2005-01-06 01:43:34 +00:00
|
|
|
/*-
|
2000-04-22 01:58:18 +00:00
|
|
|
* Copyright (c) 2000
|
|
|
|
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by Bill Paul.
|
|
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2003-08-24 17:55:58 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
2000-04-22 01:58:18 +00:00
|
|
|
/*
|
2007-02-13 00:34:32 +00:00
|
|
|
* Driver for the Broadcom BCM54xx/57xx 1000baseTX PHY.
|
2000-04-22 01:58:18 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/kernel.h>
|
2004-05-30 17:57:46 +00:00
|
|
|
#include <sys/module.h>
|
2000-04-22 01:58:18 +00:00
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
|
|
|
|
#include <net/if.h>
|
2006-04-10 19:55:23 +00:00
|
|
|
#include <net/ethernet.h>
|
2000-04-22 01:58:18 +00:00
|
|
|
#include <net/if_media.h>
|
|
|
|
|
|
|
|
#include <dev/mii/mii.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
2003-01-19 02:59:34 +00:00
|
|
|
#include "miidevs.h"
|
2000-04-22 01:58:18 +00:00
|
|
|
|
|
|
|
#include <dev/mii/brgphyreg.h>
|
2003-07-16 00:09:56 +00:00
|
|
|
#include <net/if_arp.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/bge/if_bgereg.h>
|
2006-04-10 19:55:23 +00:00
|
|
|
#include <dev/bce/if_bcereg.h>
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2003-08-22 06:42:59 +00:00
|
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include <dev/pci/pcivar.h>
|
2003-08-12 05:18:51 +00:00
|
|
|
|
2000-04-22 01:58:18 +00:00
|
|
|
#include "miibus_if.h"
|
|
|
|
|
2002-10-14 22:31:52 +00:00
|
|
|
static int brgphy_probe(device_t);
|
|
|
|
static int brgphy_attach(device_t);
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2007-01-16 00:52:26 +00:00
|
|
|
struct brgphy_softc {
|
|
|
|
struct mii_softc mii_sc;
|
2007-06-07 02:21:38 +00:00
|
|
|
int mii_oui;
|
2007-01-16 00:52:26 +00:00
|
|
|
int mii_model;
|
|
|
|
int mii_rev;
|
2007-06-07 02:21:38 +00:00
|
|
|
int serdes_flags; /* Keeps track of the serdes type used */
|
2010-03-10 05:19:14 +00:00
|
|
|
#define BRGPHY_5706S 0x0001
|
|
|
|
#define BRGPHY_5708S 0x0002
|
|
|
|
#define BRGPHY_NOANWAIT 0x0004
|
2010-03-18 20:57:57 +00:00
|
|
|
#define BRGPHY_5709S 0x0008
|
2008-06-13 01:20:29 +00:00
|
|
|
int bce_phy_flags; /* PHY flags transferred from the MAC driver */
|
2007-01-16 00:52:26 +00:00
|
|
|
};
|
|
|
|
|
2000-04-22 01:58:18 +00:00
|
|
|
static device_method_t brgphy_methods[] = {
|
|
|
|
/* device interface */
|
|
|
|
DEVMETHOD(device_probe, brgphy_probe),
|
|
|
|
DEVMETHOD(device_attach, brgphy_attach),
|
2002-04-29 13:07:38 +00:00
|
|
|
DEVMETHOD(device_detach, mii_phy_detach),
|
2000-04-22 01:58:18 +00:00
|
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
|
|
{ 0, 0 }
|
|
|
|
};
|
|
|
|
|
|
|
|
static devclass_t brgphy_devclass;
|
|
|
|
|
|
|
|
static driver_t brgphy_driver = {
|
|
|
|
"brgphy",
|
|
|
|
brgphy_methods,
|
2007-01-16 17:48:57 +00:00
|
|
|
sizeof(struct brgphy_softc)
|
2000-04-22 01:58:18 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
DRIVER_MODULE(brgphy, miibus, brgphy_driver, brgphy_devclass, 0, 0);
|
|
|
|
|
2001-09-29 19:18:52 +00:00
|
|
|
static int brgphy_service(struct mii_softc *, struct mii_data *, int);
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
static void brgphy_setmedia(struct mii_softc *, int);
|
2001-09-29 19:18:52 +00:00
|
|
|
static void brgphy_status(struct mii_softc *);
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
static void brgphy_mii_phy_auto(struct mii_softc *, int);
|
2003-05-03 19:06:50 +00:00
|
|
|
static void brgphy_reset(struct mii_softc *);
|
2007-06-07 02:21:38 +00:00
|
|
|
static void brgphy_enable_loopback(struct mii_softc *);
|
2003-05-03 19:06:50 +00:00
|
|
|
static void bcm5401_load_dspcode(struct mii_softc *);
|
|
|
|
static void bcm5411_load_dspcode(struct mii_softc *);
|
2010-02-20 22:01:24 +00:00
|
|
|
static void bcm54k2_load_dspcode(struct mii_softc *);
|
2007-01-15 21:43:43 +00:00
|
|
|
static void brgphy_fixup_5704_a0_bug(struct mii_softc *);
|
2007-02-12 23:33:05 +00:00
|
|
|
static void brgphy_fixup_adc_bug(struct mii_softc *);
|
2007-02-12 22:51:25 +00:00
|
|
|
static void brgphy_fixup_adjust_trim(struct mii_softc *);
|
2007-01-15 21:43:43 +00:00
|
|
|
static void brgphy_fixup_ber_bug(struct mii_softc *);
|
2007-02-12 23:58:52 +00:00
|
|
|
static void brgphy_fixup_crc_bug(struct mii_softc *);
|
2007-01-15 21:43:43 +00:00
|
|
|
static void brgphy_fixup_jitter_bug(struct mii_softc *);
|
2007-01-15 22:21:44 +00:00
|
|
|
static void brgphy_ethernet_wirespeed(struct mii_softc *);
|
|
|
|
static void brgphy_jumbo_settings(struct mii_softc *, u_long);
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2006-07-03 08:01:27 +00:00
|
|
|
static const struct mii_phydesc brgphys[] = {
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5400),
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5401),
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5411),
|
2010-02-20 22:01:24 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM54K2),
|
2006-07-03 08:01:27 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5701),
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5703),
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5704),
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5705),
|
2007-06-07 02:21:38 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5706),
|
2006-12-02 19:36:25 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5714),
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5750),
|
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5752),
|
2006-12-11 01:29:40 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5754),
|
2006-12-02 19:36:25 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5780),
|
2007-02-21 18:17:44 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM, BCM5708C),
|
2010-11-08 21:23:28 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5482S),
|
2007-04-10 20:43:23 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5755),
|
2007-01-15 21:43:43 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5787),
|
2008-03-06 21:42:48 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5708S),
|
2008-03-05 22:58:02 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5709CAX),
|
2008-03-06 21:42:48 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5722),
|
2010-01-14 00:36:49 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5784),
|
2008-03-05 22:58:02 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5709C),
|
2009-11-02 18:15:11 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5761),
|
2010-09-07 23:08:38 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT1, BCM5709S),
|
2010-10-27 17:16:40 +00:00
|
|
|
MII_PHY_DESC(xxBROADCOM_ALT2, BCM5717C),
|
2008-04-29 19:47:13 +00:00
|
|
|
MII_PHY_DESC(BROADCOM2, BCM5906),
|
2006-07-03 08:01:27 +00:00
|
|
|
MII_PHY_END
|
|
|
|
};
|
|
|
|
|
2010-03-10 23:00:15 +00:00
|
|
|
#define HS21_PRODUCT_ID "IBM eServer BladeCenter HS21"
|
|
|
|
#define HS21_BCM_CHIPID 0x57081021
|
|
|
|
|
|
|
|
static int
|
|
|
|
detect_hs21(struct bce_softc *bce_sc)
|
|
|
|
{
|
|
|
|
char *sysenv;
|
2010-11-15 23:13:25 +00:00
|
|
|
int found;
|
|
|
|
|
|
|
|
found = 0;
|
|
|
|
if (bce_sc->bce_chipid == HS21_BCM_CHIPID) {
|
|
|
|
sysenv = getenv("smbios.system.product");
|
|
|
|
if (sysenv != NULL) {
|
2010-11-15 23:38:52 +00:00
|
|
|
if (strncmp(sysenv, HS21_PRODUCT_ID,
|
|
|
|
strlen(HS21_PRODUCT_ID)) == 0)
|
2010-11-15 23:13:25 +00:00
|
|
|
found = 1;
|
|
|
|
freeenv(sysenv);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (found);
|
2010-03-10 23:00:15 +00:00
|
|
|
}
|
2007-06-07 02:21:38 +00:00
|
|
|
|
|
|
|
/* Search for our PHY in the list of known PHYs */
|
2002-10-14 22:31:52 +00:00
|
|
|
static int
|
2005-09-30 19:39:27 +00:00
|
|
|
brgphy_probe(device_t dev)
|
2000-04-22 01:58:18 +00:00
|
|
|
{
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
return (mii_phy_dev_probe(dev, brgphys, BUS_PROBE_DEFAULT));
|
2000-04-22 01:58:18 +00:00
|
|
|
}
|
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
/* Attach the PHY to the MII bus */
|
2002-10-14 22:31:52 +00:00
|
|
|
static int
|
2005-09-30 19:39:27 +00:00
|
|
|
brgphy_attach(device_t dev)
|
2000-04-22 01:58:18 +00:00
|
|
|
{
|
2007-01-16 00:52:26 +00:00
|
|
|
struct brgphy_softc *bsc;
|
2007-06-07 02:21:38 +00:00
|
|
|
struct bge_softc *bge_sc = NULL;
|
|
|
|
struct bce_softc *bce_sc = NULL;
|
2000-04-22 01:58:18 +00:00
|
|
|
struct mii_softc *sc;
|
|
|
|
struct mii_attach_args *ma;
|
|
|
|
struct mii_data *mii;
|
2007-06-07 02:21:38 +00:00
|
|
|
struct ifnet *ifp;
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2007-01-16 00:52:26 +00:00
|
|
|
bsc = device_get_softc(dev);
|
|
|
|
sc = &bsc->mii_sc;
|
2000-04-22 01:58:18 +00:00
|
|
|
ma = device_get_ivars(dev);
|
|
|
|
sc->mii_dev = device_get_parent(dev);
|
2010-09-27 20:31:03 +00:00
|
|
|
mii = ma->mii_data;
|
2000-04-22 01:58:18 +00:00
|
|
|
LIST_INSERT_HEAD(&mii->mii_phys, sc, mii_list);
|
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
/* Initialize mii_softc structure */
|
2010-10-15 14:52:11 +00:00
|
|
|
sc->mii_flags = miibus_get_flags(dev);
|
2010-10-02 18:53:12 +00:00
|
|
|
sc->mii_inst = mii->mii_instance++;
|
2000-04-22 01:58:18 +00:00
|
|
|
sc->mii_phy = ma->mii_phyno;
|
|
|
|
sc->mii_service = brgphy_service;
|
|
|
|
sc->mii_pdata = mii;
|
2010-10-02 18:53:12 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* At least some variants wedge when isolating, at least some also
|
|
|
|
* don't support loopback.
|
|
|
|
*/
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
sc->mii_flags |= MIIF_NOISOLATE | MIIF_NOLOOP | MIIF_NOMANPAUSE;
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
/* Initialize brgphy_softc structure */
|
|
|
|
bsc->mii_oui = MII_OUI(ma->mii_id1, ma->mii_id2);
|
2007-01-16 00:52:26 +00:00
|
|
|
bsc->mii_model = MII_MODEL(ma->mii_id2);
|
|
|
|
bsc->mii_rev = MII_REV(ma->mii_id2);
|
2007-06-07 02:21:38 +00:00
|
|
|
bsc->serdes_flags = 0;
|
|
|
|
|
|
|
|
if (bootverbose)
|
|
|
|
device_printf(dev, "OUI 0x%06x, model 0x%04x, rev. %d\n",
|
|
|
|
bsc->mii_oui, bsc->mii_model, bsc->mii_rev);
|
|
|
|
|
|
|
|
/* Handle any special cases based on the PHY ID */
|
|
|
|
switch (bsc->mii_oui) {
|
2008-08-12 00:52:10 +00:00
|
|
|
case MII_OUI_BROADCOM:
|
|
|
|
case MII_OUI_BROADCOM2:
|
2007-06-07 02:21:38 +00:00
|
|
|
break;
|
|
|
|
case MII_OUI_xxBROADCOM:
|
|
|
|
switch (bsc->mii_model) {
|
2010-03-18 20:57:57 +00:00
|
|
|
case MII_MODEL_xxBROADCOM_BCM5706:
|
|
|
|
case MII_MODEL_xxBROADCOM_BCM5714:
|
|
|
|
/*
|
|
|
|
* The 5464 PHY used in the 5706 supports both copper
|
|
|
|
* and fiber interfaces over GMII. Need to check the
|
|
|
|
* shadow registers to see which mode is actually
|
|
|
|
* in effect, and therefore whether we have 5706C or
|
|
|
|
* 5706S.
|
|
|
|
*/
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_SHADOW_1C,
|
|
|
|
BRGPHY_SHADOW_1C_MODE_CTRL);
|
|
|
|
if (PHY_READ(sc, BRGPHY_MII_SHADOW_1C) &
|
|
|
|
BRGPHY_SHADOW_1C_ENA_1000X) {
|
|
|
|
bsc->serdes_flags |= BRGPHY_5706S;
|
|
|
|
sc->mii_flags |= MIIF_HAVEFIBER;
|
|
|
|
}
|
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
} break;
|
|
|
|
case MII_OUI_xxBROADCOM_ALT1:
|
|
|
|
switch (bsc->mii_model) {
|
2010-03-18 20:57:57 +00:00
|
|
|
case MII_MODEL_xxBROADCOM_ALT1_BCM5708S:
|
|
|
|
bsc->serdes_flags |= BRGPHY_5708S;
|
|
|
|
sc->mii_flags |= MIIF_HAVEFIBER;
|
|
|
|
break;
|
2010-09-07 23:08:38 +00:00
|
|
|
case MII_MODEL_xxBROADCOM_ALT1_BCM5709S:
|
|
|
|
bsc->serdes_flags |= BRGPHY_5709S;
|
|
|
|
sc->mii_flags |= MIIF_HAVEFIBER;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
2010-10-27 17:16:40 +00:00
|
|
|
case MII_OUI_xxBROADCOM_ALT2:
|
|
|
|
/* No special handling yet. */
|
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
default:
|
|
|
|
device_printf(dev, "Unrecognized OUI for PHY!\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
ifp = sc->mii_pdata->mii_ifp;
|
|
|
|
|
|
|
|
/* Find the MAC driver associated with this PHY. */
|
|
|
|
if (strcmp(ifp->if_dname, "bge") == 0) {
|
|
|
|
bge_sc = ifp->if_softc;
|
|
|
|
} else if (strcmp(ifp->if_dname, "bce") == 0) {
|
|
|
|
bce_sc = ifp->if_softc;
|
|
|
|
}
|
|
|
|
|
2003-05-03 19:06:50 +00:00
|
|
|
brgphy_reset(sc);
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2010-10-18 08:36:03 +00:00
|
|
|
/* Read the PHY's capabilities. */
|
|
|
|
sc->mii_capabilities = PHY_READ(sc, MII_BMSR) & ma->mii_capmask;
|
|
|
|
if (sc->mii_capabilities & BMSR_EXTSTAT)
|
|
|
|
sc->mii_extcapabilities = PHY_READ(sc, MII_EXTSR);
|
2000-04-22 01:58:18 +00:00
|
|
|
device_printf(dev, " ");
|
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
#define ADD(m, c) ifmedia_add(&mii->mii_media, (m), (c), NULL)
|
|
|
|
|
|
|
|
/* Add the supported media types */
|
|
|
|
if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) {
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
mii_phy_add_media(sc);
|
|
|
|
printf("\n");
|
2007-06-07 02:21:38 +00:00
|
|
|
} else {
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
sc->mii_anegticks = MII_ANEGTICKS_GIGE;
|
2007-06-07 02:21:38 +00:00
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, sc->mii_inst),
|
|
|
|
BRGPHY_S1000 | BRGPHY_BMCR_FDX);
|
|
|
|
printf("1000baseSX-FDX, ");
|
2008-06-13 01:20:29 +00:00
|
|
|
/* 2.5G support is a software enabled feature on the 5708S and 5709S. */
|
2007-06-07 02:21:38 +00:00
|
|
|
if (bce_sc && (bce_sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) {
|
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_2500_SX, IFM_FDX, sc->mii_inst), 0);
|
|
|
|
printf("2500baseSX-FDX, ");
|
2010-03-10 05:19:14 +00:00
|
|
|
} else if ((bsc->serdes_flags & BRGPHY_5708S) && bce_sc &&
|
2010-03-10 23:00:15 +00:00
|
|
|
(detect_hs21(bce_sc) != 0)) {
|
2010-03-10 05:19:14 +00:00
|
|
|
/*
|
|
|
|
* There appears to be certain silicon revision
|
2010-03-10 23:00:15 +00:00
|
|
|
* in IBM HS21 blades that is having issues with
|
2010-03-10 05:19:14 +00:00
|
|
|
* this driver wating for the auto-negotiation to
|
|
|
|
* complete. This happens with a specific chip id
|
|
|
|
* only and when the 1000baseSX-FDX is the only
|
|
|
|
* mode. Workaround this issue since it's unlikely
|
|
|
|
* to be ever addressed.
|
|
|
|
*/
|
|
|
|
printf("auto-neg workaround, ");
|
|
|
|
bsc->serdes_flags |= BRGPHY_NOANWAIT;
|
2007-06-07 02:21:38 +00:00
|
|
|
}
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, sc->mii_inst), 0);
|
|
|
|
printf("auto\n");
|
2007-06-07 02:21:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#undef ADD
|
2000-04-22 01:58:18 +00:00
|
|
|
MIIBUS_MEDIAINIT(sc->mii_dev);
|
2006-12-02 19:36:25 +00:00
|
|
|
return (0);
|
2000-04-22 01:58:18 +00:00
|
|
|
}
|
|
|
|
|
2001-09-29 19:18:52 +00:00
|
|
|
static int
|
2005-09-30 19:39:27 +00:00
|
|
|
brgphy_service(struct mii_softc *sc, struct mii_data *mii, int cmd)
|
2000-04-22 01:58:18 +00:00
|
|
|
{
|
2007-01-16 00:52:26 +00:00
|
|
|
struct brgphy_softc *bsc = (struct brgphy_softc *)sc;
|
2000-04-22 01:58:18 +00:00
|
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
2007-06-07 02:21:38 +00:00
|
|
|
int val;
|
2000-04-22 01:58:18 +00:00
|
|
|
|
|
|
|
switch (cmd) {
|
|
|
|
case MII_POLLSTAT:
|
|
|
|
break;
|
|
|
|
case MII_MEDIACHG:
|
2006-12-19 08:41:48 +00:00
|
|
|
/* If the interface is not up, don't do anything. */
|
2000-04-22 01:58:18 +00:00
|
|
|
if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
|
|
|
|
break;
|
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
/* Todo: Why is this here? Is it really needed? */
|
2003-05-03 19:06:50 +00:00
|
|
|
brgphy_reset(sc); /* XXX hardware bug work-around */
|
2000-04-22 01:58:18 +00:00
|
|
|
|
|
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
|
|
case IFM_AUTO:
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
brgphy_mii_phy_auto(sc, ife->ifm_media);
|
2000-04-22 01:58:18 +00:00
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
case IFM_2500_SX:
|
|
|
|
case IFM_1000_SX:
|
2002-04-28 20:34:20 +00:00
|
|
|
case IFM_1000_T:
|
2001-09-04 22:00:33 +00:00
|
|
|
case IFM_100_TX:
|
|
|
|
case IFM_10_T:
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
brgphy_setmedia(sc, ife->ifm_media);
|
2000-04-22 01:58:18 +00:00
|
|
|
break;
|
|
|
|
default:
|
2010-10-02 18:53:12 +00:00
|
|
|
return (EINVAL);
|
2000-04-22 01:58:18 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MII_TICK:
|
2007-06-07 02:21:38 +00:00
|
|
|
/* Bail if the interface isn't up. */
|
2000-04-22 01:58:18 +00:00
|
|
|
if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
|
2010-10-02 18:53:12 +00:00
|
|
|
return (0);
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
|
|
|
|
/* Bail if autoneg isn't in process. */
|
2006-12-19 08:41:48 +00:00
|
|
|
if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
|
2007-06-07 02:21:38 +00:00
|
|
|
sc->mii_ticks = 0;
|
2001-09-29 19:18:52 +00:00
|
|
|
break;
|
2006-12-19 08:41:48 +00:00
|
|
|
}
|
2000-04-22 01:58:18 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Check to see if we have link. If we do, we don't
|
2006-12-19 08:41:48 +00:00
|
|
|
* need to restart the autonegotiation process.
|
2000-04-22 01:58:18 +00:00
|
|
|
*/
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
val = PHY_READ(sc, MII_BMSR) | PHY_READ(sc, MII_BMSR);
|
2007-06-07 02:21:38 +00:00
|
|
|
if (val & BMSR_LINK) {
|
2006-12-19 08:41:48 +00:00
|
|
|
sc->mii_ticks = 0; /* Reset autoneg timer. */
|
2000-04-22 01:58:18 +00:00
|
|
|
break;
|
2006-12-19 08:41:48 +00:00
|
|
|
}
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2006-12-19 08:41:48 +00:00
|
|
|
/* Announce link loss right after it happens. */
|
|
|
|
if (sc->mii_ticks++ == 0)
|
2004-05-03 13:01:34 +00:00
|
|
|
break;
|
2006-12-02 19:36:25 +00:00
|
|
|
|
2006-12-19 08:41:48 +00:00
|
|
|
/* Only retry autonegotiation every mii_anegticks seconds. */
|
|
|
|
if (sc->mii_ticks <= sc->mii_anegticks)
|
2008-08-12 00:57:39 +00:00
|
|
|
break;
|
2006-12-19 08:41:48 +00:00
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
|
|
|
|
/* Retry autonegotiation */
|
2001-09-29 19:18:52 +00:00
|
|
|
sc->mii_ticks = 0;
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
brgphy_mii_phy_auto(sc, ife->ifm_media);
|
2005-12-08 13:31:52 +00:00
|
|
|
break;
|
2000-04-22 01:58:18 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Update the media status. */
|
|
|
|
brgphy_status(sc);
|
|
|
|
|
2003-05-04 02:03:20 +00:00
|
|
|
/*
|
|
|
|
* Callback if something changed. Note that we need to poke
|
|
|
|
* the DSP on the Broadcom PHYs if the media changes.
|
|
|
|
*/
|
2006-12-02 19:36:25 +00:00
|
|
|
if (sc->mii_media_active != mii->mii_media_active ||
|
2003-05-04 02:03:20 +00:00
|
|
|
sc->mii_media_status != mii->mii_media_status ||
|
|
|
|
cmd == MII_MEDIACHG) {
|
2007-06-07 02:21:38 +00:00
|
|
|
switch (bsc->mii_oui) {
|
|
|
|
case MII_OUI_BROADCOM:
|
2003-05-04 02:03:20 +00:00
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
case MII_OUI_xxBROADCOM:
|
|
|
|
switch (bsc->mii_model) {
|
|
|
|
case MII_MODEL_xxBROADCOM_BCM5400:
|
2007-01-15 21:43:43 +00:00
|
|
|
bcm5401_load_dspcode(sc);
|
2007-06-07 02:21:38 +00:00
|
|
|
break;
|
|
|
|
case MII_MODEL_xxBROADCOM_BCM5401:
|
|
|
|
if (bsc->mii_rev == 1 || bsc->mii_rev == 3)
|
|
|
|
bcm5401_load_dspcode(sc);
|
|
|
|
break;
|
|
|
|
case MII_MODEL_xxBROADCOM_BCM5411:
|
|
|
|
bcm5411_load_dspcode(sc);
|
|
|
|
break;
|
2010-02-20 22:01:24 +00:00
|
|
|
case MII_MODEL_xxBROADCOM_BCM54K2:
|
|
|
|
bcm54k2_load_dspcode(sc);
|
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
}
|
2007-01-15 21:43:43 +00:00
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
case MII_OUI_xxBROADCOM_ALT1:
|
2003-05-04 02:03:20 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2004-05-03 13:01:34 +00:00
|
|
|
mii_phy_update(sc, cmd);
|
2010-10-02 18:53:12 +00:00
|
|
|
return (0);
|
2000-04-22 01:58:18 +00:00
|
|
|
}
|
|
|
|
|
2008-06-13 01:20:29 +00:00
|
|
|
/****************************************************************************/
|
|
|
|
/* Sets the PHY link speed. */
|
|
|
|
/* */
|
|
|
|
/* Returns: */
|
|
|
|
/* None */
|
|
|
|
/****************************************************************************/
|
2006-12-20 00:08:47 +00:00
|
|
|
static void
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
brgphy_setmedia(struct mii_softc *sc, int media)
|
2006-12-20 00:08:47 +00:00
|
|
|
{
|
2007-06-07 02:21:38 +00:00
|
|
|
int bmcr = 0, gig;
|
2006-12-20 00:08:47 +00:00
|
|
|
|
|
|
|
switch (IFM_SUBTYPE(media)) {
|
2007-06-07 02:21:38 +00:00
|
|
|
case IFM_2500_SX:
|
|
|
|
break;
|
|
|
|
case IFM_1000_SX:
|
2006-12-20 00:08:47 +00:00
|
|
|
case IFM_1000_T:
|
|
|
|
bmcr = BRGPHY_S1000;
|
|
|
|
break;
|
|
|
|
case IFM_100_TX:
|
|
|
|
bmcr = BRGPHY_S100;
|
|
|
|
break;
|
|
|
|
case IFM_10_T:
|
|
|
|
default:
|
|
|
|
bmcr = BRGPHY_S10;
|
|
|
|
break;
|
|
|
|
}
|
2008-06-13 01:20:29 +00:00
|
|
|
|
2006-12-20 00:08:47 +00:00
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
|
|
bmcr |= BRGPHY_BMCR_FDX;
|
|
|
|
gig = BRGPHY_1000CTL_AFD;
|
|
|
|
} else {
|
|
|
|
gig = BRGPHY_1000CTL_AHD;
|
|
|
|
}
|
|
|
|
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
/* Force loopback to disconnect PHY from Ethernet medium. */
|
2007-06-07 02:21:38 +00:00
|
|
|
brgphy_enable_loopback(sc);
|
2008-06-13 01:20:29 +00:00
|
|
|
|
2006-12-20 00:08:47 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_1000CTL, 0);
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_ANAR, BRGPHY_SEL_TYPE);
|
|
|
|
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
if (IFM_SUBTYPE(media) != IFM_1000_T &&
|
|
|
|
IFM_SUBTYPE(media) != IFM_1000_SX) {
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_BMCR, bmcr);
|
|
|
|
return;
|
|
|
|
}
|
2006-12-20 00:08:47 +00:00
|
|
|
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
if (IFM_SUBTYPE(media) == IFM_1000_T) {
|
|
|
|
gig |= BRGPHY_1000CTL_MSE;
|
|
|
|
if ((media & IFM_ETH_MASTER) != 0)
|
|
|
|
gig |= BRGPHY_1000CTL_MSC;
|
|
|
|
}
|
2006-12-20 00:08:47 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_1000CTL, gig);
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_BMCR,
|
|
|
|
bmcr | BRGPHY_BMCR_AUTOEN | BRGPHY_BMCR_STARTNEG);
|
|
|
|
}
|
|
|
|
|
2008-06-13 01:20:29 +00:00
|
|
|
/****************************************************************************/
|
|
|
|
/* Set the media status based on the PHY settings. */
|
|
|
|
/* */
|
|
|
|
/* Returns: */
|
|
|
|
/* None */
|
|
|
|
/****************************************************************************/
|
2001-09-29 19:18:52 +00:00
|
|
|
static void
|
2005-09-30 19:39:27 +00:00
|
|
|
brgphy_status(struct mii_softc *sc)
|
2000-04-22 01:58:18 +00:00
|
|
|
{
|
2007-06-07 02:21:38 +00:00
|
|
|
struct brgphy_softc *bsc = (struct brgphy_softc *)sc;
|
2000-04-22 01:58:18 +00:00
|
|
|
struct mii_data *mii = sc->mii_pdata;
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
int aux, bmcr, bmsr, val, xstat;
|
|
|
|
u_int flowstat;
|
2000-04-22 01:58:18 +00:00
|
|
|
|
|
|
|
mii->mii_media_status = IFM_AVALID;
|
|
|
|
mii->mii_media_active = IFM_ETHER;
|
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
bmsr = PHY_READ(sc, BRGPHY_MII_BMSR) | PHY_READ(sc, BRGPHY_MII_BMSR);
|
2008-08-12 00:55:03 +00:00
|
|
|
bmcr = PHY_READ(sc, BRGPHY_MII_BMCR);
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
if (bmcr & BRGPHY_BMCR_LOOP) {
|
2000-04-22 01:58:18 +00:00
|
|
|
mii->mii_media_active |= IFM_LOOP;
|
2007-06-07 02:21:38 +00:00
|
|
|
}
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2007-03-19 23:17:39 +00:00
|
|
|
if ((bmcr & BRGPHY_BMCR_AUTOEN) &&
|
2010-03-10 05:19:14 +00:00
|
|
|
(bmsr & BRGPHY_BMSR_ACOMP) == 0 &&
|
|
|
|
(bsc->serdes_flags & BRGPHY_NOANWAIT) == 0) {
|
2007-03-19 23:17:39 +00:00
|
|
|
/* Erg, still trying, I guess... */
|
|
|
|
mii->mii_media_active |= IFM_NONE;
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
return;
|
2006-12-20 00:08:47 +00:00
|
|
|
}
|
2000-04-22 01:58:18 +00:00
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) {
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
/*
|
|
|
|
* NB: reading the ANAR, ANLPAR or 1000STS after the AUXSTS
|
|
|
|
* wedges at least the PHY of BCM5704 (but not others).
|
|
|
|
*/
|
|
|
|
flowstat = mii_phy_flowstatus(sc);
|
|
|
|
xstat = PHY_READ(sc, BRGPHY_MII_1000STS);
|
2007-06-07 02:21:38 +00:00
|
|
|
aux = PHY_READ(sc, BRGPHY_MII_AUXSTS);
|
|
|
|
|
|
|
|
/* If copper link is up, get the negotiated speed/duplex. */
|
|
|
|
if (aux & BRGPHY_AUXSTS_LINK) {
|
|
|
|
mii->mii_media_status |= IFM_ACTIVE;
|
|
|
|
switch (aux & BRGPHY_AUXSTS_AN_RES) {
|
|
|
|
case BRGPHY_RES_1000FD:
|
|
|
|
mii->mii_media_active |= IFM_1000_T | IFM_FDX; break;
|
|
|
|
case BRGPHY_RES_1000HD:
|
|
|
|
mii->mii_media_active |= IFM_1000_T | IFM_HDX; break;
|
|
|
|
case BRGPHY_RES_100FD:
|
|
|
|
mii->mii_media_active |= IFM_100_TX | IFM_FDX; break;
|
|
|
|
case BRGPHY_RES_100T4:
|
|
|
|
mii->mii_media_active |= IFM_100_T4; break;
|
|
|
|
case BRGPHY_RES_100HD:
|
|
|
|
mii->mii_media_active |= IFM_100_TX | IFM_HDX; break;
|
|
|
|
case BRGPHY_RES_10FD:
|
|
|
|
mii->mii_media_active |= IFM_10_T | IFM_FDX; break;
|
|
|
|
case BRGPHY_RES_10HD:
|
|
|
|
mii->mii_media_active |= IFM_10_T | IFM_HDX; break;
|
|
|
|
default:
|
|
|
|
mii->mii_media_active |= IFM_NONE; break;
|
|
|
|
}
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
|
|
|
|
if ((mii->mii_media_active & IFM_FDX) != 0)
|
|
|
|
mii->mii_media_active |= flowstat;
|
|
|
|
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T &&
|
|
|
|
(xstat & BRGPHY_1000STS_MSR) != 0)
|
|
|
|
mii->mii_media_active |= IFM_ETH_MASTER;
|
2001-09-04 22:00:33 +00:00
|
|
|
}
|
2007-06-07 02:21:38 +00:00
|
|
|
} else {
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
/* Todo: Add support for flow control. */
|
2007-06-07 02:21:38 +00:00
|
|
|
/* If serdes link is up, get the negotiated speed/duplex. */
|
|
|
|
if (bmsr & BRGPHY_BMSR_LINK) {
|
|
|
|
mii->mii_media_status |= IFM_ACTIVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check the link speed/duplex based on the PHY type. */
|
|
|
|
if (bsc->serdes_flags & BRGPHY_5706S) {
|
|
|
|
mii->mii_media_active |= IFM_1000_SX;
|
|
|
|
|
|
|
|
/* If autoneg enabled, read negotiated duplex settings */
|
|
|
|
if (bmcr & BRGPHY_BMCR_AUTOEN) {
|
|
|
|
val = PHY_READ(sc, BRGPHY_SERDES_ANAR) & PHY_READ(sc, BRGPHY_SERDES_ANLPAR);
|
|
|
|
if (val & BRGPHY_SERDES_ANAR_FDX)
|
|
|
|
mii->mii_media_active |= IFM_FDX;
|
|
|
|
else
|
|
|
|
mii->mii_media_active |= IFM_HDX;
|
|
|
|
}
|
|
|
|
} else if (bsc->serdes_flags & BRGPHY_5708S) {
|
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_BLOCK_ADDR, BRGPHY_5708S_DIG_PG0);
|
|
|
|
xstat = PHY_READ(sc, BRGPHY_5708S_PG0_1000X_STAT1);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Check for MRBE auto-negotiated speed results. */
|
2007-06-07 02:21:38 +00:00
|
|
|
switch (xstat & BRGPHY_5708S_PG0_1000X_STAT1_SPEED_MASK) {
|
2008-08-12 00:52:10 +00:00
|
|
|
case BRGPHY_5708S_PG0_1000X_STAT1_SPEED_10:
|
2007-06-07 02:21:38 +00:00
|
|
|
mii->mii_media_active |= IFM_10_FL; break;
|
2008-08-12 00:52:10 +00:00
|
|
|
case BRGPHY_5708S_PG0_1000X_STAT1_SPEED_100:
|
2007-06-07 02:21:38 +00:00
|
|
|
mii->mii_media_active |= IFM_100_FX; break;
|
2008-08-12 00:52:10 +00:00
|
|
|
case BRGPHY_5708S_PG0_1000X_STAT1_SPEED_1G:
|
2007-06-07 02:21:38 +00:00
|
|
|
mii->mii_media_active |= IFM_1000_SX; break;
|
2008-08-12 00:52:10 +00:00
|
|
|
case BRGPHY_5708S_PG0_1000X_STAT1_SPEED_25G:
|
2007-06-07 02:21:38 +00:00
|
|
|
mii->mii_media_active |= IFM_2500_SX; break;
|
|
|
|
}
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Check for MRBE auto-negotiated duplex results. */
|
2007-06-07 02:21:38 +00:00
|
|
|
if (xstat & BRGPHY_5708S_PG0_1000X_STAT1_FDX)
|
|
|
|
mii->mii_media_active |= IFM_FDX;
|
|
|
|
else
|
|
|
|
mii->mii_media_active |= IFM_HDX;
|
2010-09-07 23:08:38 +00:00
|
|
|
} else if (bsc->serdes_flags & BRGPHY_5709S) {
|
|
|
|
/* Select GP Status Block of the AN MMD, get autoneg results. */
|
|
|
|
PHY_WRITE(sc, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_GP_STATUS);
|
2010-03-18 20:57:57 +00:00
|
|
|
xstat = PHY_READ(sc, BRGPHY_GP_STATUS_TOP_ANEG_STATUS);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Restore IEEE0 block (assumed in all brgphy(4) code). */
|
|
|
|
PHY_WRITE(sc, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
|
|
|
|
|
|
|
|
/* Check for MRBE auto-negotiated speed results. */
|
|
|
|
switch (xstat & BRGPHY_GP_STATUS_TOP_ANEG_SPEED_MASK) {
|
|
|
|
case BRGPHY_GP_STATUS_TOP_ANEG_SPEED_10:
|
|
|
|
mii->mii_media_active |= IFM_10_FL; break;
|
|
|
|
case BRGPHY_GP_STATUS_TOP_ANEG_SPEED_100:
|
|
|
|
mii->mii_media_active |= IFM_100_FX; break;
|
|
|
|
case BRGPHY_GP_STATUS_TOP_ANEG_SPEED_1G:
|
|
|
|
mii->mii_media_active |= IFM_1000_SX; break;
|
|
|
|
case BRGPHY_GP_STATUS_TOP_ANEG_SPEED_25G:
|
|
|
|
mii->mii_media_active |= IFM_2500_SX; break;
|
2010-03-18 20:57:57 +00:00
|
|
|
}
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Check for MRBE auto-negotiated duplex results. */
|
2010-03-18 20:57:57 +00:00
|
|
|
if (xstat & BRGPHY_GP_STATUS_TOP_ANEG_FDX)
|
|
|
|
mii->mii_media_active |= IFM_FDX;
|
|
|
|
else
|
|
|
|
mii->mii_media_active |= IFM_HDX;
|
2010-09-07 23:08:38 +00:00
|
|
|
}
|
2007-06-07 02:21:38 +00:00
|
|
|
}
|
2000-04-22 01:58:18 +00:00
|
|
|
}
|
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
static void
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
brgphy_mii_phy_auto(struct mii_softc *sc, int media)
|
2000-04-22 01:58:18 +00:00
|
|
|
{
|
2007-01-16 00:52:26 +00:00
|
|
|
struct brgphy_softc *bsc = (struct brgphy_softc *)sc;
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
int anar, ktcr = 0;
|
2002-05-04 11:00:30 +00:00
|
|
|
|
2006-12-20 00:08:47 +00:00
|
|
|
brgphy_reset(sc);
|
2007-06-07 02:21:38 +00:00
|
|
|
|
|
|
|
if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) {
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
anar = BMSR_MEDIA_TO_ANAR(sc->mii_capabilities) | ANAR_CSMA;
|
|
|
|
if ((media & IFM_FLOW) != 0 ||
|
|
|
|
(sc->mii_flags & MIIF_FORCEPAUSE) != 0)
|
|
|
|
anar |= BRGPHY_ANAR_PC | BRGPHY_ANAR_ASP;
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_ANAR, anar);
|
2007-06-07 02:21:38 +00:00
|
|
|
} else {
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
anar = BRGPHY_SERDES_ANAR_FDX | BRGPHY_SERDES_ANAR_HDX;
|
|
|
|
if ((media & IFM_FLOW) != 0 ||
|
|
|
|
(sc->mii_flags & MIIF_FORCEPAUSE) != 0)
|
|
|
|
anar |= BRGPHY_SERDES_ANAR_BOTH_PAUSE;
|
|
|
|
PHY_WRITE(sc, BRGPHY_SERDES_ANAR, anar);
|
2007-06-07 02:21:38 +00:00
|
|
|
}
|
|
|
|
|
2006-12-20 00:08:47 +00:00
|
|
|
ktcr = BRGPHY_1000CTL_AFD | BRGPHY_1000CTL_AHD;
|
2007-01-16 00:52:26 +00:00
|
|
|
if (bsc->mii_model == MII_MODEL_xxBROADCOM_BCM5701)
|
2006-12-20 00:34:12 +00:00
|
|
|
ktcr |= BRGPHY_1000CTL_MSE | BRGPHY_1000CTL_MSC;
|
2006-12-20 00:08:47 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_1000CTL, ktcr);
|
|
|
|
ktcr = PHY_READ(sc, BRGPHY_MII_1000CTL);
|
2007-06-07 02:21:38 +00:00
|
|
|
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_BMCR, BRGPHY_BMCR_AUTOEN |
|
|
|
|
BRGPHY_BMCR_STARTNEG);
|
2006-12-20 00:08:47 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_IMR, 0xFF00);
|
2000-04-22 01:58:18 +00:00
|
|
|
}
|
2003-05-03 19:06:50 +00:00
|
|
|
|
2007-06-07 02:21:38 +00:00
|
|
|
/* Enable loopback to force the link down. */
|
2003-05-03 19:06:50 +00:00
|
|
|
static void
|
2007-06-07 02:21:38 +00:00
|
|
|
brgphy_enable_loopback(struct mii_softc *sc)
|
2003-05-03 19:06:50 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_BMCR, BRGPHY_BMCR_LOOP);
|
|
|
|
for (i = 0; i < 15000; i++) {
|
2007-06-07 02:21:38 +00:00
|
|
|
if (!(PHY_READ(sc, BRGPHY_MII_BMSR) & BRGPHY_BMSR_LINK))
|
2003-05-03 19:06:50 +00:00
|
|
|
break;
|
|
|
|
DELAY(10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Turn off tap power management on 5401. */
|
|
|
|
static void
|
|
|
|
bcm5401_load_dspcode(struct mii_softc *sc)
|
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
|
|
|
uint16_t val;
|
|
|
|
} dspcode[] = {
|
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0c20 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x201f },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x0a20 },
|
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
DELAY(40);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
bcm5411_load_dspcode(struct mii_softc *sc)
|
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
|
|
|
uint16_t val;
|
|
|
|
} dspcode[] = {
|
|
|
|
{ 0x1c, 0x8c23 },
|
|
|
|
{ 0x1c, 0x8ca3 },
|
|
|
|
{ 0x1c, 0x8c23 },
|
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
}
|
|
|
|
|
2010-02-20 22:01:24 +00:00
|
|
|
void
|
|
|
|
bcm54k2_load_dspcode(struct mii_softc *sc)
|
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
|
|
|
uint16_t val;
|
|
|
|
} dspcode[] = {
|
|
|
|
{ 4, 0x01e1 },
|
|
|
|
{ 9, 0x0300 },
|
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2003-05-03 19:06:50 +00:00
|
|
|
static void
|
2007-02-12 23:33:05 +00:00
|
|
|
brgphy_fixup_5704_a0_bug(struct mii_softc *sc)
|
2003-05-03 19:06:50 +00:00
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
|
|
|
uint16_t val;
|
|
|
|
} dspcode[] = {
|
2007-02-12 23:33:05 +00:00
|
|
|
{ 0x1c, 0x8d68 },
|
|
|
|
{ 0x1c, 0x8d68 },
|
2003-05-03 19:06:50 +00:00
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-02-12 23:33:05 +00:00
|
|
|
brgphy_fixup_adc_bug(struct mii_softc *sc)
|
2003-05-03 19:06:50 +00:00
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
2007-02-12 23:33:05 +00:00
|
|
|
uint16_t val;
|
2003-05-03 19:06:50 +00:00
|
|
|
} dspcode[] = {
|
2007-02-12 23:33:05 +00:00
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0c00 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x201f },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x2aaa },
|
2003-05-03 19:06:50 +00:00
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
}
|
|
|
|
|
2007-02-12 22:51:25 +00:00
|
|
|
static void
|
|
|
|
brgphy_fixup_adjust_trim(struct mii_softc *sc)
|
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
|
|
|
uint16_t val;
|
|
|
|
} dspcode[] = {
|
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0c00 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x000a },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x110b },
|
2007-06-07 02:21:38 +00:00
|
|
|
{ BRGPHY_MII_TEST1, 0x0014 },
|
2007-02-12 22:51:25 +00:00
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0400 },
|
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
}
|
|
|
|
|
2004-09-24 22:24:33 +00:00
|
|
|
static void
|
2007-01-15 21:43:43 +00:00
|
|
|
brgphy_fixup_ber_bug(struct mii_softc *sc)
|
2004-09-24 22:24:33 +00:00
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
2007-02-12 23:33:05 +00:00
|
|
|
uint16_t val;
|
2004-09-24 22:24:33 +00:00
|
|
|
} dspcode[] = {
|
2007-02-12 19:33:22 +00:00
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0c00 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x000a },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x310b },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x201f },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x9506 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x401f },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x14e2 },
|
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0400 },
|
2004-09-24 22:24:33 +00:00
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
}
|
|
|
|
|
2007-02-12 23:58:52 +00:00
|
|
|
static void
|
|
|
|
brgphy_fixup_crc_bug(struct mii_softc *sc)
|
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
|
|
|
uint16_t val;
|
|
|
|
} dspcode[] = {
|
2007-02-14 18:21:32 +00:00
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x0a75 },
|
2007-02-12 23:58:52 +00:00
|
|
|
{ 0x1c, 0x8c68 },
|
|
|
|
{ 0x1c, 0x8d68 },
|
|
|
|
{ 0x1c, 0x8c68 },
|
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
}
|
|
|
|
|
2007-01-15 21:43:43 +00:00
|
|
|
static void
|
|
|
|
brgphy_fixup_jitter_bug(struct mii_softc *sc)
|
|
|
|
{
|
|
|
|
static const struct {
|
|
|
|
int reg;
|
|
|
|
uint16_t val;
|
|
|
|
} dspcode[] = {
|
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0c00 },
|
|
|
|
{ BRGPHY_MII_DSP_ADDR_REG, 0x000a },
|
|
|
|
{ BRGPHY_MII_DSP_RW_PORT, 0x010b },
|
|
|
|
{ BRGPHY_MII_AUXCTL, 0x0400 },
|
|
|
|
{ 0, 0 },
|
|
|
|
};
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; dspcode[i].reg != 0; i++)
|
|
|
|
PHY_WRITE(sc, dspcode[i].reg, dspcode[i].val);
|
|
|
|
}
|
|
|
|
|
2008-06-13 01:20:29 +00:00
|
|
|
static void
|
|
|
|
brgphy_fixup_disable_early_dac(struct mii_softc *sc)
|
|
|
|
{
|
|
|
|
uint32_t val;
|
|
|
|
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_DSP_ADDR_REG, 0x0f08);
|
|
|
|
val = PHY_READ(sc, BRGPHY_MII_DSP_RW_PORT);
|
|
|
|
val &= ~(1 << 8);
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_DSP_RW_PORT, val);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2003-05-03 19:06:50 +00:00
|
|
|
static void
|
2007-01-15 22:21:44 +00:00
|
|
|
brgphy_ethernet_wirespeed(struct mii_softc *sc)
|
|
|
|
{
|
2007-02-12 23:33:05 +00:00
|
|
|
uint32_t val;
|
2007-01-15 22:21:44 +00:00
|
|
|
|
|
|
|
/* Enable Ethernet@WireSpeed. */
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_AUXCTL, 0x7007);
|
|
|
|
val = PHY_READ(sc, BRGPHY_MII_AUXCTL);
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_AUXCTL, val | (1 << 15) | (1 << 4));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
brgphy_jumbo_settings(struct mii_softc *sc, u_long mtu)
|
2003-05-03 19:06:50 +00:00
|
|
|
{
|
2007-02-12 20:26:56 +00:00
|
|
|
struct brgphy_softc *bsc = (struct brgphy_softc *)sc;
|
2007-02-12 23:33:05 +00:00
|
|
|
uint32_t val;
|
2007-01-15 22:21:44 +00:00
|
|
|
|
|
|
|
/* Set or clear jumbo frame settings in the PHY. */
|
|
|
|
if (mtu > ETHER_MAX_LEN) {
|
2007-02-13 00:34:32 +00:00
|
|
|
if (bsc->mii_model == MII_MODEL_xxBROADCOM_BCM5401) {
|
|
|
|
/* BCM5401 PHY cannot read-modify-write. */
|
2007-02-12 20:26:56 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_AUXCTL, 0x4c20);
|
2007-02-13 00:34:32 +00:00
|
|
|
} else {
|
2007-02-12 20:26:56 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_AUXCTL, 0x7);
|
|
|
|
val = PHY_READ(sc, BRGPHY_MII_AUXCTL);
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_AUXCTL,
|
|
|
|
val | BRGPHY_AUXCTL_LONG_PKT);
|
|
|
|
}
|
2007-01-15 22:21:44 +00:00
|
|
|
|
|
|
|
val = PHY_READ(sc, BRGPHY_MII_PHY_EXTCTL);
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_PHY_EXTCTL,
|
|
|
|
val | BRGPHY_PHY_EXTCTL_HIGH_LA);
|
|
|
|
} else {
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_AUXCTL, 0x7);
|
|
|
|
val = PHY_READ(sc, BRGPHY_MII_AUXCTL);
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_AUXCTL,
|
|
|
|
val & ~(BRGPHY_AUXCTL_LONG_PKT | 0x7));
|
|
|
|
|
|
|
|
val = PHY_READ(sc, BRGPHY_MII_PHY_EXTCTL);
|
2008-08-12 00:52:10 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_PHY_EXTCTL,
|
2007-06-07 02:21:38 +00:00
|
|
|
val & ~BRGPHY_PHY_EXTCTL_HIGH_LA);
|
2007-01-15 22:21:44 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
brgphy_reset(struct mii_softc *sc)
|
|
|
|
{
|
2007-01-16 00:52:26 +00:00
|
|
|
struct brgphy_softc *bsc = (struct brgphy_softc *)sc;
|
|
|
|
struct bge_softc *bge_sc = NULL;
|
|
|
|
struct bce_softc *bce_sc = NULL;
|
|
|
|
struct ifnet *ifp;
|
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
|
|
|
int val;
|
2003-05-03 19:06:50 +00:00
|
|
|
|
2008-06-13 01:20:29 +00:00
|
|
|
/* Perform a standard PHY reset. */
|
2003-05-03 19:06:50 +00:00
|
|
|
mii_phy_reset(sc);
|
|
|
|
|
2008-06-13 01:20:29 +00:00
|
|
|
/* Handle any PHY specific procedures following the reset. */
|
2007-06-07 02:21:38 +00:00
|
|
|
switch (bsc->mii_oui) {
|
|
|
|
case MII_OUI_BROADCOM:
|
2003-05-03 19:06:50 +00:00
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
case MII_OUI_xxBROADCOM:
|
|
|
|
switch (bsc->mii_model) {
|
|
|
|
case MII_MODEL_xxBROADCOM_BCM5400:
|
2007-01-15 21:43:43 +00:00
|
|
|
bcm5401_load_dspcode(sc);
|
2007-06-07 02:21:38 +00:00
|
|
|
break;
|
|
|
|
case MII_MODEL_xxBROADCOM_BCM5401:
|
|
|
|
if (bsc->mii_rev == 1 || bsc->mii_rev == 3)
|
|
|
|
bcm5401_load_dspcode(sc);
|
|
|
|
break;
|
|
|
|
case MII_MODEL_xxBROADCOM_BCM5411:
|
|
|
|
bcm5411_load_dspcode(sc);
|
|
|
|
break;
|
2010-02-20 22:01:24 +00:00
|
|
|
case MII_MODEL_xxBROADCOM_BCM54K2:
|
|
|
|
bcm54k2_load_dspcode(sc);
|
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
}
|
2007-01-15 21:43:43 +00:00
|
|
|
break;
|
2007-06-07 02:21:38 +00:00
|
|
|
case MII_OUI_xxBROADCOM_ALT1:
|
2010-10-27 17:16:40 +00:00
|
|
|
case MII_OUI_xxBROADCOM_ALT2:
|
2003-05-03 19:06:50 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2003-07-16 00:09:56 +00:00
|
|
|
ifp = sc->mii_pdata->mii_ifp;
|
|
|
|
|
2006-04-10 19:55:23 +00:00
|
|
|
/* Find the driver associated with this PHY. */
|
|
|
|
if (strcmp(ifp->if_dname, "bge") == 0) {
|
2006-12-20 00:34:12 +00:00
|
|
|
bge_sc = ifp->if_softc;
|
2006-04-10 19:55:23 +00:00
|
|
|
} else if (strcmp(ifp->if_dname, "bce") == 0) {
|
|
|
|
bce_sc = ifp->if_softc;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bge_sc) {
|
2007-01-15 21:43:43 +00:00
|
|
|
/* Fix up various bugs */
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_5704_A0_BUG)
|
2007-01-15 21:43:43 +00:00
|
|
|
brgphy_fixup_5704_a0_bug(sc);
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_ADC_BUG)
|
2007-02-12 23:33:05 +00:00
|
|
|
brgphy_fixup_adc_bug(sc);
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_ADJUST_TRIM)
|
2007-02-12 22:51:25 +00:00
|
|
|
brgphy_fixup_adjust_trim(sc);
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_BER_BUG)
|
2007-01-15 21:43:43 +00:00
|
|
|
brgphy_fixup_ber_bug(sc);
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_CRC_BUG)
|
2007-02-12 23:58:52 +00:00
|
|
|
brgphy_fixup_crc_bug(sc);
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_JITTER_BUG)
|
2007-01-15 21:43:43 +00:00
|
|
|
brgphy_fixup_jitter_bug(sc);
|
2007-01-15 22:21:44 +00:00
|
|
|
|
|
|
|
brgphy_jumbo_settings(sc, ifp->if_mtu);
|
|
|
|
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_WIRESPEED)
|
2007-01-15 22:21:44 +00:00
|
|
|
brgphy_ethernet_wirespeed(sc);
|
|
|
|
|
|
|
|
/* Enable Link LED on Dell boxes */
|
2010-10-05 23:03:48 +00:00
|
|
|
if (bge_sc->bge_phy_flags & BGE_PHY_NO_3LED) {
|
2006-12-02 19:36:25 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_MII_PHY_EXTCTL,
|
2007-01-15 22:21:44 +00:00
|
|
|
PHY_READ(sc, BRGPHY_MII_PHY_EXTCTL) &
|
|
|
|
~BRGPHY_PHY_EXTCTL_3_LED);
|
2006-04-10 19:55:23 +00:00
|
|
|
}
|
2008-04-29 19:47:13 +00:00
|
|
|
|
|
|
|
/* Adjust output voltage (From Linux driver) */
|
|
|
|
if (bge_sc->bge_asicrev == BGE_ASICREV_BCM5906)
|
|
|
|
PHY_WRITE(sc, BRGPHY_MII_EPHY_PTEST, 0x12);
|
2007-01-15 22:21:44 +00:00
|
|
|
} else if (bce_sc) {
|
2007-06-07 02:21:38 +00:00
|
|
|
if (BCE_CHIP_NUM(bce_sc) == BCE_CHIP_NUM_5708 &&
|
2008-03-05 22:58:02 +00:00
|
|
|
(bce_sc->bce_phy_flags & BCE_PHY_SERDES_FLAG)) {
|
2007-06-07 02:21:38 +00:00
|
|
|
|
|
|
|
/* Store autoneg capabilities/results in digital block (Page 0) */
|
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_BLOCK_ADDR, BRGPHY_5708S_DIG3_PG2);
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_PG2_DIGCTL_3_0,
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_PG2_DIGCTL_3_0_USE_IEEE);
|
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_BLOCK_ADDR, BRGPHY_5708S_DIG_PG0);
|
|
|
|
|
|
|
|
/* Enable fiber mode and autodetection */
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_PG0_1000X_CTL1,
|
|
|
|
PHY_READ(sc, BRGPHY_5708S_PG0_1000X_CTL1) |
|
|
|
|
BRGPHY_5708S_PG0_1000X_CTL1_AUTODET_EN |
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_PG0_1000X_CTL1_FIBER_MODE);
|
|
|
|
|
|
|
|
/* Enable parallel detection */
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_PG0_1000X_CTL2,
|
|
|
|
PHY_READ(sc, BRGPHY_5708S_PG0_1000X_CTL2) |
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_PG0_1000X_CTL2_PAR_DET_EN);
|
|
|
|
|
|
|
|
/* Advertise 2.5G support through next page during autoneg */
|
|
|
|
if (bce_sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_ANEG_NXT_PG_XMIT1,
|
|
|
|
PHY_READ(sc, BRGPHY_5708S_ANEG_NXT_PG_XMIT1) |
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_ANEG_NXT_PG_XMIT1_25G);
|
|
|
|
|
|
|
|
/* Increase TX signal amplitude */
|
|
|
|
if ((BCE_CHIP_ID(bce_sc) == BCE_CHIP_ID_5708_A0) ||
|
|
|
|
(BCE_CHIP_ID(bce_sc) == BCE_CHIP_ID_5708_B0) ||
|
|
|
|
(BCE_CHIP_ID(bce_sc) == BCE_CHIP_ID_5708_B1)) {
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_BLOCK_ADDR,
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_TX_MISC_PG5);
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_PG5_TXACTL1,
|
2007-06-07 02:21:38 +00:00
|
|
|
PHY_READ(sc, BRGPHY_5708S_PG5_TXACTL1) & ~0x30);
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_BLOCK_ADDR,
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_DIG_PG0);
|
|
|
|
}
|
|
|
|
|
2008-08-12 00:55:03 +00:00
|
|
|
/* Backplanes use special driver/pre-driver/pre-emphasis values. */
|
2007-06-07 02:21:38 +00:00
|
|
|
if ((bce_sc->bce_shared_hw_cfg & BCE_SHARED_HW_CFG_PHY_BACKPLANE) &&
|
|
|
|
(bce_sc->bce_port_hw_cfg & BCE_PORT_HW_CFG_CFG_TXCTL3_MASK)) {
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_BLOCK_ADDR,
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_TX_MISC_PG5);
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_PG5_TXACTL3,
|
|
|
|
bce_sc->bce_port_hw_cfg &
|
2007-06-07 02:21:38 +00:00
|
|
|
BCE_PORT_HW_CFG_CFG_TXCTL3_MASK);
|
2008-08-12 00:55:03 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_5708S_BLOCK_ADDR,
|
2007-06-07 02:21:38 +00:00
|
|
|
BRGPHY_5708S_DIG_PG0);
|
|
|
|
}
|
2010-03-18 20:57:57 +00:00
|
|
|
} else if (BCE_CHIP_NUM(bce_sc) == BCE_CHIP_NUM_5709 &&
|
|
|
|
(bce_sc->bce_phy_flags & BCE_PHY_SERDES_FLAG)) {
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Select the SerDes Digital block of the AN MMD. */
|
|
|
|
PHY_WRITE(sc, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_SERDES_DIG);
|
2010-03-18 20:57:57 +00:00
|
|
|
val = PHY_READ(sc, BRGPHY_SERDES_DIG_1000X_CTL1);
|
|
|
|
val &= ~BRGPHY_SD_DIG_1000X_CTL1_AUTODET;
|
|
|
|
val |= BRGPHY_SD_DIG_1000X_CTL1_FIBER;
|
|
|
|
PHY_WRITE(sc, BRGPHY_SERDES_DIG_1000X_CTL1, val);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Select the Over 1G block of the AN MMD. */
|
2010-03-18 20:57:57 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_OVER_1G);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Enable autoneg "Next Page" to advertise 2.5G support. */
|
|
|
|
val = PHY_READ(sc, BRGPHY_OVER_1G_UNFORMAT_PG1);
|
2010-03-18 20:57:57 +00:00
|
|
|
if (bce_sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
|
|
|
|
val |= BRGPHY_5708S_ANEG_NXT_PG_XMIT1_25G;
|
|
|
|
else
|
|
|
|
val &= ~BRGPHY_5708S_ANEG_NXT_PG_XMIT1_25G;
|
|
|
|
PHY_WRITE(sc, BRGPHY_OVER_1G_UNFORMAT_PG1, val);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Select the Multi-Rate Backplane Ethernet block of the AN MMD. */
|
2010-03-18 20:57:57 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_MRBE);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Enable MRBE speed autoneg. */
|
|
|
|
val = PHY_READ(sc, BRGPHY_MRBE_MSG_PG5_NP);
|
2010-03-18 20:57:57 +00:00
|
|
|
val |= BRGPHY_MRBE_MSG_PG5_NP_MBRE |
|
|
|
|
BRGPHY_MRBE_MSG_PG5_NP_T2;
|
|
|
|
PHY_WRITE(sc, BRGPHY_MRBE_MSG_PG5_NP, val);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Select the Clause 73 User B0 block of the AN MMD. */
|
|
|
|
PHY_WRITE(sc, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_CL73_USER_B0);
|
2010-03-18 20:57:57 +00:00
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Enable MRBE speed autoneg. */
|
2010-03-18 20:57:57 +00:00
|
|
|
PHY_WRITE(sc, BRGPHY_CL73_USER_B0_MBRE_CTL1,
|
|
|
|
BRGPHY_CL73_USER_B0_MBRE_CTL1_NP_AFT_BP |
|
|
|
|
BRGPHY_CL73_USER_B0_MBRE_CTL1_STA_MGR |
|
|
|
|
BRGPHY_CL73_USER_B0_MBRE_CTL1_ANEG);
|
|
|
|
|
2010-09-07 23:08:38 +00:00
|
|
|
/* Restore IEEE0 block (assumed in all brgphy(4) code). */
|
|
|
|
PHY_WRITE(sc, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
|
2010-03-18 20:57:57 +00:00
|
|
|
} else if (BCE_CHIP_NUM(bce_sc) == BCE_CHIP_NUM_5709) {
|
2008-06-13 01:20:29 +00:00
|
|
|
if ((BCE_CHIP_REV(bce_sc) == BCE_CHIP_REV_Ax) ||
|
|
|
|
(BCE_CHIP_REV(bce_sc) == BCE_CHIP_REV_Bx))
|
|
|
|
brgphy_fixup_disable_early_dac(sc);
|
2010-09-07 23:08:38 +00:00
|
|
|
|
2008-06-13 01:20:29 +00:00
|
|
|
brgphy_jumbo_settings(sc, ifp->if_mtu);
|
|
|
|
brgphy_ethernet_wirespeed(sc);
|
2007-06-07 02:21:38 +00:00
|
|
|
} else {
|
|
|
|
brgphy_fixup_ber_bug(sc);
|
|
|
|
brgphy_jumbo_settings(sc, ifp->if_mtu);
|
|
|
|
brgphy_ethernet_wirespeed(sc);
|
|
|
|
}
|
2003-08-20 04:06:00 +00:00
|
|
|
}
|
2003-05-03 19:06:50 +00:00
|
|
|
}
|