Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
/*-
|
2020-11-18 15:07:34 +00:00
|
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
*
|
2020-05-26 16:11:46 +00:00
|
|
|
* Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef ENA_H
|
|
|
|
#define ENA_H
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
|
|
|
#include "ena-com/ena_com.h"
|
|
|
|
#include "ena-com/ena_eth_com.h"
|
|
|
|
|
2019-05-30 13:52:32 +00:00
|
|
|
#define DRV_MODULE_VER_MAJOR 2
|
2020-11-18 15:25:38 +00:00
|
|
|
#define DRV_MODULE_VER_MINOR 3
|
2020-05-26 16:11:46 +00:00
|
|
|
#define DRV_MODULE_VER_SUBMINOR 0
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
#define DRV_MODULE_NAME "ena"
|
|
|
|
|
|
|
|
#ifndef DRV_MODULE_VERSION
|
|
|
|
#define DRV_MODULE_VERSION \
|
|
|
|
__XSTRING(DRV_MODULE_VER_MAJOR) "." \
|
|
|
|
__XSTRING(DRV_MODULE_VER_MINOR) "." \
|
|
|
|
__XSTRING(DRV_MODULE_VER_SUBMINOR)
|
|
|
|
#endif
|
|
|
|
#define DEVICE_NAME "Elastic Network Adapter (ENA)"
|
|
|
|
#define DEVICE_DESC "ENA adapter"
|
|
|
|
|
|
|
|
/* Calculate DMA mask - width for ena cannot exceed 48, so it is safe */
|
|
|
|
#define ENA_DMA_BIT_MASK(x) ((1ULL << (x)) - 1ULL)
|
|
|
|
|
|
|
|
/* 1 for AENQ + ADMIN */
|
2017-11-09 12:03:06 +00:00
|
|
|
#define ENA_ADMIN_MSIX_VEC 1
|
|
|
|
#define ENA_MAX_MSIX_VEC(io_queues) (ENA_ADMIN_MSIX_VEC + (io_queues))
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
#define ENA_REG_BAR 0
|
|
|
|
#define ENA_MEM_BAR 2
|
|
|
|
|
|
|
|
#define ENA_BUS_DMA_SEGS 32
|
|
|
|
|
2019-05-30 13:28:03 +00:00
|
|
|
#define ENA_DEFAULT_BUF_RING_SIZE 4096
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
#define ENA_DEFAULT_RING_SIZE 1024
|
2020-05-26 15:48:06 +00:00
|
|
|
#define ENA_MIN_RING_SIZE 256
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2019-05-30 13:31:35 +00:00
|
|
|
/*
|
|
|
|
* Refill Rx queue when number of required descriptors is above
|
|
|
|
* QUEUE_SIZE / ENA_RX_REFILL_THRESH_DIVIDER or ENA_RX_REFILL_THRESH_PACKET
|
|
|
|
*/
|
2017-11-09 12:07:02 +00:00
|
|
|
#define ENA_RX_REFILL_THRESH_DIVIDER 8
|
2019-05-30 13:31:35 +00:00
|
|
|
#define ENA_RX_REFILL_THRESH_PACKET 256
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
#define ENA_IRQNAME_SIZE 40
|
|
|
|
|
2017-10-31 12:41:07 +00:00
|
|
|
#define ENA_PKT_MAX_BUFS 19
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
#define ENA_RX_RSS_TABLE_LOG_SIZE 7
|
|
|
|
#define ENA_RX_RSS_TABLE_SIZE (1 << ENA_RX_RSS_TABLE_LOG_SIZE)
|
|
|
|
|
|
|
|
#define ENA_HASH_KEY_SIZE 40
|
|
|
|
|
|
|
|
#define ENA_MAX_FRAME_LEN 10000
|
2017-10-31 12:41:07 +00:00
|
|
|
#define ENA_MIN_FRAME_LEN 60
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2019-05-30 13:29:24 +00:00
|
|
|
#define ENA_TX_RESUME_THRESH (ENA_PKT_MAX_BUFS + 2)
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
#define DB_THRESHOLD 64
|
|
|
|
|
|
|
|
#define TX_COMMIT 32
|
|
|
|
/*
|
|
|
|
* TX budget for cleaning. It should be half of the RX budget to reduce amount
|
|
|
|
* of TCP retransmissions.
|
|
|
|
*/
|
|
|
|
#define TX_BUDGET 128
|
|
|
|
/* RX cleanup budget. -1 stands for infinity. */
|
|
|
|
#define RX_BUDGET 256
|
|
|
|
/*
|
|
|
|
* How many times we can repeat cleanup in the io irq handling routine if the
|
|
|
|
* RX or TX budget was depleted.
|
|
|
|
*/
|
|
|
|
#define CLEAN_BUDGET 8
|
|
|
|
|
|
|
|
#define RX_IRQ_INTERVAL 20
|
|
|
|
#define TX_IRQ_INTERVAL 50
|
|
|
|
|
2017-11-09 13:35:07 +00:00
|
|
|
#define ENA_MIN_MTU 128
|
|
|
|
|
2017-07-04 00:08:47 +00:00
|
|
|
#define ENA_TSO_MAXSIZE 65536
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
#define ENA_MMIO_DISABLE_REG_READ BIT(0)
|
|
|
|
|
|
|
|
#define ENA_TX_RING_IDX_NEXT(idx, ring_size) (((idx) + 1) & ((ring_size) - 1))
|
|
|
|
|
|
|
|
#define ENA_RX_RING_IDX_NEXT(idx, ring_size) (((idx) + 1) & ((ring_size) - 1))
|
|
|
|
|
|
|
|
#define ENA_IO_TXQ_IDX(q) (2 * (q))
|
|
|
|
#define ENA_IO_RXQ_IDX(q) (2 * (q) + 1)
|
|
|
|
|
|
|
|
#define ENA_MGMNT_IRQ_IDX 0
|
|
|
|
#define ENA_IO_IRQ_FIRST_IDX 1
|
|
|
|
#define ENA_IO_IRQ_IDX(q) (ENA_IO_IRQ_FIRST_IDX + (q))
|
|
|
|
|
2019-05-30 13:16:56 +00:00
|
|
|
#define ENA_MAX_NO_INTERRUPT_ITERATIONS 3
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
/*
|
|
|
|
* ENA device should send keep alive msg every 1 sec.
|
|
|
|
* We wait for 6 sec just to be on the safe side.
|
|
|
|
*/
|
|
|
|
#define DEFAULT_KEEP_ALIVE_TO (SBT_1S * 6)
|
|
|
|
|
|
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
|
|
#define DEFAULT_TX_CMP_TO (SBT_1S * 5)
|
|
|
|
|
|
|
|
/* Number of queues to check for missing queues per timer tick */
|
|
|
|
#define DEFAULT_TX_MONITORED_QUEUES (4)
|
|
|
|
|
|
|
|
/* Max number of timeouted packets before device reset */
|
|
|
|
#define DEFAULT_TX_CMP_THRESHOLD (128)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Supported PCI vendor and devices IDs
|
|
|
|
*/
|
|
|
|
#define PCI_VENDOR_ID_AMAZON 0x1d0f
|
|
|
|
|
2020-11-18 15:20:01 +00:00
|
|
|
#define PCI_DEV_ID_ENA_PF 0x0ec2
|
|
|
|
#define PCI_DEV_ID_ENA_PF_RSERV0 0x1ec2
|
|
|
|
#define PCI_DEV_ID_ENA_VF 0xec20
|
|
|
|
#define PCI_DEV_ID_ENA_VF_RSERV0 0xec21
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2019-05-30 13:37:15 +00:00
|
|
|
/*
|
|
|
|
* Flags indicating current ENA driver state
|
|
|
|
*/
|
|
|
|
enum ena_flags_t {
|
|
|
|
ENA_FLAG_DEVICE_RUNNING,
|
|
|
|
ENA_FLAG_DEV_UP,
|
|
|
|
ENA_FLAG_LINK_UP,
|
|
|
|
ENA_FLAG_MSIX_ENABLED,
|
|
|
|
ENA_FLAG_TRIGGER_RESET,
|
|
|
|
ENA_FLAG_ONGOING_RESET,
|
2019-05-30 13:39:25 +00:00
|
|
|
ENA_FLAG_DEV_UP_BEFORE_RESET,
|
2019-05-30 13:37:15 +00:00
|
|
|
ENA_FLAG_RSS_ACTIVE,
|
|
|
|
ENA_FLAGS_NUMBER = ENA_FLAG_RSS_ACTIVE
|
|
|
|
};
|
|
|
|
|
|
|
|
BITSET_DEFINE(_ena_state, ENA_FLAGS_NUMBER);
|
|
|
|
typedef struct _ena_state ena_state_t;
|
|
|
|
|
|
|
|
#define ENA_FLAG_ZERO(adapter) \
|
|
|
|
BIT_ZERO(ENA_FLAGS_NUMBER, &(adapter)->flags)
|
|
|
|
#define ENA_FLAG_ISSET(bit, adapter) \
|
|
|
|
BIT_ISSET(ENA_FLAGS_NUMBER, (bit), &(adapter)->flags)
|
|
|
|
#define ENA_FLAG_SET_ATOMIC(bit, adapter) \
|
|
|
|
BIT_SET_ATOMIC(ENA_FLAGS_NUMBER, (bit), &(adapter)->flags)
|
|
|
|
#define ENA_FLAG_CLEAR_ATOMIC(bit, adapter) \
|
|
|
|
BIT_CLR_ATOMIC(ENA_FLAGS_NUMBER, (bit), &(adapter)->flags)
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
struct msix_entry {
|
|
|
|
int entry;
|
|
|
|
int vector;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef struct _ena_vendor_info_t {
|
2018-07-08 20:39:38 +00:00
|
|
|
uint16_t vendor_id;
|
|
|
|
uint16_t device_id;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
unsigned int index;
|
|
|
|
} ena_vendor_info_t;
|
|
|
|
|
|
|
|
struct ena_irq {
|
|
|
|
/* Interrupt resources */
|
|
|
|
struct resource *res;
|
2019-05-30 13:29:24 +00:00
|
|
|
driver_filter_t *handler;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
void *data;
|
|
|
|
void *cookie;
|
|
|
|
unsigned int vector;
|
|
|
|
bool requested;
|
|
|
|
int cpu;
|
|
|
|
char name[ENA_IRQNAME_SIZE];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ena_que {
|
|
|
|
struct ena_adapter *adapter;
|
|
|
|
struct ena_ring *tx_ring;
|
|
|
|
struct ena_ring *rx_ring;
|
2019-05-30 13:29:24 +00:00
|
|
|
|
|
|
|
struct task cleanup_task;
|
|
|
|
struct taskqueue *cleanup_tq;
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
uint32_t id;
|
|
|
|
int cpu;
|
|
|
|
};
|
|
|
|
|
2019-05-30 13:28:03 +00:00
|
|
|
struct ena_calc_queue_size_ctx {
|
|
|
|
struct ena_com_dev_get_features_ctx *get_feat_ctx;
|
|
|
|
struct ena_com_dev *ena_dev;
|
|
|
|
device_t pdev;
|
2020-05-26 15:48:06 +00:00
|
|
|
uint32_t tx_queue_size;
|
|
|
|
uint32_t rx_queue_size;
|
|
|
|
uint32_t max_tx_queue_size;
|
|
|
|
uint32_t max_rx_queue_size;
|
2019-05-30 13:28:03 +00:00
|
|
|
uint16_t max_tx_sgl_size;
|
|
|
|
uint16_t max_rx_sgl_size;
|
|
|
|
};
|
|
|
|
|
Add support for ENA NETMAP Tx
Two new tables are added to ena_tx_buffer structure:
* netmap_map_seg stores DMA mapping structures,
* netmap_buf_idx stores buff indexes taken from the slots.
When Tx resources are being set, the new mapping structures are created
and netmap Tx rings are being reset.
When Tx resources are being released, used netmap bufs are unmapped from
DMA and then mapping structures are destroyed.
When Tx interrupt occurrs, ena_netmap_tx_irq is called.
ena_netmap_txsync callback signalizes that there are new packets which
should be transmitted.
First, it fills ena_netmap_ctx. Then it performs two actions:
* ena_netmap_tx_frames moves packets from netmap ring to NIC,
* ena_netmap_tx_cleanup restores buffers from NIC and gives them back
to the userspace app.
0 is returned in case of Tx error that could be handled by the driver.
ena_netmap_tx_frames checks if there are packets ready for transmission.
Then, for each of them, ena_netmap_tx_frame is called. If error occurs,
transmitting is stopped, but if the error was cause due to HW ring being
full, information about that is not propagated to the userspace app.
When all packets are ready, doorbell is written to NIC and netmap ring
state is updated.
Parsing of one packet is done by the ena_netmap_tx_frame function.
First, it checks if number of slots does not exceed NIC limit. Invalid
packets are being dropped and the error is propagated to the upper
layer. As each netmap buffer has equal size, which is typically greater
then 2KiB, there shouldn't be any packets which contain too many slots.
Then, the ena_com_tx_ctx structure is being filled. As netmap does not
support any hardware offloads, ena_com_tx_meta structure is set to zero.
After that, ena_netmap_map_slots maps all memory slots for DMA.
If the device works in the LLQ mode, the push header is being determined
by checking if the header fits within the first socket.
If so, the portion of data is being copied directly from the slot.
In other case, the data is copied to the intermediate buffer.
First slots are treated the same as as the others, because DMA mapping
has no impact on LLQ mode. Index of each netmap buffer is taken from
slot and stored in netmap_buf_idx array. In case of mapping error,
memory is unmapped and packets are put back to the netmap ring.
ena_netmap_tx_cleanup performs out of order cleanup of sent buffers.
First, req_id is taken and is validated. As validate_tx_req_id from
ena.c is specific to kernels mbuf, another implementation is provided.
Each req_id is cleaned up by ena_netmap_tx_clean_one function. Buffers
are being unmaped from DMA and put back to netmap ring. In the end,
state of netmap and NIC rings are being updated.
Differential Revision: https://reviews.freebsd.org/D21936
Submitted by: Rafal Kozik <rk@semihalf.com>
Michal Krawczyk <mk@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon, Inc.
2019-10-31 15:59:29 +00:00
|
|
|
#ifdef DEV_NETMAP
|
|
|
|
struct ena_netmap_tx_info {
|
|
|
|
uint32_t socket_buf_idx[ENA_PKT_MAX_BUFS];
|
|
|
|
bus_dmamap_t map_seg[ENA_PKT_MAX_BUFS];
|
|
|
|
unsigned int sockets_used;
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
struct ena_tx_buffer {
|
|
|
|
struct mbuf *mbuf;
|
|
|
|
/* # of ena desc for this specific mbuf
|
|
|
|
* (includes data desc and metadata desc) */
|
|
|
|
unsigned int tx_descs;
|
|
|
|
/* # of buffers used by this mbuf */
|
|
|
|
unsigned int num_of_bufs;
|
2019-05-30 13:30:52 +00:00
|
|
|
|
2020-02-24 15:35:31 +00:00
|
|
|
bus_dmamap_t dmamap;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
/* Used to detect missing tx packets */
|
|
|
|
struct bintime timestamp;
|
|
|
|
bool print_once;
|
|
|
|
|
Add support for ENA NETMAP Tx
Two new tables are added to ena_tx_buffer structure:
* netmap_map_seg stores DMA mapping structures,
* netmap_buf_idx stores buff indexes taken from the slots.
When Tx resources are being set, the new mapping structures are created
and netmap Tx rings are being reset.
When Tx resources are being released, used netmap bufs are unmapped from
DMA and then mapping structures are destroyed.
When Tx interrupt occurrs, ena_netmap_tx_irq is called.
ena_netmap_txsync callback signalizes that there are new packets which
should be transmitted.
First, it fills ena_netmap_ctx. Then it performs two actions:
* ena_netmap_tx_frames moves packets from netmap ring to NIC,
* ena_netmap_tx_cleanup restores buffers from NIC and gives them back
to the userspace app.
0 is returned in case of Tx error that could be handled by the driver.
ena_netmap_tx_frames checks if there are packets ready for transmission.
Then, for each of them, ena_netmap_tx_frame is called. If error occurs,
transmitting is stopped, but if the error was cause due to HW ring being
full, information about that is not propagated to the userspace app.
When all packets are ready, doorbell is written to NIC and netmap ring
state is updated.
Parsing of one packet is done by the ena_netmap_tx_frame function.
First, it checks if number of slots does not exceed NIC limit. Invalid
packets are being dropped and the error is propagated to the upper
layer. As each netmap buffer has equal size, which is typically greater
then 2KiB, there shouldn't be any packets which contain too many slots.
Then, the ena_com_tx_ctx structure is being filled. As netmap does not
support any hardware offloads, ena_com_tx_meta structure is set to zero.
After that, ena_netmap_map_slots maps all memory slots for DMA.
If the device works in the LLQ mode, the push header is being determined
by checking if the header fits within the first socket.
If so, the portion of data is being copied directly from the slot.
In other case, the data is copied to the intermediate buffer.
First slots are treated the same as as the others, because DMA mapping
has no impact on LLQ mode. Index of each netmap buffer is taken from
slot and stored in netmap_buf_idx array. In case of mapping error,
memory is unmapped and packets are put back to the netmap ring.
ena_netmap_tx_cleanup performs out of order cleanup of sent buffers.
First, req_id is taken and is validated. As validate_tx_req_id from
ena.c is specific to kernels mbuf, another implementation is provided.
Each req_id is cleaned up by ena_netmap_tx_clean_one function. Buffers
are being unmaped from DMA and put back to netmap ring. In the end,
state of netmap and NIC rings are being updated.
Differential Revision: https://reviews.freebsd.org/D21936
Submitted by: Rafal Kozik <rk@semihalf.com>
Michal Krawczyk <mk@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon, Inc.
2019-10-31 15:59:29 +00:00
|
|
|
#ifdef DEV_NETMAP
|
|
|
|
struct ena_netmap_tx_info nm_info;
|
|
|
|
#endif /* DEV_NETMAP */
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
struct ena_com_buf bufs[ENA_PKT_MAX_BUFS];
|
|
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
|
|
|
|
struct ena_rx_buffer {
|
|
|
|
struct mbuf *mbuf;
|
|
|
|
bus_dmamap_t map;
|
|
|
|
struct ena_com_buf ena_buf;
|
2019-10-31 15:57:44 +00:00
|
|
|
#ifdef DEV_NETMAP
|
|
|
|
uint32_t netmap_buf_idx;
|
|
|
|
#endif /* DEV_NETMAP */
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
|
|
|
|
struct ena_stats_tx {
|
|
|
|
counter_u64_t cnt;
|
|
|
|
counter_u64_t bytes;
|
|
|
|
counter_u64_t prepare_ctx_err;
|
|
|
|
counter_u64_t dma_mapping_err;
|
|
|
|
counter_u64_t doorbells;
|
|
|
|
counter_u64_t missing_tx_comp;
|
|
|
|
counter_u64_t bad_req_id;
|
2017-07-04 00:10:29 +00:00
|
|
|
counter_u64_t collapse;
|
|
|
|
counter_u64_t collapse_err;
|
2019-05-30 13:29:24 +00:00
|
|
|
counter_u64_t queue_wakeup;
|
|
|
|
counter_u64_t queue_stop;
|
2019-05-30 13:30:52 +00:00
|
|
|
counter_u64_t llq_buffer_copy;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct ena_stats_rx {
|
|
|
|
counter_u64_t cnt;
|
|
|
|
counter_u64_t bytes;
|
|
|
|
counter_u64_t refil_partial;
|
|
|
|
counter_u64_t bad_csum;
|
2017-11-09 13:36:42 +00:00
|
|
|
counter_u64_t mjum_alloc_fail;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
counter_u64_t mbuf_alloc_fail;
|
|
|
|
counter_u64_t dma_mapping_err;
|
|
|
|
counter_u64_t bad_desc_num;
|
2017-11-09 11:45:59 +00:00
|
|
|
counter_u64_t bad_req_id;
|
|
|
|
counter_u64_t empty_rx_ring;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct ena_ring {
|
2017-11-09 11:45:59 +00:00
|
|
|
/* Holds the empty requests for TX/RX out of order completions */
|
|
|
|
union {
|
|
|
|
uint16_t *free_tx_ids;
|
|
|
|
uint16_t *free_rx_ids;
|
|
|
|
};
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
struct ena_com_dev *ena_dev;
|
|
|
|
struct ena_adapter *adapter;
|
|
|
|
struct ena_com_io_cq *ena_com_io_cq;
|
|
|
|
struct ena_com_io_sq *ena_com_io_sq;
|
|
|
|
|
|
|
|
uint16_t qid;
|
2017-11-09 12:07:02 +00:00
|
|
|
|
|
|
|
/* Determines if device will use LLQ or normal mode for TX */
|
|
|
|
enum ena_admin_placement_policy_type tx_mem_queue_type;
|
Optimize ENA Rx refill for low memory conditions
Sometimes, especially when there is not much memory in the system left,
allocating mbuf jumbo clusters (like 9KB or 16KB) can take a lot of time
and it is not guaranteed that it'll succeed. In that situation, the
fallback will work, but if the refill needs to take a place for a lot of
descriptors at once, the time spent in m_getjcl looking for memory can
cause system unresponsiveness due to high priority of the Rx task. This
can also lead to driver reset, because Tx cleanup routine is being
blocked and timer service could detect that Tx packets aren't cleaned
up. The reset routine can further create another unresponsiveness - Rx
rings are being refilled there, so m_getjcl will again burn the CPU.
This was causing NVMe driver timeouts and resets, because network driver
is having higher priority.
Instead of 16KB jumbo clusters for the Rx buffers, 9KB clusters are
enough - ENA MTU is being set to 9K anyway, so it's very unlikely that
more space than 9KB will be needed.
However, 9KB jumbo clusters can still cause issues, so by default the
page size mbuf cluster will be used for the Rx descriptors. This can have a
small (~2%) impact on the throughput of the device, so to restore
original behavior, one must change sysctl "hw.ena.enable_9k_mbufs" to
"1" in "/boot/loader.conf" file.
As a part of this patch (important fix), the version of the driver
was updated to v2.1.2.
Submitted by: cperciva
Reviewed by: Michal Krawczyk <mk@semihalf.com>
Reviewed by: Ido Segev <idose@amazon.com>
Reviewed by: Guy Tzalik <gtzalik@amazon.com>
MFC after: 3 days
PR: 225791, 234838, 235856, 236989, 243531
Differential Revision: https://reviews.freebsd.org/D24546
2020-05-07 11:28:39 +00:00
|
|
|
union {
|
|
|
|
/* The maximum length the driver can push to the device (For LLQ) */
|
|
|
|
uint8_t tx_max_header_size;
|
|
|
|
/* The maximum (and default) mbuf size for the Rx descriptor. */
|
|
|
|
uint16_t rx_mbuf_sz;
|
|
|
|
|
|
|
|
};
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2019-05-30 13:16:56 +00:00
|
|
|
bool first_interrupt;
|
|
|
|
uint16_t no_interrupt_event_cnt;
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
struct ena_com_rx_buf_info ena_bufs[ENA_PKT_MAX_BUFS];
|
2017-11-09 12:07:02 +00:00
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
struct ena_que *que;
|
|
|
|
struct lro_ctrl lro;
|
|
|
|
|
|
|
|
uint16_t next_to_use;
|
|
|
|
uint16_t next_to_clean;
|
|
|
|
|
|
|
|
union {
|
|
|
|
struct ena_tx_buffer *tx_buffer_info; /* contex of tx packet */
|
|
|
|
struct ena_rx_buffer *rx_buffer_info; /* contex of rx packet */
|
|
|
|
};
|
|
|
|
int ring_size; /* number of tx/rx_buffer_info's entries */
|
|
|
|
|
|
|
|
struct buf_ring *br; /* only for TX */
|
2019-05-30 13:28:03 +00:00
|
|
|
uint32_t buf_ring_size;
|
2017-11-09 12:07:02 +00:00
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
struct mtx ring_mtx;
|
|
|
|
char mtx_name[16];
|
2017-11-09 12:07:02 +00:00
|
|
|
|
2019-05-30 13:29:24 +00:00
|
|
|
struct {
|
|
|
|
struct task enqueue_task;
|
|
|
|
struct taskqueue *enqueue_tq;
|
2017-11-09 11:48:22 +00:00
|
|
|
};
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
union {
|
|
|
|
struct ena_stats_tx tx_stats;
|
|
|
|
struct ena_stats_rx rx_stats;
|
|
|
|
};
|
|
|
|
|
2019-05-30 13:29:24 +00:00
|
|
|
union {
|
|
|
|
int empty_rx_queue;
|
|
|
|
/* For Tx ring to indicate if it's running or not */
|
|
|
|
bool running;
|
|
|
|
};
|
2019-05-30 13:30:52 +00:00
|
|
|
|
2019-05-30 13:33:31 +00:00
|
|
|
/* How many packets are sent in one Tx loop, used for doorbells */
|
|
|
|
uint32_t acum_pkts;
|
|
|
|
|
2019-05-30 13:30:52 +00:00
|
|
|
/* Used for LLQ */
|
|
|
|
uint8_t *push_buf_intermediate_buf;
|
2019-10-31 15:57:44 +00:00
|
|
|
|
|
|
|
#ifdef DEV_NETMAP
|
|
|
|
bool initialized;
|
|
|
|
#endif /* DEV_NETMAP */
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
|
|
|
|
struct ena_stats_dev {
|
|
|
|
counter_u64_t wd_expired;
|
|
|
|
counter_u64_t interface_up;
|
|
|
|
counter_u64_t interface_down;
|
|
|
|
counter_u64_t admin_q_pause;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ena_hw_stats {
|
2017-10-31 16:31:23 +00:00
|
|
|
counter_u64_t rx_packets;
|
|
|
|
counter_u64_t tx_packets;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2017-10-31 16:31:23 +00:00
|
|
|
counter_u64_t rx_bytes;
|
|
|
|
counter_u64_t tx_bytes;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2017-10-31 16:31:23 +00:00
|
|
|
counter_u64_t rx_drops;
|
2020-05-26 15:31:28 +00:00
|
|
|
counter_u64_t tx_drops;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/* Board specific private data structure */
|
|
|
|
struct ena_adapter {
|
|
|
|
struct ena_com_dev *ena_dev;
|
|
|
|
|
|
|
|
/* OS defined structs */
|
|
|
|
if_t ifp;
|
|
|
|
device_t pdev;
|
|
|
|
struct ifmedia media;
|
|
|
|
|
|
|
|
/* OS resources */
|
2017-11-09 12:07:02 +00:00
|
|
|
struct resource *memory;
|
|
|
|
struct resource *registers;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2020-05-26 15:39:41 +00:00
|
|
|
struct sx global_lock;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
/* MSI-X */
|
|
|
|
struct msix_entry *msix_entries;
|
|
|
|
int msix_vecs;
|
|
|
|
|
|
|
|
/* DMA tags used throughout the driver adapter for Tx and Rx */
|
|
|
|
bus_dma_tag_t tx_buf_tag;
|
|
|
|
bus_dma_tag_t rx_buf_tag;
|
|
|
|
int dma_width;
|
|
|
|
|
2017-11-09 13:35:07 +00:00
|
|
|
uint32_t max_mtu;
|
|
|
|
|
2020-05-26 15:48:06 +00:00
|
|
|
uint32_t num_io_queues;
|
|
|
|
uint32_t max_num_io_queues;
|
|
|
|
|
2020-05-26 15:58:48 +00:00
|
|
|
uint32_t requested_tx_ring_size;
|
|
|
|
uint32_t requested_rx_ring_size;
|
2020-05-26 15:48:06 +00:00
|
|
|
|
|
|
|
uint32_t max_tx_ring_size;
|
|
|
|
uint32_t max_rx_ring_size;
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
uint16_t max_tx_sgl_size;
|
|
|
|
uint16_t max_rx_sgl_size;
|
|
|
|
|
|
|
|
uint32_t tx_offload_cap;
|
|
|
|
|
2020-05-26 15:50:30 +00:00
|
|
|
uint32_t buf_ring_size;
|
2019-05-30 13:28:03 +00:00
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
/* RSS*/
|
2017-11-09 12:07:02 +00:00
|
|
|
uint8_t rss_ind_tbl[ENA_RX_RSS_TABLE_SIZE];
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
uint8_t mac_addr[ETHER_ADDR_LEN];
|
|
|
|
/* mdio and phy*/
|
|
|
|
|
2019-05-30 13:37:15 +00:00
|
|
|
ena_state_t flags;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
|
|
|
/* Queue will represent one TX and one RX ring */
|
|
|
|
struct ena_que que[ENA_MAX_NUM_IO_QUEUES]
|
|
|
|
__aligned(CACHE_LINE_SIZE);
|
|
|
|
|
|
|
|
/* TX */
|
|
|
|
struct ena_ring tx_ring[ENA_MAX_NUM_IO_QUEUES]
|
|
|
|
__aligned(CACHE_LINE_SIZE);
|
|
|
|
|
|
|
|
/* RX */
|
|
|
|
struct ena_ring rx_ring[ENA_MAX_NUM_IO_QUEUES]
|
|
|
|
__aligned(CACHE_LINE_SIZE);
|
|
|
|
|
|
|
|
struct ena_irq irq_tbl[ENA_MAX_MSIX_VEC(ENA_MAX_NUM_IO_QUEUES)];
|
|
|
|
|
|
|
|
/* Timer service */
|
|
|
|
struct callout timer_service;
|
|
|
|
sbintime_t keep_alive_timestamp;
|
|
|
|
uint32_t next_monitored_tx_qid;
|
|
|
|
struct task reset_task;
|
|
|
|
struct taskqueue *reset_tq;
|
|
|
|
int wd_active;
|
|
|
|
sbintime_t keep_alive_timeout;
|
|
|
|
sbintime_t missing_tx_timeout;
|
|
|
|
uint32_t missing_tx_max_queues;
|
|
|
|
uint32_t missing_tx_threshold;
|
2020-05-26 16:00:30 +00:00
|
|
|
bool disable_meta_caching;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
|
2020-11-18 15:17:55 +00:00
|
|
|
uint16_t eni_metrics_sample_interval;
|
|
|
|
uint16_t eni_metrics_sample_interval_cnt;
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
/* Statistics */
|
|
|
|
struct ena_stats_dev dev_stats;
|
|
|
|
struct ena_hw_stats hw_stats;
|
2020-11-18 15:17:55 +00:00
|
|
|
struct ena_admin_eni_stats eni_metrics;
|
2017-10-31 12:41:07 +00:00
|
|
|
|
|
|
|
enum ena_regs_reset_reason_types reset_reason;
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#define ENA_RING_MTX_LOCK(_ring) mtx_lock(&(_ring)->ring_mtx)
|
|
|
|
#define ENA_RING_MTX_TRYLOCK(_ring) mtx_trylock(&(_ring)->ring_mtx)
|
|
|
|
#define ENA_RING_MTX_UNLOCK(_ring) mtx_unlock(&(_ring)->ring_mtx)
|
|
|
|
|
2020-05-26 15:39:41 +00:00
|
|
|
#define ENA_LOCK_INIT(adapter) \
|
|
|
|
sx_init(&(adapter)->global_lock, "ENA global lock")
|
|
|
|
#define ENA_LOCK_DESTROY(adapter) sx_destroy(&(adapter)->global_lock)
|
|
|
|
#define ENA_LOCK_LOCK(adapter) sx_xlock(&(adapter)->global_lock)
|
|
|
|
#define ENA_LOCK_UNLOCK(adapter) sx_unlock(&(adapter)->global_lock)
|
|
|
|
|
2020-05-26 15:48:06 +00:00
|
|
|
#define clamp_t(type, _x, min, max) min_t(type, max_t(type, _x, min), max)
|
|
|
|
#define clamp_val(val, lo, hi) clamp_t(__typeof(val), val, lo, hi)
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
static inline int ena_mbuf_count(struct mbuf *mbuf)
|
|
|
|
{
|
|
|
|
int count = 1;
|
|
|
|
|
|
|
|
while ((mbuf = mbuf->m_next) != NULL)
|
|
|
|
++count;
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
2020-05-26 15:41:53 +00:00
|
|
|
int ena_up(struct ena_adapter *adapter);
|
|
|
|
void ena_down(struct ena_adapter *adapter);
|
|
|
|
int ena_restore_device(struct ena_adapter *adapter);
|
|
|
|
void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
|
|
|
|
int ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num);
|
2020-05-26 15:50:30 +00:00
|
|
|
int ena_update_buf_ring_size(struct ena_adapter *adapter,
|
|
|
|
uint32_t new_buf_ring_size);
|
2020-05-26 15:48:06 +00:00
|
|
|
int ena_update_queue_size(struct ena_adapter *adapter, uint32_t new_tx_size,
|
|
|
|
uint32_t new_rx_size);
|
2020-05-26 15:57:02 +00:00
|
|
|
int ena_update_io_queue_nb(struct ena_adapter *adapter, uint32_t new_num);
|
2019-10-31 15:57:44 +00:00
|
|
|
|
2020-05-26 15:37:55 +00:00
|
|
|
static inline void
|
|
|
|
ena_trigger_reset(struct ena_adapter *adapter,
|
|
|
|
enum ena_regs_reset_reason_types reset_reason)
|
|
|
|
{
|
|
|
|
if (likely(!ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
|
|
|
|
adapter->reset_reason = reset_reason;
|
|
|
|
ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Add support for Amazon Elastic Network Adapter (ENA) NIC
ENA is a networking interface designed to make good use of modern CPU
features and system architectures.
The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendable command set
through an Admin Queue.
The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc.), and has
a negotiated and extendable feature set.
Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.
ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, and CPU cacheline optimized
data placement.
The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).
Receive-side scaling (RSS) is supported for multi-core scaling.
The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.
Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds. This feature will
be implemented for driver in future releases.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Jakub Palider <jpa@semihalf.com>
Jan Medala <jan@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon.com Inc.
Differential revision: https://reviews.freebsd.org/D10427
2017-05-22 14:46:13 +00:00
|
|
|
#endif /* !(ENA_H) */
|