freebsd-nq/sys/dev/al_eth/al_eth.c

3573 lines
94 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2015,2016 Annapurna Labs Ltd. and affiliates
* All rights reserved.
*
* Developed by Semihalf.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <machine/atomic.h>
#include "opt_inet.h"
#include "opt_inet6.h"
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <net/if_vlan_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_lro.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <sys/sockio.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <al_hal_common.h>
#include <al_hal_plat_services.h>
#include <al_hal_udma_config.h>
#include <al_hal_udma_iofic.h>
#include <al_hal_udma_debug.h>
#include <al_hal_eth.h>
#include "al_eth.h"
#include "al_init_eth_lm.h"
#include "arm/annapurna/alpine/alpine_serdes.h"
#include "miibus_if.h"
#define device_printf_dbg(fmt, ...) do { \
if (AL_DBG_LEVEL >= AL_DBG_LEVEL_DBG) { AL_DBG_LOCK(); \
device_printf(fmt, __VA_ARGS__); AL_DBG_UNLOCK();} \
} while (0)
MALLOC_DEFINE(M_IFAL, "if_al_malloc", "All allocated data for AL ETH driver");
/* move out to some pci header file */
#define PCI_VENDOR_ID_ANNAPURNA_LABS 0x1c36
#define PCI_DEVICE_ID_AL_ETH 0x0001
#define PCI_DEVICE_ID_AL_ETH_ADVANCED 0x0002
#define PCI_DEVICE_ID_AL_ETH_NIC 0x0003
#define PCI_DEVICE_ID_AL_ETH_FPGA_NIC 0x0030
#define PCI_DEVICE_ID_AL_CRYPTO 0x0011
#define PCI_DEVICE_ID_AL_CRYPTO_VF 0x8011
#define PCI_DEVICE_ID_AL_RAID_DMA 0x0021
#define PCI_DEVICE_ID_AL_RAID_DMA_VF 0x8021
#define PCI_DEVICE_ID_AL_USB 0x0041
#define MAC_ADDR_STR "%02x:%02x:%02x:%02x:%02x:%02x"
#define MAC_ADDR(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
#define AL_ETH_MAC_TABLE_UNICAST_IDX_BASE 0
#define AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT 4
#define AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + \
AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)
#define AL_ETH_MAC_TABLE_DROP_IDX (AL_ETH_FWD_MAC_NUM - 1)
#define AL_ETH_MAC_TABLE_BROADCAST_IDX (AL_ETH_MAC_TABLE_DROP_IDX - 1)
#define AL_ETH_THASH_UDMA_SHIFT 0
#define AL_ETH_THASH_UDMA_MASK (0xF << AL_ETH_THASH_UDMA_SHIFT)
#define AL_ETH_THASH_Q_SHIFT 4
#define AL_ETH_THASH_Q_MASK (0x3 << AL_ETH_THASH_Q_SHIFT)
/* the following defines should be moved to hal */
#define AL_ETH_FSM_ENTRY_IPV4_TCP 0
#define AL_ETH_FSM_ENTRY_IPV4_UDP 1
#define AL_ETH_FSM_ENTRY_IPV6_TCP 2
#define AL_ETH_FSM_ENTRY_IPV6_UDP 3
#define AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP 4
#define AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP 5
/* FSM DATA format */
#define AL_ETH_FSM_DATA_OUTER_2_TUPLE 0
#define AL_ETH_FSM_DATA_OUTER_4_TUPLE 1
#define AL_ETH_FSM_DATA_INNER_2_TUPLE 2
#define AL_ETH_FSM_DATA_INNER_4_TUPLE 3
#define AL_ETH_FSM_DATA_HASH_SEL (1 << 2)
#define AL_ETH_FSM_DATA_DEFAULT_Q 0
#define AL_ETH_FSM_DATA_DEFAULT_UDMA 0
#define AL_BR_SIZE 512
#define AL_TSO_SIZE 65500
#define AL_DEFAULT_MTU 1500
#define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
#define AL_IP_ALIGNMENT_OFFSET 2
#define SFP_I2C_ADDR 0x50
#define AL_MASK_GROUP_A_INT 0x7
#define AL_MASK_GROUP_B_INT 0xF
#define AL_MASK_GROUP_C_INT 0xF
#define AL_MASK_GROUP_D_INT 0xFFFFFFFF
#define AL_REG_OFFSET_FORWARD_INTR (0x1800000 + 0x1210)
#define AL_EN_FORWARD_INTR 0x1FFFF
#define AL_DIS_FORWARD_INTR 0
#define AL_M2S_MASK_INIT 0x480
#define AL_S2M_MASK_INIT 0x1E0
#define AL_M2S_S2M_MASK_NOT_INT (0x3f << 25)
#define AL_10BASE_T_SPEED 10
#define AL_100BASE_TX_SPEED 100
#define AL_1000BASE_T_SPEED 1000
static devclass_t al_devclass;
#define AL_RX_LOCK_INIT(_sc) mtx_init(&((_sc)->if_rx_lock), "ALRXL", "ALRXL", MTX_DEF)
#define AL_RX_LOCK(_sc) mtx_lock(&((_sc)->if_rx_lock))
#define AL_RX_UNLOCK(_sc) mtx_unlock(&((_sc)->if_rx_lock))
/* helper functions */
static int al_is_device_supported(device_t);
static void al_eth_init_rings(struct al_eth_adapter *);
static void al_eth_flow_ctrl_disable(struct al_eth_adapter *);
int al_eth_fpga_read_pci_config(void *, int, uint32_t *);
int al_eth_fpga_write_pci_config(void *, int, uint32_t);
int al_eth_read_pci_config(void *, int, uint32_t *);
int al_eth_write_pci_config(void *, int, uint32_t);
void al_eth_irq_config(uint32_t *, uint32_t);
void al_eth_forward_int_config(uint32_t *, uint32_t);
static void al_eth_start_xmit(void *, int);
static void al_eth_rx_recv_work(void *, int);
static int al_eth_up(struct al_eth_adapter *);
static void al_eth_down(struct al_eth_adapter *);
static void al_eth_interrupts_unmask(struct al_eth_adapter *);
static void al_eth_interrupts_mask(struct al_eth_adapter *);
static int al_eth_check_mtu(struct al_eth_adapter *, int);
static uint64_t al_get_counter(struct ifnet *, ift_counter);
static void al_eth_req_rx_buff_size(struct al_eth_adapter *, int);
static int al_eth_board_params_init(struct al_eth_adapter *);
static int al_media_update(struct ifnet *);
static void al_media_status(struct ifnet *, struct ifmediareq *);
static int al_eth_function_reset(struct al_eth_adapter *);
static int al_eth_hw_init_adapter(struct al_eth_adapter *);
static void al_eth_serdes_init(struct al_eth_adapter *);
static void al_eth_lm_config(struct al_eth_adapter *);
static int al_eth_hw_init(struct al_eth_adapter *);
static void al_tick_stats(void *);
/* ifnet entry points */
static void al_init(void *);
static int al_mq_start(struct ifnet *, struct mbuf *);
static void al_qflush(struct ifnet *);
static int al_ioctl(struct ifnet * ifp, u_long, caddr_t);
/* bus entry points */
static int al_probe(device_t);
static int al_attach(device_t);
static int al_detach(device_t);
static int al_shutdown(device_t);
/* mii bus support routines */
static int al_miibus_readreg(device_t, int, int);
static int al_miibus_writereg(device_t, int, int, int);
static void al_miibus_statchg(device_t);
static void al_miibus_linkchg(device_t);
struct al_eth_adapter* g_adapters[16];
uint32_t g_adapters_count;
/* flag for napi-like mbuf processing, controlled from sysctl */
static int napi = 0;
static device_method_t al_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, al_probe),
DEVMETHOD(device_attach, al_attach),
DEVMETHOD(device_detach, al_detach),
DEVMETHOD(device_shutdown, al_shutdown),
DEVMETHOD(miibus_readreg, al_miibus_readreg),
DEVMETHOD(miibus_writereg, al_miibus_writereg),
DEVMETHOD(miibus_statchg, al_miibus_statchg),
DEVMETHOD(miibus_linkchg, al_miibus_linkchg),
{ 0, 0 }
};
static driver_t al_driver = {
"al",
al_methods,
sizeof(struct al_eth_adapter),
};
DRIVER_MODULE(al, pci, al_driver, al_devclass, 0, 0);
DRIVER_MODULE(miibus, al, miibus_driver, miibus_devclass, 0, 0);
static int
al_probe(device_t dev)
{
if ((al_is_device_supported(dev)) != 0) {
device_set_desc(dev, "al");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
al_attach(device_t dev)
{
struct al_eth_adapter *adapter;
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
struct ifnet *ifp;
uint32_t dev_id;
uint32_t rev_id;
int bar_udma;
int bar_mac;
int bar_ec;
int err;
err = 0;
ifp = NULL;
dev_id = rev_id = 0;
ctx = device_get_sysctl_ctx(dev);
tree = SYSCTL_PARENT(device_get_sysctl_tree(dev));
child = SYSCTL_CHILDREN(tree);
if (g_adapters_count == 0) {
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "napi",
CTLFLAG_RW, &napi, 0, "Use pseudo-napi mechanism");
}
adapter = device_get_softc(dev);
adapter->dev = dev;
adapter->board_type = ALPINE_INTEGRATED;
snprintf(adapter->name, AL_ETH_NAME_MAX_LEN, "%s",
device_get_nameunit(dev));
AL_RX_LOCK_INIT(adapter);
g_adapters[g_adapters_count] = adapter;
bar_udma = PCIR_BAR(AL_ETH_UDMA_BAR);
adapter->udma_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&bar_udma, RF_ACTIVE);
if (adapter->udma_res == NULL) {
device_printf(adapter->dev,
"could not allocate memory resources for DMA.\n");
err = ENOMEM;
goto err_res_dma;
}
adapter->udma_base = al_bus_dma_to_va(rman_get_bustag(adapter->udma_res),
rman_get_bushandle(adapter->udma_res));
bar_mac = PCIR_BAR(AL_ETH_MAC_BAR);
adapter->mac_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&bar_mac, RF_ACTIVE);
if (adapter->mac_res == NULL) {
device_printf(adapter->dev,
"could not allocate memory resources for MAC.\n");
err = ENOMEM;
goto err_res_mac;
}
adapter->mac_base = al_bus_dma_to_va(rman_get_bustag(adapter->mac_res),
rman_get_bushandle(adapter->mac_res));
bar_ec = PCIR_BAR(AL_ETH_EC_BAR);
adapter->ec_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar_ec,
RF_ACTIVE);
if (adapter->ec_res == NULL) {
device_printf(adapter->dev,
"could not allocate memory resources for EC.\n");
err = ENOMEM;
goto err_res_ec;
}
adapter->ec_base = al_bus_dma_to_va(rman_get_bustag(adapter->ec_res),
rman_get_bushandle(adapter->ec_res));
adapter->netdev = ifp = if_alloc(IFT_ETHER);
adapter->netdev->if_link_state = LINK_STATE_DOWN;
ifp->if_softc = adapter;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_flags = ifp->if_drv_flags;
ifp->if_flags |= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALLMULTI;
ifp->if_transmit = al_mq_start;
ifp->if_qflush = al_qflush;
ifp->if_ioctl = al_ioctl;
ifp->if_init = al_init;
ifp->if_get_counter = al_get_counter;
ifp->if_mtu = AL_DEFAULT_MTU;
adapter->if_flags = ifp->if_flags;
ifp->if_capabilities = ifp->if_capenable = 0;
ifp->if_capabilities |= IFCAP_HWCSUM |
IFCAP_HWCSUM_IPV6 | IFCAP_TSO |
IFCAP_LRO | IFCAP_JUMBO_MTU;
ifp->if_capenable = ifp->if_capabilities;
adapter->id_number = g_adapters_count;
if (adapter->board_type == ALPINE_INTEGRATED) {
dev_id = pci_get_device(adapter->dev);
rev_id = pci_get_revid(adapter->dev);
} else {
al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
PCIR_DEVICE, &dev_id);
al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
PCIR_REVID, &rev_id);
}
adapter->dev_id = dev_id;
adapter->rev_id = rev_id;
/* set default ring sizes */
adapter->tx_ring_count = AL_ETH_DEFAULT_TX_SW_DESCS;
adapter->tx_descs_count = AL_ETH_DEFAULT_TX_HW_DESCS;
adapter->rx_ring_count = AL_ETH_DEFAULT_RX_DESCS;
adapter->rx_descs_count = AL_ETH_DEFAULT_RX_DESCS;
adapter->num_tx_queues = AL_ETH_NUM_QUEUES;
adapter->num_rx_queues = AL_ETH_NUM_QUEUES;
adapter->small_copy_len = AL_ETH_DEFAULT_SMALL_PACKET_LEN;
adapter->link_poll_interval = AL_ETH_DEFAULT_LINK_POLL_INTERVAL;
adapter->max_rx_buff_alloc_size = AL_ETH_DEFAULT_MAX_RX_BUFF_ALLOC_SIZE;
al_eth_req_rx_buff_size(adapter, adapter->netdev->if_mtu);
adapter->link_config.force_1000_base_x = AL_ETH_DEFAULT_FORCE_1000_BASEX;
err = al_eth_board_params_init(adapter);
if (err != 0)
goto err;
if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial) {
ifmedia_init(&adapter->media, IFM_IMASK,
al_media_update, al_media_status);
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_LX, 0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_LR, 0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
}
al_eth_function_reset(adapter);
err = al_eth_hw_init_adapter(adapter);
if (err != 0)
goto err;
al_eth_init_rings(adapter);
g_adapters_count++;
al_eth_lm_config(adapter);
mtx_init(&adapter->stats_mtx, "AlStatsMtx", NULL, MTX_DEF);
mtx_init(&adapter->wd_mtx, "AlWdMtx", NULL, MTX_DEF);
callout_init_mtx(&adapter->stats_callout, &adapter->stats_mtx, 0);
callout_init_mtx(&adapter->wd_callout, &adapter->wd_mtx, 0);
ether_ifattach(ifp, adapter->mac_addr);
ifp->if_mtu = AL_DEFAULT_MTU;
if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
al_eth_hw_init(adapter);
/* Attach PHY(s) */
err = mii_attach(adapter->dev, &adapter->miibus, adapter->netdev,
al_media_update, al_media_status, BMSR_DEFCAPMASK, 0,
MII_OFFSET_ANY, 0);
if (err != 0) {
device_printf(adapter->dev, "attaching PHYs failed\n");
return (err);
}
adapter->mii = device_get_softc(adapter->miibus);
}
return (err);
err:
bus_release_resource(dev, SYS_RES_MEMORY, bar_ec, adapter->ec_res);
err_res_ec:
bus_release_resource(dev, SYS_RES_MEMORY, bar_mac, adapter->mac_res);
err_res_mac:
bus_release_resource(dev, SYS_RES_MEMORY, bar_udma, adapter->udma_res);
err_res_dma:
return (err);
}
static int
al_detach(device_t dev)
{
struct al_eth_adapter *adapter;
adapter = device_get_softc(dev);
ether_ifdetach(adapter->netdev);
mtx_destroy(&adapter->stats_mtx);
mtx_destroy(&adapter->wd_mtx);
al_eth_down(adapter);
bus_release_resource(dev, SYS_RES_IRQ, 0, adapter->irq_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->ec_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->mac_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->udma_res);
return (0);
}
int
al_eth_fpga_read_pci_config(void *handle, int where, uint32_t *val)
{
/* handle is the base address of the adapter */
*val = al_reg_read32((void*)((u_long)handle + where));
return (0);
}
int
al_eth_fpga_write_pci_config(void *handle, int where, uint32_t val)
{
/* handle is the base address of the adapter */
al_reg_write32((void*)((u_long)handle + where), val);
return (0);
}
int
al_eth_read_pci_config(void *handle, int where, uint32_t *val)
{
/* handle is a pci_dev */
*val = pci_read_config((device_t)handle, where, sizeof(*val));
return (0);
}
int
al_eth_write_pci_config(void *handle, int where, uint32_t val)
{
/* handle is a pci_dev */
pci_write_config((device_t)handle, where, val, sizeof(val));
return (0);
}
void
al_eth_irq_config(uint32_t *offset, uint32_t value)
{
al_reg_write32_relaxed(offset, value);
}
void
al_eth_forward_int_config(uint32_t *offset, uint32_t value)
{
al_reg_write32(offset, value);
}
static void
al_eth_serdes_init(struct al_eth_adapter *adapter)
{
void __iomem *serdes_base;
adapter->serdes_init = false;
serdes_base = alpine_serdes_resource_get(adapter->serdes_grp);
if (serdes_base == NULL) {
device_printf(adapter->dev, "serdes_base get failed!\n");
return;
}
serdes_base = al_bus_dma_to_va(serdes_tag, serdes_base);
al_serdes_handle_grp_init(serdes_base, adapter->serdes_grp,
&adapter->serdes_obj);
adapter->serdes_init = true;
}
static void
al_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr;
paddr = arg;
*paddr = segs->ds_addr;
}
static int
al_dma_alloc_coherent(struct device *dev, bus_dma_tag_t *tag, bus_dmamap_t *map,
bus_addr_t *baddr, void **vaddr, uint32_t size)
{
int ret;
uint32_t maxsize = ((size - 1)/PAGE_SIZE + 1) * PAGE_SIZE;
ret = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
maxsize, 1, maxsize, BUS_DMA_COHERENT, NULL, NULL, tag);
if (ret != 0) {
device_printf(dev,
"failed to create bus tag, ret = %d\n", ret);
return (ret);
}
ret = bus_dmamem_alloc(*tag, vaddr,
BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
if (ret != 0) {
device_printf(dev,
"failed to allocate dmamem, ret = %d\n", ret);
return (ret);
}
ret = bus_dmamap_load(*tag, *map, *vaddr,
size, al_dma_map_addr, baddr, 0);
if (ret != 0) {
device_printf(dev,
"failed to allocate bus_dmamap_load, ret = %d\n", ret);
return (ret);
}
return (0);
}
static void
al_dma_free_coherent(bus_dma_tag_t tag, bus_dmamap_t map, void *vaddr)
{
bus_dmamap_unload(tag, map);
bus_dmamem_free(tag, vaddr, map);
bus_dma_tag_destroy(tag);
}
static void
al_eth_mac_table_unicast_add(struct al_eth_adapter *adapter,
uint8_t idx, uint8_t udma_mask)
{
struct al_eth_fwd_mac_table_entry entry = { { 0 } };
memcpy(entry.addr, adapter->mac_addr, sizeof(adapter->mac_addr));
memset(entry.mask, 0xff, sizeof(entry.mask));
entry.rx_valid = true;
entry.tx_valid = false;
entry.udma_mask = udma_mask;
entry.filter = false;
device_printf_dbg(adapter->dev,
"%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
__func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
}
static void
al_eth_mac_table_all_multicast_add(struct al_eth_adapter *adapter, uint8_t idx,
uint8_t udma_mask)
{
struct al_eth_fwd_mac_table_entry entry = { { 0 } };
memset(entry.addr, 0x00, sizeof(entry.addr));
memset(entry.mask, 0x00, sizeof(entry.mask));
entry.mask[0] |= 1;
entry.addr[0] |= 1;
entry.rx_valid = true;
entry.tx_valid = false;
entry.udma_mask = udma_mask;
entry.filter = false;
device_printf_dbg(adapter->dev,
"%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
__func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
}
static void
al_eth_mac_table_broadcast_add(struct al_eth_adapter *adapter,
uint8_t idx, uint8_t udma_mask)
{
struct al_eth_fwd_mac_table_entry entry = { { 0 } };
memset(entry.addr, 0xff, sizeof(entry.addr));
memset(entry.mask, 0xff, sizeof(entry.mask));
entry.rx_valid = true;
entry.tx_valid = false;
entry.udma_mask = udma_mask;
entry.filter = false;
device_printf_dbg(adapter->dev,
"%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
__func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
}
static void
al_eth_mac_table_promiscuous_set(struct al_eth_adapter *adapter,
boolean_t promiscuous)
{
struct al_eth_fwd_mac_table_entry entry = { { 0 } };
memset(entry.addr, 0x00, sizeof(entry.addr));
memset(entry.mask, 0x00, sizeof(entry.mask));
entry.rx_valid = true;
entry.tx_valid = false;
entry.udma_mask = (promiscuous) ? 1 : 0;
entry.filter = (promiscuous) ? false : true;
device_printf_dbg(adapter->dev, "%s: %s promiscuous mode\n",
__func__, (promiscuous) ? "enter" : "exit");
al_eth_fwd_mac_table_set(&adapter->hal_adapter,
AL_ETH_MAC_TABLE_DROP_IDX, &entry);
}
static void
al_eth_set_thash_table_entry(struct al_eth_adapter *adapter, uint8_t idx,
uint8_t udma, uint32_t queue)
{
if (udma != 0)
panic("only UDMA0 is supporter");
if (queue >= AL_ETH_NUM_QUEUES)
panic("invalid queue number");
al_eth_thash_table_set(&adapter->hal_adapter, idx, udma, queue);
}
/* init FSM, no tunneling supported yet, if packet is tcp/udp over ipv4/ipv6, use 4 tuple hash */
static void
al_eth_fsm_table_init(struct al_eth_adapter *adapter)
{
uint32_t val;
int i;
for (i = 0; i < AL_ETH_RX_FSM_TABLE_SIZE; i++) {
uint8_t outer_type = AL_ETH_FSM_ENTRY_OUTER(i);
switch (outer_type) {
case AL_ETH_FSM_ENTRY_IPV4_TCP:
case AL_ETH_FSM_ENTRY_IPV4_UDP:
case AL_ETH_FSM_ENTRY_IPV6_TCP:
case AL_ETH_FSM_ENTRY_IPV6_UDP:
val = AL_ETH_FSM_DATA_OUTER_4_TUPLE |
AL_ETH_FSM_DATA_HASH_SEL;
break;
case AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP:
case AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP:
val = AL_ETH_FSM_DATA_OUTER_2_TUPLE |
AL_ETH_FSM_DATA_HASH_SEL;
break;
default:
val = AL_ETH_FSM_DATA_DEFAULT_Q |
AL_ETH_FSM_DATA_DEFAULT_UDMA;
}
al_eth_fsm_table_set(&adapter->hal_adapter, i, val);
}
}
static void
al_eth_mac_table_entry_clear(struct al_eth_adapter *adapter,
uint8_t idx)
{
struct al_eth_fwd_mac_table_entry entry = { { 0 } };
device_printf_dbg(adapter->dev, "%s: clear entry %d\n", __func__, idx);
al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
}
static int
al_eth_hw_init_adapter(struct al_eth_adapter *adapter)
{
struct al_eth_adapter_params *params = &adapter->eth_hal_params;
int rc;
/* params->dev_id = adapter->dev_id; */
params->rev_id = adapter->rev_id;
params->udma_id = 0;
params->enable_rx_parser = 1; /* enable rx epe parser*/
params->udma_regs_base = adapter->udma_base; /* UDMA register base address */
params->ec_regs_base = adapter->ec_base; /* Ethernet controller registers base address */
params->mac_regs_base = adapter->mac_base; /* Ethernet MAC registers base address */
params->name = adapter->name;
params->serdes_lane = adapter->serdes_lane;
rc = al_eth_adapter_init(&adapter->hal_adapter, params);
if (rc != 0)
device_printf(adapter->dev, "%s failed at hal init!\n",
__func__);
if ((adapter->board_type == ALPINE_NIC) ||
(adapter->board_type == ALPINE_FPGA_NIC)) {
/* in pcie NIC mode, force eth UDMA to access PCIE0 using the vmid */
struct al_udma_gen_tgtid_conf conf;
int i;
for (i = 0; i < DMA_MAX_Q; i++) {
conf.tx_q_conf[i].queue_en = AL_TRUE;
conf.tx_q_conf[i].desc_en = AL_FALSE;
conf.tx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
conf.rx_q_conf[i].queue_en = AL_TRUE;
conf.rx_q_conf[i].desc_en = AL_FALSE;
conf.rx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
}
al_udma_gen_tgtid_conf_set(adapter->udma_base, &conf);
}
return (rc);
}
static void
al_eth_lm_config(struct al_eth_adapter *adapter)
{
struct al_eth_lm_init_params params = {0};
params.adapter = &adapter->hal_adapter;
params.serdes_obj = &adapter->serdes_obj;
params.lane = adapter->serdes_lane;
params.sfp_detection = adapter->sfp_detection_needed;
if (adapter->sfp_detection_needed == true) {
params.sfp_bus_id = adapter->i2c_adapter_id;
params.sfp_i2c_addr = SFP_I2C_ADDR;
}
if (adapter->sfp_detection_needed == false) {
switch (adapter->mac_mode) {
case AL_ETH_MAC_MODE_10GbE_Serial:
if ((adapter->lt_en != 0) && (adapter->an_en != 0))
params.default_mode = AL_ETH_LM_MODE_10G_DA;
else
params.default_mode = AL_ETH_LM_MODE_10G_OPTIC;
break;
case AL_ETH_MAC_MODE_SGMII:
params.default_mode = AL_ETH_LM_MODE_1G;
break;
default:
params.default_mode = AL_ETH_LM_MODE_10G_DA;
}
} else
params.default_mode = AL_ETH_LM_MODE_10G_DA;
params.link_training = adapter->lt_en;
params.rx_equal = true;
params.static_values = !adapter->dont_override_serdes;
params.i2c_context = adapter;
params.kr_fec_enable = false;
params.retimer_exist = adapter->retimer.exist;
params.retimer_bus_id = adapter->retimer.bus_id;
params.retimer_i2c_addr = adapter->retimer.i2c_addr;
params.retimer_channel = adapter->retimer.channel;
al_eth_lm_init(&adapter->lm_context, &params);
}
static int
al_eth_board_params_init(struct al_eth_adapter *adapter)
{
if (adapter->board_type == ALPINE_NIC) {
adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
adapter->sfp_detection_needed = false;
adapter->phy_exist = false;
adapter->an_en = false;
adapter->lt_en = false;
adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
} else if (adapter->board_type == ALPINE_FPGA_NIC) {
adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
adapter->sfp_detection_needed = false;
adapter->phy_exist = false;
adapter->an_en = false;
adapter->lt_en = false;
adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
} else {
struct al_eth_board_params params;
int rc;
adapter->auto_speed = false;
rc = al_eth_board_params_get(adapter->mac_base, &params);
if (rc != 0) {
device_printf(adapter->dev,
"board info not available\n");
return (-1);
}
adapter->phy_exist = params.phy_exist == TRUE;
adapter->phy_addr = params.phy_mdio_addr;
adapter->an_en = params.autoneg_enable;
adapter->lt_en = params.kr_lt_enable;
adapter->serdes_grp = params.serdes_grp;
adapter->serdes_lane = params.serdes_lane;
adapter->sfp_detection_needed = params.sfp_plus_module_exist;
adapter->i2c_adapter_id = params.i2c_adapter_id;
adapter->ref_clk_freq = params.ref_clk_freq;
adapter->dont_override_serdes = params.dont_override_serdes;
adapter->link_config.active_duplex = !params.half_duplex;
adapter->link_config.autoneg = !params.an_disable;
adapter->link_config.force_1000_base_x = params.force_1000_base_x;
adapter->retimer.exist = params.retimer_exist;
adapter->retimer.bus_id = params.retimer_bus_id;
adapter->retimer.i2c_addr = params.retimer_i2c_addr;
adapter->retimer.channel = params.retimer_channel;
switch (params.speed) {
default:
device_printf(adapter->dev,
"%s: invalid speed (%d)\n", __func__, params.speed);
case AL_ETH_BOARD_1G_SPEED_1000M:
adapter->link_config.active_speed = 1000;
break;
case AL_ETH_BOARD_1G_SPEED_100M:
adapter->link_config.active_speed = 100;
break;
case AL_ETH_BOARD_1G_SPEED_10M:
adapter->link_config.active_speed = 10;
break;
}
switch (params.mdio_freq) {
default:
device_printf(adapter->dev,
"%s: invalid mdio freq (%d)\n", __func__,
params.mdio_freq);
case AL_ETH_BOARD_MDIO_FREQ_2_5_MHZ:
adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
break;
case AL_ETH_BOARD_MDIO_FREQ_1_MHZ:
adapter->mdio_freq = AL_ETH_MDIO_FREQ_1000_KHZ;
break;
}
switch (params.media_type) {
case AL_ETH_BOARD_MEDIA_TYPE_RGMII:
if (params.sfp_plus_module_exist == TRUE)
/* Backward compatibility */
adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
else
adapter->mac_mode = AL_ETH_MAC_MODE_RGMII;
adapter->use_lm = false;
break;
case AL_ETH_BOARD_MEDIA_TYPE_SGMII:
adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
adapter->use_lm = true;
break;
case AL_ETH_BOARD_MEDIA_TYPE_10GBASE_SR:
adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
adapter->use_lm = true;
break;
case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT:
adapter->sfp_detection_needed = TRUE;
adapter->auto_speed = false;
adapter->use_lm = true;
break;
case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT_AUTO_SPEED:
adapter->sfp_detection_needed = TRUE;
adapter->auto_speed = true;
adapter->mac_mode_set = false;
adapter->use_lm = true;
adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
break;
default:
device_printf(adapter->dev,
"%s: unsupported media type %d\n",
__func__, params.media_type);
return (-1);
}
device_printf(adapter->dev,
"Board info: phy exist %s. phy addr %d. mdio freq %u Khz. "
"SFP connected %s. media %d\n",
params.phy_exist == TRUE ? "Yes" : "No",
params.phy_mdio_addr, adapter->mdio_freq,
params.sfp_plus_module_exist == TRUE ? "Yes" : "No",
params.media_type);
}
al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
return (0);
}
static int
al_eth_function_reset(struct al_eth_adapter *adapter)
{
struct al_eth_board_params params;
int rc;
/* save board params so we restore it after reset */
al_eth_board_params_get(adapter->mac_base, &params);
al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
if (adapter->board_type == ALPINE_INTEGRATED)
rc = al_eth_flr_rmn(&al_eth_read_pci_config,
&al_eth_write_pci_config,
adapter->dev, adapter->mac_base);
else
rc = al_eth_flr_rmn(&al_eth_fpga_read_pci_config,
&al_eth_fpga_write_pci_config,
adapter->internal_pcie_base, adapter->mac_base);
/* restore params */
al_eth_board_params_set(adapter->mac_base, &params);
al_eth_mac_addr_store(adapter->ec_base, 0, adapter->mac_addr);
return (rc);
}
static void
al_eth_init_rings(struct al_eth_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct al_eth_ring *ring = &adapter->tx_ring[i];
ring->ring_id = i;
ring->dev = adapter->dev;
ring->adapter = adapter;
ring->netdev = adapter->netdev;
al_udma_q_handle_get(&adapter->hal_adapter.tx_udma, i,
&ring->dma_q);
ring->sw_count = adapter->tx_ring_count;
ring->hw_count = adapter->tx_descs_count;
ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get((struct unit_regs *)adapter->udma_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
ring->unmask_val = ~(1 << i);
}
for (i = 0; i < adapter->num_rx_queues; i++) {
struct al_eth_ring *ring = &adapter->rx_ring[i];
ring->ring_id = i;
ring->dev = adapter->dev;
ring->adapter = adapter;
ring->netdev = adapter->netdev;
al_udma_q_handle_get(&adapter->hal_adapter.rx_udma, i, &ring->dma_q);
ring->sw_count = adapter->rx_ring_count;
ring->hw_count = adapter->rx_descs_count;
ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get(
(struct unit_regs *)adapter->udma_base,
AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
ring->unmask_val = ~(1 << i);
}
}
static void
al_init_locked(void *arg)
{
struct al_eth_adapter *adapter = arg;
if_t ifp = adapter->netdev;
int rc = 0;
al_eth_down(adapter);
rc = al_eth_up(adapter);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (rc == 0)
ifp->if_drv_flags |= IFF_DRV_RUNNING;
}
static void
al_init(void *arg)
{
struct al_eth_adapter *adapter = arg;
al_init_locked(adapter);
}
static inline int
al_eth_alloc_rx_buf(struct al_eth_adapter *adapter,
struct al_eth_ring *rx_ring,
struct al_eth_rx_buffer *rx_info)
{
struct al_buf *al_buf;
bus_dma_segment_t segs[2];
int error;
int nsegs;
if (rx_info->m != NULL)
return (0);
rx_info->data_size = adapter->rx_mbuf_sz;
AL_RX_LOCK(adapter);
/* Get mbuf using UMA allocator */
rx_info->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
rx_info->data_size);
AL_RX_UNLOCK(adapter);
if (rx_info->m == NULL)
return (ENOMEM);
rx_info->m->m_pkthdr.len = rx_info->m->m_len = adapter->rx_mbuf_sz;
/* Map packets for DMA */
error = bus_dmamap_load_mbuf_sg(rx_ring->dma_buf_tag, rx_info->dma_map,
rx_info->m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(error)) {
device_printf(rx_ring->dev, "failed to map mbuf, error = %d\n",
error);
m_freem(rx_info->m);
rx_info->m = NULL;
return (EFAULT);
}
al_buf = &rx_info->al_buf;
al_buf->addr = segs[0].ds_addr + AL_IP_ALIGNMENT_OFFSET;
al_buf->len = rx_info->data_size - AL_IP_ALIGNMENT_OFFSET;
return (0);
}
static int
al_eth_refill_rx_bufs(struct al_eth_adapter *adapter, unsigned int qid,
unsigned int num)
{
struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
uint16_t next_to_use;
unsigned int i;
next_to_use = rx_ring->next_to_use;
for (i = 0; i < num; i++) {
int rc;
struct al_eth_rx_buffer *rx_info =
&rx_ring->rx_buffer_info[next_to_use];
if (__predict_false(al_eth_alloc_rx_buf(adapter,
rx_ring, rx_info) < 0)) {
device_printf(adapter->dev,
"failed to alloc buffer for rx queue %d\n", qid);
break;
}
rc = al_eth_rx_buffer_add(rx_ring->dma_q,
&rx_info->al_buf, AL_ETH_RX_FLAGS_INT, NULL);
if (__predict_false(rc)) {
device_printf(adapter->dev,
"failed to add buffer for rx queue %d\n", qid);
break;
}
next_to_use = AL_ETH_RX_RING_IDX_NEXT(rx_ring, next_to_use);
}
if (__predict_false(i < num))
device_printf(adapter->dev,
"refilled rx queue %d with %d pages only - available %d\n",
qid, i, al_udma_available_get(rx_ring->dma_q));
if (__predict_true(i))
al_eth_rx_buffer_action(rx_ring->dma_q, i);
rx_ring->next_to_use = next_to_use;
return (i);
}
/*
* al_eth_refill_all_rx_bufs - allocate all queues Rx buffers
* @adapter: board private structure
*/
static void
al_eth_refill_all_rx_bufs(struct al_eth_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
al_eth_refill_rx_bufs(adapter, i, AL_ETH_DEFAULT_RX_DESCS - 1);
}
static void
al_eth_tx_do_cleanup(struct al_eth_ring *tx_ring)
{
unsigned int total_done;
uint16_t next_to_clean;
int qid = tx_ring->ring_id;
total_done = al_eth_comp_tx_get(tx_ring->dma_q);
device_printf_dbg(tx_ring->dev,
"tx_poll: q %d total completed descs %x\n", qid, total_done);
next_to_clean = tx_ring->next_to_clean;
while (total_done != 0) {
struct al_eth_tx_buffer *tx_info;
struct mbuf *mbuf;
tx_info = &tx_ring->tx_buffer_info[next_to_clean];
/* stop if not all descriptors of the packet are completed */
if (tx_info->tx_descs > total_done)
break;
mbuf = tx_info->m;
tx_info->m = NULL;
device_printf_dbg(tx_ring->dev,
"tx_poll: q %d mbuf %p completed\n", qid, mbuf);
/* map is no longer required */
bus_dmamap_unload(tx_ring->dma_buf_tag, tx_info->dma_map);
m_freem(mbuf);
total_done -= tx_info->tx_descs;
next_to_clean = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_clean);
}
tx_ring->next_to_clean = next_to_clean;
device_printf_dbg(tx_ring->dev, "tx_poll: q %d done next to clean %x\n",
qid, next_to_clean);
/*
* need to make the rings circular update visible to
* al_eth_start_xmit() before checking for netif_queue_stopped().
*/
al_smp_data_memory_barrier();
}
static void
al_eth_tx_csum(struct al_eth_ring *tx_ring, struct al_eth_tx_buffer *tx_info,
struct al_eth_pkt *hal_pkt, struct mbuf *m)
{
uint32_t mss = m->m_pkthdr.tso_segsz;
struct ether_vlan_header *eh;
uint16_t etype;
#ifdef INET
struct ip *ip;
#endif
#ifdef INET6
struct ip6_hdr *ip6;
#endif
struct tcphdr *th = NULL;
int ehdrlen, ip_hlen = 0;
uint8_t ipproto = 0;
uint32_t offload = 0;
if (mss != 0)
offload = 1;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0)
offload = 1;
if ((m->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
offload = 1;
if (offload != 0) {
struct al_eth_meta_data *meta = &tx_ring->hal_meta;
if (mss != 0)
hal_pkt->flags |= (AL_ETH_TX_FLAGS_TSO |
AL_ETH_TX_FLAGS_L4_CSUM);
else
hal_pkt->flags |= (AL_ETH_TX_FLAGS_L4_CSUM |
AL_ETH_TX_FLAGS_L4_PARTIAL_CSUM);
/*
* Determine where frame payload starts.
* Jump over vlan headers if already present,
* helpful for QinQ too.
*/
eh = mtod(m, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
ehdrlen = ETHER_HDR_LEN;
}
switch (etype) {
#ifdef INET
case ETHERTYPE_IP:
ip = (struct ip *)(m->m_data + ehdrlen);
ip_hlen = ip->ip_hl << 2;
ipproto = ip->ip_p;
hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv4;
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
if (mss != 0)
hal_pkt->flags |= AL_ETH_TX_FLAGS_IPV4_L3_CSUM;
if (ipproto == IPPROTO_TCP)
hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
else
hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
break;
#endif /* INET */
#ifdef INET6
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(m->m_data + ehdrlen);
hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv6;
ip_hlen = sizeof(struct ip6_hdr);
th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
ipproto = ip6->ip6_nxt;
if (ipproto == IPPROTO_TCP)
hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
else
hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
break;
#endif /* INET6 */
default:
break;
}
meta->words_valid = 4;
meta->l3_header_len = ip_hlen;
meta->l3_header_offset = ehdrlen;
if (th != NULL)
meta->l4_header_len = th->th_off; /* this param needed only for TSO */
meta->mss_idx_sel = 0; /* check how to select MSS */
meta->mss_val = mss;
hal_pkt->meta = meta;
} else
hal_pkt->meta = NULL;
}
#define XMIT_QUEUE_TIMEOUT 100
static void
al_eth_xmit_mbuf(struct al_eth_ring *tx_ring, struct mbuf *m)
{
struct al_eth_tx_buffer *tx_info;
int error;
int nsegs, a;
uint16_t next_to_use;
bus_dma_segment_t segs[AL_ETH_PKT_MAX_BUFS + 1];
struct al_eth_pkt *hal_pkt;
struct al_buf *al_buf;
boolean_t remap;
/* Check if queue is ready */
if (unlikely(tx_ring->stall) != 0) {
for (a = 0; a < XMIT_QUEUE_TIMEOUT; a++) {
if (al_udma_available_get(tx_ring->dma_q) >=
(AL_ETH_DEFAULT_TX_HW_DESCS -
AL_ETH_TX_WAKEUP_THRESH)) {
tx_ring->stall = 0;
break;
}
pause("stall", 1);
}
if (a == XMIT_QUEUE_TIMEOUT) {
device_printf(tx_ring->dev,
"timeout waiting for queue %d ready!\n",
tx_ring->ring_id);
return;
} else {
device_printf_dbg(tx_ring->dev,
"queue %d is ready!\n", tx_ring->ring_id);
}
}
next_to_use = tx_ring->next_to_use;
tx_info = &tx_ring->tx_buffer_info[next_to_use];
tx_info->m = m;
hal_pkt = &tx_info->hal_pkt;
if (m == NULL) {
device_printf(tx_ring->dev, "mbuf is NULL\n");
return;
}
remap = TRUE;
/* Map packets for DMA */
retry:
error = bus_dmamap_load_mbuf_sg(tx_ring->dma_buf_tag, tx_info->dma_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(error)) {
struct mbuf *m_new;
if (error == EFBIG) {
/* Try it again? - one try */
if (remap == TRUE) {
remap = FALSE;
m_new = m_defrag(m, M_NOWAIT);
if (m_new == NULL) {
device_printf(tx_ring->dev,
"failed to defrag mbuf\n");
goto exit;
}
m = m_new;
goto retry;
} else {
device_printf(tx_ring->dev,
"failed to map mbuf, error %d\n", error);
goto exit;
}
} else {
device_printf(tx_ring->dev,
"failed to map mbuf, error %d\n", error);
goto exit;
}
}
/* set flags and meta data */
hal_pkt->flags = AL_ETH_TX_FLAGS_INT;
al_eth_tx_csum(tx_ring, tx_info, hal_pkt, m);
al_buf = hal_pkt->bufs;
for (a = 0; a < nsegs; a++) {
al_buf->addr = segs[a].ds_addr;
al_buf->len = segs[a].ds_len;
al_buf++;
}
hal_pkt->num_of_bufs = nsegs;
/* prepare the packet's descriptors to dma engine */
tx_info->tx_descs = al_eth_tx_pkt_prepare(tx_ring->dma_q, hal_pkt);
if (tx_info->tx_descs == 0)
goto exit;
/*
* stop the queue when no more space available, the packet can have up
* to AL_ETH_PKT_MAX_BUFS + 1 buffers and a meta descriptor
*/
if (unlikely(al_udma_available_get(tx_ring->dma_q) <
(AL_ETH_PKT_MAX_BUFS + 2))) {
tx_ring->stall = 1;
device_printf_dbg(tx_ring->dev, "stall, stopping queue %d...\n",
tx_ring->ring_id);
al_data_memory_barrier();
}
tx_ring->next_to_use = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_use);
/* trigger the dma engine */
al_eth_tx_dma_action(tx_ring->dma_q, tx_info->tx_descs);
return;
exit:
m_freem(m);
}
static void
al_eth_tx_cmpl_work(void *arg, int pending)
{
struct al_eth_ring *tx_ring = arg;
if (napi != 0) {
tx_ring->cmpl_is_running = 1;
al_data_memory_barrier();
}
al_eth_tx_do_cleanup(tx_ring);
if (napi != 0) {
tx_ring->cmpl_is_running = 0;
al_data_memory_barrier();
}
/* all work done, enable IRQs */
al_eth_irq_config(tx_ring->unmask_reg_offset, tx_ring->unmask_val);
}
static int
al_eth_tx_cmlp_irq_filter(void *arg)
{
struct al_eth_ring *tx_ring = arg;
/* Interrupt should be auto-masked upon arrival */
device_printf_dbg(tx_ring->dev, "%s for ring ID = %d\n", __func__,
tx_ring->ring_id);
/*
* For napi, if work is not running, schedule it. Always schedule
* for casual (non-napi) packet handling.
*/
if ((napi == 0) || (napi && tx_ring->cmpl_is_running == 0))
taskqueue_enqueue(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
/* Do not run bottom half */
return (FILTER_HANDLED);
}
static int
al_eth_rx_recv_irq_filter(void *arg)
{
struct al_eth_ring *rx_ring = arg;
/* Interrupt should be auto-masked upon arrival */
device_printf_dbg(rx_ring->dev, "%s for ring ID = %d\n", __func__,
rx_ring->ring_id);
/*
* For napi, if work is not running, schedule it. Always schedule
* for casual (non-napi) packet handling.
*/
if ((napi == 0) || (napi && rx_ring->enqueue_is_running == 0))
taskqueue_enqueue(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
/* Do not run bottom half */
return (FILTER_HANDLED);
}
/*
* al_eth_rx_checksum - indicate in mbuf if hw indicated a good cksum
* @adapter: structure containing adapter specific data
* @hal_pkt: HAL structure for the packet
* @mbuf: mbuf currently being received and modified
*/
static inline void
al_eth_rx_checksum(struct al_eth_adapter *adapter,
struct al_eth_pkt *hal_pkt, struct mbuf *mbuf)
{
/* if IPv4 and error */
if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM) &&
(hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv4) &&
(hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
device_printf(adapter->dev,"rx ipv4 header checksum error\n");
return;
}
/* if IPv6 and error */
if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM_IPV6) &&
(hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv6) &&
(hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
device_printf(adapter->dev,"rx ipv6 header checksum error\n");
return;
}
/* if TCP/UDP */
if (likely((hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) ||
(hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_UDP))) {
if (unlikely(hal_pkt->flags & AL_ETH_RX_FLAGS_L4_CSUM_ERR)) {
device_printf_dbg(adapter->dev, "rx L4 checksum error\n");
/* TCP/UDP checksum error */
mbuf->m_pkthdr.csum_flags = 0;
} else {
device_printf_dbg(adapter->dev, "rx checksum correct\n");
/* IP Checksum Good */
mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
}
}
static struct mbuf*
al_eth_rx_mbuf(struct al_eth_adapter *adapter,
struct al_eth_ring *rx_ring, struct al_eth_pkt *hal_pkt,
unsigned int descs, uint16_t *next_to_clean)
{
struct mbuf *mbuf;
struct al_eth_rx_buffer *rx_info =
&rx_ring->rx_buffer_info[*next_to_clean];
unsigned int len;
len = hal_pkt->bufs[0].len;
device_printf_dbg(adapter->dev, "rx_info %p data %p\n", rx_info,
rx_info->m);
if (rx_info->m == NULL) {
*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
*next_to_clean);
return (NULL);
}
mbuf = rx_info->m;
mbuf->m_pkthdr.len = len;
mbuf->m_len = len;
mbuf->m_pkthdr.rcvif = rx_ring->netdev;
mbuf->m_flags |= M_PKTHDR;
if (len <= adapter->small_copy_len) {
struct mbuf *smbuf;
device_printf_dbg(adapter->dev, "rx small packet. len %d\n", len);
AL_RX_LOCK(adapter);
smbuf = m_gethdr(M_NOWAIT, MT_DATA);
AL_RX_UNLOCK(adapter);
if (__predict_false(smbuf == NULL)) {
device_printf(adapter->dev, "smbuf is NULL\n");
return (NULL);
}
smbuf->m_data = smbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
memcpy(smbuf->m_data, mbuf->m_data + AL_IP_ALIGNMENT_OFFSET, len);
smbuf->m_len = len;
smbuf->m_pkthdr.rcvif = rx_ring->netdev;
/* first desc of a non-ps chain */
smbuf->m_flags |= M_PKTHDR;
smbuf->m_pkthdr.len = smbuf->m_len;
*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
*next_to_clean);
return (smbuf);
}
mbuf->m_data = mbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
/* Unmap the buffer */
bus_dmamap_unload(rx_ring->dma_buf_tag, rx_info->dma_map);
rx_info->m = NULL;
*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, *next_to_clean);
return (mbuf);
}
static void
al_eth_rx_recv_work(void *arg, int pending)
{
struct al_eth_ring *rx_ring = arg;
struct mbuf *mbuf;
struct lro_entry *queued;
unsigned int qid = rx_ring->ring_id;
struct al_eth_pkt *hal_pkt = &rx_ring->hal_pkt;
uint16_t next_to_clean = rx_ring->next_to_clean;
uint32_t refill_required;
uint32_t refill_actual;
uint32_t do_if_input;
if (napi != 0) {
rx_ring->enqueue_is_running = 1;
al_data_memory_barrier();
}
do {
unsigned int descs;
descs = al_eth_pkt_rx(rx_ring->dma_q, hal_pkt);
if (unlikely(descs == 0))
break;
device_printf_dbg(rx_ring->dev, "rx_poll: q %d got packet "
"from hal. descs %d\n", qid, descs);
device_printf_dbg(rx_ring->dev, "rx_poll: q %d flags %x. "
"l3 proto %d l4 proto %d\n", qid, hal_pkt->flags,
hal_pkt->l3_proto_idx, hal_pkt->l4_proto_idx);
/* ignore if detected dma or eth controller errors */
if ((hal_pkt->flags & (AL_ETH_RX_ERROR |
AL_UDMA_CDESC_ERROR)) != 0) {
device_printf(rx_ring->dev, "receive packet with error. "
"flags = 0x%x\n", hal_pkt->flags);
next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
next_to_clean, descs);
continue;
}
/* allocate mbuf and fill it */
mbuf = al_eth_rx_mbuf(rx_ring->adapter, rx_ring, hal_pkt, descs,
&next_to_clean);
/* exit if we failed to retrieve a buffer */
if (unlikely(mbuf == NULL)) {
next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
next_to_clean, descs);
break;
}
if (__predict_true(rx_ring->netdev->if_capenable & IFCAP_RXCSUM ||
rx_ring->netdev->if_capenable & IFCAP_RXCSUM_IPV6)) {
al_eth_rx_checksum(rx_ring->adapter, hal_pkt, mbuf);
}
mbuf->m_pkthdr.flowid = qid;
M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
/*
* LRO is only for IP/TCP packets and TCP checksum of the packet
* should be computed by hardware.
*/
do_if_input = 1;
if ((rx_ring->lro_enabled != 0) &&
((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) {
/*
* Send to the stack if:
* - LRO not enabled, or
* - no LRO resources, or
* - lro enqueue fails
*/
if (rx_ring->lro.lro_cnt != 0) {
if (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)
do_if_input = 0;
}
}
if (do_if_input)
(*rx_ring->netdev->if_input)(rx_ring->netdev, mbuf);
} while (1);
rx_ring->next_to_clean = next_to_clean;
refill_required = al_udma_available_get(rx_ring->dma_q);
refill_actual = al_eth_refill_rx_bufs(rx_ring->adapter, qid,
refill_required);
if (unlikely(refill_actual < refill_required)) {
device_printf_dbg(rx_ring->dev,
"%s: not filling rx queue %d\n", __func__, qid);
}
while (((queued = LIST_FIRST(&rx_ring->lro.lro_active)) != NULL)) {
LIST_REMOVE(queued, next);
tcp_lro_flush(&rx_ring->lro, queued);
}
if (napi != 0) {
rx_ring->enqueue_is_running = 0;
al_data_memory_barrier();
}
/* unmask irq */
al_eth_irq_config(rx_ring->unmask_reg_offset, rx_ring->unmask_val);
}
static void
al_eth_start_xmit(void *arg, int pending)
{
struct al_eth_ring *tx_ring = arg;
struct mbuf *mbuf;
if (napi != 0) {
tx_ring->enqueue_is_running = 1;
al_data_memory_barrier();
}
while (1) {
mtx_lock(&tx_ring->br_mtx);
mbuf = drbr_dequeue(NULL, tx_ring->br);
mtx_unlock(&tx_ring->br_mtx);
if (mbuf == NULL)
break;
al_eth_xmit_mbuf(tx_ring, mbuf);
}
if (napi != 0) {
tx_ring->enqueue_is_running = 0;
al_data_memory_barrier();
while (1) {
mtx_lock(&tx_ring->br_mtx);
mbuf = drbr_dequeue(NULL, tx_ring->br);
mtx_unlock(&tx_ring->br_mtx);
if (mbuf == NULL)
break;
al_eth_xmit_mbuf(tx_ring, mbuf);
}
}
}
static int
al_mq_start(struct ifnet *ifp, struct mbuf *m)
{
struct al_eth_adapter *adapter = ifp->if_softc;
struct al_eth_ring *tx_ring;
int i;
int ret;
/* Which queue to use */
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
i = m->m_pkthdr.flowid % adapter->num_tx_queues;
else
i = curcpu % adapter->num_tx_queues;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) {
return (EFAULT);
}
tx_ring = &adapter->tx_ring[i];
device_printf_dbg(adapter->dev, "dgb start() - assuming link is active, "
"sending packet to queue %d\n", i);
ret = drbr_enqueue(ifp, tx_ring->br, m);
/*
* For napi, if work is not running, schedule it. Always schedule
* for casual (non-napi) packet handling.
*/
if ((napi == 0) || ((napi != 0) && (tx_ring->enqueue_is_running == 0)))
taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
return (ret);
}
static void
al_qflush(struct ifnet * ifp)
{
/* unused */
}
static inline void
al_eth_flow_ctrl_init(struct al_eth_adapter *adapter)
{
uint8_t default_flow_ctrl;
default_flow_ctrl = AL_ETH_FLOW_CTRL_TX_PAUSE;
default_flow_ctrl |= AL_ETH_FLOW_CTRL_RX_PAUSE;
adapter->link_config.flow_ctrl_supported = default_flow_ctrl;
}
static int
al_eth_flow_ctrl_config(struct al_eth_adapter *adapter)
{
struct al_eth_flow_control_params *flow_ctrl_params;
uint8_t active = adapter->link_config.flow_ctrl_active;
int i;
flow_ctrl_params = &adapter->flow_ctrl_params;
flow_ctrl_params->type = AL_ETH_FLOW_CONTROL_TYPE_LINK_PAUSE;
flow_ctrl_params->obay_enable =
((active & AL_ETH_FLOW_CTRL_RX_PAUSE) != 0);
flow_ctrl_params->gen_enable =
((active & AL_ETH_FLOW_CTRL_TX_PAUSE) != 0);
flow_ctrl_params->rx_fifo_th_high = AL_ETH_FLOW_CTRL_RX_FIFO_TH_HIGH;
flow_ctrl_params->rx_fifo_th_low = AL_ETH_FLOW_CTRL_RX_FIFO_TH_LOW;
flow_ctrl_params->quanta = AL_ETH_FLOW_CTRL_QUANTA;
flow_ctrl_params->quanta_th = AL_ETH_FLOW_CTRL_QUANTA_TH;
/* map priority to queue index, queue id = priority/2 */
for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
flow_ctrl_params->prio_q_map[0][i] = 1 << (i >> 1);
al_eth_flow_control_config(&adapter->hal_adapter, flow_ctrl_params);
return (0);
}
static void
al_eth_flow_ctrl_enable(struct al_eth_adapter *adapter)
{
/*
* change the active configuration to the default / force by ethtool
* and call to configure
*/
adapter->link_config.flow_ctrl_active =
adapter->link_config.flow_ctrl_supported;
al_eth_flow_ctrl_config(adapter);
}
static void
al_eth_flow_ctrl_disable(struct al_eth_adapter *adapter)
{
adapter->link_config.flow_ctrl_active = 0;
al_eth_flow_ctrl_config(adapter);
}
static int
al_eth_hw_init(struct al_eth_adapter *adapter)
{
int rc;
rc = al_eth_hw_init_adapter(adapter);
if (rc != 0)
return (rc);
rc = al_eth_mac_config(&adapter->hal_adapter, adapter->mac_mode);
if (rc < 0) {
device_printf(adapter->dev, "%s failed to configure mac!\n",
__func__);
return (rc);
}
if ((adapter->mac_mode == AL_ETH_MAC_MODE_SGMII) ||
(adapter->mac_mode == AL_ETH_MAC_MODE_RGMII &&
adapter->phy_exist == FALSE)) {
rc = al_eth_mac_link_config(&adapter->hal_adapter,
adapter->link_config.force_1000_base_x,
adapter->link_config.autoneg,
adapter->link_config.active_speed,
adapter->link_config.active_duplex);
if (rc != 0) {
device_printf(adapter->dev,
"%s failed to configure link parameters!\n",
__func__);
return (rc);
}
}
rc = al_eth_mdio_config(&adapter->hal_adapter,
AL_ETH_MDIO_TYPE_CLAUSE_22, TRUE /* shared_mdio_if */,
adapter->ref_clk_freq, adapter->mdio_freq);
if (rc != 0) {
device_printf(adapter->dev, "%s failed at mdio config!\n",
__func__);
return (rc);
}
al_eth_flow_ctrl_init(adapter);
return (rc);
}
static int
al_eth_hw_stop(struct al_eth_adapter *adapter)
{
al_eth_mac_stop(&adapter->hal_adapter);
/*
* wait till pending rx packets written and UDMA becomes idle,
* the MAC has ~10KB fifo, 10us should be enought time for the
* UDMA to write to the memory
*/
DELAY(10);
al_eth_adapter_stop(&adapter->hal_adapter);
adapter->flags |= AL_ETH_FLAG_RESET_REQUESTED;
/* disable flow ctrl to avoid pause packets*/
al_eth_flow_ctrl_disable(adapter);
return (0);
}
/*
* al_eth_intr_intx_all - Legacy Interrupt Handler for all interrupts
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static int
al_eth_intr_intx_all(void *data)
{
struct al_eth_adapter *adapter = data;
struct unit_regs __iomem *regs_base =
(struct unit_regs __iomem *)adapter->udma_base;
uint32_t reg;
reg = al_udma_iofic_read_cause(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_A);
if (likely(reg))
device_printf_dbg(adapter->dev, "%s group A cause %x\n",
__func__, reg);
if (unlikely(reg & AL_INT_GROUP_A_GROUP_D_SUM)) {
struct al_iofic_grp_ctrl __iomem *sec_ints_base;
uint32_t cause_d = al_udma_iofic_read_cause(regs_base,
AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_D);
sec_ints_base =
&regs_base->gen.interrupt_regs.secondary_iofic_ctrl[0];
if (cause_d != 0) {
device_printf_dbg(adapter->dev,
"got interrupt from group D. cause %x\n", cause_d);
cause_d = al_iofic_read_cause(sec_ints_base,
AL_INT_GROUP_A);
device_printf(adapter->dev,
"secondary A cause %x\n", cause_d);
cause_d = al_iofic_read_cause(sec_ints_base,
AL_INT_GROUP_B);
device_printf_dbg(adapter->dev,
"secondary B cause %x\n", cause_d);
}
}
if ((reg & AL_INT_GROUP_A_GROUP_B_SUM) != 0 ) {
uint32_t cause_b = al_udma_iofic_read_cause(regs_base,
AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
int qid;
device_printf_dbg(adapter->dev, "secondary B cause %x\n",
cause_b);
for (qid = 0; qid < adapter->num_rx_queues; qid++) {
if (cause_b & (1 << qid)) {
/* mask */
al_udma_iofic_mask(
(struct unit_regs __iomem *)adapter->udma_base,
AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_B, 1 << qid);
}
}
}
if ((reg & AL_INT_GROUP_A_GROUP_C_SUM) != 0) {
uint32_t cause_c = al_udma_iofic_read_cause(regs_base,
AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
int qid;
device_printf_dbg(adapter->dev, "secondary C cause %x\n", cause_c);
for (qid = 0; qid < adapter->num_tx_queues; qid++) {
if ((cause_c & (1 << qid)) != 0) {
al_udma_iofic_mask(
(struct unit_regs __iomem *)adapter->udma_base,
AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_C, 1 << qid);
}
}
}
al_eth_tx_cmlp_irq_filter(adapter->tx_ring);
return (0);
}
static int
al_eth_intr_msix_all(void *data)
{
struct al_eth_adapter *adapter = data;
device_printf_dbg(adapter->dev, "%s\n", __func__);
return (0);
}
static int
al_eth_intr_msix_mgmt(void *data)
{
struct al_eth_adapter *adapter = data;
device_printf_dbg(adapter->dev, "%s\n", __func__);
return (0);
}
static int
al_eth_enable_msix(struct al_eth_adapter *adapter)
{
int i, msix_vecs, rc, count;
device_printf_dbg(adapter->dev, "%s\n", __func__);
msix_vecs = 1 + adapter->num_rx_queues + adapter->num_tx_queues;
device_printf_dbg(adapter->dev,
"Try to enable MSIX, vector numbers = %d\n", msix_vecs);
adapter->msix_entries = malloc(msix_vecs*sizeof(*adapter->msix_entries),
M_IFAL, M_ZERO | M_WAITOK);
if (adapter->msix_entries == NULL) {
device_printf_dbg(adapter->dev, "failed to allocate"
" msix_entries %d\n", msix_vecs);
rc = ENOMEM;
goto exit;
}
/* management vector (GROUP_A) @2*/
adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].entry = 2;
adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector = 0;
/* rx queues start @3 */
for (i = 0; i < adapter->num_rx_queues; i++) {
int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
adapter->msix_entries[irq_idx].entry = 3 + i;
adapter->msix_entries[irq_idx].vector = 0;
}
/* tx queues start @7 */
for (i = 0; i < adapter->num_tx_queues; i++) {
int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
adapter->msix_entries[irq_idx].entry = 3 +
AL_ETH_MAX_HW_QUEUES + i;
adapter->msix_entries[irq_idx].vector = 0;
}
count = msix_vecs + 2; /* entries start from 2 */
rc = pci_alloc_msix(adapter->dev, &count);
if (rc != 0) {
device_printf_dbg(adapter->dev, "failed to allocate MSIX "
"vectors %d\n", msix_vecs+2);
device_printf_dbg(adapter->dev, "ret = %d\n", rc);
goto msix_entries_exit;
}
if (count != msix_vecs + 2) {
device_printf_dbg(adapter->dev, "failed to allocate all MSIX "
"vectors %d, allocated %d\n", msix_vecs+2, count);
rc = ENOSPC;
goto msix_entries_exit;
}
for (i = 0; i < msix_vecs; i++)
adapter->msix_entries[i].vector = 2 + 1 + i;
device_printf_dbg(adapter->dev, "successfully enabled MSIX,"
" vectors %d\n", msix_vecs);
adapter->msix_vecs = msix_vecs;
adapter->flags |= AL_ETH_FLAG_MSIX_ENABLED;
goto exit;
msix_entries_exit:
adapter->msix_vecs = 0;
free(adapter->msix_entries, M_IFAL);
adapter->msix_entries = NULL;
exit:
return (rc);
}
static int
al_eth_setup_int_mode(struct al_eth_adapter *adapter)
{
int i, rc;
rc = al_eth_enable_msix(adapter);
if (rc != 0) {
device_printf(adapter->dev, "Failed to enable MSIX mode.\n");
return (rc);
}
adapter->irq_vecs = max(1, adapter->msix_vecs);
/* single INTX mode */
if (adapter->msix_vecs == 0) {
snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
AL_ETH_IRQNAME_SIZE, "al-eth-intx-all@pci:%s",
device_get_name(adapter->dev));
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
al_eth_intr_intx_all;
/* IRQ vector will be resolved from device resources */
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 0;
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
device_printf(adapter->dev, "%s and vector %d \n", __func__,
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector);
return (0);
}
/* single MSI-X mode */
if (adapter->msix_vecs == 1) {
snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
AL_ETH_IRQNAME_SIZE, "al-eth-msix-all@pci:%s",
device_get_name(adapter->dev));
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
al_eth_intr_msix_all;
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
return (0);
}
/* MSI-X per queue */
snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, AL_ETH_IRQNAME_SIZE,
"al-eth-msix-mgmt@pci:%s", device_get_name(adapter->dev));
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = al_eth_intr_msix_mgmt;
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
for (i = 0; i < adapter->num_rx_queues; i++) {
int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
snprintf(adapter->irq_tbl[irq_idx].name, AL_ETH_IRQNAME_SIZE,
"al-eth-rx-comp-%d@pci:%s", i,
device_get_name(adapter->dev));
adapter->irq_tbl[irq_idx].handler = al_eth_rx_recv_irq_filter;
adapter->irq_tbl[irq_idx].data = &adapter->rx_ring[i];
adapter->irq_tbl[irq_idx].vector =
adapter->msix_entries[irq_idx].vector;
}
for (i = 0; i < adapter->num_tx_queues; i++) {
int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
snprintf(adapter->irq_tbl[irq_idx].name,
AL_ETH_IRQNAME_SIZE, "al-eth-tx-comp-%d@pci:%s", i,
device_get_name(adapter->dev));
adapter->irq_tbl[irq_idx].handler = al_eth_tx_cmlp_irq_filter;
adapter->irq_tbl[irq_idx].data = &adapter->tx_ring[i];
adapter->irq_tbl[irq_idx].vector =
adapter->msix_entries[irq_idx].vector;
}
return (0);
}
static void
__al_eth_free_irq(struct al_eth_adapter *adapter)
{
struct al_eth_irq *irq;
int i, rc;
for (i = 0; i < adapter->irq_vecs; i++) {
irq = &adapter->irq_tbl[i];
if (irq->requested != 0) {
device_printf_dbg(adapter->dev, "tear down irq: %d\n",
irq->vector);
rc = bus_teardown_intr(adapter->dev, irq->res,
irq->cookie);
if (rc != 0)
device_printf(adapter->dev, "failed to tear "
"down irq: %d\n", irq->vector);
}
irq->requested = 0;
}
}
static void
al_eth_free_irq(struct al_eth_adapter *adapter)
{
struct al_eth_irq *irq;
int i, rc;
#ifdef CONFIG_RFS_ACCEL
if (adapter->msix_vecs >= 1) {
free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
adapter->netdev->rx_cpu_rmap = NULL;
}
#endif
__al_eth_free_irq(adapter);
for (i = 0; i < adapter->irq_vecs; i++) {
irq = &adapter->irq_tbl[i];
if (irq->res == NULL)
continue;
device_printf_dbg(adapter->dev, "release resource irq: %d\n",
irq->vector);
rc = bus_release_resource(adapter->dev, SYS_RES_IRQ, irq->vector,
irq->res);
irq->res = NULL;
if (rc != 0)
device_printf(adapter->dev, "dev has no parent while "
"releasing res for irq: %d\n", irq->vector);
}
pci_release_msi(adapter->dev);
adapter->flags &= ~AL_ETH_FLAG_MSIX_ENABLED;
adapter->msix_vecs = 0;
free(adapter->msix_entries, M_IFAL);
adapter->msix_entries = NULL;
}
static int
al_eth_request_irq(struct al_eth_adapter *adapter)
{
unsigned long flags;
struct al_eth_irq *irq;
int rc = 0, i, v;
if ((adapter->flags & AL_ETH_FLAG_MSIX_ENABLED) != 0)
flags = RF_ACTIVE;
else
flags = RF_ACTIVE | RF_SHAREABLE;
for (i = 0; i < adapter->irq_vecs; i++) {
irq = &adapter->irq_tbl[i];
if (irq->requested != 0)
continue;
irq->res = bus_alloc_resource_any(adapter->dev, SYS_RES_IRQ,
&irq->vector, flags);
if (irq->res == NULL) {
device_printf(adapter->dev, "could not allocate "
"irq vector=%d\n", irq->vector);
rc = ENXIO;
goto exit_res;
}
if ((rc = bus_setup_intr(adapter->dev, irq->res,
INTR_TYPE_NET | INTR_MPSAFE, irq->handler,
NULL, irq->data, &irq->cookie)) != 0) {
device_printf(adapter->dev, "failed to register "
"interrupt handler for irq %ju: %d\n",
(uintmax_t)rman_get_start(irq->res), rc);
goto exit_intr;
}
irq->requested = 1;
}
goto exit;
exit_intr:
v = i - 1; /* -1 because we omit the operation that failed */
while (v-- >= 0) {
int bti;
irq = &adapter->irq_tbl[v];
bti = bus_teardown_intr(adapter->dev, irq->res, irq->cookie);
if (bti != 0) {
device_printf(adapter->dev, "failed to tear "
"down irq: %d\n", irq->vector);
}
irq->requested = 0;
device_printf_dbg(adapter->dev, "exit_intr: releasing irq %d\n",
irq->vector);
}
exit_res:
v = i - 1; /* -1 because we omit the operation that failed */
while (v-- >= 0) {
int brr;
irq = &adapter->irq_tbl[v];
device_printf_dbg(adapter->dev, "exit_res: releasing resource"
" for irq %d\n", irq->vector);
brr = bus_release_resource(adapter->dev, SYS_RES_IRQ,
irq->vector, irq->res);
if (brr != 0)
device_printf(adapter->dev, "dev has no parent while "
"releasing res for irq: %d\n", irq->vector);
irq->res = NULL;
}
exit:
return (rc);
}
/**
* al_eth_setup_tx_resources - allocate Tx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Return 0 on success, negative on failure
**/
static int
al_eth_setup_tx_resources(struct al_eth_adapter *adapter, int qid)
{
struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
struct device *dev = tx_ring->dev;
struct al_udma_q_params *q_params = &tx_ring->q_params;
int size;
int ret;
if (adapter->up)
return (0);
size = sizeof(struct al_eth_tx_buffer) * tx_ring->sw_count;
tx_ring->tx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
if (tx_ring->tx_buffer_info == NULL)
return (ENOMEM);
tx_ring->descs_size = tx_ring->hw_count * sizeof(union al_udma_desc);
q_params->size = tx_ring->hw_count;
ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
(bus_dmamap_t *)&q_params->desc_phy_base_map,
(bus_addr_t *)&q_params->desc_phy_base,
(void**)&q_params->desc_base, tx_ring->descs_size);
if (ret != 0) {
device_printf(dev, "failed to al_dma_alloc_coherent,"
" ret = %d\n", ret);
return (ENOMEM);
}
if (q_params->desc_base == NULL)
return (ENOMEM);
device_printf_dbg(dev, "Initializing ring queues %d\n", qid);
/* Allocate Ring Queue */
mtx_init(&tx_ring->br_mtx, "AlRingMtx", NULL, MTX_DEF);
tx_ring->br = buf_ring_alloc(AL_BR_SIZE, M_DEVBUF, M_WAITOK,
&tx_ring->br_mtx);
if (tx_ring->br == NULL) {
device_printf(dev, "Critical Failure setting up buf ring\n");
return (ENOMEM);
}
/* Allocate taskqueues */
TASK_INIT(&tx_ring->enqueue_task, 0, al_eth_start_xmit, tx_ring);
tx_ring->enqueue_tq = taskqueue_create_fast("al_tx_enque", M_NOWAIT,
taskqueue_thread_enqueue, &tx_ring->enqueue_tq);
taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, "%s txeq",
device_get_nameunit(adapter->dev));
TASK_INIT(&tx_ring->cmpl_task, 0, al_eth_tx_cmpl_work, tx_ring);
tx_ring->cmpl_tq = taskqueue_create_fast("al_tx_cmpl", M_NOWAIT,
taskqueue_thread_enqueue, &tx_ring->cmpl_tq);
taskqueue_start_threads(&tx_ring->cmpl_tq, 1, PI_REALTIME, "%s txcq",
device_get_nameunit(adapter->dev));
/* Setup DMA descriptor areas. */
ret = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AL_TSO_SIZE, /* maxsize */
AL_ETH_PKT_MAX_BUFS, /* nsegments */
PAGE_SIZE, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&tx_ring->dma_buf_tag);
if (ret != 0) {
device_printf(dev,"Unable to allocate dma_buf_tag, ret = %d\n",
ret);
return (ret);
}
for (size = 0; size < tx_ring->sw_count; size++) {
ret = bus_dmamap_create(tx_ring->dma_buf_tag, 0,
&tx_ring->tx_buffer_info[size].dma_map);
if (ret != 0) {
device_printf(dev, "Unable to map DMA TX "
"buffer memory [iter=%d]\n", size);
return (ret);
}
}
/* completion queue not used for tx */
q_params->cdesc_base = NULL;
/* size in bytes of the udma completion ring descriptor */
q_params->cdesc_size = 8;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return (0);
}
/*
* al_eth_free_tx_resources - Free Tx Resources per Queue
* @adapter: network interface device structure
* @qid: queue index
*
* Free all transmit software resources
*/
static void
al_eth_free_tx_resources(struct al_eth_adapter *adapter, int qid)
{
struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
struct al_udma_q_params *q_params = &tx_ring->q_params;
int size;
/* At this point interrupts' handlers must be deactivated */
while (taskqueue_cancel(tx_ring->cmpl_tq, &tx_ring->cmpl_task, NULL))
taskqueue_drain(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
taskqueue_free(tx_ring->cmpl_tq);
while (taskqueue_cancel(tx_ring->enqueue_tq,
&tx_ring->enqueue_task, NULL)) {
taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
}
taskqueue_free(tx_ring->enqueue_tq);
if (tx_ring->br != NULL) {
drbr_flush(adapter->netdev, tx_ring->br);
buf_ring_free(tx_ring->br, M_DEVBUF);
}
for (size = 0; size < tx_ring->sw_count; size++) {
m_freem(tx_ring->tx_buffer_info[size].m);
tx_ring->tx_buffer_info[size].m = NULL;
bus_dmamap_unload(tx_ring->dma_buf_tag,
tx_ring->tx_buffer_info[size].dma_map);
bus_dmamap_destroy(tx_ring->dma_buf_tag,
tx_ring->tx_buffer_info[size].dma_map);
}
bus_dma_tag_destroy(tx_ring->dma_buf_tag);
free(tx_ring->tx_buffer_info, M_IFAL);
tx_ring->tx_buffer_info = NULL;
mtx_destroy(&tx_ring->br_mtx);
/* if not set, then don't free */
if (q_params->desc_base == NULL)
return;
al_dma_free_coherent(q_params->desc_phy_base_tag,
q_params->desc_phy_base_map, q_params->desc_base);
q_params->desc_base = NULL;
}
/*
* al_eth_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void
al_eth_free_all_tx_resources(struct al_eth_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
if (adapter->tx_ring[i].q_params.desc_base)
al_eth_free_tx_resources(adapter, i);
}
/*
* al_eth_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Returns 0 on success, negative on failure
*/
static int
al_eth_setup_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
{
struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
struct device *dev = rx_ring->dev;
struct al_udma_q_params *q_params = &rx_ring->q_params;
int size;
int ret;
size = sizeof(struct al_eth_rx_buffer) * rx_ring->sw_count;
/* alloc extra element so in rx path we can always prefetch rx_info + 1 */
size += 1;
rx_ring->rx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
if (rx_ring->rx_buffer_info == NULL)
return (ENOMEM);
rx_ring->descs_size = rx_ring->hw_count * sizeof(union al_udma_desc);
q_params->size = rx_ring->hw_count;
ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
&q_params->desc_phy_base_map,
(bus_addr_t *)&q_params->desc_phy_base,
(void**)&q_params->desc_base, rx_ring->descs_size);
if ((q_params->desc_base == NULL) || (ret != 0))
return (ENOMEM);
/* size in bytes of the udma completion ring descriptor */
q_params->cdesc_size = 16;
rx_ring->cdescs_size = rx_ring->hw_count * q_params->cdesc_size;
ret = al_dma_alloc_coherent(dev, &q_params->cdesc_phy_base_tag,
&q_params->cdesc_phy_base_map,
(bus_addr_t *)&q_params->cdesc_phy_base,
(void**)&q_params->cdesc_base, rx_ring->cdescs_size);
if ((q_params->cdesc_base == NULL) || (ret != 0))
return (ENOMEM);
/* Allocate taskqueues */
NET_TASK_INIT(&rx_ring->enqueue_task, 0, al_eth_rx_recv_work, rx_ring);
rx_ring->enqueue_tq = taskqueue_create_fast("al_rx_enque", M_NOWAIT,
taskqueue_thread_enqueue, &rx_ring->enqueue_tq);
taskqueue_start_threads(&rx_ring->enqueue_tq, 1, PI_NET, "%s rxeq",
device_get_nameunit(adapter->dev));
/* Setup DMA descriptor areas. */
ret = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AL_TSO_SIZE, /* maxsize */
1, /* nsegments */
AL_TSO_SIZE, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&rx_ring->dma_buf_tag);
if (ret != 0) {
device_printf(dev,"Unable to allocate RX dma_buf_tag\n");
return (ret);
}
for (size = 0; size < rx_ring->sw_count; size++) {
ret = bus_dmamap_create(rx_ring->dma_buf_tag, 0,
&rx_ring->rx_buffer_info[size].dma_map);
if (ret != 0) {
device_printf(dev,"Unable to map DMA RX buffer memory\n");
return (ret);
}
}
/* Zero out the descriptor ring */
memset(q_params->cdesc_base, 0, rx_ring->cdescs_size);
/* Create LRO for the ring */
if ((adapter->netdev->if_capenable & IFCAP_LRO) != 0) {
int err = tcp_lro_init(&rx_ring->lro);
if (err != 0) {
device_printf(adapter->dev,
"LRO[%d] Initialization failed!\n", qid);
} else {
device_printf_dbg(adapter->dev,
"RX Soft LRO[%d] Initialized\n", qid);
rx_ring->lro_enabled = TRUE;
rx_ring->lro.ifp = adapter->netdev;
}
}
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
return (0);
}
/*
* al_eth_free_rx_resources - Free Rx Resources
* @adapter: network interface device structure
* @qid: queue index
*
* Free all receive software resources
*/
static void
al_eth_free_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
{
struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
struct al_udma_q_params *q_params = &rx_ring->q_params;
int size;
/* At this point interrupts' handlers must be deactivated */
while (taskqueue_cancel(rx_ring->enqueue_tq,
&rx_ring->enqueue_task, NULL)) {
taskqueue_drain(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
}
taskqueue_free(rx_ring->enqueue_tq);
for (size = 0; size < rx_ring->sw_count; size++) {
m_freem(rx_ring->rx_buffer_info[size].m);
rx_ring->rx_buffer_info[size].m = NULL;
bus_dmamap_unload(rx_ring->dma_buf_tag,
rx_ring->rx_buffer_info[size].dma_map);
bus_dmamap_destroy(rx_ring->dma_buf_tag,
rx_ring->rx_buffer_info[size].dma_map);
}
bus_dma_tag_destroy(rx_ring->dma_buf_tag);
free(rx_ring->rx_buffer_info, M_IFAL);
rx_ring->rx_buffer_info = NULL;
/* if not set, then don't free */
if (q_params->desc_base == NULL)
return;
al_dma_free_coherent(q_params->desc_phy_base_tag,
q_params->desc_phy_base_map, q_params->desc_base);
q_params->desc_base = NULL;
/* if not set, then don't free */
if (q_params->cdesc_base == NULL)
return;
al_dma_free_coherent(q_params->cdesc_phy_base_tag,
q_params->cdesc_phy_base_map, q_params->cdesc_base);
q_params->cdesc_phy_base = 0;
/* Free LRO resources */
tcp_lro_free(&rx_ring->lro);
}
/*
* al_eth_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
*/
static void
al_eth_free_all_rx_resources(struct al_eth_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
if (adapter->rx_ring[i].q_params.desc_base != 0)
al_eth_free_rx_resources(adapter, i);
}
/*
* al_eth_setup_all_rx_resources - allocate all queues Rx resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static int
al_eth_setup_all_rx_resources(struct al_eth_adapter *adapter)
{
int i, rc = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
rc = al_eth_setup_rx_resources(adapter, i);
if (rc == 0)
continue;
device_printf(adapter->dev, "Allocation for Rx Queue %u failed\n", i);
goto err_setup_rx;
}
return (0);
err_setup_rx:
/* rewind the index freeing the rings as we go */
while (i--)
al_eth_free_rx_resources(adapter, i);
return (rc);
}
/*
* al_eth_setup_all_tx_resources - allocate all queues Tx resources
* @adapter: private structure
*
* Return 0 on success, negative on failure
*/
static int
al_eth_setup_all_tx_resources(struct al_eth_adapter *adapter)
{
int i, rc = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
rc = al_eth_setup_tx_resources(adapter, i);
if (rc == 0)
continue;
device_printf(adapter->dev,
"Allocation for Tx Queue %u failed\n", i);
goto err_setup_tx;
}
return (0);
err_setup_tx:
/* rewind the index freeing the rings as we go */
while (i--)
al_eth_free_tx_resources(adapter, i);
return (rc);
}
static void
al_eth_disable_int_sync(struct al_eth_adapter *adapter)
{
/* disable forwarding interrupts from eth through pci end point */
if ((adapter->board_type == ALPINE_FPGA_NIC) ||
(adapter->board_type == ALPINE_NIC)) {
al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
AL_REG_OFFSET_FORWARD_INTR, AL_DIS_FORWARD_INTR);
}
/* mask hw interrupts */
al_eth_interrupts_mask(adapter);
}
static void
al_eth_interrupts_unmask(struct al_eth_adapter *adapter)
{
uint32_t group_a_mask = AL_INT_GROUP_A_GROUP_D_SUM; /* enable group D summery */
uint32_t group_b_mask = (1 << adapter->num_rx_queues) - 1;/* bit per Rx q*/
uint32_t group_c_mask = (1 << adapter->num_tx_queues) - 1;/* bit per Tx q*/
uint32_t group_d_mask = 3 << 8;
struct unit_regs __iomem *regs_base =
(struct unit_regs __iomem *)adapter->udma_base;
if (adapter->int_mode == AL_IOFIC_MODE_LEGACY)
group_a_mask |= AL_INT_GROUP_A_GROUP_B_SUM |
AL_INT_GROUP_A_GROUP_C_SUM |
AL_INT_GROUP_A_GROUP_D_SUM;
al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_A, group_a_mask);
al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_B, group_b_mask);
al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_C, group_c_mask);
al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_D, group_d_mask);
}
static void
al_eth_interrupts_mask(struct al_eth_adapter *adapter)
{
struct unit_regs __iomem *regs_base =
(struct unit_regs __iomem *)adapter->udma_base;
/* mask all interrupts */
al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_A, AL_MASK_GROUP_A_INT);
al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_B, AL_MASK_GROUP_B_INT);
al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_C, AL_MASK_GROUP_C_INT);
al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
AL_INT_GROUP_D, AL_MASK_GROUP_D_INT);
}
static int
al_eth_configure_int_mode(struct al_eth_adapter *adapter)
{
enum al_iofic_mode int_mode;
uint32_t m2s_errors_disable = AL_M2S_MASK_INIT;
uint32_t m2s_aborts_disable = AL_M2S_MASK_INIT;
uint32_t s2m_errors_disable = AL_S2M_MASK_INIT;
uint32_t s2m_aborts_disable = AL_S2M_MASK_INIT;
/* single INTX mode */
if (adapter->msix_vecs == 0)
int_mode = AL_IOFIC_MODE_LEGACY;
else if (adapter->msix_vecs > 1)
int_mode = AL_IOFIC_MODE_MSIX_PER_Q;
else {
device_printf(adapter->dev,
"udma doesn't support single MSI-X mode yet.\n");
return (EIO);
}
if (adapter->board_type != ALPINE_INTEGRATED) {
m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
}
if (al_udma_iofic_config((struct unit_regs __iomem *)adapter->udma_base,
int_mode, m2s_errors_disable, m2s_aborts_disable,
s2m_errors_disable, s2m_aborts_disable)) {
device_printf(adapter->dev,
"al_udma_unit_int_config failed!.\n");
return (EIO);
}
adapter->int_mode = int_mode;
device_printf_dbg(adapter->dev, "using %s interrupt mode\n",
int_mode == AL_IOFIC_MODE_LEGACY ? "INTx" :
int_mode == AL_IOFIC_MODE_MSIX_PER_Q ? "MSI-X per Queue" : "Unknown");
/* set interrupt moderation resolution to 15us */
al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_B, 15);
al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_C, 15);
/* by default interrupt coalescing is disabled */
adapter->tx_usecs = 0;
adapter->rx_usecs = 0;
return (0);
}
/*
* ethtool_rxfh_indir_default - get default value for RX flow hash indirection
* @index: Index in RX flow hash indirection table
* @n_rx_rings: Number of RX rings to use
*
* This function provides the default policy for RX flow hash indirection.
*/
static inline uint32_t
ethtool_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings)
{
return (index % n_rx_rings);
}
static void*
al_eth_update_stats(struct al_eth_adapter *adapter)
{
struct al_eth_mac_stats *mac_stats = &adapter->mac_stats;
if (adapter->up == 0)
return (NULL);
al_eth_mac_stats_get(&adapter->hal_adapter, mac_stats);
return (NULL);
}
static uint64_t
al_get_counter(struct ifnet *ifp, ift_counter cnt)
{
struct al_eth_adapter *adapter;
struct al_eth_mac_stats *mac_stats;
uint64_t rv;
adapter = if_getsoftc(ifp);
mac_stats = &adapter->mac_stats;
switch (cnt) {
case IFCOUNTER_IPACKETS:
return (mac_stats->aFramesReceivedOK); /* including pause frames */
case IFCOUNTER_OPACKETS:
return (mac_stats->aFramesTransmittedOK);
case IFCOUNTER_IBYTES:
return (mac_stats->aOctetsReceivedOK);
case IFCOUNTER_OBYTES:
return (mac_stats->aOctetsTransmittedOK);
case IFCOUNTER_IMCASTS:
return (mac_stats->ifInMulticastPkts);
case IFCOUNTER_OMCASTS:
return (mac_stats->ifOutMulticastPkts);
case IFCOUNTER_COLLISIONS:
return (0);
case IFCOUNTER_IQDROPS:
return (mac_stats->etherStatsDropEvents);
case IFCOUNTER_IERRORS:
rv = mac_stats->ifInErrors +
mac_stats->etherStatsUndersizePkts + /* good but short */
mac_stats->etherStatsFragments + /* short and bad*/
mac_stats->etherStatsJabbers + /* with crc errors */
mac_stats->etherStatsOversizePkts +
mac_stats->aFrameCheckSequenceErrors +
mac_stats->aAlignmentErrors;
return (rv);
case IFCOUNTER_OERRORS:
return (mac_stats->ifOutErrors);
default:
return (if_get_counter_default(ifp, cnt));
}
}
static u_int
al_count_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
unsigned char *mac;
mac = LLADDR(sdl);
/* default mc address inside mac address */
if (mac[3] != 0 && mac[4] != 0 && mac[5] != 1)
return (1);
else
return (0);
}
static u_int
al_program_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
struct al_eth_adapter *adapter = arg;
al_eth_mac_table_unicast_add(adapter,
AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1 + cnt, 1);
return (1);
}
/*
* Unicast, Multicast and Promiscuous mode set
*
* The set_rx_mode entry point is called whenever the unicast or multicast
* address lists or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
*/
static void
al_eth_set_rx_mode(struct al_eth_adapter *adapter)
{
struct ifnet *ifp = adapter->netdev;
int mc, uc;
uint8_t i;
/* XXXGL: why generic count won't work? */
mc = if_foreach_llmaddr(ifp, al_count_maddr, NULL);
uc = if_lladdr_count(ifp);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
al_eth_mac_table_promiscuous_set(adapter, true);
} else {
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
/* This interface is in all-multicasts mode (used by multicast routers). */
al_eth_mac_table_all_multicast_add(adapter,
AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
} else {
if (mc == 0) {
al_eth_mac_table_entry_clear(adapter,
AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX);
} else {
al_eth_mac_table_all_multicast_add(adapter,
AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
}
}
if (uc != 0) {
i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1;
if (uc > AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT) {
/*
* In this case there are more addresses then
* entries in the mac table - set promiscuous
*/
al_eth_mac_table_promiscuous_set(adapter, true);
return;
}
/* clear the last configuration */
while (i < (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE +
AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)) {
al_eth_mac_table_entry_clear(adapter, i);
i++;
}
/* set new addresses */
if_foreach_lladdr(ifp, al_program_addr, adapter);
}
al_eth_mac_table_promiscuous_set(adapter, false);
}
}
static void
al_eth_config_rx_fwd(struct al_eth_adapter *adapter)
{
struct al_eth_fwd_ctrl_table_entry entry;
int i;
/* let priority be equal to pbits */
for (i = 0; i < AL_ETH_FWD_PBITS_TABLE_NUM; i++)
al_eth_fwd_pbits_table_set(&adapter->hal_adapter, i, i);
/* map priority to queue index, queue id = priority/2 */
for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
al_eth_fwd_priority_table_set(&adapter->hal_adapter, i, i >> 1);
entry.prio_sel = AL_ETH_CTRL_TABLE_PRIO_SEL_VAL_0;
entry.queue_sel_1 = AL_ETH_CTRL_TABLE_QUEUE_SEL_1_THASH_TABLE;
entry.queue_sel_2 = AL_ETH_CTRL_TABLE_QUEUE_SEL_2_NO_PRIO;
entry.udma_sel = AL_ETH_CTRL_TABLE_UDMA_SEL_MAC_TABLE;
entry.filter = FALSE;
al_eth_ctrl_table_def_set(&adapter->hal_adapter, FALSE, &entry);
/*
* By default set the mac table to forward all unicast packets to our
* MAC address and all broadcast. all the rest will be dropped.
*/
al_eth_mac_table_unicast_add(adapter, AL_ETH_MAC_TABLE_UNICAST_IDX_BASE,
1);
al_eth_mac_table_broadcast_add(adapter, AL_ETH_MAC_TABLE_BROADCAST_IDX, 1);
al_eth_mac_table_promiscuous_set(adapter, false);
/* set toeplitz hash keys */
for (i = 0; i < sizeof(adapter->toeplitz_hash_key); i++)
*((uint8_t*)adapter->toeplitz_hash_key + i) = (uint8_t)random();
for (i = 0; i < AL_ETH_RX_HASH_KEY_NUM; i++)
al_eth_hash_key_set(&adapter->hal_adapter, i,
htonl(adapter->toeplitz_hash_key[i]));
for (i = 0; i < AL_ETH_RX_RSS_TABLE_SIZE; i++) {
adapter->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i,
AL_ETH_NUM_QUEUES);
al_eth_set_thash_table_entry(adapter, i, 0,
adapter->rss_ind_tbl[i]);
}
al_eth_fsm_table_init(adapter);
}
static void
al_eth_req_rx_buff_size(struct al_eth_adapter *adapter, int size)
{
/*
* Determine the correct mbuf pool
* for doing jumbo frames
* Try from the smallest up to maximum supported
*/
adapter->rx_mbuf_sz = MCLBYTES;
if (size > 2048) {
if (adapter->max_rx_buff_alloc_size > 2048)
adapter->rx_mbuf_sz = MJUMPAGESIZE;
else
return;
}
if (size > 4096) {
if (adapter->max_rx_buff_alloc_size > 4096)
adapter->rx_mbuf_sz = MJUM9BYTES;
else
return;
}
if (size > 9216) {
if (adapter->max_rx_buff_alloc_size > 9216)
adapter->rx_mbuf_sz = MJUM16BYTES;
else
return;
}
}
static int
al_eth_change_mtu(struct al_eth_adapter *adapter, int new_mtu)
{
int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
ETHER_VLAN_ENCAP_LEN;
al_eth_req_rx_buff_size(adapter, new_mtu);
device_printf_dbg(adapter->dev, "set MTU to %d\n", new_mtu);
al_eth_rx_pkt_limit_config(&adapter->hal_adapter,
AL_ETH_MIN_FRAME_LEN, max_frame);
al_eth_tso_mss_config(&adapter->hal_adapter, 0, new_mtu - 100);
return (0);
}
static int
al_eth_check_mtu(struct al_eth_adapter *adapter, int new_mtu)
{
int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
if ((new_mtu < AL_ETH_MIN_FRAME_LEN) ||
(max_frame > AL_ETH_MAX_FRAME_LEN)) {
return (EINVAL);
}
return (0);
}
static int
al_eth_udma_queue_enable(struct al_eth_adapter *adapter, enum al_udma_type type,
int qid)
{
int rc = 0;
char *name = (type == UDMA_TX) ? "Tx" : "Rx";
struct al_udma_q_params *q_params;
if (type == UDMA_TX)
q_params = &adapter->tx_ring[qid].q_params;
else
q_params = &adapter->rx_ring[qid].q_params;
rc = al_eth_queue_config(&adapter->hal_adapter, type, qid, q_params);
if (rc < 0) {
device_printf(adapter->dev, "config %s queue %u failed\n", name,
qid);
return (rc);
}
return (rc);
}
static int
al_eth_udma_queues_enable_all(struct al_eth_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
al_eth_udma_queue_enable(adapter, UDMA_TX, i);
for (i = 0; i < adapter->num_rx_queues; i++)
al_eth_udma_queue_enable(adapter, UDMA_RX, i);
return (0);
}
static void
al_eth_up_complete(struct al_eth_adapter *adapter)
{
al_eth_configure_int_mode(adapter);
al_eth_config_rx_fwd(adapter);
al_eth_change_mtu(adapter, adapter->netdev->if_mtu);
al_eth_udma_queues_enable_all(adapter);
al_eth_refill_all_rx_bufs(adapter);
al_eth_interrupts_unmask(adapter);
/* enable forwarding interrupts from eth through pci end point */
if ((adapter->board_type == ALPINE_FPGA_NIC) ||
(adapter->board_type == ALPINE_NIC)) {
al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
AL_REG_OFFSET_FORWARD_INTR, AL_EN_FORWARD_INTR);
}
al_eth_flow_ctrl_enable(adapter);
mtx_lock(&adapter->stats_mtx);
callout_reset(&adapter->stats_callout, hz, al_tick_stats, (void*)adapter);
mtx_unlock(&adapter->stats_mtx);
al_eth_mac_start(&adapter->hal_adapter);
}
static int
al_media_update(struct ifnet *ifp)
{
struct al_eth_adapter *adapter = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) != 0)
mii_mediachg(adapter->mii);
return (0);
}
static void
al_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct al_eth_adapter *sc = ifp->if_softc;
struct mii_data *mii;
if (sc->mii == NULL) {
ifmr->ifm_active = IFM_ETHER | IFM_NONE;
ifmr->ifm_status = 0;
return;
}
mii = sc->mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static void
al_tick(void *arg)
{
struct al_eth_adapter *adapter = arg;
mii_tick(adapter->mii);
/* Schedule another timeout one second from now */
callout_schedule(&adapter->wd_callout, hz);
}
static void
al_tick_stats(void *arg)
{
struct al_eth_adapter *adapter = arg;
al_eth_update_stats(adapter);
callout_schedule(&adapter->stats_callout, hz);
}
static int
al_eth_up(struct al_eth_adapter *adapter)
{
struct ifnet *ifp = adapter->netdev;
int rc;
if (adapter->up)
return (0);
if ((adapter->flags & AL_ETH_FLAG_RESET_REQUESTED) != 0) {
al_eth_function_reset(adapter);
adapter->flags &= ~AL_ETH_FLAG_RESET_REQUESTED;
}
ifp->if_hwassist = 0;
if ((ifp->if_capenable & IFCAP_TSO) != 0)
ifp->if_hwassist |= CSUM_TSO;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
if ((ifp->if_capenable & IFCAP_TXCSUM_IPV6) != 0)
ifp->if_hwassist |= (CSUM_TCP_IPV6 | CSUM_UDP_IPV6);
al_eth_serdes_init(adapter);
rc = al_eth_hw_init(adapter);
if (rc != 0)
goto err_hw_init_open;
rc = al_eth_setup_int_mode(adapter);
if (rc != 0) {
device_printf(adapter->dev,
"%s failed at setup interrupt mode!\n", __func__);
goto err_setup_int;
}
/* allocate transmit descriptors */
rc = al_eth_setup_all_tx_resources(adapter);
if (rc != 0)
goto err_setup_tx;
/* allocate receive descriptors */
rc = al_eth_setup_all_rx_resources(adapter);
if (rc != 0)
goto err_setup_rx;
rc = al_eth_request_irq(adapter);
if (rc != 0)
goto err_req_irq;
al_eth_up_complete(adapter);
adapter->up = true;
if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial)
adapter->netdev->if_link_state = LINK_STATE_UP;
if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
mii_mediachg(adapter->mii);
/* Schedule watchdog timeout */
mtx_lock(&adapter->wd_mtx);
callout_reset(&adapter->wd_callout, hz, al_tick, adapter);
mtx_unlock(&adapter->wd_mtx);
mii_pollstat(adapter->mii);
}
return (rc);
err_req_irq:
al_eth_free_all_rx_resources(adapter);
err_setup_rx:
al_eth_free_all_tx_resources(adapter);
err_setup_tx:
al_eth_free_irq(adapter);
err_setup_int:
al_eth_hw_stop(adapter);
err_hw_init_open:
al_eth_function_reset(adapter);
return (rc);
}
static int
al_shutdown(device_t dev)
{
struct al_eth_adapter *adapter = device_get_softc(dev);
al_eth_down(adapter);
return (0);
}
static void
al_eth_down(struct al_eth_adapter *adapter)
{
device_printf_dbg(adapter->dev, "al_eth_down: begin\n");
adapter->up = false;
mtx_lock(&adapter->wd_mtx);
callout_stop(&adapter->wd_callout);
mtx_unlock(&adapter->wd_mtx);
al_eth_disable_int_sync(adapter);
mtx_lock(&adapter->stats_mtx);
callout_stop(&adapter->stats_callout);
mtx_unlock(&adapter->stats_mtx);
al_eth_free_irq(adapter);
al_eth_hw_stop(adapter);
al_eth_free_all_tx_resources(adapter);
al_eth_free_all_rx_resources(adapter);
}
static int
al_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct al_eth_adapter *adapter = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
switch (command) {
case SIOCSIFMTU:
{
error = al_eth_check_mtu(adapter, ifr->ifr_mtu);
if (error != 0) {
device_printf(adapter->dev, "ioctl wrong mtu %u\n",
adapter->netdev->if_mtu);
break;
}
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
adapter->netdev->if_mtu = ifr->ifr_mtu;
al_init(adapter);
break;
}
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ adapter->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0) {
device_printf_dbg(adapter->dev,
"ioctl promisc/allmulti\n");
al_eth_set_rx_mode(adapter);
}
} else {
error = al_eth_up(adapter);
if (error == 0)
ifp->if_drv_flags |= IFF_DRV_RUNNING;
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
al_eth_down(adapter);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
}
adapter->if_flags = ifp->if_flags;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
device_printf_dbg(adapter->dev,
"ioctl add/del multi before\n");
al_eth_set_rx_mode(adapter);
#ifdef DEVICE_POLLING
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
#endif
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (adapter->mii != NULL)
error = ifmedia_ioctl(ifp, ifr,
&adapter->mii->mii_media, command);
else
error = ifmedia_ioctl(ifp, ifr,
&adapter->media, command);
break;
case SIOCSIFCAP:
{
int mask, reinit;
reinit = 0;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0) {
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
if (error != 0)
return (error);
ifp->if_capenable |= IFCAP_POLLING;
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
ifp->if_capenable &= ~IFCAP_POLLING;
}
}
#endif
if ((mask & IFCAP_HWCSUM) != 0) {
/* apply to both rx and tx */
ifp->if_capenable ^= IFCAP_HWCSUM;
reinit = 1;
}
if ((mask & IFCAP_HWCSUM_IPV6) != 0) {
ifp->if_capenable ^= IFCAP_HWCSUM_IPV6;
reinit = 1;
}
if ((mask & IFCAP_TSO) != 0) {
ifp->if_capenable ^= IFCAP_TSO;
reinit = 1;
}
if ((mask & IFCAP_LRO) != 0) {
ifp->if_capenable ^= IFCAP_LRO;
}
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
reinit = 1;
}
if ((mask & IFCAP_VLAN_HWFILTER) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
reinit = 1;
}
if ((mask & IFCAP_VLAN_HWTSO) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
reinit = 1;
}
if ((reinit != 0) &&
((ifp->if_drv_flags & IFF_DRV_RUNNING)) != 0)
{
al_init(adapter);
}
break;
}
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
al_is_device_supported(device_t dev)
{
uint16_t pci_vendor_id = pci_get_vendor(dev);
uint16_t pci_device_id = pci_get_device(dev);
return (pci_vendor_id == PCI_VENDOR_ID_ANNAPURNA_LABS &&
(pci_device_id == PCI_DEVICE_ID_AL_ETH ||
pci_device_id == PCI_DEVICE_ID_AL_ETH_ADVANCED ||
pci_device_id == PCI_DEVICE_ID_AL_ETH_NIC ||
pci_device_id == PCI_DEVICE_ID_AL_ETH_FPGA_NIC));
}
/* Time in mSec to keep trying to read / write from MDIO in case of error */
#define MDIO_TIMEOUT_MSEC 100
#define MDIO_PAUSE_MSEC 10
static int
al_miibus_readreg(device_t dev, int phy, int reg)
{
struct al_eth_adapter *adapter = device_get_softc(dev);
uint16_t value = 0;
int rc;
int timeout = MDIO_TIMEOUT_MSEC;
while (timeout > 0) {
rc = al_eth_mdio_read(&adapter->hal_adapter, adapter->phy_addr,
-1, reg, &value);
if (rc == 0)
return (value);
device_printf_dbg(adapter->dev,
"mdio read failed. try again in 10 msec\n");
timeout -= MDIO_PAUSE_MSEC;
pause("readred pause", MDIO_PAUSE_MSEC);
}
if (rc != 0)
device_printf(adapter->dev, "MDIO read failed on timeout\n");
return (value);
}
static int
al_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct al_eth_adapter *adapter = device_get_softc(dev);
int rc;
int timeout = MDIO_TIMEOUT_MSEC;
while (timeout > 0) {
rc = al_eth_mdio_write(&adapter->hal_adapter, adapter->phy_addr,
-1, reg, value);
if (rc == 0)
return (0);
device_printf(adapter->dev,
"mdio write failed. try again in 10 msec\n");
timeout -= MDIO_PAUSE_MSEC;
pause("miibus writereg", MDIO_PAUSE_MSEC);
}
if (rc != 0)
device_printf(adapter->dev, "MDIO write failed on timeout\n");
return (rc);
}
static void
al_miibus_statchg(device_t dev)
{
struct al_eth_adapter *adapter = device_get_softc(dev);
device_printf_dbg(adapter->dev,
"al_miibus_statchg: state has changed!\n");
device_printf_dbg(adapter->dev,
"al_miibus_statchg: active = 0x%x status = 0x%x\n",
adapter->mii->mii_media_active, adapter->mii->mii_media_status);
if (adapter->up == 0)
return;
if ((adapter->mii->mii_media_status & IFM_AVALID) != 0) {
if (adapter->mii->mii_media_status & IFM_ACTIVE) {
device_printf(adapter->dev, "link is UP\n");
adapter->netdev->if_link_state = LINK_STATE_UP;
} else {
device_printf(adapter->dev, "link is DOWN\n");
adapter->netdev->if_link_state = LINK_STATE_DOWN;
}
}
}
static void
al_miibus_linkchg(device_t dev)
{
struct al_eth_adapter *adapter = device_get_softc(dev);
uint8_t duplex = 0;
uint8_t speed = 0;
if (adapter->mii == NULL)
return;
if ((adapter->netdev->if_flags & IFF_UP) == 0)
return;
/* Ignore link changes when link is not ready */
if ((adapter->mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
(IFM_AVALID | IFM_ACTIVE)) {
return;
}
if ((adapter->mii->mii_media_active & IFM_FDX) != 0)
duplex = 1;
speed = IFM_SUBTYPE(adapter->mii->mii_media_active);
if (speed == IFM_10_T) {
al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
AL_10BASE_T_SPEED, duplex);
return;
}
if (speed == IFM_100_TX) {
al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
AL_100BASE_TX_SPEED, duplex);
return;
}
if (speed == IFM_1000_T) {
al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
AL_1000BASE_T_SPEED, duplex);
return;
}
device_printf(adapter->dev, "ERROR: unknown MII media active 0x%08x\n",
adapter->mii->mii_media_active);
}