags, cred_t *cr,
|
|
|
|
dsl_crypto_params_t *dcp, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
|
|
|
dsl_pool_t *dp = pdd->dd_pool;
|
|
|
|
uint64_t dsobj, ddobj;
|
|
|
|
dsl_dir_t *dd;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
2008-11-20 20:01:55 +00:00
|
|
|
ASSERT(lastname[0] != '@');
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
ddobj = dsl_dir_create_sync(dp, pdd, lastname, tx);
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dir_hold_obj(dp, ddobj, lastname, FTAG, &dd));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsobj = dsl_dataset_create_sync_dd(dd, origin, dcp,
|
2013-09-04 12:00:57 +00:00
|
|
|
flags & ~DS_CREATE_FLAG_NODIRTY, tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
dsl_deleg_set_create_perms(dd, tx, cr);
|
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
/*
|
|
|
|
* Since we're creating a new node we know it's a leaf, so we can
|
|
|
|
* initialize the counts if the limit feature is active.
|
|
|
|
*/
|
|
|
|
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
|
|
|
|
uint64_t cnt = 0;
|
|
|
|
objset_t *os = dd->dd_pool->dp_meta_objset;
|
|
|
|
|
|
|
|
dsl_dir_zapify(dd, tx);
|
|
|
|
VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
|
|
|
|
sizeof (cnt), 1, &cnt, tx));
|
|
|
|
VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
|
|
|
|
sizeof (cnt), 1, &cnt, tx));
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dir_rele(dd, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-08-26 21:24:34 +00:00
|
|
|
/*
|
|
|
|
* If we are creating a clone, make sure we zero out any stale
|
|
|
|
* data from the origin snapshots zil header.
|
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
if (origin != NULL && !(flags & DS_CREATE_FLAG_NODIRTY)) {
|
2010-08-26 21:24:34 +00:00
|
|
|
dsl_dataset_t *ds;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
|
|
|
|
dsl_dataset_zero_zil(ds, tx);
|
2010-08-26 21:24:34 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
return (dsobj);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* The unique space in the head dataset can be calculated by subtracting
|
|
|
|
* the space used in the most recent snapshot, that is still being used
|
|
|
|
* in this file system, from the space currently in use. To figure out
|
|
|
|
* the space in the most recent snapshot still in use, we need to take
|
|
|
|
* the total space used in the snapshot and subtract out the space that
|
|
|
|
* has been freed up since the snapshot was taken.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
uint64_t mrs_used;
|
|
|
|
uint64_t dlused, dlcomp, dluncomp;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
ASSERT(!ds->ds_is_snapshot);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0)
|
|
|
|
mrs_used = dsl_dataset_phys(ds->ds_prev)->ds_referenced_bytes;
|
2013-09-04 12:00:57 +00:00
|
|
|
else
|
|
|
|
mrs_used = 0;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_deadlist_space(&ds->ds_deadlist, &dlused, &dlcomp, &dluncomp);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT3U(dlused, <=, mrs_used);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_unique_bytes =
|
|
|
|
dsl_dataset_phys(ds)->ds_referenced_bytes - (mrs_used - dlused);
|
2011-11-17 18:14:36 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (spa_version(ds->ds_dir->dd_pool->dp_spa) >=
|
|
|
|
SPA_VERSION_UNIQUE_ACCURATE)
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_UNIQUE_ACCURATE;
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj,
|
|
|
|
dmu_tx_t *tx)
|
2009-08-18 18:43:27 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
|
|
|
|
int err;
|
|
|
|
ASSERTV(uint64_t count);
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT(dsl_dataset_phys(ds)->ds_num_children >= 2);
|
|
|
|
err = zap_remove_int(mos, dsl_dataset_phys(ds)->ds_next_clones_obj,
|
|
|
|
obj, tx);
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* The err should not be ENOENT, but a bug in a previous version
|
|
|
|
* of the code could cause upgrade_clones_cb() to not set
|
|
|
|
* ds_next_snap_obj when it should, leading to a missing entry.
|
|
|
|
* If we knew that the pool was created after
|
|
|
|
* SPA_VERSION_NEXT_CLONES, we could assert that it isn't
|
|
|
|
* ENOENT. However, at least we can check that we don't have
|
|
|
|
* too many entries in the next_clones_obj even after failing to
|
|
|
|
* remove this one.
|
|
|
|
*/
|
|
|
|
if (err != ENOENT)
|
|
|
|
VERIFY0(err);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT0(zap_count(mos, dsl_dataset_phys(ds)->ds_next_clones_obj,
|
2013-09-04 12:00:57 +00:00
|
|
|
&count));
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(count, <=, dsl_dataset_phys(ds)->ds_num_children - 2);
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2009-08-18 18:43:27 +00:00
|
|
|
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
blkptr_t *
|
|
|
|
dsl_dataset_get_blkptr(dsl_dataset_t *ds)
|
|
|
|
{
|
2015-04-01 15:14:34 +00:00
|
|
|
return (&dsl_dataset_phys(ds)->ds_bp);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
spa_t *
|
|
|
|
dsl_dataset_get_spa(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
return (ds->ds_dir->dd_pool->dp_spa);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_t *dp;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (ds == NULL) /* this is the meta-objset */
|
|
|
|
return;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
ASSERT(ds->ds_objset != NULL);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0)
|
2008-11-20 20:01:55 +00:00
|
|
|
panic("dirtying snapshot!");
|
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
/* Must not dirty a dataset in the same txg where it got snapshotted. */
|
|
|
|
ASSERT3U(tx->tx_txg, >, dsl_dataset_phys(ds)->ds_prev_snap_txg);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
dp = ds->ds_dir->dd_pool;
|
2013-09-04 12:00:57 +00:00
|
|
|
if (txg_list_add(&dp->dp_dirty_datasets, ds, tx->tx_txg)) {
|
2008-11-20 20:01:55 +00:00
|
|
|
/* up the hold count until we can be written out */
|
|
|
|
dmu_buf_add_ref(ds->ds_dbuf, ds);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-08-24 14:12:46 +00:00
|
|
|
boolean_t
|
|
|
|
dsl_dataset_is_dirty(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
int t;
|
|
|
|
|
|
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
|
|
if (txg_list_member(&ds->ds_dir->dd_pool->dp_dirty_datasets,
|
|
|
|
ds, t))
|
|
|
|
return (B_TRUE);
|
|
|
|
}
|
|
|
|
return (B_FALSE);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_snapshot_reserve_space(dsl_dataset_t *ds, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
uint64_t asize;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (!dmu_tx_is_syncing(tx))
|
2008-12-03 20:09:06 +00:00
|
|
|
return (0);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* If there's an fs-only reservation, any blocks that might become
|
|
|
|
* owned by the snapshot dataset must be accommodated by space
|
|
|
|
* outside of the reservation.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(ds->ds_reserved == 0 || DS_UNIQUE_IS_ACCURATE(ds));
|
2015-04-01 15:14:34 +00:00
|
|
|
asize = MIN(dsl_dataset_phys(ds)->ds_unique_bytes, ds->ds_reserved);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (asize > dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE))
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOSPC));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* Propagate any reserved space for this snapshot to other
|
|
|
|
* snapshot checks in this sync group.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
if (asize > 0)
|
|
|
|
dsl_dir_willuse_space(ds->ds_dir, asize, tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
typedef struct dsl_dataset_snapshot_arg {
|
|
|
|
nvlist_t *ddsa_snaps;
|
|
|
|
nvlist_t *ddsa_props;
|
|
|
|
nvlist_t *ddsa_errors;
|
2015-04-01 13:07:48 +00:00
|
|
|
cred_t *ddsa_cr;
|
2013-09-04 12:00:57 +00:00
|
|
|
} dsl_dataset_snapshot_arg_t;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname,
|
2015-04-01 13:07:48 +00:00
|
|
|
dmu_tx_t *tx, boolean_t recv, uint64_t cnt, cred_t *cr)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
int error;
|
|
|
|
uint64_t value;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ds->ds_trysnap_txg = tx->tx_txg;
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (!dmu_tx_is_syncing(tx))
|
2009-08-18 18:43:27 +00:00
|
|
|
return (0);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* We don't allow multiple snapshots of the same txg. If there
|
|
|
|
* is already one, try again.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_prev_snap_txg >= tx->tx_txg)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EAGAIN));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* Check for conflicting snapshot name.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_snap_lookup(ds, snapname, &value);
|
|
|
|
if (error == 0)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EEXIST));
|
2013-09-04 12:00:57 +00:00
|
|
|
if (error != ENOENT)
|
|
|
|
return (error);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-07-27 17:51:50 +00:00
|
|
|
/*
|
|
|
|
* We don't allow taking snapshots of inconsistent datasets, such as
|
|
|
|
* those into which we are currently receiving. However, if we are
|
|
|
|
* creating this snapshot as part of a receive, this check will be
|
|
|
|
* executed atomically with respect to the completion of the receive
|
|
|
|
* itself but prior to the clearing of DS_FLAG_INCONSISTENT; in this
|
|
|
|
* case we ignore this, knowing it will be fixed up for us shortly in
|
|
|
|
* dmu_recv_end_sync().
|
|
|
|
*/
|
|
|
|
if (!recv && DS_IS_INCONSISTENT(ds))
|
|
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
/*
|
|
|
|
* Skip the check for temporary snapshots or if we have already checked
|
|
|
|
* the counts in dsl_dataset_snapshot_check. This means we really only
|
|
|
|
* check the count here when we're receiving a stream.
|
|
|
|
*/
|
|
|
|
if (cnt != 0 && cr != NULL) {
|
|
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, cnt,
|
|
|
|
ZFS_PROP_SNAPSHOT_LIMIT, NULL, cr);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_snapshot_reserve_space(ds, tx);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static int
|
|
|
|
dsl_dataset_snapshot_check(void *arg, dmu_tx_t *tx)
|
2008-12-03 20:09:06 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_snapshot_arg_t *ddsa = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
nvpair_t *pair;
|
|
|
|
int rv = 0;
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
/*
|
|
|
|
* Pre-compute how many total new snapshots will be created for each
|
|
|
|
* level in the tree and below. This is needed for validating the
|
|
|
|
* snapshot limit when either taking a recursive snapshot or when
|
|
|
|
* taking multiple snapshots.
|
|
|
|
*
|
|
|
|
* The problem is that the counts are not actually adjusted when
|
|
|
|
* we are checking, only when we finally sync. For a single snapshot,
|
|
|
|
* this is easy, the count will increase by 1 at each node up the tree,
|
|
|
|
* but its more complicated for the recursive/multiple snapshot case.
|
|
|
|
*
|
|
|
|
* The dsl_fs_ss_limit_check function does recursively check the count
|
|
|
|
* at each level up the tree but since it is validating each snapshot
|
|
|
|
* independently we need to be sure that we are validating the complete
|
|
|
|
* count for the entire set of snapshots. We do this by rolling up the
|
|
|
|
* counts for each component of the name into an nvlist and then
|
|
|
|
* checking each of those cases with the aggregated count.
|
|
|
|
*
|
|
|
|
* This approach properly handles not only the recursive snapshot
|
|
|
|
* case (where we get all of those on the ddsa_snaps list) but also
|
|
|
|
* the sibling case (e.g. snapshot a/b and a/c so that we will also
|
|
|
|
* validate the limit on 'a' using a count of 2).
|
|
|
|
*
|
|
|
|
* We validate the snapshot names in the third loop and only report
|
|
|
|
* name errors once.
|
|
|
|
*/
|
|
|
|
if (dmu_tx_is_syncing(tx)) {
|
|
|
|
char *nm;
|
|
|
|
nvlist_t *cnt_track = NULL;
|
|
|
|
cnt_track = fnvlist_alloc();
|
|
|
|
|
|
|
|
nm = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
|
|
|
|
/* Rollup aggregated counts into the cnt_track list */
|
|
|
|
for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL);
|
|
|
|
pair != NULL;
|
|
|
|
pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) {
|
|
|
|
char *pdelim;
|
|
|
|
uint64_t val;
|
|
|
|
|
|
|
|
(void) strlcpy(nm, nvpair_name(pair), MAXPATHLEN);
|
|
|
|
pdelim = strchr(nm, '@');
|
|
|
|
if (pdelim == NULL)
|
|
|
|
continue;
|
|
|
|
*pdelim = '\0';
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (nvlist_lookup_uint64(cnt_track, nm,
|
|
|
|
&val) == 0) {
|
|
|
|
/* update existing entry */
|
|
|
|
fnvlist_add_uint64(cnt_track, nm,
|
|
|
|
val + 1);
|
|
|
|
} else {
|
|
|
|
/* add to list */
|
|
|
|
fnvlist_add_uint64(cnt_track, nm, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
pdelim = strrchr(nm, '/');
|
|
|
|
if (pdelim != NULL)
|
|
|
|
*pdelim = '\0';
|
|
|
|
} while (pdelim != NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
kmem_free(nm, MAXPATHLEN);
|
|
|
|
|
|
|
|
/* Check aggregated counts at each level */
|
|
|
|
for (pair = nvlist_next_nvpair(cnt_track, NULL);
|
|
|
|
pair != NULL; pair = nvlist_next_nvpair(cnt_track, pair)) {
|
|
|
|
int error = 0;
|
|
|
|
char *name;
|
|
|
|
uint64_t cnt = 0;
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
|
|
|
|
name = nvpair_name(pair);
|
|
|
|
cnt = fnvpair_value_uint64(pair);
|
|
|
|
ASSERT(cnt > 0);
|
|
|
|
|
|
|
|
error = dsl_dataset_hold(dp, name, FTAG, &ds);
|
|
|
|
if (error == 0) {
|
|
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, cnt,
|
|
|
|
ZFS_PROP_SNAPSHOT_LIMIT, NULL,
|
|
|
|
ddsa->ddsa_cr);
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (error != 0) {
|
|
|
|
if (ddsa->ddsa_errors != NULL)
|
|
|
|
fnvlist_add_int32(ddsa->ddsa_errors,
|
|
|
|
name, error);
|
|
|
|
rv = error;
|
|
|
|
/* only report one error for this check */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
nvlist_free(cnt_track);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL);
|
|
|
|
pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) {
|
|
|
|
int error = 0;
|
|
|
|
dsl_dataset_t *ds;
|
2016-07-26 19:08:51 +00:00
|
|
|
char *name, *atp = NULL;
|
2016-06-15 21:28:36 +00:00
|
|
|
char dsname[ZFS_MAX_DATASET_NAME_LEN];
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
name = nvpair_name(pair);
|
2016-06-15 21:28:36 +00:00
|
|
|
if (strlen(name) >= ZFS_MAX_DATASET_NAME_LEN)
|
2013-03-08 18:41:28 +00:00
|
|
|
error = SET_ERROR(ENAMETOOLONG);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (error == 0) {
|
|
|
|
atp = strchr(name, '@');
|
|
|
|
if (atp == NULL)
|
2013-03-08 18:41:28 +00:00
|
|
|
error = SET_ERROR(EINVAL);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (error == 0)
|
|
|
|
(void) strlcpy(dsname, name, atp - name + 1);
|
|
|
|
}
|
|
|
|
if (error == 0)
|
|
|
|
error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
|
|
|
|
if (error == 0) {
|
2015-04-01 13:07:48 +00:00
|
|
|
/* passing 0/NULL skips dsl_fs_ss_limit_check */
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_snapshot_check_impl(ds,
|
2015-04-01 13:07:48 +00:00
|
|
|
atp + 1, tx, B_FALSE, 0, NULL);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (error != 0) {
|
|
|
|
if (ddsa->ddsa_errors != NULL) {
|
|
|
|
fnvlist_add_int32(ddsa->ddsa_errors,
|
|
|
|
name, error);
|
|
|
|
}
|
|
|
|
rv = error;
|
|
|
|
}
|
|
|
|
}
|
2015-04-01 13:07:48 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (rv);
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname,
|
|
|
|
dmu_tx_t *tx)
|
2010-05-28 20:45:14 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
|
|
dmu_buf_t *dbuf;
|
|
|
|
dsl_dataset_phys_t *dsphys;
|
|
|
|
uint64_t dsobj, crtxg;
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
2015-07-24 16:53:55 +00:00
|
|
|
spa_feature_t f;
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERTV(static zil_header_t zero_zil);
|
|
|
|
ASSERTV(objset_t *os);
|
|
|
|
|
|
|
|
ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock));
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* If we are on an old pool, the zil must not be active, in which
|
|
|
|
* case it will be zeroed. Usually zil_suspend() accomplishes this.
|
2010-05-28 20:45:14 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(spa_version(dmu_tx_pool(tx)->dp_spa) >= SPA_VERSION_FAST_SNAP ||
|
|
|
|
dmu_objset_from_ds(ds, &os) != 0 ||
|
|
|
|
bcmp(&os->os_phys->os_zil_header, &zero_zil,
|
|
|
|
sizeof (zero_zil)) == 0);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
/* Should not snapshot a dirty dataset. */
|
|
|
|
ASSERT(!txg_list_member(&ds->ds_dir->dd_pool->dp_dirty_datasets,
|
|
|
|
ds, tx->tx_txg));
|
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
dsl_fs_ss_count_adjust(ds->ds_dir, 1, DD_FIELD_SNAPSHOT_COUNT, tx);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* The origin's ds_creation_txg has to be < TXG_INITIAL
|
2008-12-03 20:09:06 +00:00
|
|
|
*/
|
|
|
|
if (strcmp(snapname, ORIGIN_DIR_NAME) == 0)
|
|
|
|
crtxg = 1;
|
|
|
|
else
|
|
|
|
crtxg = tx->tx_txg;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0,
|
|
|
|
DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx);
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf));
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_will_dirty(dbuf, tx);
|
|
|
|
dsphys = dbuf->db_data;
|
2008-12-03 20:09:06 +00:00
|
|
|
bzero(dsphys, sizeof (dsl_dataset_phys_t));
|
2008-11-20 20:01:55 +00:00
|
|
|
dsphys->ds_dir_obj = ds->ds_dir->dd_object;
|
|
|
|
dsphys->ds_fsid_guid = unique_create();
|
|
|
|
(void) random_get_pseudo_bytes((void*)&dsphys->ds_guid,
|
|
|
|
sizeof (dsphys->ds_guid));
|
2015-04-01 15:14:34 +00:00
|
|
|
dsphys->ds_prev_snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
|
|
|
dsphys->ds_prev_snap_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
|
2008-11-20 20:01:55 +00:00
|
|
|
dsphys->ds_next_snap_obj = ds->ds_object;
|
|
|
|
dsphys->ds_num_children = 1;
|
|
|
|
dsphys->ds_creation_time = gethrestime_sec();
|
2008-12-03 20:09:06 +00:00
|
|
|
dsphys->ds_creation_txg = crtxg;
|
2015-04-01 15:14:34 +00:00
|
|
|
dsphys->ds_deadlist_obj = dsl_dataset_phys(ds)->ds_deadlist_obj;
|
|
|
|
dsphys->ds_referenced_bytes = dsl_dataset_phys(ds)->ds_referenced_bytes;
|
|
|
|
dsphys->ds_compressed_bytes = dsl_dataset_phys(ds)->ds_compressed_bytes;
|
|
|
|
dsphys->ds_uncompressed_bytes =
|
|
|
|
dsl_dataset_phys(ds)->ds_uncompressed_bytes;
|
|
|
|
dsphys->ds_flags = dsl_dataset_phys(ds)->ds_flags;
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsphys->ds_bp = dsl_dataset_phys(ds)->ds_bp;
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_rele(dbuf, FTAG);
|
|
|
|
|
2015-07-24 16:53:55 +00:00
|
|
|
for (f = 0; f < SPA_FEATURES; f++) {
|
|
|
|
if (ds->ds_feature_inuse[f])
|
|
|
|
dsl_dataset_activate_feature(dsobj, f, tx);
|
|
|
|
}
|
2014-11-03 20:15:08 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(ds->ds_prev != 0, ==,
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
if (ds->ds_prev) {
|
2008-12-03 20:09:06 +00:00
|
|
|
uint64_t next_clones_obj =
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds->ds_prev)->ds_next_clones_obj;
|
|
|
|
ASSERT(dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj ==
|
2008-11-20 20:01:55 +00:00
|
|
|
ds->ds_object ||
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds->ds_prev)->ds_num_children > 1);
|
|
|
|
if (dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj ==
|
|
|
|
ds->ds_object) {
|
2008-11-20 20:01:55 +00:00
|
|
|
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_txg, ==,
|
|
|
|
dsl_dataset_phys(ds->ds_prev)->ds_creation_txg);
|
|
|
|
dsl_dataset_phys(ds->ds_prev)->ds_next_snap_obj = dsobj;
|
2008-12-03 20:09:06 +00:00
|
|
|
} else if (next_clones_obj != 0) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_remove_from_next_clones(ds->ds_prev,
|
2010-05-28 20:45:14 +00:00
|
|
|
dsphys->ds_next_snap_obj, tx);
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_add_int(mos,
|
2008-12-03 20:09:06 +00:00
|
|
|
next_clones_obj, dsobj, tx));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we have a reference-reservation on this dataset, we will
|
|
|
|
* need to increase the amount of refreservation being charged
|
|
|
|
* since our unique space is going to zero.
|
|
|
|
*/
|
|
|
|
if (ds->ds_reserved) {
|
2010-05-28 20:45:14 +00:00
|
|
|
int64_t delta;
|
|
|
|
ASSERT(DS_UNIQUE_IS_ACCURATE(ds));
|
2015-04-01 15:14:34 +00:00
|
|
|
delta = MIN(dsl_dataset_phys(ds)->ds_unique_bytes,
|
|
|
|
ds->ds_reserved);
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV,
|
2010-05-28 20:45:14 +00:00
|
|
|
delta, 0, 0, tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_deadlist_obj =
|
|
|
|
dsl_deadlist_clone(&ds->ds_deadlist, UINT64_MAX,
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, tx);
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_deadlist_close(&ds->ds_deadlist);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_deadlist_open(&ds->ds_deadlist, mos,
|
|
|
|
dsl_dataset_phys(ds)->ds_deadlist_obj);
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_deadlist_add_key(&ds->ds_deadlist,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_txg, <, tx->tx_txg);
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj = dsobj;
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg = crtxg;
|
|
|
|
dsl_dataset_phys(ds)->ds_unique_bytes = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE)
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_UNIQUE_ACCURATE;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
VERIFY0(zap_add(mos, dsl_dataset_phys(ds)->ds_snapnames_zapobj,
|
2013-09-04 12:00:57 +00:00
|
|
|
snapname, 8, 1, &dsobj, tx));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
if (ds->ds_prev)
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds->ds_prev, ds);
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, ds, &ds->ds_prev));
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_scan_ds_snapshotted(ds, tx);
|
|
|
|
|
|
|
|
dsl_dir_snap_cmtime_update(ds->ds_dir);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-08-28 11:45:09 +00:00
|
|
|
spa_history_log_internal_ds(ds->ds_prev, "snapshot", tx, "");
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
dsl_dataset_snapshot_sync(void *arg, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_snapshot_arg_t *ddsa = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
nvpair_t *pair;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL);
|
|
|
|
pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) {
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
char *name, *atp;
|
2016-06-15 21:28:36 +00:00
|
|
|
char dsname[ZFS_MAX_DATASET_NAME_LEN];
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
name = nvpair_name(pair);
|
|
|
|
atp = strchr(name, '@');
|
|
|
|
(void) strlcpy(dsname, name, atp - name + 1);
|
|
|
|
VERIFY0(dsl_dataset_hold(dp, dsname, FTAG, &ds));
|
|
|
|
|
|
|
|
dsl_dataset_snapshot_sync_impl(ds, atp + 1, tx);
|
|
|
|
if (ddsa->ddsa_props != NULL) {
|
|
|
|
dsl_props_set_sync_impl(ds->ds_prev,
|
|
|
|
ZPROP_SRC_LOCAL, ddsa->ddsa_props, tx);
|
|
|
|
}
|
2014-03-22 09:07:14 +00:00
|
|
|
zvol_create_minors(dp->dp_spa, nvpair_name(pair), B_TRUE);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* The snapshots must all be in the same pool.
|
|
|
|
* All-or-nothing: if there are any failures, nothing will be modified.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors)
|
2011-11-17 18:14:36 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_snapshot_arg_t ddsa;
|
|
|
|
nvpair_t *pair;
|
|
|
|
boolean_t needsuspend;
|
|
|
|
int error;
|
|
|
|
spa_t *spa;
|
|
|
|
char *firstname;
|
|
|
|
nvlist_t *suspended = NULL;
|
2011-11-17 18:14:36 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
pair = nvlist_next_nvpair(snaps, NULL);
|
|
|
|
if (pair == NULL)
|
|
|
|
return (0);
|
|
|
|
firstname = nvpair_name(pair);
|
|
|
|
|
|
|
|
error = spa_open(firstname, &spa, FTAG);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP);
|
|
|
|
spa_close(spa, FTAG);
|
|
|
|
|
|
|
|
if (needsuspend) {
|
|
|
|
suspended = fnvlist_alloc();
|
|
|
|
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
|
|
|
|
pair = nvlist_next_nvpair(snaps, pair)) {
|
2016-06-15 21:28:36 +00:00
|
|
|
char fsname[ZFS_MAX_DATASET_NAME_LEN];
|
2013-09-04 12:00:57 +00:00
|
|
|
char *snapname = nvpair_name(pair);
|
|
|
|
char *atp;
|
|
|
|
void *cookie;
|
|
|
|
|
|
|
|
atp = strchr(snapname, '@');
|
|
|
|
if (atp == NULL) {
|
2013-03-08 18:41:28 +00:00
|
|
|
error = SET_ERROR(EINVAL);
|
2013-09-04 12:00:57 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
(void) strlcpy(fsname, snapname, atp - snapname + 1);
|
|
|
|
|
|
|
|
error = zil_suspend(fsname, &cookie);
|
|
|
|
if (error != 0)
|
|
|
|
break;
|
|
|
|
fnvlist_add_uint64(suspended, fsname,
|
|
|
|
(uintptr_t)cookie);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ddsa.ddsa_snaps = snaps;
|
|
|
|
ddsa.ddsa_props = props;
|
|
|
|
ddsa.ddsa_errors = errors;
|
2015-04-01 13:07:48 +00:00
|
|
|
ddsa.ddsa_cr = CRED();
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
if (error == 0) {
|
|
|
|
error = dsl_sync_task(firstname, dsl_dataset_snapshot_check,
|
|
|
|
dsl_dataset_snapshot_sync, &ddsa,
|
2014-11-03 20:28:43 +00:00
|
|
|
fnvlist_num_pairs(snaps) * 3, ZFS_SPACE_CHECK_NORMAL);
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (suspended != NULL) {
|
|
|
|
for (pair = nvlist_next_nvpair(suspended, NULL); pair != NULL;
|
|
|
|
pair = nvlist_next_nvpair(suspended, pair)) {
|
|
|
|
zil_resume((void *)(uintptr_t)
|
|
|
|
fnvpair_value_uint64(pair));
|
|
|
|
}
|
|
|
|
fnvlist_free(suspended);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef struct dsl_dataset_snapshot_tmp_arg {
|
|
|
|
const char *ddsta_fsname;
|
|
|
|
const char *ddsta_snapname;
|
|
|
|
minor_t ddsta_cleanup_minor;
|
|
|
|
const char *ddsta_htag;
|
|
|
|
} dsl_dataset_snapshot_tmp_arg_t;
|
|
|
|
|
|
|
|
static int
|
|
|
|
dsl_dataset_snapshot_tmp_check(void *arg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_dataset_snapshot_tmp_arg_t *ddsta = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
/* NULL cred means no limit check for tmp snapshot */
|
2013-07-27 17:51:50 +00:00
|
|
|
error = dsl_dataset_snapshot_check_impl(ds, ddsta->ddsta_snapname,
|
2015-04-01 13:07:48 +00:00
|
|
|
tx, B_FALSE, 0, NULL);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (error != 0) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (spa_version(dp->dp_spa) < SPA_VERSION_USERREFS) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
error = dsl_dataset_user_hold_check_one(NULL, ddsta->ddsta_htag,
|
|
|
|
B_TRUE, tx);
|
|
|
|
if (error != 0) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dsl_dataset_snapshot_tmp_sync(void *arg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_dataset_snapshot_tmp_arg_t *ddsta = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
2016-07-26 19:08:51 +00:00
|
|
|
dsl_dataset_t *ds = NULL;
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
VERIFY0(dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds));
|
|
|
|
|
|
|
|
dsl_dataset_snapshot_sync_impl(ds, ddsta->ddsta_snapname, tx);
|
|
|
|
dsl_dataset_user_hold_sync_one(ds->ds_prev, ddsta->ddsta_htag,
|
|
|
|
ddsta->ddsta_cleanup_minor, gethrestime_sec(), tx);
|
|
|
|
dsl_destroy_snapshot_sync_impl(ds->ds_prev, B_TRUE, tx);
|
|
|
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname,
|
|
|
|
minor_t cleanup_minor, const char *htag)
|
|
|
|
{
|
|
|
|
dsl_dataset_snapshot_tmp_arg_t ddsta;
|
|
|
|
int error;
|
|
|
|
spa_t *spa;
|
|
|
|
boolean_t needsuspend;
|
|
|
|
void *cookie;
|
|
|
|
|
|
|
|
ddsta.ddsta_fsname = fsname;
|
|
|
|
ddsta.ddsta_snapname = snapname;
|
|
|
|
ddsta.ddsta_cleanup_minor = cleanup_minor;
|
|
|
|
ddsta.ddsta_htag = htag;
|
|
|
|
|
|
|
|
error = spa_open(fsname, &spa, FTAG);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP);
|
|
|
|
spa_close(spa, FTAG);
|
|
|
|
|
|
|
|
if (needsuspend) {
|
|
|
|
error = zil_suspend(fsname, &cookie);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
error = dsl_sync_task(fsname, dsl_dataset_snapshot_tmp_check,
|
2014-11-03 20:28:43 +00:00
|
|
|
dsl_dataset_snapshot_tmp_sync, &ddsta, 3, ZFS_SPACE_CHECK_RESERVED);
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
if (needsuspend)
|
|
|
|
zil_resume(cookie);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_dataset_sync(dsl_dataset_t *ds, zio_t *zio, dmu_tx_t *tx)
|
|
|
|
{
|
2015-07-24 16:53:55 +00:00
|
|
|
spa_feature_t f;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
ASSERT(ds->ds_objset != NULL);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT(dsl_dataset_phys(ds)->ds_next_snap_obj == 0);
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* in case we had to change ds_fsid_guid when we opened it,
|
|
|
|
* sync it out now.
|
|
|
|
*/
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_fsid_guid = ds->ds_fsid_guid;
|
2013-09-04 12:00:57 +00:00
|
|
|
|
2016-01-06 21:22:48 +00:00
|
|
|
if (ds->ds_resume_bytes[tx->tx_txg & TXG_MASK] != 0) {
|
|
|
|
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
|
|
|
|
ds->ds_object, DS_FIELD_RESUME_OBJECT, 8, 1,
|
|
|
|
&ds->ds_resume_object[tx->tx_txg & TXG_MASK], tx));
|
|
|
|
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
|
|
|
|
ds->ds_object, DS_FIELD_RESUME_OFFSET, 8, 1,
|
|
|
|
&ds->ds_resume_offset[tx->tx_txg & TXG_MASK], tx));
|
|
|
|
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
|
|
|
|
ds->ds_object, DS_FIELD_RESUME_BYTES, 8, 1,
|
|
|
|
&ds->ds_resume_bytes[tx->tx_txg & TXG_MASK], tx));
|
|
|
|
ds->ds_resume_object[tx->tx_txg & TXG_MASK] = 0;
|
|
|
|
ds->ds_resume_offset[tx->tx_txg & TXG_MASK] = 0;
|
|
|
|
ds->ds_resume_bytes[tx->tx_txg & TXG_MASK] = 0;
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dmu_objset_sync(ds->ds_objset, zio, tx);
|
2014-11-03 20:15:08 +00:00
|
|
|
|
2015-07-24 16:53:55 +00:00
|
|
|
for (f = 0; f < SPA_FEATURES; f++) {
|
|
|
|
if (ds->ds_feature_activation_needed[f]) {
|
|
|
|
if (ds->ds_feature_inuse[f])
|
|
|
|
continue;
|
|
|
|
dsl_dataset_activate_feature(ds->ds_object, f, tx);
|
|
|
|
ds->ds_feature_inuse[f] = B_TRUE;
|
|
|
|
}
|
2014-11-03 20:15:08 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
static int
|
|
|
|
deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_t *dl = arg;
|
|
|
|
dsl_deadlist_insert(dl, bp, tx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_dataset_sync_done(dsl_dataset_t *ds, dmu_tx_t *tx)
|
|
|
|
{
|
2017-03-21 01:36:00 +00:00
|
|
|
objset_t *os = ds->ds_objset;
|
2016-11-21 23:09:54 +00:00
|
|
|
|
|
|
|
bplist_iterate(&ds->ds_pending_deadlist,
|
|
|
|
deadlist_enqueue_cb, &ds->ds_deadlist, tx);
|
|
|
|
|
2017-03-21 01:36:00 +00:00
|
|
|
if (os->os_synced_dnodes != NULL) {
|
|
|
|
multilist_destroy(os->os_synced_dnodes);
|
|
|
|
os->os_synced_dnodes = NULL;
|
|
|
|
}
|
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
ASSERT(!dmu_objset_is_dirty(os, dmu_tx_get_txg(tx)));
|
|
|
|
|
|
|
|
dmu_buf_rele(ds->ds_dbuf, ds);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
get_clones_stat(dsl_dataset_t *ds, nvlist_t *nv)
|
|
|
|
{
|
|
|
|
uint64_t count = 0;
|
|
|
|
objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
|
|
|
nvlist_t *propval = fnvlist_alloc();
|
2017-03-07 17:47:40 +00:00
|
|
|
nvlist_t *val;
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
|
2011-11-17 18:14:36 +00:00
|
|
|
|
2017-03-07 17:47:40 +00:00
|
|
|
/*
|
|
|
|
* We use nvlist_alloc() instead of fnvlist_alloc() because the
|
|
|
|
* latter would allocate the list with NV_UNIQUE_NAME flag.
|
|
|
|
* As a result, every time a clone name is appended to the list
|
|
|
|
* it would be (linearly) searched for for a duplicate name.
|
|
|
|
* We already know that all clone names must be unique and we
|
|
|
|
* want avoid the quadratic complexity of double-checking that
|
|
|
|
* because we can have a large number of clones.
|
|
|
|
*/
|
|
|
|
VERIFY0(nvlist_alloc(&val, 0, KM_SLEEP));
|
|
|
|
|
2011-11-17 18:14:36 +00:00
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* There may be missing entries in ds_next_clones_obj
|
2011-11-17 18:14:36 +00:00
|
|
|
* due to a bug in a previous version of the code.
|
|
|
|
* Only trust it if it has the right number of entries.
|
|
|
|
*/
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
|
|
|
|
VERIFY0(zap_count(mos, dsl_dataset_phys(ds)->ds_next_clones_obj,
|
2011-11-17 18:14:36 +00:00
|
|
|
&count));
|
|
|
|
}
|
2015-04-01 15:14:34 +00:00
|
|
|
if (count != dsl_dataset_phys(ds)->ds_num_children - 1)
|
2011-11-17 18:14:36 +00:00
|
|
|
goto fail;
|
2015-04-01 15:14:34 +00:00
|
|
|
for (zap_cursor_init(&zc, mos,
|
|
|
|
dsl_dataset_phys(ds)->ds_next_clones_obj);
|
2011-11-17 18:14:36 +00:00
|
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
dsl_dataset_t *clone;
|
2016-06-15 21:28:36 +00:00
|
|
|
char buf[ZFS_MAX_DATASET_NAME_LEN];
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(ds->ds_dir->dd_pool,
|
|
|
|
za.za_first_integer, FTAG, &clone));
|
2011-11-17 18:14:36 +00:00
|
|
|
dsl_dir_name(clone->ds_dir, buf);
|
2013-09-04 12:00:57 +00:00
|
|
|
fnvlist_add_boolean(val, buf);
|
2011-11-17 18:14:36 +00:00
|
|
|
dsl_dataset_rele(clone, FTAG);
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
2013-09-04 12:00:57 +00:00
|
|
|
fnvlist_add_nvlist(propval, ZPROP_VALUE, val);
|
|
|
|
fnvlist_add_nvlist(nv, zfs_prop_to_name(ZFS_PROP_CLONES), propval);
|
2011-11-17 18:14:36 +00:00
|
|
|
fail:
|
|
|
|
nvlist_free(val);
|
|
|
|
nvlist_free(propval);
|
|
|
|
}
|
|
|
|
|
2016-01-06 21:22:48 +00:00
|
|
|
static void
|
|
|
|
get_receive_resume_stats(dsl_dataset_t *ds, nvlist_t *nv)
|
|
|
|
{
|
|
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
|
|
|
|
|
|
if (dsl_dataset_has_resume_receive_state(ds)) {
|
|
|
|
char *str;
|
|
|
|
void *packed;
|
|
|
|
uint8_t *compressed;
|
|
|
|
uint64_t val;
|
|
|
|
nvlist_t *token_nv = fnvlist_alloc();
|
|
|
|
size_t packed_size, compressed_size;
|
|
|
|
zio_cksum_t cksum;
|
|
|
|
char *propval;
|
|
|
|
char buf[MAXNAMELEN];
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val) == 0) {
|
|
|
|
fnvlist_add_uint64(token_nv, "fromguid", val);
|
|
|
|
}
|
|
|
|
if (zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val) == 0) {
|
|
|
|
fnvlist_add_uint64(token_nv, "object", val);
|
|
|
|
}
|
|
|
|
if (zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val) == 0) {
|
|
|
|
fnvlist_add_uint64(token_nv, "offset", val);
|
|
|
|
}
|
|
|
|
if (zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_BYTES, sizeof (val), 1, &val) == 0) {
|
|
|
|
fnvlist_add_uint64(token_nv, "bytes", val);
|
|
|
|
}
|
|
|
|
if (zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val) == 0) {
|
|
|
|
fnvlist_add_uint64(token_nv, "toguid", val);
|
|
|
|
}
|
|
|
|
if (zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_TONAME, 1, sizeof (buf), buf) == 0) {
|
|
|
|
fnvlist_add_string(token_nv, "toname", buf);
|
|
|
|
}
|
2016-07-11 17:45:52 +00:00
|
|
|
if (zap_contains(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_LARGEBLOCK) == 0) {
|
|
|
|
fnvlist_add_boolean(token_nv, "largeblockok");
|
|
|
|
}
|
2016-01-06 21:22:48 +00:00
|
|
|
if (zap_contains(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_EMBEDOK) == 0) {
|
|
|
|
fnvlist_add_boolean(token_nv, "embedok");
|
|
|
|
}
|
2016-07-11 17:45:52 +00:00
|
|
|
if (zap_contains(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_COMPRESSOK) == 0) {
|
|
|
|
fnvlist_add_boolean(token_nv, "compressok");
|
|
|
|
}
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
if (zap_contains(dp->dp_meta_objset, ds->ds_object,
|
|
|
|
DS_FIELD_RESUME_RAWOK) == 0) {
|
|
|
|
fnvlist_add_boolean(token_nv, "rawok");
|
|
|
|
}
|
2016-01-06 21:22:48 +00:00
|
|
|
packed = fnvlist_pack(token_nv, &packed_size);
|
|
|
|
fnvlist_free(token_nv);
|
|
|
|
compressed = kmem_alloc(packed_size, KM_SLEEP);
|
|
|
|
|
|
|
|
compressed_size = gzip_compress(packed, compressed,
|
|
|
|
packed_size, packed_size, 6);
|
|
|
|
|
2016-07-12 15:50:54 +00:00
|
|
|
fletcher_4_native_varsize(compressed, compressed_size, &cksum);
|
2016-01-06 21:22:48 +00:00
|
|
|
|
|
|
|
str = kmem_alloc(compressed_size * 2 + 1, KM_SLEEP);
|
|
|
|
for (i = 0; i < compressed_size; i++) {
|
|
|
|
(void) sprintf(str + i * 2, "%02x", compressed[i]);
|
|
|
|
}
|
|
|
|
str[compressed_size * 2] = '\0';
|
|
|
|
propval = kmem_asprintf("%u-%llx-%llx-%s",
|
|
|
|
ZFS_SEND_RESUME_TOKEN_VERSION,
|
|
|
|
(longlong_t)cksum.zc_word[0],
|
|
|
|
(longlong_t)packed_size, str);
|
|
|
|
dsl_prop_nvlist_add_string(nv,
|
|
|
|
ZFS_PROP_RECEIVE_RESUME_TOKEN, propval);
|
|
|
|
kmem_free(packed, packed_size);
|
|
|
|
kmem_free(str, compressed_size * 2 + 1);
|
|
|
|
kmem_free(compressed, packed_size);
|
|
|
|
strfree(propval);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_stats(dsl_dataset_t *ds, nvlist_t *nv)
|
|
|
|
{
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
int err;
|
2016-01-11 21:33:28 +00:00
|
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
2011-07-26 19:23:00 +00:00
|
|
|
uint64_t refd, avail, uobjs, aobjs, ratio;
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
ASSERT(dsl_pool_config_held(dp));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
ratio = dsl_dataset_phys(ds)->ds_compressed_bytes == 0 ? 100 :
|
|
|
|
(dsl_dataset_phys(ds)->ds_uncompressed_bytes * 100 /
|
|
|
|
dsl_dataset_phys(ds)->ds_compressed_bytes);
|
2013-08-28 11:45:09 +00:00
|
|
|
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRATIO, ratio);
|
2013-02-22 09:23:09 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALREFERENCED,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_uncompressed_bytes);
|
2013-08-28 11:45:09 +00:00
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
if (ds->ds_is_snapshot) {
|
2013-08-28 11:45:09 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, ratio);
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_unique_bytes);
|
2013-08-28 11:45:09 +00:00
|
|
|
get_clones_stat(ds, nv);
|
|
|
|
} else {
|
2016-01-01 13:15:31 +00:00
|
|
|
if (ds->ds_prev != NULL && ds->ds_prev != dp->dp_origin_snap) {
|
2016-06-15 21:28:36 +00:00
|
|
|
char buf[ZFS_MAX_DATASET_NAME_LEN];
|
2016-01-01 13:15:31 +00:00
|
|
|
dsl_dataset_name(ds->ds_prev, buf);
|
|
|
|
dsl_prop_nvlist_add_string(nv, ZFS_PROP_PREV_SNAP, buf);
|
|
|
|
}
|
|
|
|
|
2013-08-28 11:45:09 +00:00
|
|
|
dsl_dir_stats(ds->ds_dir, nv);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
dsl_dataset_space(ds, &refd, &avail, &uobjs, &aobjs);
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_AVAILABLE, avail);
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFERENCED, refd);
|
|
|
|
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATION,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_creation_time);
|
2008-11-20 20:01:55 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATETXG,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_creation_txg);
|
2008-11-20 20:01:55 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFQUOTA,
|
|
|
|
ds->ds_quota);
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRESERVATION,
|
|
|
|
ds->ds_reserved);
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_GUID,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_guid);
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_UNIQUE,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_unique_bytes);
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_OBJSETID,
|
|
|
|
ds->ds_object);
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERREFS,
|
|
|
|
ds->ds_userrefs);
|
2009-08-18 18:43:27 +00:00
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_DEFER_DESTROY,
|
|
|
|
DS_IS_DEFER_DESTROY(ds) ? 1 : 0);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_crypt_stats(ds, nv);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
|
2011-11-17 18:14:36 +00:00
|
|
|
uint64_t written, comp, uncomp;
|
|
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
|
|
dsl_dataset_t *prev;
|
|
|
|
|
|
|
|
err = dsl_dataset_hold_obj(dp,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
|
2011-11-17 18:14:36 +00:00
|
|
|
if (err == 0) {
|
|
|
|
err = dsl_dataset_space_written(prev, ds, &written,
|
|
|
|
&comp, &uncomp);
|
|
|
|
dsl_dataset_rele(prev, FTAG);
|
|
|
|
if (err == 0) {
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_WRITTEN,
|
|
|
|
written);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-01-06 21:22:48 +00:00
|
|
|
if (!dsl_dataset_is_snapshot(ds)) {
|
2016-06-15 21:28:36 +00:00
|
|
|
/* 6 extra bytes for /%recv */
|
|
|
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
2016-01-06 21:22:48 +00:00
|
|
|
dsl_dataset_t *recv_ds;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A failed "newfs" (e.g. full) resumable receive leaves
|
|
|
|
* the stats set on this dataset. Check here for the prop.
|
|
|
|
*/
|
|
|
|
get_receive_resume_stats(ds, nv);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A failed incremental resumable receive leaves the
|
|
|
|
* stats set on our child named "%recv". Check the child
|
|
|
|
* for the prop.
|
|
|
|
*/
|
|
|
|
dsl_dataset_name(ds, recvname);
|
2016-06-15 21:28:36 +00:00
|
|
|
if (strlcat(recvname, "/", sizeof (recvname)) <
|
|
|
|
sizeof (recvname) &&
|
|
|
|
strlcat(recvname, recv_clone_name, sizeof (recvname)) <
|
|
|
|
sizeof (recvname) &&
|
|
|
|
dsl_dataset_hold(dp, recvname, FTAG, &recv_ds) == 0) {
|
2016-01-06 21:22:48 +00:00
|
|
|
get_receive_resume_stats(recv_ds, nv);
|
|
|
|
dsl_dataset_rele(recv_ds, FTAG);
|
|
|
|
}
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat)
|
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
|
|
ASSERT(dsl_pool_config_held(dp));
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
stat->dds_creation_txg = dsl_dataset_phys(ds)->ds_creation_txg;
|
|
|
|
stat->dds_inconsistent =
|
|
|
|
dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT;
|
|
|
|
stat->dds_guid = dsl_dataset_phys(ds)->ds_guid;
|
2013-08-28 11:45:09 +00:00
|
|
|
stat->dds_origin[0] = '\0';
|
2015-04-02 03:44:32 +00:00
|
|
|
if (ds->ds_is_snapshot) {
|
2008-11-20 20:01:55 +00:00
|
|
|
stat->dds_is_snapshot = B_TRUE;
|
2015-04-01 15:14:34 +00:00
|
|
|
stat->dds_num_clones =
|
|
|
|
dsl_dataset_phys(ds)->ds_num_children - 1;
|
2009-01-15 21:59:39 +00:00
|
|
|
} else {
|
|
|
|
stat->dds_is_snapshot = B_FALSE;
|
|
|
|
stat->dds_num_clones = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-08-28 11:45:09 +00:00
|
|
|
if (dsl_dir_is_clone(ds->ds_dir)) {
|
|
|
|
dsl_dataset_t *ods;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(ds->ds_dir)->dd_origin_obj,
|
|
|
|
FTAG, &ods));
|
2013-08-28 11:45:09 +00:00
|
|
|
dsl_dataset_name(ods, stat->dds_origin);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ods, FTAG);
|
2013-08-28 11:45:09 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
dsl_dataset_fsid_guid(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
return (ds->ds_fsid_guid);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_dataset_space(dsl_dataset_t *ds,
|
|
|
|
uint64_t *refdbytesp, uint64_t *availbytesp,
|
|
|
|
uint64_t *usedobjsp, uint64_t *availobjsp)
|
|
|
|
{
|
2015-04-01 15:14:34 +00:00
|
|
|
*refdbytesp = dsl_dataset_phys(ds)->ds_referenced_bytes;
|
2008-11-20 20:01:55 +00:00
|
|
|
*availbytesp = dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE);
|
2015-04-01 15:14:34 +00:00
|
|
|
if (ds->ds_reserved > dsl_dataset_phys(ds)->ds_unique_bytes)
|
|
|
|
*availbytesp +=
|
|
|
|
ds->ds_reserved - dsl_dataset_phys(ds)->ds_unique_bytes;
|
2008-11-20 20:01:55 +00:00
|
|
|
if (ds->ds_quota != 0) {
|
|
|
|
/*
|
|
|
|
* Adjust available bytes according to refquota
|
|
|
|
*/
|
|
|
|
if (*refdbytesp < ds->ds_quota)
|
|
|
|
*availbytesp = MIN(*availbytesp,
|
|
|
|
ds->ds_quota - *refdbytesp);
|
|
|
|
else
|
|
|
|
*availbytesp = 0;
|
|
|
|
}
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
2015-04-01 15:14:34 +00:00
|
|
|
*usedobjsp = BP_GET_FILL(&dsl_dataset_phys(ds)->ds_bp);
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
*availobjsp = DN_MAX_OBJECT - *usedobjsp;
|
|
|
|
}
|
|
|
|
|
|
|
|
boolean_t
|
2013-07-29 18:55:16 +00:00
|
|
|
dsl_dataset_modified_since_snap(dsl_dataset_t *ds, dsl_dataset_t *snap)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2017-01-27 19:43:42 +00:00
|
|
|
ASSERTV(dsl_pool_t *dp = ds->ds_dir->dd_pool);
|
|
|
|
uint64_t birth;
|
|
|
|
|
|
|
|
ASSERT(dsl_pool_config_held(dp));
|
2013-07-29 18:55:16 +00:00
|
|
|
if (snap == NULL)
|
2008-11-20 20:01:55 +00:00
|
|
|
return (B_FALSE);
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
|
|
birth = dsl_dataset_get_blkptr(ds)->blk_birth;
|
|
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
|
|
if (birth > dsl_dataset_phys(snap)->ds_creation_txg) {
|
2013-07-29 18:55:16 +00:00
|
|
|
objset_t *os, *os_snap;
|
2010-08-26 21:24:34 +00:00
|
|
|
/*
|
|
|
|
* It may be that only the ZIL differs, because it was
|
|
|
|
* reset in the head. Don't count that as being
|
|
|
|
* modified.
|
|
|
|
*/
|
|
|
|
if (dmu_objset_from_ds(ds, &os) != 0)
|
|
|
|
return (B_TRUE);
|
2013-07-29 18:55:16 +00:00
|
|
|
if (dmu_objset_from_ds(snap, &os_snap) != 0)
|
2010-08-26 21:24:34 +00:00
|
|
|
return (B_TRUE);
|
|
|
|
return (bcmp(&os->os_phys->os_meta_dnode,
|
2013-07-29 18:55:16 +00:00
|
|
|
&os_snap->os_phys->os_meta_dnode,
|
2010-08-26 21:24:34 +00:00
|
|
|
sizeof (os->os_phys->os_meta_dnode)) != 0);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
return (B_FALSE);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
typedef struct dsl_dataset_rename_snapshot_arg {
|
|
|
|
const char *ddrsa_fsname;
|
|
|
|
const char *ddrsa_oldsnapname;
|
|
|
|
const char *ddrsa_newsnapname;
|
|
|
|
boolean_t ddrsa_recursive;
|
|
|
|
dmu_tx_t *ddrsa_tx;
|
|
|
|
} dsl_dataset_rename_snapshot_arg_t;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rename_snapshot_check_impl(dsl_pool_t *dp,
|
|
|
|
dsl_dataset_t *hds, void *arg)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rename_snapshot_arg_t *ddrsa = arg;
|
|
|
|
int error;
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t val;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val);
|
|
|
|
if (error != 0) {
|
|
|
|
/* ignore nonexistent snapshots */
|
|
|
|
return (error == ENOENT ? 0 : error);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* new name should not exist */
|
|
|
|
error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_newsnapname, &val);
|
|
|
|
if (error == 0)
|
2013-03-08 18:41:28 +00:00
|
|
|
error = SET_ERROR(EEXIST);
|
2013-09-04 12:00:57 +00:00
|
|
|
else if (error == ENOENT)
|
|
|
|
error = 0;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/* dataset name + 1 for the "@" + the new snapshot name must fit */
|
2013-09-04 12:00:57 +00:00
|
|
|
if (dsl_dir_namelen(hds->ds_dir) + 1 +
|
2016-06-15 21:28:36 +00:00
|
|
|
strlen(ddrsa->ddrsa_newsnapname) >= ZFS_MAX_DATASET_NAME_LEN)
|
2013-03-08 18:41:28 +00:00
|
|
|
error = SET_ERROR(ENAMETOOLONG);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (error);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static int
|
|
|
|
dsl_dataset_rename_snapshot_check(void *arg, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rename_snapshot_arg_t *ddrsa = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
dsl_dataset_t *hds;
|
2013-09-04 12:00:57 +00:00
|
|
|
int error;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (ddrsa->ddrsa_recursive) {
|
|
|
|
error = dmu_objset_find_dp(dp, hds->ds_dir->dd_object,
|
|
|
|
dsl_dataset_rename_snapshot_check_impl, ddrsa,
|
|
|
|
DS_FIND_CHILDREN);
|
|
|
|
} else {
|
|
|
|
error = dsl_dataset_rename_snapshot_check_impl(dp, hds, ddrsa);
|
|
|
|
}
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dataset_rele(hds, FTAG);
|
2013-09-04 12:00:57 +00:00
|
|
|
return (error);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rename_snapshot_sync_impl(dsl_pool_t *dp,
|
|
|
|
dsl_dataset_t *hds, void *arg)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rename_snapshot_arg_t *ddrsa = arg;
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
uint64_t val;
|
|
|
|
dmu_tx_t *tx = ddrsa->ddrsa_tx;
|
|
|
|
int error;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val);
|
|
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
|
|
if (error == ENOENT) {
|
|
|
|
/* ignore nonexistent snapshots */
|
|
|
|
return (0);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, val, FTAG, &ds));
|
|
|
|
|
|
|
|
/* log before we change the name */
|
|
|
|
spa_history_log_internal_ds(ds, "rename", tx,
|
|
|
|
"-> @%s", ddrsa->ddrsa_newsnapname);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
VERIFY0(dsl_dataset_snap_remove(hds, ddrsa->ddrsa_oldsnapname, tx,
|
|
|
|
B_FALSE));
|
2013-09-04 12:00:57 +00:00
|
|
|
mutex_enter(&ds->ds_lock);
|
2016-09-29 19:06:14 +00:00
|
|
|
(void) strlcpy(ds->ds_snapname, ddrsa->ddrsa_newsnapname,
|
|
|
|
sizeof (ds->ds_snapname));
|
2013-09-04 12:00:57 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
2015-04-01 15:14:34 +00:00
|
|
|
VERIFY0(zap_add(dp->dp_meta_objset,
|
|
|
|
dsl_dataset_phys(hds)->ds_snapnames_zapobj,
|
2013-09-04 12:00:57 +00:00
|
|
|
ds->ds_snapname, 8, 1, &ds->ds_object, tx));
|
2014-03-22 09:07:14 +00:00
|
|
|
zvol_rename_minors(dp->dp_spa, ddrsa->ddrsa_oldsnapname,
|
|
|
|
ddrsa->ddrsa_newsnapname, B_TRUE);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
dsl_dataset_rename_snapshot_sync(void *arg, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rename_snapshot_arg_t *ddrsa = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
2016-07-26 19:08:51 +00:00
|
|
|
dsl_dataset_t *hds = NULL;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds));
|
|
|
|
ddrsa->ddrsa_tx = tx;
|
|
|
|
if (ddrsa->ddrsa_recursive) {
|
|
|
|
VERIFY0(dmu_objset_find_dp(dp, hds->ds_dir->dd_object,
|
|
|
|
dsl_dataset_rename_snapshot_sync_impl, ddrsa,
|
|
|
|
DS_FIND_CHILDREN));
|
|
|
|
} else {
|
|
|
|
VERIFY0(dsl_dataset_rename_snapshot_sync_impl(dp, hds, ddrsa));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(hds, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
int
|
|
|
|
dsl_dataset_rename_snapshot(const char *fsname,
|
|
|
|
const char *oldsnapname, const char *newsnapname, boolean_t recursive)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rename_snapshot_arg_t ddrsa;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ddrsa.ddrsa_fsname = fsname;
|
|
|
|
ddrsa.ddrsa_oldsnapname = oldsnapname;
|
|
|
|
ddrsa.ddrsa_newsnapname = newsnapname;
|
|
|
|
ddrsa.ddrsa_recursive = recursive;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2014-03-22 09:07:14 +00:00
|
|
|
return (dsl_sync_task(fsname, dsl_dataset_rename_snapshot_check,
|
2014-11-03 20:28:43 +00:00
|
|
|
dsl_dataset_rename_snapshot_sync, &ddrsa,
|
2014-03-22 09:07:14 +00:00
|
|
|
1, ZFS_SPACE_CHECK_RESERVED));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-07-27 17:50:07 +00:00
|
|
|
/*
|
|
|
|
* If we're doing an ownership handoff, we need to make sure that there is
|
|
|
|
* only one long hold on the dataset. We're not allowed to change anything here
|
|
|
|
* so we don't permanently release the long hold or regular hold here. We want
|
|
|
|
* to do this only when syncing to avoid the dataset unexpectedly going away
|
2017-01-19 21:56:36 +00:00
|
|
|
* when we release the long hold.
|
2013-07-27 17:50:07 +00:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
dsl_dataset_handoff_check(dsl_dataset_t *ds, void *owner, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
boolean_t held;
|
|
|
|
|
|
|
|
if (!dmu_tx_is_syncing(tx))
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (owner != NULL) {
|
|
|
|
VERIFY3P(ds->ds_owner, ==, owner);
|
|
|
|
dsl_dataset_long_rele(ds, owner);
|
|
|
|
}
|
|
|
|
|
2017-01-19 21:56:36 +00:00
|
|
|
held = dsl_dataset_long_held(ds);
|
2013-07-27 17:50:07 +00:00
|
|
|
|
|
|
|
if (owner != NULL)
|
|
|
|
dsl_dataset_long_hold(ds, owner);
|
|
|
|
|
|
|
|
if (held)
|
|
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef struct dsl_dataset_rollback_arg {
|
|
|
|
const char *ddra_fsname;
|
2017-03-11 18:26:47 +00:00
|
|
|
const char *ddra_tosnap;
|
2013-07-27 17:50:07 +00:00
|
|
|
void *ddra_owner;
|
2013-08-14 19:42:31 +00:00
|
|
|
nvlist_t *ddra_result;
|
2013-07-27 17:50:07 +00:00
|
|
|
} dsl_dataset_rollback_arg_t;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static int
|
|
|
|
dsl_dataset_rollback_check(void *arg, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-07-27 17:50:07 +00:00
|
|
|
dsl_dataset_rollback_arg_t *ddra = arg;
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
dsl_dataset_t *ds;
|
2013-09-04 12:00:57 +00:00
|
|
|
int64_t unused_refres_delta;
|
|
|
|
int error;
|
2013-12-11 22:33:41 +00:00
|
|
|
nvpair_t *pair;
|
|
|
|
nvlist_t *proprequest, *bookmarks;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-07-27 17:50:07 +00:00
|
|
|
error = dsl_dataset_hold(dp, ddra->ddra_fsname, FTAG, &ds);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* must not be a snapshot */
|
2015-04-02 03:44:32 +00:00
|
|
|
if (ds->ds_is_snapshot) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* must have a most recent snapshot */
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_prev_snap_txg < TXG_INITIAL) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2016-11-21 23:09:54 +00:00
|
|
|
/*
|
|
|
|
* No rollback to a snapshot created in the current txg, because
|
|
|
|
* the rollback may dirty the dataset and create blocks that are
|
|
|
|
* not reachable from the rootbp while having a birth txg that
|
|
|
|
* falls into the snapshot's range.
|
|
|
|
*/
|
|
|
|
if (dmu_tx_is_syncing(tx) &&
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg >= tx->tx_txg) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (SET_ERROR(EAGAIN));
|
|
|
|
}
|
|
|
|
|
2017-03-11 18:26:47 +00:00
|
|
|
/*
|
|
|
|
* If the expected target snapshot is specified, then check that
|
|
|
|
* the latest snapshot is it.
|
|
|
|
*/
|
|
|
|
if (ddra->ddra_tosnap != NULL) {
|
|
|
|
char namebuf[ZFS_MAX_DATASET_NAME_LEN];
|
|
|
|
|
|
|
|
dsl_dataset_name(ds->ds_prev, namebuf);
|
|
|
|
if (strcmp(namebuf, ddra->ddra_tosnap) != 0)
|
|
|
|
return (SET_ERROR(EXDEV));
|
|
|
|
}
|
|
|
|
|
2013-12-11 22:33:41 +00:00
|
|
|
/* must not have any bookmarks after the most recent snapshot */
|
2014-11-21 00:09:39 +00:00
|
|
|
proprequest = fnvlist_alloc();
|
2013-12-11 22:33:41 +00:00
|
|
|
fnvlist_add_boolean(proprequest, zfs_prop_to_name(ZFS_PROP_CREATETXG));
|
2014-11-21 00:09:39 +00:00
|
|
|
bookmarks = fnvlist_alloc();
|
2013-12-11 22:33:41 +00:00
|
|
|
error = dsl_get_bookmarks_impl(ds, proprequest, bookmarks);
|
|
|
|
fnvlist_free(proprequest);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
for (pair = nvlist_next_nvpair(bookmarks, NULL);
|
|
|
|
pair != NULL; pair = nvlist_next_nvpair(bookmarks, pair)) {
|
|
|
|
nvlist_t *valuenv =
|
|
|
|
fnvlist_lookup_nvlist(fnvpair_value_nvlist(pair),
|
|
|
|
zfs_prop_to_name(ZFS_PROP_CREATETXG));
|
|
|
|
uint64_t createtxg = fnvlist_lookup_uint64(valuenv, "value");
|
2015-04-01 15:14:34 +00:00
|
|
|
if (createtxg > dsl_dataset_phys(ds)->ds_prev_snap_txg) {
|
2013-12-11 22:33:41 +00:00
|
|
|
fnvlist_free(bookmarks);
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (SET_ERROR(EEXIST));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fnvlist_free(bookmarks);
|
|
|
|
|
2013-07-27 17:50:07 +00:00
|
|
|
error = dsl_dataset_handoff_check(ds, ddra->ddra_owner, tx);
|
|
|
|
if (error != 0) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-07-27 17:50:07 +00:00
|
|
|
return (error);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Check if the snap we are rolling back to uses more than
|
|
|
|
* the refquota.
|
|
|
|
*/
|
|
|
|
if (ds->ds_quota != 0 &&
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds->ds_prev)->ds_referenced_bytes > ds->ds_quota) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EDQUOT));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* When we do the clone swap, we will temporarily use more space
|
|
|
|
* due to the refreservation (the head will no longer have any
|
|
|
|
* unique space, so the entire amount of the refreservation will need
|
|
|
|
* to be free). We will immediately destroy the clone, freeing
|
|
|
|
* this space, but the freeing happens over many txg's.
|
|
|
|
*/
|
|
|
|
unused_refres_delta = (int64_t)MIN(ds->ds_reserved,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_unique_bytes);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (unused_refres_delta > 0 &&
|
|
|
|
unused_refres_delta >
|
|
|
|
dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE)) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOSPC));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (0);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
dsl_dataset_rollback_sync(void *arg, dmu_tx_t *tx)
|
|
|
|
{
|
2013-07-27 17:50:07 +00:00
|
|
|
dsl_dataset_rollback_arg_t *ddra = arg;
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
dsl_dataset_t *ds, *clone;
|
|
|
|
uint64_t cloneobj;
|
2016-06-15 21:28:36 +00:00
|
|
|
char namebuf[ZFS_MAX_DATASET_NAME_LEN];
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-07-27 17:50:07 +00:00
|
|
|
VERIFY0(dsl_dataset_hold(dp, ddra->ddra_fsname, FTAG, &ds));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-08-14 19:42:31 +00:00
|
|
|
dsl_dataset_name(ds->ds_prev, namebuf);
|
|
|
|
fnvlist_add_string(ddra->ddra_result, "target", namebuf);
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
cloneobj = dsl_dataset_create_sync(ds->ds_dir, "%rollback",
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
ds->ds_prev, DS_CREATE_FLAG_NODIRTY, kcred, NULL, tx);
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, cloneobj, FTAG, &clone));
|
|
|
|
|
|
|
|
dsl_dataset_clone_swap_sync_impl(clone, ds, tx);
|
|
|
|
dsl_dataset_zero_zil(ds, tx);
|
|
|
|
|
|
|
|
dsl_destroy_head_sync_impl(clone, tx);
|
|
|
|
|
|
|
|
dsl_dataset_rele(clone, FTAG);
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
|
2013-07-27 17:50:07 +00:00
|
|
|
/*
|
2013-08-14 19:42:31 +00:00
|
|
|
* Rolls back the given filesystem or volume to the most recent snapshot.
|
|
|
|
* The name of the most recent snapshot will be returned under key "target"
|
|
|
|
* in the result nvlist.
|
2013-07-27 17:50:07 +00:00
|
|
|
*
|
2013-08-14 19:42:31 +00:00
|
|
|
* If owner != NULL:
|
2013-07-27 17:50:07 +00:00
|
|
|
* - The existing dataset MUST be owned by the specified owner at entry
|
|
|
|
* - Upon return, dataset will still be held by the same owner, whether we
|
|
|
|
* succeed or not.
|
|
|
|
*
|
|
|
|
* This mode is required any time the existing filesystem is mounted. See
|
|
|
|
* notes above zfs_suspend_fs() for further details.
|
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
int
|
2017-03-11 18:26:47 +00:00
|
|
|
dsl_dataset_rollback(const char *fsname, const char *tosnap, void *owner,
|
|
|
|
nvlist_t *result)
|
2013-09-04 12:00:57 +00:00
|
|
|
{
|
2013-07-27 17:50:07 +00:00
|
|
|
dsl_dataset_rollback_arg_t ddra;
|
|
|
|
|
|
|
|
ddra.ddra_fsname = fsname;
|
2017-03-11 18:26:47 +00:00
|
|
|
ddra.ddra_tosnap = tosnap;
|
2013-07-27 17:50:07 +00:00
|
|
|
ddra.ddra_owner = owner;
|
2013-08-14 19:42:31 +00:00
|
|
|
ddra.ddra_result = result;
|
2013-07-27 17:50:07 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (dsl_sync_task(fsname, dsl_dataset_rollback_check,
|
2014-11-03 20:28:43 +00:00
|
|
|
dsl_dataset_rollback_sync, &ddra,
|
|
|
|
1, ZFS_SPACE_CHECK_RESERVED));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
struct promotenode {
|
|
|
|
list_node_t link;
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
};
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
typedef struct dsl_dataset_promote_arg {
|
|
|
|
const char *ddpa_clonename;
|
|
|
|
dsl_dataset_t *ddpa_clone;
|
2008-12-03 20:09:06 +00:00
|
|
|
list_t shared_snaps, origin_snaps, clone_snaps;
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_t *origin_origin; /* origin of the origin */
|
2008-12-03 20:09:06 +00:00
|
|
|
uint64_t used, comp, uncomp, unique, cloneusedsnap, originusedsnap;
|
2010-05-28 20:45:14 +00:00
|
|
|
char *err_ds;
|
2015-04-01 13:07:48 +00:00
|
|
|
cred_t *cr;
|
2013-09-04 12:00:57 +00:00
|
|
|
} dsl_dataset_promote_arg_t;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
static int snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep);
|
2013-09-04 12:00:57 +00:00
|
|
|
static int promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp,
|
|
|
|
void *tag);
|
|
|
|
static void promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_promote_check(void *arg, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_promote_arg_t *ddpa = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
dsl_dataset_t *hds;
|
|
|
|
struct promotenode *snap;
|
|
|
|
dsl_dataset_t *origin_ds;
|
2008-11-20 20:01:55 +00:00
|
|
|
int err;
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t unused;
|
2015-04-01 13:07:48 +00:00
|
|
|
uint64_t ss_mv_cnt;
|
2015-07-02 13:04:17 +00:00
|
|
|
size_t max_snap_len;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
err = promote_hold(ddpa, dp, FTAG);
|
|
|
|
if (err != 0)
|
|
|
|
return (err);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
hds = ddpa->ddpa_clone;
|
2015-07-02 13:04:17 +00:00
|
|
|
max_snap_len = MAXNAMELEN - strlen(ddpa->ddpa_clonename) - 1;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(hds)->ds_flags & DS_FLAG_NOPROMOTE) {
|
2013-09-04 12:00:57 +00:00
|
|
|
promote_rele(ddpa, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EXDEV));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
snap = list_head(&ddpa->shared_snaps);
|
|
|
|
if (snap == NULL) {
|
|
|
|
err = SET_ERROR(ENOENT);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
origin_ds = snap->ds;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encrypted clones share a DSL Crypto Key with their origin's dsl dir.
|
|
|
|
* When doing a promote we must make sure the encryption root for
|
|
|
|
* both the target and the target's origin does not change to avoid
|
|
|
|
* needing to rewrap encryption keys
|
|
|
|
*/
|
|
|
|
err = dsl_dataset_promote_crypt_check(hds->ds_dir, origin_ds->ds_dir);
|
|
|
|
if (err != 0)
|
|
|
|
goto out;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Compute and check the amount of space to transfer. Since this is
|
|
|
|
* so expensive, don't do the preliminary check.
|
|
|
|
*/
|
|
|
|
if (!dmu_tx_is_syncing(tx)) {
|
|
|
|
promote_rele(ddpa, FTAG);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/* compute origin's new unique space */
|
2013-09-04 12:00:57 +00:00
|
|
|
snap = list_tail(&ddpa->clone_snaps);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dataset_phys(snap->ds)->ds_prev_snap_obj, ==,
|
|
|
|
origin_ds->ds_object);
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_deadlist_space_range(&snap->ds->ds_deadlist,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_ds)->ds_prev_snap_txg, UINT64_MAX,
|
2013-09-04 12:00:57 +00:00
|
|
|
&ddpa->unique, &unused, &unused);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/*
|
|
|
|
* Walk the snapshots that we are moving
|
|
|
|
*
|
|
|
|
* Compute space to transfer. Consider the incremental changes
|
2013-09-04 12:00:57 +00:00
|
|
|
* to used by each snapshot:
|
2008-12-03 20:09:06 +00:00
|
|
|
* (my used) = (prev's used) + (blocks born) - (blocks killed)
|
|
|
|
* So each snapshot gave birth to:
|
|
|
|
* (blocks born) = (my used) - (prev's used) + (blocks killed)
|
|
|
|
* So a sequence would look like:
|
|
|
|
* (uN - u(N-1) + kN) + ... + (u1 - u0 + k1) + (u0 - 0 + k0)
|
|
|
|
* Which simplifies to:
|
|
|
|
* uN + kN + kN-1 + ... + k1 + k0
|
|
|
|
* Note however, if we stop before we reach the ORIGIN we get:
|
|
|
|
* uN + kN + kN-1 + ... + kM - uM-1
|
|
|
|
*/
|
2015-04-01 13:07:48 +00:00
|
|
|
ss_mv_cnt = 0;
|
2015-04-01 15:14:34 +00:00
|
|
|
ddpa->used = dsl_dataset_phys(origin_ds)->ds_referenced_bytes;
|
|
|
|
ddpa->comp = dsl_dataset_phys(origin_ds)->ds_compressed_bytes;
|
|
|
|
ddpa->uncomp = dsl_dataset_phys(origin_ds)->ds_uncompressed_bytes;
|
2013-09-04 12:00:57 +00:00
|
|
|
for (snap = list_head(&ddpa->shared_snaps); snap;
|
|
|
|
snap = list_next(&ddpa->shared_snaps, snap)) {
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t val, dlused, dlcomp, dluncomp;
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dataset_t *ds = snap->ds;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
ss_mv_cnt++;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* If there are long holds, we won't be able to evict
|
|
|
|
* the objset.
|
|
|
|
*/
|
|
|
|
if (dsl_dataset_long_held(ds)) {
|
2013-03-08 18:41:28 +00:00
|
|
|
err = SET_ERROR(EBUSY);
|
2013-09-04 12:00:57 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/* Check that the snapshot name does not conflict */
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_get_snapname(ds));
|
2015-07-02 13:04:17 +00:00
|
|
|
if (strlen(ds->ds_snapname) >= max_snap_len) {
|
|
|
|
err = SET_ERROR(ENAMETOOLONG);
|
|
|
|
goto out;
|
|
|
|
}
|
2008-12-03 20:09:06 +00:00
|
|
|
err = dsl_dataset_snap_lookup(hds, ds->ds_snapname, &val);
|
2010-05-28 20:45:14 +00:00
|
|
|
if (err == 0) {
|
2013-09-04 12:00:57 +00:00
|
|
|
(void) strcpy(ddpa->err_ds, snap->ds->ds_snapname);
|
2013-03-08 18:41:28 +00:00
|
|
|
err = SET_ERROR(EEXIST);
|
2010-05-28 20:45:14 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2008-12-03 20:09:06 +00:00
|
|
|
if (err != ENOENT)
|
2010-05-28 20:45:14 +00:00
|
|
|
goto out;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/* The very first snapshot does not have a deadlist */
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_prev_snap_obj == 0)
|
2008-12-03 20:09:06 +00:00
|
|
|
continue;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
dsl_deadlist_space(&ds->ds_deadlist,
|
|
|
|
&dlused, &dlcomp, &dluncomp);
|
2013-09-04 12:00:57 +00:00
|
|
|
ddpa->used += dlused;
|
|
|
|
ddpa->comp += dlcomp;
|
|
|
|
ddpa->uncomp += dluncomp;
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/*
|
|
|
|
* If we are a clone of a clone then we never reached ORIGIN,
|
|
|
|
* so we need to subtract out the clone origin's used space.
|
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
if (ddpa->origin_origin) {
|
2015-04-01 15:14:34 +00:00
|
|
|
ddpa->used -=
|
|
|
|
dsl_dataset_phys(ddpa->origin_origin)->ds_referenced_bytes;
|
|
|
|
ddpa->comp -=
|
|
|
|
dsl_dataset_phys(ddpa->origin_origin)->ds_compressed_bytes;
|
2013-09-04 12:00:57 +00:00
|
|
|
ddpa->uncomp -=
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ddpa->origin_origin)->
|
|
|
|
ds_uncompressed_bytes;
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2015-04-01 13:07:48 +00:00
|
|
|
/* Check that there is enough space and limit headroom here */
|
2008-12-03 20:09:06 +00:00
|
|
|
err = dsl_dir_transfer_possible(origin_ds->ds_dir, hds->ds_dir,
|
2015-04-01 13:07:48 +00:00
|
|
|
0, ss_mv_cnt, ddpa->used, ddpa->cr);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0)
|
|
|
|
goto out;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/*
|
|
|
|
* Compute the amounts of space that will be used by snapshots
|
|
|
|
* after the promotion (for both origin and clone). For each,
|
|
|
|
* it is the amount of space that will be on all of their
|
|
|
|
* deadlists (that was not born before their new origin).
|
|
|
|
*/
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dir_phys(hds->ds_dir)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
|
2008-12-03 20:09:06 +00:00
|
|
|
uint64_t space;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note, typically this will not be a clone of a clone,
|
2010-05-28 20:45:14 +00:00
|
|
|
* so dd_origin_txg will be < TXG_INITIAL, so
|
|
|
|
* these snaplist_space() -> dsl_deadlist_space_range()
|
2008-12-03 20:09:06 +00:00
|
|
|
* calls will be fast because they do not have to
|
|
|
|
* iterate over all bps.
|
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
snap = list_head(&ddpa->origin_snaps);
|
2016-09-30 22:56:17 +00:00
|
|
|
if (snap == NULL) {
|
|
|
|
err = SET_ERROR(ENOENT);
|
|
|
|
goto out;
|
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
err = snaplist_space(&ddpa->shared_snaps,
|
|
|
|
snap->ds->ds_dir->dd_origin_txg, &ddpa->cloneusedsnap);
|
|
|
|
if (err != 0)
|
|
|
|
goto out;
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
err = snaplist_space(&ddpa->clone_snaps,
|
2010-05-28 20:45:14 +00:00
|
|
|
snap->ds->ds_dir->dd_origin_txg, &space);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0)
|
|
|
|
goto out;
|
|
|
|
ddpa->cloneusedsnap += space;
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dir_phys(origin_ds->ds_dir)->dd_flags &
|
|
|
|
DD_FLAG_USED_BREAKDOWN) {
|
2013-09-04 12:00:57 +00:00
|
|
|
err = snaplist_space(&ddpa->origin_snaps,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_ds)->ds_creation_txg,
|
|
|
|
&ddpa->originusedsnap);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (err != 0)
|
|
|
|
goto out;
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
out:
|
2013-09-04 12:00:57 +00:00
|
|
|
promote_rele(ddpa, FTAG);
|
2010-05-28 20:45:14 +00:00
|
|
|
return (err);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_promote_sync(void *arg, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_promote_arg_t *ddpa = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
dsl_dataset_t *hds;
|
|
|
|
struct promotenode *snap;
|
|
|
|
dsl_dataset_t *origin_ds;
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dataset_t *origin_head;
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dir_t *dd;
|
2008-11-20 20:01:55 +00:00
|
|
|
dsl_dir_t *odd = NULL;
|
2008-12-03 20:09:06 +00:00
|
|
|
uint64_t oldnext_obj;
|
|
|
|
int64_t delta;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(promote_hold(ddpa, dp, FTAG));
|
|
|
|
hds = ddpa->ddpa_clone;
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT0(dsl_dataset_phys(hds)->ds_flags & DS_FLAG_NOPROMOTE);
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
snap = list_head(&ddpa->shared_snaps);
|
|
|
|
origin_ds = snap->ds;
|
|
|
|
dd = hds->ds_dir;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
snap = list_head(&ddpa->origin_snaps);
|
2008-12-03 20:09:06 +00:00
|
|
|
origin_head = snap->ds;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* We need to explicitly open odd, since origin_ds's dd will be
|
|
|
|
* changing.
|
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dir_hold_obj(dp, origin_ds->ds_dir->dd_object,
|
2008-11-20 20:01:55 +00:00
|
|
|
NULL, FTAG, &odd));
|
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
dsl_dataset_promote_crypt_sync(hds->ds_dir, odd, tx);
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/* change origin's next snap */
|
|
|
|
dmu_buf_will_dirty(origin_ds->ds_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
oldnext_obj = dsl_dataset_phys(origin_ds)->ds_next_snap_obj;
|
2013-09-04 12:00:57 +00:00
|
|
|
snap = list_tail(&ddpa->clone_snaps);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dataset_phys(snap->ds)->ds_prev_snap_obj, ==,
|
|
|
|
origin_ds->ds_object);
|
|
|
|
dsl_dataset_phys(origin_ds)->ds_next_snap_obj = snap->ds->ds_object;
|
2008-12-03 20:09:06 +00:00
|
|
|
|
|
|
|
/* change the origin's next clone */
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(origin_ds)->ds_next_clones_obj) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_remove_from_next_clones(origin_ds,
|
|
|
|
snap->ds->ds_object, tx);
|
|
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_ds)->ds_next_clones_obj,
|
2008-12-03 20:09:06 +00:00
|
|
|
oldnext_obj, tx));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* change origin */
|
|
|
|
dmu_buf_will_dirty(dd->dd_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dir_phys(dd)->dd_origin_obj, ==, origin_ds->ds_object);
|
|
|
|
dsl_dir_phys(dd)->dd_origin_obj = dsl_dir_phys(odd)->dd_origin_obj;
|
2010-05-28 20:45:14 +00:00
|
|
|
dd->dd_origin_txg = origin_head->ds_dir->dd_origin_txg;
|
2008-12-03 20:09:06 +00:00
|
|
|
dmu_buf_will_dirty(odd->dd_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(odd)->dd_origin_obj = origin_ds->ds_object;
|
2010-05-28 20:45:14 +00:00
|
|
|
origin_head->ds_dir->dd_origin_txg =
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_ds)->ds_creation_txg;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
/* change dd_clone entries */
|
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_remove_int(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(odd)->dd_clones, hds->ds_object, tx));
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(ddpa->origin_origin->ds_dir)->dd_clones,
|
2010-05-28 20:45:14 +00:00
|
|
|
hds->ds_object, tx));
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_remove_int(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(ddpa->origin_origin->ds_dir)->dd_clones,
|
2010-05-28 20:45:14 +00:00
|
|
|
origin_head->ds_object, tx));
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dir_phys(dd)->dd_clones == 0) {
|
|
|
|
dsl_dir_phys(dd)->dd_clones =
|
|
|
|
zap_create(dp->dp_meta_objset, DMU_OT_DSL_CLONES,
|
|
|
|
DMU_OT_NONE, 0, tx);
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(dd)->dd_clones, origin_head->ds_object, tx));
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/* move snapshots to this dir */
|
2013-09-04 12:00:57 +00:00
|
|
|
for (snap = list_head(&ddpa->shared_snaps); snap;
|
|
|
|
snap = list_next(&ddpa->shared_snaps, snap)) {
|
2008-12-03 20:09:06 +00:00
|
|
|
dsl_dataset_t *ds = snap->ds;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Property callbacks are registered to a particular
|
|
|
|
* dsl_dir. Since ours is changing, evict the objset
|
|
|
|
* so that they will be unregistered from the old dsl_dir.
|
|
|
|
*/
|
2010-05-28 20:45:14 +00:00
|
|
|
if (ds->ds_objset) {
|
|
|
|
dmu_objset_evict(ds->ds_objset);
|
|
|
|
ds->ds_objset = NULL;
|
2008-12-03 20:09:06 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/* move snap name entry */
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_get_snapname(ds));
|
|
|
|
VERIFY0(dsl_dataset_snap_remove(origin_head,
|
2015-04-01 13:07:48 +00:00
|
|
|
ds->ds_snapname, tx, B_TRUE));
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_add(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(hds)->ds_snapnames_zapobj, ds->ds_snapname,
|
2008-11-20 20:01:55 +00:00
|
|
|
8, 1, &ds->ds_object, tx));
|
2015-04-01 13:07:48 +00:00
|
|
|
dsl_fs_ss_count_adjust(hds->ds_dir, 1,
|
|
|
|
DD_FIELD_SNAPSHOT_COUNT, tx);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/* change containing dsl_dir */
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_dir_obj, ==, odd->dd_object);
|
|
|
|
dsl_dataset_phys(ds)->ds_dir_obj = dd->dd_object;
|
2008-11-20 20:01:55 +00:00
|
|
|
ASSERT3P(ds->ds_dir, ==, odd);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dir_rele(ds->ds_dir, ds);
|
|
|
|
VERIFY0(dsl_dir_hold_obj(dp, dd->dd_object,
|
2008-11-20 20:01:55 +00:00
|
|
|
NULL, ds, &ds->ds_dir));
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/* move any clone references */
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_next_clones_obj &&
|
2010-05-28 20:45:14 +00:00
|
|
|
spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
|
|
|
|
|
|
|
for (zap_cursor_init(&zc, dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_next_clones_obj);
|
2010-05-28 20:45:14 +00:00
|
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
2013-09-04 12:00:57 +00:00
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
dsl_dataset_t *cnds;
|
|
|
|
uint64_t o;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (za.za_first_integer == oldnext_obj) {
|
|
|
|
/*
|
|
|
|
* We've already moved the
|
|
|
|
* origin's reference.
|
|
|
|
*/
|
|
|
|
continue;
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
|
|
za.za_first_integer, FTAG, &cnds));
|
2015-04-01 15:14:34 +00:00
|
|
|
o = dsl_dir_phys(cnds->ds_dir)->
|
|
|
|
dd_head_dataset_obj;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_remove_int(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(odd)->dd_clones, o, tx));
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(dd)->dd_clones, o, tx));
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(cnds, FTAG);
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(!dsl_prop_hascb(ds));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* Change space accounting.
|
|
|
|
* Note, pa->*usedsnap and dd_used_breakdown[SNAP] will either
|
|
|
|
* both be valid, or both be 0 (resulting in delta == 0). This
|
|
|
|
* is true for each of {clone,origin} independently.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2012-01-20 18:58:57 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
delta = ddpa->cloneusedsnap -
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP];
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT3S(delta, >=, 0);
|
|
|
|
ASSERT3U(ddpa->used, >=, delta);
|
|
|
|
dsl_dir_diduse_space(dd, DD_USED_SNAP, delta, 0, 0, tx);
|
|
|
|
dsl_dir_diduse_space(dd, DD_USED_HEAD,
|
|
|
|
ddpa->used - delta, ddpa->comp, ddpa->uncomp, tx);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
delta = ddpa->originusedsnap -
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(odd)->dd_used_breakdown[DD_USED_SNAP];
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT3S(delta, <=, 0);
|
|
|
|
ASSERT3U(ddpa->used, >=, -delta);
|
|
|
|
dsl_dir_diduse_space(odd, DD_USED_SNAP, delta, 0, 0, tx);
|
|
|
|
dsl_dir_diduse_space(odd, DD_USED_HEAD,
|
|
|
|
-ddpa->used - delta, -ddpa->comp, -ddpa->uncomp, tx);
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_ds)->ds_unique_bytes = ddpa->unique;
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
/* log history record */
|
|
|
|
spa_history_log_internal_ds(hds, "promote", tx, "");
|
|
|
|
|
|
|
|
dsl_dir_rele(odd, FTAG);
|
|
|
|
promote_rele(ddpa, FTAG);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Make a list of dsl_dataset_t's for the snapshots between first_obj
|
|
|
|
* (exclusive) and last_obj (inclusive). The list will be in reverse
|
|
|
|
* order (last_obj will be the list_head()). If first_obj == 0, do all
|
|
|
|
* snapshots back to this dataset's origin.
|
|
|
|
*/
|
2008-11-20 20:01:55 +00:00
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
snaplist_make(dsl_pool_t *dp,
|
|
|
|
uint64_t first_obj, uint64_t last_obj, list_t *l, void *tag)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
uint64_t obj = last_obj;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
list_create(l, sizeof (struct promotenode),
|
|
|
|
offsetof(struct promotenode, link));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
while (obj != first_obj) {
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
struct promotenode *snap;
|
|
|
|
int err;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
err = dsl_dataset_hold_obj(dp, obj, tag, &ds);
|
|
|
|
ASSERT(err != ENOENT);
|
|
|
|
if (err != 0)
|
|
|
|
return (err);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (first_obj == 0)
|
2015-04-01 15:14:34 +00:00
|
|
|
first_obj = dsl_dir_phys(ds->ds_dir)->dd_origin_obj;
|
2013-09-04 12:00:57 +00:00
|
|
|
|
2014-11-21 00:09:39 +00:00
|
|
|
snap = kmem_alloc(sizeof (*snap), KM_SLEEP);
|
2013-09-04 12:00:57 +00:00
|
|
|
snap->ds = ds;
|
|
|
|
list_insert_tail(l, snap);
|
2015-04-01 15:14:34 +00:00
|
|
|
obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static int
|
|
|
|
snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
struct promotenode *snap;
|
2013-08-28 11:45:09 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
*spacep = 0;
|
|
|
|
for (snap = list_head(l); snap; snap = list_next(l, snap)) {
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
dsl_deadlist_space_range(&snap->ds->ds_deadlist,
|
|
|
|
mintxg, UINT64_MAX, &used, &comp, &uncomp);
|
|
|
|
*spacep += used;
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
return (0);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
snaplist_destroy(list_t *l, void *tag)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
struct promotenode *snap;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (l == NULL || !list_link_active(&l->list_head))
|
|
|
|
return;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
while ((snap = list_tail(l)) != NULL) {
|
|
|
|
list_remove(l, snap);
|
|
|
|
dsl_dataset_rele(snap->ds, tag);
|
|
|
|
kmem_free(snap, sizeof (*snap));
|
|
|
|
}
|
|
|
|
list_destroy(l);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp, void *tag)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
int error;
|
|
|
|
dsl_dir_t *dd;
|
|
|
|
struct promotenode *snap;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_hold(dp, ddpa->ddpa_clonename, tag,
|
|
|
|
&ddpa->ddpa_clone);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
dd = ddpa->ddpa_clone->ds_dir;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
if (ddpa->ddpa_clone->ds_is_snapshot ||
|
2013-09-04 12:00:57 +00:00
|
|
|
!dsl_dir_is_clone(dd)) {
|
|
|
|
dsl_dataset_rele(ddpa->ddpa_clone, tag);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
error = snaplist_make(dp, 0, dsl_dir_phys(dd)->dd_origin_obj,
|
2013-09-04 12:00:57 +00:00
|
|
|
&ddpa->shared_snaps, tag);
|
|
|
|
if (error != 0)
|
|
|
|
goto out;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = snaplist_make(dp, 0, ddpa->ddpa_clone->ds_object,
|
|
|
|
&ddpa->clone_snaps, tag);
|
|
|
|
if (error != 0)
|
|
|
|
goto out;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
snap = list_head(&ddpa->shared_snaps);
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(snap->ds->ds_object, ==, dsl_dir_phys(dd)->dd_origin_obj);
|
|
|
|
error = snaplist_make(dp, dsl_dir_phys(dd)->dd_origin_obj,
|
|
|
|
dsl_dir_phys(snap->ds->ds_dir)->dd_head_dataset_obj,
|
2013-09-04 12:00:57 +00:00
|
|
|
&ddpa->origin_snaps, tag);
|
|
|
|
if (error != 0)
|
|
|
|
goto out;
|
2009-02-18 20:51:31 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dir_phys(snap->ds->ds_dir)->dd_origin_obj != 0) {
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_hold_obj(dp,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(snap->ds->ds_dir)->dd_origin_obj,
|
2013-09-04 12:00:57 +00:00
|
|
|
tag, &ddpa->origin_origin);
|
|
|
|
if (error != 0)
|
|
|
|
goto out;
|
2009-02-18 20:51:31 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
out:
|
|
|
|
if (error != 0)
|
|
|
|
promote_rele(ddpa, tag);
|
|
|
|
return (error);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2013-09-04 12:00:57 +00:00
|
|
|
promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
snaplist_destroy(&ddpa->shared_snaps, tag);
|
|
|
|
snaplist_destroy(&ddpa->clone_snaps, tag);
|
|
|
|
snaplist_destroy(&ddpa->origin_snaps, tag);
|
|
|
|
if (ddpa->origin_origin != NULL)
|
|
|
|
dsl_dataset_rele(ddpa->origin_origin, tag);
|
|
|
|
dsl_dataset_rele(ddpa->ddpa_clone, tag);
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Promote a clone.
|
|
|
|
*
|
|
|
|
* If it fails due to a conflicting snapshot name, "conflsnap" will be filled
|
2016-06-15 21:28:36 +00:00
|
|
|
* in with the name. (It must be at least ZFS_MAX_DATASET_NAME_LEN bytes long.)
|
2013-09-04 12:00:57 +00:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
dsl_dataset_promote(const char *name, char *conflsnap)
|
|
|
|
{
|
|
|
|
dsl_dataset_promote_arg_t ddpa = { 0 };
|
|
|
|
uint64_t numsnaps;
|
|
|
|
int error;
|
|
|
|
objset_t *os;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* We will modify space proportional to the number of
|
|
|
|
* snapshots. Compute numsnaps.
|
|
|
|
*/
|
|
|
|
error = dmu_objset_hold(name, FTAG, &os);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
error = zap_count(dmu_objset_pool(os)->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(dmu_objset_ds(os))->ds_snapnames_zapobj,
|
|
|
|
&numsnaps);
|
2013-09-04 12:00:57 +00:00
|
|
|
dmu_objset_rele(os, FTAG);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ddpa.ddpa_clonename = name;
|
|
|
|
ddpa.err_ds = conflsnap;
|
2015-04-01 13:07:48 +00:00
|
|
|
ddpa.cr = CRED();
|
2013-08-28 11:45:09 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (dsl_sync_task(name, dsl_dataset_promote_check,
|
2014-11-03 20:28:43 +00:00
|
|
|
dsl_dataset_promote_sync, &ddpa,
|
|
|
|
2 + numsnaps, ZFS_SPACE_CHECK_RESERVED));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone,
|
2013-07-27 17:50:07 +00:00
|
|
|
dsl_dataset_t *origin_head, boolean_t force, void *owner, dmu_tx_t *tx)
|
2008-11-20 20:01:55 +00:00
|
|
|
{
|
2016-06-09 19:29:09 +00:00
|
|
|
/*
|
|
|
|
* "slack" factor for received datasets with refquota set on them.
|
|
|
|
* See the bottom of this function for details on its use.
|
|
|
|
*/
|
2016-07-27 08:26:38 +00:00
|
|
|
uint64_t refquota_slack = (uint64_t)DMU_MAX_ACCESS *
|
|
|
|
spa_asize_inflation;
|
2013-09-04 12:00:57 +00:00
|
|
|
int64_t unused_refres_delta;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* they should both be heads */
|
2015-04-02 03:44:32 +00:00
|
|
|
if (clone->ds_is_snapshot ||
|
|
|
|
origin_head->ds_is_snapshot)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-07-29 18:55:16 +00:00
|
|
|
/* if we are not forcing, the branch point should be just before them */
|
|
|
|
if (!force && clone->ds_prev != origin_head->ds_prev)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* clone should be the clone (unless they are unrelated) */
|
|
|
|
if (clone->ds_prev != NULL &&
|
|
|
|
clone->ds_prev != clone->ds_dir->dd_pool->dp_origin_snap &&
|
2013-07-29 18:55:16 +00:00
|
|
|
origin_head->ds_dir != clone->ds_prev->ds_dir)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* the clone should be a child of the origin */
|
|
|
|
if (clone->ds_dir->dd_parent != origin_head->ds_dir)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* origin_head shouldn't be modified unless 'force' */
|
2013-07-29 18:55:16 +00:00
|
|
|
if (!force &&
|
|
|
|
dsl_dataset_modified_since_snap(origin_head, origin_head->ds_prev))
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ETXTBSY));
|
2010-08-26 21:24:34 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* origin_head should have no long holds (e.g. is not mounted) */
|
2013-07-27 17:50:07 +00:00
|
|
|
if (dsl_dataset_handoff_check(origin_head, owner, tx))
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EBUSY));
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
/* check amount of any unconsumed refreservation */
|
|
|
|
unused_refres_delta =
|
|
|
|
(int64_t)MIN(origin_head->ds_reserved,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_head)->ds_unique_bytes) -
|
2013-09-04 12:00:57 +00:00
|
|
|
(int64_t)MIN(origin_head->ds_reserved,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(clone)->ds_unique_bytes);
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
if (unused_refres_delta > 0 &&
|
|
|
|
unused_refres_delta >
|
|
|
|
dsl_dir_space_available(origin_head->ds_dir, NULL, 0, TRUE))
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOSPC));
|
2013-09-04 12:00:57 +00:00
|
|
|
|
2016-06-09 19:29:09 +00:00
|
|
|
/*
|
|
|
|
* The clone can't be too much over the head's refquota.
|
|
|
|
*
|
|
|
|
* To ensure that the entire refquota can be used, we allow one
|
|
|
|
* transaction to exceed the the refquota. Therefore, this check
|
|
|
|
* needs to also allow for the space referenced to be more than the
|
|
|
|
* refquota. The maximum amount of space that one transaction can use
|
|
|
|
* on disk is DMU_MAX_ACCESS * spa_asize_inflation. Allowing this
|
|
|
|
* overage ensures that we are able to receive a filesystem that
|
|
|
|
* exceeds the refquota on the source system.
|
|
|
|
*
|
|
|
|
* So that overage is the refquota_slack we use below.
|
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
if (origin_head->ds_quota != 0 &&
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(clone)->ds_referenced_bytes >
|
2016-06-09 19:29:09 +00:00
|
|
|
origin_head->ds_quota + refquota_slack)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EDQUOT));
|
2010-08-26 21:24:34 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (0);
|
2010-08-26 21:24:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone,
|
|
|
|
dsl_dataset_t *origin_head, dmu_tx_t *tx)
|
2010-08-26 21:24:34 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
int64_t unused_refres_delta;
|
2017-01-27 19:43:42 +00:00
|
|
|
blkptr_t tmp;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(clone->ds_reserved == 0);
|
2016-06-09 19:29:09 +00:00
|
|
|
/*
|
|
|
|
* NOTE: On DEBUG kernels there could be a race between this and
|
|
|
|
* the check function if spa_asize_inflation is adjusted...
|
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(origin_head->ds_quota == 0 ||
|
2016-06-09 19:29:09 +00:00
|
|
|
dsl_dataset_phys(clone)->ds_unique_bytes <= origin_head->ds_quota +
|
|
|
|
DMU_MAX_ACCESS * spa_asize_inflation);
|
2013-07-29 18:55:16 +00:00
|
|
|
ASSERT3P(clone->ds_prev, ==, origin_head->ds_prev);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2015-07-24 16:53:55 +00:00
|
|
|
/*
|
|
|
|
* Swap per-dataset feature flags.
|
|
|
|
*/
|
2017-02-08 17:27:48 +00:00
|
|
|
for (spa_feature_t f = 0; f < SPA_FEATURES; f++) {
|
2015-07-24 16:53:55 +00:00
|
|
|
boolean_t clone_inuse;
|
|
|
|
boolean_t origin_head_inuse;
|
|
|
|
|
|
|
|
if (!(spa_feature_table[f].fi_flags &
|
|
|
|
ZFEATURE_FLAG_PER_DATASET)) {
|
|
|
|
ASSERT(!clone->ds_feature_inuse[f]);
|
|
|
|
ASSERT(!origin_head->ds_feature_inuse[f]);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
clone_inuse = clone->ds_feature_inuse[f];
|
|
|
|
origin_head_inuse = origin_head->ds_feature_inuse[f];
|
|
|
|
|
|
|
|
if (clone_inuse) {
|
|
|
|
dsl_dataset_deactivate_feature(clone->ds_object, f, tx);
|
|
|
|
clone->ds_feature_inuse[f] = B_FALSE;
|
|
|
|
}
|
|
|
|
if (origin_head_inuse) {
|
|
|
|
dsl_dataset_deactivate_feature(origin_head->ds_object,
|
|
|
|
f, tx);
|
|
|
|
origin_head->ds_feature_inuse[f] = B_FALSE;
|
|
|
|
}
|
|
|
|
if (clone_inuse) {
|
|
|
|
dsl_dataset_activate_feature(origin_head->ds_object,
|
|
|
|
f, tx);
|
|
|
|
origin_head->ds_feature_inuse[f] = B_TRUE;
|
|
|
|
}
|
|
|
|
if (origin_head_inuse) {
|
|
|
|
dsl_dataset_activate_feature(clone->ds_object, f, tx);
|
|
|
|
clone->ds_feature_inuse[f] = B_TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dmu_buf_will_dirty(clone->ds_dbuf, tx);
|
|
|
|
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (clone->ds_objset != NULL) {
|
|
|
|
dmu_objset_evict(clone->ds_objset);
|
|
|
|
clone->ds_objset = NULL;
|
|
|
|
}
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (origin_head->ds_objset != NULL) {
|
|
|
|
dmu_objset_evict(origin_head->ds_objset);
|
|
|
|
origin_head->ds_objset = NULL;
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
unused_refres_delta =
|
|
|
|
(int64_t)MIN(origin_head->ds_reserved,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_head)->ds_unique_bytes) -
|
2013-09-04 12:00:57 +00:00
|
|
|
(int64_t)MIN(origin_head->ds_reserved,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(clone)->ds_unique_bytes);
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset origin's unique bytes, if it exists.
|
|
|
|
*/
|
|
|
|
if (clone->ds_prev) {
|
|
|
|
dsl_dataset_t *origin = clone->ds_prev;
|
|
|
|
uint64_t comp, uncomp;
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(origin->ds_dbuf, tx);
|
|
|
|
dsl_deadlist_space_range(&clone->ds_deadlist,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin)->ds_prev_snap_txg, UINT64_MAX,
|
|
|
|
&dsl_dataset_phys(origin)->ds_unique_bytes, &comp, &uncomp);
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* swap blkptrs */
|
|
|
|
{
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_enter(&clone->ds_bp_rwlock, RW_WRITER, FTAG);
|
|
|
|
rrw_enter(&origin_head->ds_bp_rwlock, RW_WRITER, FTAG);
|
2015-04-01 15:14:34 +00:00
|
|
|
tmp = dsl_dataset_phys(origin_head)->ds_bp;
|
|
|
|
dsl_dataset_phys(origin_head)->ds_bp =
|
|
|
|
dsl_dataset_phys(clone)->ds_bp;
|
|
|
|
dsl_dataset_phys(clone)->ds_bp = tmp;
|
2017-01-27 19:43:42 +00:00
|
|
|
rrw_exit(&origin_head->ds_bp_rwlock, FTAG);
|
|
|
|
rrw_exit(&clone->ds_bp_rwlock, FTAG);
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* set dd_*_bytes */
|
|
|
|
{
|
|
|
|
int64_t dused, dcomp, duncomp;
|
|
|
|
uint64_t cdl_used, cdl_comp, cdl_uncomp;
|
|
|
|
uint64_t odl_used, odl_comp, odl_uncomp;
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
ASSERT3U(dsl_dir_phys(clone->ds_dir)->
|
2013-09-04 12:00:57 +00:00
|
|
|
dd_used_breakdown[DD_USED_SNAP], ==, 0);
|
|
|
|
|
|
|
|
dsl_deadlist_space(&clone->ds_deadlist,
|
|
|
|
&cdl_used, &cdl_comp, &cdl_uncomp);
|
|
|
|
dsl_deadlist_space(&origin_head->ds_deadlist,
|
|
|
|
&odl_used, &odl_comp, &odl_uncomp);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
dused = dsl_dataset_phys(clone)->ds_referenced_bytes +
|
|
|
|
cdl_used -
|
|
|
|
(dsl_dataset_phys(origin_head)->ds_referenced_bytes +
|
|
|
|
odl_used);
|
|
|
|
dcomp = dsl_dataset_phys(clone)->ds_compressed_bytes +
|
|
|
|
cdl_comp -
|
|
|
|
(dsl_dataset_phys(origin_head)->ds_compressed_bytes +
|
|
|
|
odl_comp);
|
|
|
|
duncomp = dsl_dataset_phys(clone)->ds_uncompressed_bytes +
|
2013-09-04 12:00:57 +00:00
|
|
|
cdl_uncomp -
|
2015-04-01 15:14:34 +00:00
|
|
|
(dsl_dataset_phys(origin_head)->ds_uncompressed_bytes +
|
|
|
|
odl_uncomp);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_HEAD,
|
|
|
|
dused, dcomp, duncomp, tx);
|
|
|
|
dsl_dir_diduse_space(clone->ds_dir, DD_USED_HEAD,
|
|
|
|
-dused, -dcomp, -duncomp, tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* The difference in the space used by snapshots is the
|
|
|
|
* difference in snapshot space due to the head's
|
|
|
|
* deadlist (since that's the only thing that's
|
|
|
|
* changing that affects the snapused).
|
2009-08-18 18:43:27 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_deadlist_space_range(&clone->ds_deadlist,
|
|
|
|
origin_head->ds_dir->dd_origin_txg, UINT64_MAX,
|
|
|
|
&cdl_used, &cdl_comp, &cdl_uncomp);
|
|
|
|
dsl_deadlist_space_range(&origin_head->ds_deadlist,
|
|
|
|
origin_head->ds_dir->dd_origin_txg, UINT64_MAX,
|
|
|
|
&odl_used, &odl_comp, &odl_uncomp);
|
|
|
|
dsl_dir_transfer_space(origin_head->ds_dir, cdl_used - odl_used,
|
|
|
|
DD_USED_HEAD, DD_USED_SNAP, tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* swap ds_*_bytes */
|
2015-04-01 15:14:34 +00:00
|
|
|
SWITCH64(dsl_dataset_phys(origin_head)->ds_referenced_bytes,
|
|
|
|
dsl_dataset_phys(clone)->ds_referenced_bytes);
|
|
|
|
SWITCH64(dsl_dataset_phys(origin_head)->ds_compressed_bytes,
|
|
|
|
dsl_dataset_phys(clone)->ds_compressed_bytes);
|
|
|
|
SWITCH64(dsl_dataset_phys(origin_head)->ds_uncompressed_bytes,
|
|
|
|
dsl_dataset_phys(clone)->ds_uncompressed_bytes);
|
|
|
|
SWITCH64(dsl_dataset_phys(origin_head)->ds_unique_bytes,
|
|
|
|
dsl_dataset_phys(clone)->ds_unique_bytes);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/* apply any parent delta for change in unconsumed refreservation */
|
|
|
|
dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_REFRSRV,
|
|
|
|
unused_refres_delta, 0, 0, tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Swap deadlists.
|
|
|
|
*/
|
|
|
|
dsl_deadlist_close(&clone->ds_deadlist);
|
|
|
|
dsl_deadlist_close(&origin_head->ds_deadlist);
|
2015-04-01 15:14:34 +00:00
|
|
|
SWITCH64(dsl_dataset_phys(origin_head)->ds_deadlist_obj,
|
|
|
|
dsl_dataset_phys(clone)->ds_deadlist_obj);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_deadlist_open(&clone->ds_deadlist, dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(clone)->ds_deadlist_obj);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_deadlist_open(&origin_head->ds_deadlist, dp->dp_meta_objset,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(origin_head)->ds_deadlist_obj);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_scan_ds_clone_swapped(origin_head, clone, tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
spa_history_log_internal_ds(clone, "clone swap", tx,
|
|
|
|
"parent=%s", origin_head->ds_dir->dd_myname);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Given a pool name and a dataset object number in that pool,
|
|
|
|
* return the name of that dataset.
|
|
|
|
*/
|
2010-08-26 21:24:34 +00:00
|
|
|
int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf)
|
2010-08-26 21:24:34 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_pool_t *dp;
|
|
|
|
dsl_dataset_t *ds;
|
2010-08-26 21:24:34 +00:00
|
|
|
int error;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_pool_hold(pname, FTAG, &dp);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
error = dsl_dataset_hold_obj(dp, obj, FTAG, &ds);
|
|
|
|
if (error == 0) {
|
|
|
|
dsl_dataset_name(ds, buf);
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
dsl_pool_rele(dp, FTAG);
|
2010-08-26 21:24:34 +00:00
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2009-08-18 18:43:27 +00:00
|
|
|
int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota,
|
|
|
|
uint64_t asize, uint64_t inflight, uint64_t *used, uint64_t *ref_rsrv)
|
2009-08-18 18:43:27 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
int error = 0;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT3S(asize, >, 0);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* *ref_rsrv is the portion of asize that will come from any
|
|
|
|
* unconsumed refreservation space.
|
|
|
|
*/
|
|
|
|
*ref_rsrv = 0;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
mutex_enter(&ds->ds_lock);
|
|
|
|
/*
|
|
|
|
* Make a space adjustment for reserved bytes.
|
|
|
|
*/
|
2015-04-01 15:14:34 +00:00
|
|
|
if (ds->ds_reserved > dsl_dataset_phys(ds)->ds_unique_bytes) {
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT3U(*used, >=,
|
2015-04-01 15:14:34 +00:00
|
|
|
ds->ds_reserved - dsl_dataset_phys(ds)->ds_unique_bytes);
|
|
|
|
*used -=
|
|
|
|
(ds->ds_reserved - dsl_dataset_phys(ds)->ds_unique_bytes);
|
2013-09-04 12:00:57 +00:00
|
|
|
*ref_rsrv =
|
|
|
|
asize - MIN(asize, parent_delta(ds, asize + inflight));
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (!check_quota || ds->ds_quota == 0) {
|
|
|
|
mutex_exit(&ds->ds_lock);
|
|
|
|
return (0);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* If they are requesting more space, and our current estimate
|
|
|
|
* is over quota, they get to try again unless the actual
|
|
|
|
* on-disk is over quota and there are no pending changes (which
|
|
|
|
* may free up space for us).
|
|
|
|
*/
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(ds)->ds_referenced_bytes + inflight >=
|
|
|
|
ds->ds_quota) {
|
2013-09-04 12:00:57 +00:00
|
|
|
if (inflight > 0 ||
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(ds)->ds_referenced_bytes < ds->ds_quota)
|
2013-03-08 18:41:28 +00:00
|
|
|
error = SET_ERROR(ERESTART);
|
2013-09-04 12:00:57 +00:00
|
|
|
else
|
2013-03-08 18:41:28 +00:00
|
|
|
error = SET_ERROR(EDQUOT);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
typedef struct dsl_dataset_set_qr_arg {
|
|
|
|
const char *ddsqra_name;
|
|
|
|
zprop_source_t ddsqra_source;
|
|
|
|
uint64_t ddsqra_value;
|
|
|
|
} dsl_dataset_set_qr_arg_t;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
|
|
|
|
/* ARGSUSED */
|
2009-08-18 18:43:27 +00:00
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_refquota_check(void *arg, dmu_tx_t *tx)
|
2009-08-18 18:43:27 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_qr_arg_t *ddsqra = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
dsl_dataset_t *ds;
|
2009-08-18 18:43:27 +00:00
|
|
|
int error;
|
2013-09-04 12:00:57 +00:00
|
|
|
uint64_t newval;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (spa_version(dp->dp_spa) < SPA_VERSION_REFQUOTA)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
if (ds->ds_is_snapshot) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_prop_predict(ds->ds_dir,
|
|
|
|
zfs_prop_to_name(ZFS_PROP_REFQUOTA),
|
|
|
|
ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
|
|
|
|
if (error != 0) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2009-08-18 18:43:27 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (newval == 0) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (newval < dsl_dataset_phys(ds)->ds_referenced_bytes ||
|
2013-09-04 12:00:57 +00:00
|
|
|
newval < ds->ds_reserved) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOSPC));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2009-08-18 18:43:27 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
dsl_dataset_set_refquota_sync(void *arg, dmu_tx_t *tx)
|
2009-08-18 18:43:27 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_qr_arg_t *ddsqra = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
2016-07-26 19:08:51 +00:00
|
|
|
dsl_dataset_t *ds = NULL;
|
2013-09-04 12:00:57 +00:00
|
|
|
uint64_t newval;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_prop_set_sync_impl(ds,
|
|
|
|
zfs_prop_to_name(ZFS_PROP_REFQUOTA),
|
|
|
|
ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
|
|
|
|
&ddsqra->ddsqra_value, tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_prop_get_int_ds(ds,
|
|
|
|
zfs_prop_to_name(ZFS_PROP_REFQUOTA), &newval));
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (ds->ds_quota != newval) {
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
|
|
ds->ds_quota = newval;
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
int
|
|
|
|
dsl_dataset_set_refquota(const char *dsname, zprop_source_t source,
|
|
|
|
uint64_t refquota)
|
2009-08-18 18:43:27 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_qr_arg_t ddsqra;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ddsqra.ddsqra_name = dsname;
|
|
|
|
ddsqra.ddsqra_source = source;
|
|
|
|
ddsqra.ddsqra_value = refquota;
|
|
|
|
|
|
|
|
return (dsl_sync_task(dsname, dsl_dataset_set_refquota_check,
|
2014-11-03 20:28:43 +00:00
|
|
|
dsl_dataset_set_refquota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_refreservation_check(void *arg, dmu_tx_t *tx)
|
2009-08-18 18:43:27 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_qr_arg_t *ddsqra = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
dsl_dataset_t *ds;
|
|
|
|
int error;
|
2013-09-04 12:00:57 +00:00
|
|
|
uint64_t newval, unique;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (spa_version(dp->dp_spa) < SPA_VERSION_REFRESERVATION)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
|
|
|
|
if (error != 0)
|
2009-08-18 18:43:27 +00:00
|
|
|
return (error);
|
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
if (ds->ds_is_snapshot) {
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
error = dsl_prop_predict(ds->ds_dir,
|
|
|
|
zfs_prop_to_name(ZFS_PROP_REFRESERVATION),
|
|
|
|
ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
|
|
|
|
if (error != 0) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2009-08-18 18:43:27 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* If we are doing the preliminary check in open context, the
|
|
|
|
* space estimates may be inaccurate.
|
|
|
|
*/
|
|
|
|
if (!dmu_tx_is_syncing(tx)) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (0);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
mutex_enter(&ds->ds_lock);
|
|
|
|
if (!DS_UNIQUE_IS_ACCURATE(ds))
|
|
|
|
dsl_dataset_recalc_head_uniq(ds);
|
2015-04-01 15:14:34 +00:00
|
|
|
unique = dsl_dataset_phys(ds)->ds_unique_bytes;
|
2013-09-04 12:00:57 +00:00
|
|
|
mutex_exit(&ds->ds_lock);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (MAX(unique, newval) > MAX(unique, ds->ds_reserved)) {
|
|
|
|
uint64_t delta = MAX(unique, newval) -
|
|
|
|
MAX(unique, ds->ds_reserved);
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
if (delta >
|
|
|
|
dsl_dir_space_available(ds->ds_dir, NULL, 0, B_TRUE) ||
|
|
|
|
(ds->ds_quota > 0 && newval > ds->ds_quota)) {
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(ENOSPC));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
return (0);
|
2009-08-18 18:43:27 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds,
|
|
|
|
zprop_source_t source, uint64_t value, dmu_tx_t *tx)
|
2010-05-28 20:45:14 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
uint64_t newval;
|
|
|
|
uint64_t unique;
|
|
|
|
int64_t delta;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION),
|
|
|
|
source, sizeof (value), 1, &value, tx);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_prop_get_int_ds(ds,
|
|
|
|
zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &newval));
|
2010-08-26 21:24:34 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
|
|
mutex_enter(&ds->ds_dir->dd_lock);
|
|
|
|
mutex_enter(&ds->ds_lock);
|
|
|
|
ASSERT(DS_UNIQUE_IS_ACCURATE(ds));
|
2015-04-01 15:14:34 +00:00
|
|
|
unique = dsl_dataset_phys(ds)->ds_unique_bytes;
|
2013-09-04 12:00:57 +00:00
|
|
|
delta = MAX(0, (int64_t)(newval - unique)) -
|
|
|
|
MAX(0, (int64_t)(ds->ds_reserved - unique));
|
|
|
|
ds->ds_reserved = newval;
|
|
|
|
mutex_exit(&ds->ds_lock);
|
2010-08-26 21:24:34 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, delta, 0, 0, tx);
|
|
|
|
mutex_exit(&ds->ds_dir->dd_lock);
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
static void
|
|
|
|
dsl_dataset_set_refreservation_sync(void *arg, dmu_tx_t *tx)
|
2009-08-18 18:43:27 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_qr_arg_t *ddsqra = arg;
|
|
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
2016-07-26 19:08:51 +00:00
|
|
|
dsl_dataset_t *ds = NULL;
|
2009-08-18 18:43:27 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
|
|
|
|
dsl_dataset_set_refreservation_sync_impl(ds,
|
|
|
|
ddsqra->ddsqra_source, ddsqra->ddsqra_value, tx);
|
2009-08-18 18:43:27 +00:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
int
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source,
|
|
|
|
uint64_t refreservation)
|
2010-05-28 20:45:14 +00:00
|
|
|
{
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_set_qr_arg_t ddsqra;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ddsqra.ddsqra_name = dsname;
|
|
|
|
ddsqra.ddsqra_source = source;
|
|
|
|
ddsqra.ddsqra_value = refreservation;
|
2010-08-26 18:49:16 +00:00
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (dsl_sync_task(dsname, dsl_dataset_set_refreservation_check,
|
2014-11-03 20:28:43 +00:00
|
|
|
dsl_dataset_set_refreservation_sync, &ddsqra,
|
|
|
|
0, ZFS_SPACE_CHECK_NONE));
|
2013-09-04 12:00:57 +00:00
|
|
|
}
|
2011-11-17 18:14:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Return (in *usedp) the amount of space written in new that is not
|
|
|
|
* present in oldsnap. New may be a snapshot or the head. Old must be
|
|
|
|
* a snapshot before new, in new's filesystem (or its origin). If not then
|
|
|
|
* fail and return EINVAL.
|
|
|
|
*
|
|
|
|
* The written space is calculated by considering two components: First, we
|
|
|
|
* ignore any freed space, and calculate the written as new's used space
|
|
|
|
* minus old's used space. Next, we add in the amount of space that was freed
|
|
|
|
* between the two snapshots, thus reducing new's used space relative to old's.
|
|
|
|
* Specifically, this is the space that was born before old->ds_creation_txg,
|
|
|
|
* and freed before new (ie. on new's deadlist or a previous deadlist).
|
|
|
|
*
|
|
|
|
* space freed [---------------------]
|
|
|
|
* snapshots ---O-------O--------O-------O------
|
|
|
|
* oldsnap new
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new,
|
|
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
uint64_t snapobj;
|
|
|
|
dsl_pool_t *dp = new->ds_dir->dd_pool;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(dsl_pool_config_held(dp));
|
|
|
|
|
2011-11-17 18:14:36 +00:00
|
|
|
*usedp = 0;
|
2015-04-01 15:14:34 +00:00
|
|
|
*usedp += dsl_dataset_phys(new)->ds_referenced_bytes;
|
|
|
|
*usedp -= dsl_dataset_phys(oldsnap)->ds_referenced_bytes;
|
2011-11-17 18:14:36 +00:00
|
|
|
|
|
|
|
*compp = 0;
|
2015-04-01 15:14:34 +00:00
|
|
|
*compp += dsl_dataset_phys(new)->ds_compressed_bytes;
|
|
|
|
*compp -= dsl_dataset_phys(oldsnap)->ds_compressed_bytes;
|
2011-11-17 18:14:36 +00:00
|
|
|
|
|
|
|
*uncompp = 0;
|
2015-04-01 15:14:34 +00:00
|
|
|
*uncompp += dsl_dataset_phys(new)->ds_uncompressed_bytes;
|
|
|
|
*uncompp -= dsl_dataset_phys(oldsnap)->ds_uncompressed_bytes;
|
2011-11-17 18:14:36 +00:00
|
|
|
|
|
|
|
snapobj = new->ds_object;
|
|
|
|
while (snapobj != oldsnap->ds_object) {
|
|
|
|
dsl_dataset_t *snap;
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
|
2012-12-13 23:24:15 +00:00
|
|
|
if (snapobj == new->ds_object) {
|
|
|
|
snap = new;
|
|
|
|
} else {
|
|
|
|
err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &snap);
|
|
|
|
if (err != 0)
|
|
|
|
break;
|
|
|
|
}
|
2011-11-17 18:14:36 +00:00
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dataset_phys(snap)->ds_prev_snap_txg ==
|
|
|
|
dsl_dataset_phys(oldsnap)->ds_creation_txg) {
|
2011-11-17 18:14:36 +00:00
|
|
|
/*
|
|
|
|
* The blocks in the deadlist can not be born after
|
|
|
|
* ds_prev_snap_txg, so get the whole deadlist space,
|
|
|
|
* which is more efficient (especially for old-format
|
|
|
|
* deadlists). Unfortunately the deadlist code
|
|
|
|
* doesn't have enough information to make this
|
|
|
|
* optimization itself.
|
|
|
|
*/
|
|
|
|
dsl_deadlist_space(&snap->ds_deadlist,
|
|
|
|
&used, &comp, &uncomp);
|
|
|
|
} else {
|
|
|
|
dsl_deadlist_space_range(&snap->ds_deadlist,
|
2015-04-01 15:14:34 +00:00
|
|
|
0, dsl_dataset_phys(oldsnap)->ds_creation_txg,
|
2011-11-17 18:14:36 +00:00
|
|
|
&used, &comp, &uncomp);
|
|
|
|
}
|
|
|
|
*usedp += used;
|
|
|
|
*compp += comp;
|
|
|
|
*uncompp += uncomp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we get to the beginning of the chain of snapshots
|
|
|
|
* (ds_prev_snap_obj == 0) before oldsnap, then oldsnap
|
|
|
|
* was not a snapshot of/before new.
|
|
|
|
*/
|
2015-04-01 15:14:34 +00:00
|
|
|
snapobj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
2012-12-13 23:24:15 +00:00
|
|
|
if (snap != new)
|
|
|
|
dsl_dataset_rele(snap, FTAG);
|
2011-11-17 18:14:36 +00:00
|
|
|
if (snapobj == 0) {
|
2013-03-08 18:41:28 +00:00
|
|
|
err = SET_ERROR(EINVAL);
|
2011-11-17 18:14:36 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return (in *usedp) the amount of space that will be reclaimed if firstsnap,
|
|
|
|
* lastsnap, and all snapshots in between are deleted.
|
|
|
|
*
|
|
|
|
* blocks that would be freed [---------------------------]
|
|
|
|
* snapshots ---O-------O--------O-------O--------O
|
|
|
|
* firstsnap lastsnap
|
|
|
|
*
|
|
|
|
* This is the set of blocks that were born after the snap before firstsnap,
|
|
|
|
* (birth > firstsnap->prev_snap_txg) and died before the snap after the
|
|
|
|
* last snap (ie, is on lastsnap->ds_next->ds_deadlist or an earlier deadlist).
|
|
|
|
* We calculate this by iterating over the relevant deadlists (from the snap
|
|
|
|
* after lastsnap, backward to the snap after firstsnap), summing up the
|
|
|
|
* space on the deadlist that was born after the snap before firstsnap.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap,
|
|
|
|
dsl_dataset_t *lastsnap,
|
|
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
uint64_t snapobj;
|
|
|
|
dsl_pool_t *dp = firstsnap->ds_dir->dd_pool;
|
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
ASSERT(firstsnap->ds_is_snapshot);
|
|
|
|
ASSERT(lastsnap->ds_is_snapshot);
|
2011-11-17 18:14:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Check that the snapshots are in the same dsl_dir, and firstsnap
|
|
|
|
* is before lastsnap.
|
|
|
|
*/
|
|
|
|
if (firstsnap->ds_dir != lastsnap->ds_dir ||
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(firstsnap)->ds_creation_txg >
|
|
|
|
dsl_dataset_phys(lastsnap)->ds_creation_txg)
|
2013-03-08 18:41:28 +00:00
|
|
|
return (SET_ERROR(EINVAL));
|
2011-11-17 18:14:36 +00:00
|
|
|
|
|
|
|
*usedp = *compp = *uncompp = 0;
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
snapobj = dsl_dataset_phys(lastsnap)->ds_next_snap_obj;
|
2011-11-17 18:14:36 +00:00
|
|
|
while (snapobj != firstsnap->ds_object) {
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
|
|
|
|
err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &ds);
|
|
|
|
if (err != 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
dsl_deadlist_space_range(&ds->ds_deadlist,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dataset_phys(firstsnap)->ds_prev_snap_txg, UINT64_MAX,
|
2011-11-17 18:14:36 +00:00
|
|
|
&used, &comp, &uncomp);
|
|
|
|
*usedp += used;
|
|
|
|
*compp += comp;
|
|
|
|
*uncompp += uncomp;
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
snapobj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
2011-11-17 18:14:36 +00:00
|
|
|
ASSERT3U(snapobj, !=, 0);
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
/*
|
|
|
|
* Return TRUE if 'earlier' is an earlier snapshot in 'later's timeline.
|
|
|
|
* For example, they could both be snapshots of the same filesystem, and
|
|
|
|
* 'earlier' is before 'later'. Or 'earlier' could be the origin of
|
|
|
|
* 'later's filesystem. Or 'earlier' could be an older snapshot in the origin's
|
|
|
|
* filesystem. Or 'earlier' could be the origin's origin.
|
2013-12-11 22:33:41 +00:00
|
|
|
*
|
|
|
|
* If non-zero, earlier_txg is used instead of earlier's ds_creation_txg.
|
2013-09-04 12:00:57 +00:00
|
|
|
*/
|
|
|
|
boolean_t
|
2013-12-11 22:33:41 +00:00
|
|
|
dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier,
|
2017-01-12 17:42:11 +00:00
|
|
|
uint64_t earlier_txg)
|
2013-09-04 12:00:57 +00:00
|
|
|
{
|
|
|
|
dsl_pool_t *dp = later->ds_dir->dd_pool;
|
|
|
|
int error;
|
|
|
|
boolean_t ret;
|
|
|
|
dsl_dataset_t *origin;
|
|
|
|
|
|
|
|
ASSERT(dsl_pool_config_held(dp));
|
2015-04-02 03:44:32 +00:00
|
|
|
ASSERT(earlier->ds_is_snapshot || earlier_txg != 0);
|
2013-12-11 22:33:41 +00:00
|
|
|
|
|
|
|
if (earlier_txg == 0)
|
2015-04-01 15:14:34 +00:00
|
|
|
earlier_txg = dsl_dataset_phys(earlier)->ds_creation_txg;
|
2013-09-04 12:00:57 +00:00
|
|
|
|
2015-04-02 03:44:32 +00:00
|
|
|
if (later->ds_is_snapshot &&
|
2015-04-01 15:14:34 +00:00
|
|
|
earlier_txg >= dsl_dataset_phys(later)->ds_creation_txg)
|
2013-09-04 12:00:57 +00:00
|
|
|
return (B_FALSE);
|
|
|
|
|
|
|
|
if (later->ds_dir == earlier->ds_dir)
|
|
|
|
return (B_TRUE);
|
|
|
|
if (!dsl_dir_is_clone(later->ds_dir))
|
|
|
|
return (B_FALSE);
|
|
|
|
|
2015-04-01 15:14:34 +00:00
|
|
|
if (dsl_dir_phys(later->ds_dir)->dd_origin_obj == earlier->ds_object)
|
2013-09-04 12:00:57 +00:00
|
|
|
return (B_TRUE);
|
|
|
|
error = dsl_dataset_hold_obj(dp,
|
2015-04-01 15:14:34 +00:00
|
|
|
dsl_dir_phys(later->ds_dir)->dd_origin_obj, FTAG, &origin);
|
2013-09-04 12:00:57 +00:00
|
|
|
if (error != 0)
|
|
|
|
return (B_FALSE);
|
2013-12-11 22:33:41 +00:00
|
|
|
ret = dsl_dataset_is_before(origin, earlier, earlier_txg);
|
2013-09-04 12:00:57 +00:00
|
|
|
dsl_dataset_rele(origin, FTAG);
|
|
|
|
return (ret);
|
|
|
|
}
|
|
|
|
|
2013-10-08 17:13:05 +00:00
|
|
|
void
|
|
|
|
dsl_dataset_zapify(dsl_dataset_t *ds, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
|
|
|
|
dmu_object_zapify(mos, ds->ds_object, DMU_OT_DSL_DATASET, tx);
|
|
|
|
}
|
|
|
|
|
2016-01-06 21:22:48 +00:00
|
|
|
boolean_t
|
|
|
|
dsl_dataset_is_zapified(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
|
|
|
|
dmu_object_info_from_db(ds->ds_dbuf, &doi);
|
|
|
|
return (doi.doi_type == DMU_OTN_ZAP_METADATA);
|
|
|
|
}
|
|
|
|
|
|
|
|
boolean_t
|
|
|
|
dsl_dataset_has_resume_receive_state(dsl_dataset_t *ds)
|
|
|
|
{
|
|
|
|
return (dsl_dataset_is_zapified(ds) &&
|
|
|
|
zap_contains(ds->ds_dir->dd_pool->dp_meta_objset,
|
|
|
|
ds->ds_object, DS_FIELD_RESUME_TOGUID) == 0);
|
|
|
|
}
|
|
|
|
|
2010-08-26 18:49:16 +00:00
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
2014-11-03 20:15:08 +00:00
|
|
|
#if defined(_LP64)
|
|
|
|
module_param(zfs_max_recordsize, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_max_recordsize, "Max allowed record size");
|
|
|
|
#else
|
|
|
|
/* Limited to 1M on 32-bit platforms due to lack of virtual address space */
|
|
|
|
module_param(zfs_max_recordsize, int, 0444);
|
|
|
|
MODULE_PARM_DESC(zfs_max_recordsize, "Max allowed record size");
|
|
|
|
#endif
|
|
|
|
|
2010-08-26 18:49:16 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_hold);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_hold_flags);
|
2010-08-26 18:49:16 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_hold_obj);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_hold_obj_flags);
|
2010-08-26 18:49:16 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_own);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_own_obj);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_name);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_rele);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 17:36:48 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_rele_flags);
|
2010-08-26 18:49:16 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_disown);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_tryown);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_create_sync);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_create_sync_dd);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_snapshot_check);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_snapshot_sync);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_promote);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_user_hold);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_user_release);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_get_holds);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_get_blkptr);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_get_spa);
|
2013-07-29 18:55:16 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_modified_since_snap);
|
2011-11-17 18:14:36 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_space_written);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_space_wouldfree);
|
2010-08-26 18:49:16 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_sync);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_block_born);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_block_kill);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_dirty);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_stats);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_fast_stat);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_space);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_fsid_guid);
|
|
|
|
EXPORT_SYMBOL(dsl_dsobj_to_dsname);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_check_quota);
|
2013-09-04 12:00:57 +00:00
|
|
|
EXPORT_SYMBOL(dsl_dataset_clone_swap_check_impl);
|
|
|
|
EXPORT_SYMBOL(dsl_dataset_clone_swap_sync_impl);
|
2010-08-26 18:49:16 +00:00
|
|
|
#endif
|