1998-12-28 04:56:24 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 1997, 1998
|
|
|
|
* Nan Yang Computer Services Limited. All rights reserved.
|
|
|
|
*
|
|
|
|
* This software is distributed under the so-called ``Berkeley
|
|
|
|
* License'':
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by Nan Yang Computer
|
|
|
|
* Services Limited.
|
|
|
|
* 4. Neither the name of the Company nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* This software is provided ``as is'', and any express or implied
|
|
|
|
* warranties, including, but not limited to, the implied warranties of
|
|
|
|
* merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
* In no event shall the company or contributors be liable for any
|
|
|
|
* direct, indirect, incidental, special, exemplary, or consequential
|
|
|
|
* damages (including, but not limited to, procurement of substitute
|
|
|
|
* goods or services; loss of use, data, or profits; or business
|
|
|
|
* interruption) however caused and on any theory of liability, whether
|
|
|
|
* in contract, strict liability, or tort (including negligence or
|
|
|
|
* otherwise) arising in any way out of the use of this software, even if
|
|
|
|
* advised of the possibility of such damage.
|
|
|
|
*
|
1999-02-11 06:44:46 +00:00
|
|
|
* $Id: vinumstate.c,v 1.7.2.3 1999/02/11 05:53:52 grog Exp $
|
1998-12-28 04:56:24 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#define REALLYKERNEL
|
1998-12-28 16:28:24 +00:00
|
|
|
#include "opt_vinum.h"
|
|
|
|
#include <dev/vinum/vinumhdr.h>
|
|
|
|
#include <dev/vinum/request.h>
|
1998-12-28 04:56:24 +00:00
|
|
|
|
|
|
|
/* Update drive state */
|
|
|
|
/* Return 1 if the state changes, otherwise 0 */
|
|
|
|
int
|
1999-01-21 00:40:32 +00:00
|
|
|
set_drive_state(int driveno, enum drivestate newstate, enum setstateflags flags)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
|
|
|
struct drive *drive = &DRIVE[driveno];
|
|
|
|
int oldstate = drive->state;
|
|
|
|
int sdno;
|
|
|
|
|
|
|
|
if (drive->state == drive_unallocated) /* no drive to do anything with, */
|
|
|
|
return 0;
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
if (newstate != oldstate) { /* don't change it if it's not different */
|
|
|
|
if ((newstate == drive_down) /* the drive's going down */
|
|
|
|
&&(!(flags & setstate_force))
|
|
|
|
&& (drive->opencount != 0)) /* we can't do it */
|
|
|
|
return 0; /* don't do it */
|
|
|
|
drive->state = newstate; /* set the state */
|
|
|
|
if (drive->label.name[0] != '\0') /* we have a name, */
|
1999-02-11 06:44:46 +00:00
|
|
|
printf("vinum: drive %s is %s\n",
|
|
|
|
drive->label.name,
|
|
|
|
drive_state(drive->state));
|
1999-01-21 00:40:32 +00:00
|
|
|
if ((drive->state == drive_up)
|
1998-12-28 04:56:24 +00:00
|
|
|
&& (drive->vp == NULL)) /* should be open, but we're not */
|
1999-01-21 00:40:32 +00:00
|
|
|
init_drive(drive, 1); /* which changes the state again */
|
|
|
|
if (newstate != oldstate) { /* state has changed */
|
1998-12-28 04:56:24 +00:00
|
|
|
for (sdno = 0; sdno < vinum_conf.subdisks_used; sdno++) { /* find this drive's subdisks */
|
|
|
|
if (SD[sdno].driveno == driveno) /* belongs to this drive */
|
1999-01-21 00:40:32 +00:00
|
|
|
update_sd_state(sdno); /* update the state */
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
1999-01-21 00:40:32 +00:00
|
|
|
if ((flags & setstate_configuring) == 0) /* configuring? */
|
|
|
|
save_config(); /* no: save the updated configuration now */
|
1998-12-28 04:56:24 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Try to set the subdisk state. Return 1 if state changed to
|
1998-12-28 04:56:24 +00:00
|
|
|
* what we wanted, -1 if it changed to something else, and 0
|
|
|
|
* if no change.
|
|
|
|
*
|
|
|
|
* This routine is called both from the user (up, down states
|
|
|
|
* only) and internally.
|
|
|
|
*/
|
|
|
|
int
|
1999-01-21 00:40:32 +00:00
|
|
|
set_sd_state(int sdno, enum sdstate newstate, enum setstateflags flags)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
|
|
|
struct sd *sd = &SD[sdno];
|
1999-01-21 00:40:32 +00:00
|
|
|
struct plex *plex;
|
|
|
|
struct volume *vol;
|
1998-12-28 04:56:24 +00:00
|
|
|
int oldstate = sd->state;
|
|
|
|
int status = 1; /* status to return */
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
if ((newstate == oldstate)
|
|
|
|
|| (sd->state == sd_unallocated)) /* no subdisk to do anything with, */
|
1998-12-28 04:56:24 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (sd->driveoffset < 0) { /* not allocated space */
|
|
|
|
sd->state = sd_down;
|
1999-01-21 00:40:32 +00:00
|
|
|
if (newstate != sd_down) {
|
|
|
|
if (sd->plexno >= 0)
|
|
|
|
sdstatemap(&PLEX[sd->plexno]); /* count up subdisks */
|
1998-12-28 04:56:24 +00:00
|
|
|
return -1;
|
1999-01-21 00:40:32 +00:00
|
|
|
}
|
1998-12-28 04:56:24 +00:00
|
|
|
} else { /* space allocated */
|
1999-01-21 00:40:32 +00:00
|
|
|
switch (newstate) {
|
1998-12-28 04:56:24 +00:00
|
|
|
case sd_down:
|
|
|
|
if ((!flags & setstate_force) /* but gently */
|
|
|
|
&&(sd->plexno >= 0)) /* and we're attached to a plex, */
|
|
|
|
return 0; /* don't do it */
|
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_up:
|
|
|
|
if (DRIVE[sd->driveno].state != drive_up) /* can't bring the sd up if the drive isn't, */
|
|
|
|
return 0; /* not even by force */
|
|
|
|
switch (sd->state) {
|
|
|
|
case sd_crashed:
|
|
|
|
case sd_down: /* been down, no data lost */
|
1999-01-21 00:40:32 +00:00
|
|
|
if ((sd->plexno >= 0) /* we're associated with a plex */
|
1998-12-28 04:56:24 +00:00
|
|
|
&&(((PLEX[sd->plexno].state < plex_firstup) /* and it's not up */
|
|
|
|
||(PLEX[sd->plexno].subdisks > 1)))) /* or it's the only one */
|
1999-01-21 00:40:32 +00:00
|
|
|
break; /* do it */
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* XXX Get this right: make sure that other plexes in
|
1998-12-28 04:56:24 +00:00
|
|
|
* the volume cover this address space, otherwise
|
1999-01-21 00:40:32 +00:00
|
|
|
* we make this one sd_up.
|
|
|
|
*
|
|
|
|
* Do we even want this any more?
|
|
|
|
*/
|
1998-12-28 04:56:24 +00:00
|
|
|
sd->state = sd_reborn; /* here it is again */
|
1999-02-11 06:44:46 +00:00
|
|
|
printf("vinum: subdisk %s is %s, not %s\n",
|
|
|
|
sd->name,
|
|
|
|
sd_state(sd->state),
|
|
|
|
sd_state(newstate));
|
1998-12-28 04:56:24 +00:00
|
|
|
status = -1;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_init: /* brand new */
|
|
|
|
if (flags & setstate_configuring) /* we're doing this while configuring */
|
|
|
|
break;
|
1999-01-21 00:40:32 +00:00
|
|
|
/* otherwise it's like being empty */
|
|
|
|
/* FALLTHROUGH */
|
1998-12-28 04:56:24 +00:00
|
|
|
|
|
|
|
case sd_empty:
|
1999-01-21 00:40:32 +00:00
|
|
|
if ((sd->plexno >= 0) /* we're associated with a plex */
|
1998-12-28 04:56:24 +00:00
|
|
|
&&(((PLEX[sd->plexno].state < plex_firstup) /* and it's not up */
|
|
|
|
||(PLEX[sd->plexno].subdisks > 1)))) /* or it's the only one */
|
|
|
|
break;
|
1999-01-21 00:40:32 +00:00
|
|
|
/* Otherwise it's just out of date */
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
|
|
|
|
case sd_stale: /* out of date info, need reviving */
|
|
|
|
case sd_obsolete:
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* 1. If the subdisk is not part of a plex, bring it up, don't revive.
|
|
|
|
*
|
1999-01-21 00:40:32 +00:00
|
|
|
* 2. If the subdisk is part of a one-plex volume or an unattached plex,
|
|
|
|
* and it's not RAID-5, we *can't revive*. The subdisk doesn't
|
|
|
|
* change its state.
|
|
|
|
*
|
|
|
|
* 3. If the subdisk is part of a one-plex volume or an unattached plex,
|
|
|
|
* and it's RAID-5, but more than one subdisk is down, we *still
|
|
|
|
* can't revive*. The subdisk doesn't change its state.
|
|
|
|
*
|
|
|
|
* 4. If the subdisk is part of a multi-plex volume, we'll change to
|
|
|
|
* reviving and let the revive routines find out whether it will work
|
|
|
|
* or not. If they don't, the revive stops with an error message,
|
1999-01-29 01:17:54 +00:00
|
|
|
* but the state doesn't change (FWIW).
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
if (sd->plexno < 0) /* no plex associated, */
|
|
|
|
break; /* bring it up */
|
|
|
|
plex = &PLEX[sd->plexno];
|
|
|
|
if (plex->volno >= 0) /* have a volume */
|
|
|
|
vol = &VOL[plex->volno];
|
|
|
|
else
|
|
|
|
vol = NULL;
|
1999-02-11 06:44:46 +00:00
|
|
|
if (((vol == NULL) /* no volume */
|
|
|
|
||(vol->plexes == 1)) /* or only one plex in volume */
|
1999-01-21 00:40:32 +00:00
|
|
|
&&((plex->organization != plex_raid5) /* or it's a RAID-5 plex */
|
|
|
|
||(plex->sddowncount > 1))) /* with more than one subdisk down, */
|
|
|
|
return 0; /* can't do it */
|
|
|
|
sd->state = sd_reviving; /* put in reviving state */
|
|
|
|
sd->revived = 0; /* nothing done yet */
|
|
|
|
status = EAGAIN; /* need to repeat */
|
|
|
|
break;
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* XXX This is silly. We need to be able to
|
1999-01-21 00:40:32 +00:00
|
|
|
* bring the subdisk up when it's finished
|
|
|
|
* initializing, but not from the user. We
|
|
|
|
* use the same ioctl in each case, but Vinum(8)
|
|
|
|
* doesn't supply the -f flag, so we use that
|
1999-01-29 01:17:54 +00:00
|
|
|
* to decide whether to do it or not
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
case sd_initializing:
|
|
|
|
if (flags & setstate_force)
|
|
|
|
break; /* do it if we have to */
|
|
|
|
return 0; /* no */
|
|
|
|
|
|
|
|
case sd_reviving:
|
|
|
|
if (flags & setstate_force) /* insist, */
|
|
|
|
break;
|
|
|
|
return EAGAIN; /* no, try again */
|
1998-12-28 04:56:24 +00:00
|
|
|
|
|
|
|
default: /* can't do it */
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* There's no way to bring subdisks up directly from
|
1998-12-28 04:56:24 +00:00
|
|
|
* other states. First they need to be initialized
|
1999-01-29 01:17:54 +00:00
|
|
|
* or revived
|
|
|
|
*/
|
1998-12-28 04:56:24 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default: /* other ones, only internal with force */
|
1999-01-27 20:09:21 +00:00
|
|
|
if ((flags & setstate_force) == 0) /* no force? What's this? */
|
1998-12-28 04:56:24 +00:00
|
|
|
return 0; /* don't do it */
|
|
|
|
}
|
|
|
|
}
|
1999-01-21 00:40:32 +00:00
|
|
|
if (status == 1) { /* we can do it, */
|
|
|
|
sd->state = newstate;
|
|
|
|
printf("vinum: %s is %s\n", sd->name, sd_state(sd->state));
|
|
|
|
} else /* we don't get here with status 0 */
|
|
|
|
printf("vinum: %s is %s, not %s\n", sd->name, sd_state(sd->state), sd_state(newstate));
|
|
|
|
if (sd->plexno >= 0) /* we belong to a plex */
|
|
|
|
update_plex_state(sd->plexno); /* update plex state */
|
|
|
|
if ((flags & setstate_configuring) == 0) /* save config now */
|
|
|
|
save_config();
|
1998-12-28 04:56:24 +00:00
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Set the state of a plex dependent on its subdisks.
|
1999-01-21 00:40:32 +00:00
|
|
|
* This time round, we'll let plex state just reflect
|
|
|
|
* aggregate subdisk state, so this becomes an order of
|
|
|
|
* magnitude less complicated. In particular, ignore
|
|
|
|
* the requested state.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
set_plex_state(int plexno, enum plexstate state, enum setstateflags flags)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
1999-01-21 00:40:32 +00:00
|
|
|
struct plex *plex; /* point to our plex */
|
|
|
|
enum plexstate oldstate;
|
|
|
|
enum volplexstate vps; /* how do we compare with the other plexes? */
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
plex = &PLEX[plexno]; /* point to our plex */
|
|
|
|
oldstate = plex->state;
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
if ((plex->state == plex_unallocated) /* or no plex to do anything with, */
|
|
|
|
||((state == oldstate) /* or we're already there */
|
|
|
|
&&(state != plex_up))) /* and it's not up */
|
|
|
|
return 0;
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
vps = vpstate(plex); /* how do we compare with the other plexes? */
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
switch (state) {
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* We can't bring the plex up, even by force,
|
1999-01-21 00:40:32 +00:00
|
|
|
* unless it's ready. update_plex_state
|
1999-01-29 01:17:54 +00:00
|
|
|
* checks that
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
case plex_up: /* bring the plex up */
|
|
|
|
update_plex_state(plex->plexno); /* it'll come up if it can */
|
|
|
|
break;
|
|
|
|
|
|
|
|
case plex_down: /* want to take it down */
|
|
|
|
if (((vps == volplex_onlyus) /* we're the only one up */
|
|
|
|
||(vps == volplex_onlyusup)) /* we're the only one up */
|
|
|
|
&&(!(flags & setstate_force))) /* and we don't want to use force */
|
|
|
|
return 0; /* can't do it */
|
|
|
|
plex->state = state; /* do it */
|
|
|
|
invalidate_subdisks(plex, sd_down); /* and down all up subdisks */
|
|
|
|
break;
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* This is only requested internally.
|
|
|
|
* Trust ourselves
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
case plex_faulty:
|
|
|
|
plex->state = state; /* do it */
|
|
|
|
invalidate_subdisks(plex, sd_crashed); /* and crash all up subdisks */
|
|
|
|
break;
|
|
|
|
|
|
|
|
case plex_initializing:
|
|
|
|
/* XXX consider what safeguards we need here */
|
|
|
|
if ((flags & setstate_force) == 0)
|
|
|
|
return 0;
|
|
|
|
plex->state = state; /* do it */
|
|
|
|
break;
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
/* What's this? */
|
1998-12-28 04:56:24 +00:00
|
|
|
default:
|
1999-01-21 00:40:32 +00:00
|
|
|
return 0;
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
1999-01-21 00:40:32 +00:00
|
|
|
if (plex->state != oldstate) /* we've changed, */
|
|
|
|
printf("vinum: %s is %s\n", plex->name, plex_state(plex->state)); /* tell them about it */
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Now see what we have left, and whether
|
|
|
|
* we're taking the volume down
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
if (plex->volno >= 0) /* we have a volume */
|
|
|
|
update_volume_state(plex->volno); /* update its state */
|
|
|
|
if ((flags & setstate_configuring) == 0) /* save config now */
|
|
|
|
save_config(); /* yes: save the updated configuration */
|
|
|
|
return 1;
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
/* Update the state of a plex dependent on its plexes. */
|
|
|
|
int
|
|
|
|
set_volume_state(int volno, enum volumestate state, enum setstateflags flags)
|
|
|
|
{
|
|
|
|
struct volume *vol = &VOL[volno]; /* point to our volume */
|
|
|
|
|
|
|
|
if ((vol->state == state) /* we're there already */
|
|
|
|
||(vol->state == volume_unallocated)) /* or no volume to do anything with, */
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (state == volume_up) /* want to come up */
|
|
|
|
update_volume_state(volno);
|
|
|
|
else if (state == volume_down) { /* want to go down */
|
|
|
|
if ((vol->opencount == 0) /* not open */
|
|
|
|
||((flags & setstate_force) != 0)) { /* or we're forcing */
|
|
|
|
vol->state = volume_down;
|
|
|
|
printf("vinum: volume %s is %s\n", vol->name, volume_state(vol->state));
|
|
|
|
if ((flags & setstate_configuring) == 0) /* save config now */
|
|
|
|
save_config(); /* yes: save the updated configuration */
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0; /* no change */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set the state of a subdisk based on its environment */
|
1998-12-28 04:56:24 +00:00
|
|
|
void
|
1999-01-21 00:40:32 +00:00
|
|
|
update_sd_state(int sdno)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
1999-01-21 00:40:32 +00:00
|
|
|
struct sd *sd;
|
|
|
|
struct drive *drive;
|
|
|
|
enum sdstate oldstate;
|
|
|
|
|
|
|
|
sd = &SD[sdno];
|
|
|
|
oldstate = sd->state;
|
|
|
|
drive = &DRIVE[sd->driveno];
|
|
|
|
|
|
|
|
if (drive->state == drive_up) {
|
|
|
|
switch (sd->state) {
|
|
|
|
case sd_down:
|
|
|
|
case sd_crashed:
|
|
|
|
sd->state = sd_reborn; /* back up again with no loss */
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else { /* down or worse */
|
|
|
|
switch (sd->state) {
|
|
|
|
case sd_up:
|
|
|
|
case sd_reborn:
|
|
|
|
case sd_reviving:
|
|
|
|
sd->state = sd_crashed; /* lost our drive */
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (sd->state != oldstate) /* state has changed, */
|
|
|
|
printf("vinum: %s is %s\n", sd->name, sd_state(sd->state)); /* say so */
|
|
|
|
if (sd->plexno >= 0) /* we're part of a plex, */
|
|
|
|
update_plex_state(sd->plexno); /* update its state */
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
/* Set the state of a plex based on its environment */
|
1998-12-28 04:56:24 +00:00
|
|
|
void
|
1999-01-21 00:40:32 +00:00
|
|
|
update_plex_state(int plexno)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
1999-01-21 00:40:32 +00:00
|
|
|
struct plex *plex; /* point to our plex */
|
|
|
|
enum plexstate oldstate;
|
|
|
|
enum volplexstate vps; /* how do we compare with the other plexes? */
|
|
|
|
enum sdstates statemap; /* get a map of the subdisk states */
|
|
|
|
|
|
|
|
plex = &PLEX[plexno]; /* point to our plex */
|
|
|
|
oldstate = plex->state;
|
|
|
|
|
|
|
|
vps = vpstate(plex); /* how do we compare with the other plexes? */
|
|
|
|
statemap = sdstatemap(plex); /* get a map of the subdisk states */
|
|
|
|
|
|
|
|
if (statemap == sd_upstate) /* all subdisks ready for action */
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* All the subdisks are up. This also means that
|
1999-01-21 00:40:32 +00:00
|
|
|
* they are consistent, so we can just bring
|
1999-01-29 01:17:54 +00:00
|
|
|
* the plex up
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
plex->state = plex_up; /* go for it */
|
|
|
|
else if (statemap == sd_emptystate) { /* nothing done yet */
|
1999-02-11 06:44:46 +00:00
|
|
|
if ((plex->organization == plex_concat) /* only change this for concat and struped */
|
|
|
|
||(plex->organization == plex_striped)) {
|
|
|
|
if (((vps & (volplex_otherup | volplex_onlyus)) == 0) /* nothing is up */
|
|
|
|
&&(plex->state == plex_init) /* we're brand spanking new */
|
|
|
|
&&(plex->volno >= 0) /* and we have a volume */
|
|
|
|
&&(VOL[plex->volno].flags & VF_CONFIG_SETUPSTATE)) { /* and we consider that up */
|
|
|
|
/*
|
|
|
|
* Conceptually, an empty plex does not contain valid data,
|
|
|
|
* but normally we'll see this state when we have just
|
|
|
|
* created a plex, and it's either consistent from earlier,
|
|
|
|
* or we don't care about the previous contents (we're going
|
|
|
|
* to create a file system or use it for swap).
|
|
|
|
*
|
|
|
|
* We need to do this in one swell foop: on the next call
|
|
|
|
* we will no longer be just empty.
|
|
|
|
*
|
|
|
|
* This code assumes that all the other plexes are also
|
|
|
|
* capable of coming up (i.e. all the sds are up), but
|
|
|
|
* that's OK: we'll come back to this function for the remaining
|
|
|
|
* plexes in the volume.
|
|
|
|
*/
|
|
|
|
struct volume *vol = &VOL[plex->volno];
|
|
|
|
int plexno;
|
|
|
|
|
|
|
|
for (plexno = 0; plexno < vol->plexes; plexno++)
|
|
|
|
PLEX[vol->plex[plexno]].state = plex_up;
|
|
|
|
} else if ((vps & volplex_otherup) == 0) { /* no other plexes up */
|
|
|
|
int sdno;
|
|
|
|
|
|
|
|
plex->state = plex_up; /* we can call that up */
|
|
|
|
for (sdno = 0; sdno < plex->subdisks; sdno++) { /* change the subdisks to up state */
|
|
|
|
SD[plex->sdnos[sdno]].state = sd_up;
|
|
|
|
printf("vinum: %s is up\n", SD[plex->sdnos[sdno]].name); /* tell them about it */
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
plex->state = plex_faulty; /* no, it's down */
|
|
|
|
} else /* invalid or RAID-5 organization */
|
|
|
|
plex->state = plex_faulty; /* it's down */
|
1999-01-27 20:09:21 +00:00
|
|
|
} else if ((statemap & (sd_upstate | sd_rebornstate)) == statemap) /* all up or reborn */
|
1999-01-21 00:40:32 +00:00
|
|
|
plex->state = plex_flaky;
|
|
|
|
else if (statemap & (sd_upstate | sd_rebornstate)) /* some up or reborn */
|
|
|
|
plex->state = plex_corrupt; /* corrupt */
|
|
|
|
else if (statemap & sd_initstate) /* some subdisks initializing */
|
|
|
|
plex->state = plex_initializing;
|
|
|
|
else /* nothing at all up */
|
|
|
|
plex->state = plex_faulty;
|
|
|
|
|
|
|
|
if (plex->state != oldstate) /* state has changed, */
|
|
|
|
printf("vinum: %s is %s\n", plex->name, plex_state(plex->state)); /* tell them about it */
|
|
|
|
if (plex->volno >= 0) /* we're part of a volume, */
|
|
|
|
update_volume_state(plex->volno); /* update its state */
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
/* Set volume state based on its components */
|
1998-12-28 04:56:24 +00:00
|
|
|
void
|
1999-01-21 00:40:32 +00:00
|
|
|
update_volume_state(int volno)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
1999-01-21 00:40:32 +00:00
|
|
|
struct volume *vol; /* our volume */
|
|
|
|
int plexno;
|
|
|
|
enum volumestate oldstate;
|
|
|
|
|
|
|
|
vol = &VOL[volno]; /* point to our volume */
|
|
|
|
oldstate = vol->state;
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
for (plexno = 0; plexno < vol->plexes; plexno++) {
|
|
|
|
struct plex *plex = &PLEX[vol->plex[plexno]]; /* point to the plex */
|
|
|
|
if (plex->state >= plex_corrupt) { /* something accessible, */
|
|
|
|
vol->state = volume_up;
|
|
|
|
break;
|
|
|
|
}
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
1999-01-21 00:40:32 +00:00
|
|
|
if (plexno == vol->plexes) /* didn't find an up plex */
|
|
|
|
vol->state = volume_down;
|
|
|
|
|
|
|
|
if (vol->state != oldstate) { /* state changed */
|
|
|
|
printf("vinum: %s is %s\n", vol->name, volume_state(vol->state));
|
|
|
|
save_config(); /* save the updated configuration */
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
1999-01-21 00:40:32 +00:00
|
|
|
}
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Called from request routines when they find
|
1999-01-21 00:40:32 +00:00
|
|
|
* a subdisk which is not kosher. Decide whether
|
|
|
|
* it warrants changing the state. Return
|
|
|
|
* REQUEST_DOWN if we can't use the subdisk,
|
1999-01-29 01:17:54 +00:00
|
|
|
* REQUEST_OK if we can.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* A prior version of this function checked the plex
|
1999-01-21 00:40:32 +00:00
|
|
|
* state as well. At the moment, consider plex states
|
|
|
|
* information for the user only. We'll ignore them
|
|
|
|
* and use the subdisk state only. The last version of
|
1999-01-29 01:17:54 +00:00
|
|
|
* this file with the old logic was 2.7. XXX
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
enum requeststatus
|
|
|
|
checksdstate(struct sd *sd, struct request *rq, daddr_t diskaddr, daddr_t diskend)
|
|
|
|
{
|
|
|
|
struct plex *plex = &PLEX[sd->plexno];
|
|
|
|
int writeop = (rq->bp->b_flags & B_READ) == 0; /* note if we're writing */
|
|
|
|
|
|
|
|
switch (sd->state) {
|
|
|
|
/* We shouldn't get called if the subdisk is up */
|
|
|
|
case sd_up:
|
|
|
|
return REQUEST_OK;
|
|
|
|
|
|
|
|
case sd_reviving:
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Access to a reviving subdisk depends on the
|
1999-01-21 00:40:32 +00:00
|
|
|
* organization of the plex:
|
|
|
|
|
|
|
|
* - If it's concatenated, access the subdisk up to its current
|
|
|
|
* revive point. If we want to write to the subdisk overlapping the
|
|
|
|
* current revive block, set the conflict flag in the request, asking
|
|
|
|
* the caller to put the request on the wait list, which will be
|
|
|
|
* attended to by revive_block when it's done.
|
|
|
|
* - if it's striped, we can't do it (we could do some hairy
|
|
|
|
* calculations, but it's unlikely to work).
|
|
|
|
* - if it's RAID-5, we can do it as long as only one
|
1999-01-29 01:17:54 +00:00
|
|
|
* subdisk is down
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
if (plex->state == plex_striped) /* plex is striped, */
|
|
|
|
return REQUEST_DOWN; /* can't access it now */
|
|
|
|
if (diskaddr > (sd->revived
|
|
|
|
+ sd->plexoffset
|
|
|
|
+ (sd->revive_blocksize >> DEV_BSHIFT))) /* we're beyond the end */
|
|
|
|
return REQUEST_DOWN; /* don't take the sd down again... */
|
|
|
|
else if (diskend > (sd->revived + sd->plexoffset)) { /* we finish beyond the end */
|
|
|
|
if (writeop) {
|
|
|
|
rq->flags |= XFR_REVIVECONFLICT; /* note a potential conflict */
|
|
|
|
rq->sdno = sd->sdno; /* and which sd last caused it */
|
|
|
|
} else
|
|
|
|
return REQUEST_DOWN; /* can't read this yet */
|
|
|
|
}
|
|
|
|
return REQUEST_OK;
|
|
|
|
|
|
|
|
case sd_reborn:
|
|
|
|
if (writeop)
|
|
|
|
return REQUEST_OK; /* always write to a reborn disk */
|
|
|
|
else /* don't allow a read */
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Handle the mapping. We don't want to reject
|
1999-01-21 00:40:32 +00:00
|
|
|
* a read request to a reborn subdisk if that's
|
1999-01-29 01:17:54 +00:00
|
|
|
* all we have. XXX
|
|
|
|
*/
|
1999-01-21 00:40:32 +00:00
|
|
|
return REQUEST_DOWN;
|
|
|
|
|
|
|
|
case sd_down:
|
|
|
|
if (writeop) /* writing to a consistent down disk */
|
|
|
|
set_sd_state(sd->sdno, sd_obsolete, setstate_force); /* it's not consistent now */
|
|
|
|
return REQUEST_DOWN; /* and it's down one way or another */
|
|
|
|
|
|
|
|
case sd_crashed:
|
|
|
|
if (writeop) /* writing to a consistent down disk */
|
|
|
|
set_sd_state(sd->sdno, sd_stale, setstate_force); /* it's not consistent now */
|
|
|
|
return REQUEST_DOWN; /* and it's down one way or another */
|
|
|
|
|
|
|
|
default:
|
|
|
|
return REQUEST_DOWN;
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* return a state map for the subdisks of a plex */
|
|
|
|
enum sdstates
|
1999-01-21 00:40:32 +00:00
|
|
|
sdstatemap(struct plex *plex)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
|
|
|
int sdno;
|
|
|
|
enum sdstates statemap = 0; /* note the states we find */
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
plex->sddowncount = 0; /* no subdisks down yet */
|
1998-12-28 04:56:24 +00:00
|
|
|
for (sdno = 0; sdno < plex->subdisks; sdno++) {
|
|
|
|
struct sd *sd = &SD[plex->sdnos[sdno]]; /* point to the subdisk */
|
|
|
|
|
|
|
|
switch (sd->state) {
|
|
|
|
case sd_empty:
|
|
|
|
statemap |= sd_emptystate;
|
1999-01-21 00:40:32 +00:00
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_init:
|
|
|
|
statemap |= sd_initstate;
|
1999-01-21 00:40:32 +00:00
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_down:
|
|
|
|
statemap |= sd_downstate;
|
1999-01-21 00:40:32 +00:00
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_crashed:
|
|
|
|
statemap |= sd_crashedstate;
|
1999-01-21 00:40:32 +00:00
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_obsolete:
|
|
|
|
statemap |= sd_obsolete;
|
1999-01-21 00:40:32 +00:00
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_stale:
|
|
|
|
statemap |= sd_stalestate;
|
1999-01-21 00:40:32 +00:00
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_reborn:
|
|
|
|
statemap |= sd_rebornstate;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_up:
|
|
|
|
statemap |= sd_upstate;
|
|
|
|
break;
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
case sd_initializing:
|
|
|
|
statemap |= sd_initstate;
|
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
1999-01-21 00:40:32 +00:00
|
|
|
|
|
|
|
case sd_unallocated:
|
|
|
|
case sd_uninit:
|
|
|
|
case sd_reviving:
|
|
|
|
statemap |= sd_otherstate;
|
|
|
|
(plex->sddowncount)++; /* another unusable subdisk */
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return statemap;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* determine the state of the volume relative to this plex */
|
|
|
|
enum volplexstate
|
|
|
|
vpstate(struct plex *plex)
|
|
|
|
{
|
|
|
|
struct volume *vol;
|
|
|
|
enum volplexstate state = volplex_onlyusdown; /* state to return */
|
|
|
|
int plexno;
|
|
|
|
|
|
|
|
if (plex->volno < 0) /* not associated with a volume */
|
|
|
|
return volplex_onlyusdown; /* assume the worst */
|
|
|
|
|
|
|
|
vol = &VOL[plex->volno]; /* point to our volume */
|
|
|
|
for (plexno = 0; plexno < vol->plexes; plexno++) {
|
|
|
|
if (&PLEX[vol->plex[plexno]] == plex) { /* us */
|
1999-01-21 00:40:32 +00:00
|
|
|
#if RAID5
|
|
|
|
if (PLEX[vol->plex[plexno]].state >= plex_degraded) /* are we up? */
|
|
|
|
state |= volplex_onlyus; /* yes */
|
|
|
|
#else
|
|
|
|
if (PLEX[vol->plex[plexno]].state >= plex_flaky) /* are we up? */
|
1998-12-28 04:56:24 +00:00
|
|
|
state |= volplex_onlyus; /* yes */
|
1999-01-21 00:40:32 +00:00
|
|
|
#endif
|
1998-12-28 04:56:24 +00:00
|
|
|
} else {
|
1999-01-21 00:40:32 +00:00
|
|
|
#if RAID5
|
|
|
|
if (PLEX[vol->plex[plexno]].state >= plex_degraded) /* not us */
|
|
|
|
state |= volplex_otherup; /* and when they were up, they were up */
|
|
|
|
else
|
|
|
|
state |= volplex_alldown; /* and when they were down, they were down */
|
|
|
|
#else
|
|
|
|
if (PLEX[vol->plex[plexno]].state >= plex_flaky) /* not us */
|
1998-12-28 04:56:24 +00:00
|
|
|
state |= volplex_otherup; /* and when they were up, they were up */
|
|
|
|
else
|
|
|
|
state |= volplex_alldown; /* and when they were down, they were down */
|
1999-01-21 00:40:32 +00:00
|
|
|
#endif
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return state; /* and when they were only halfway up */
|
|
|
|
} /* they were neither up nor down */
|
|
|
|
|
|
|
|
/* Check if all bits b are set in a */
|
|
|
|
int allset(int a, int b);
|
|
|
|
|
|
|
|
int
|
|
|
|
allset(int a, int b)
|
|
|
|
{
|
|
|
|
return (a & b) == b;
|
|
|
|
}
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
/* Invalidate the subdisks belonging to a plex */
|
|
|
|
void
|
|
|
|
invalidate_subdisks(struct plex *plex, enum sdstate state)
|
1998-12-28 04:56:24 +00:00
|
|
|
{
|
1999-01-21 00:40:32 +00:00
|
|
|
int sdno;
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
for (sdno = 0; sdno < plex->subdisks; sdno++) { /* for each subdisk */
|
|
|
|
struct sd *sd = &SD[plex->sdnos[sdno]];
|
1998-12-28 04:56:24 +00:00
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
switch (sd->state) {
|
|
|
|
case sd_unallocated:
|
|
|
|
case sd_uninit:
|
|
|
|
case sd_init:
|
|
|
|
case sd_initializing:
|
|
|
|
case sd_empty:
|
|
|
|
case sd_obsolete:
|
|
|
|
case sd_stale:
|
|
|
|
case sd_crashed:
|
|
|
|
case sd_down:
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
1999-01-21 00:40:32 +00:00
|
|
|
case sd_reviving:
|
|
|
|
case sd_reborn:
|
|
|
|
case sd_up:
|
|
|
|
set_sd_state(plex->sdnos[sdno], state, setstate_force);
|
1998-12-28 04:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Start an object, in other words do what we can to get it up.
|
1998-12-28 04:56:24 +00:00
|
|
|
* This is called from vinumioctl (VINUMSTART).
|
|
|
|
* Return error indications via ioctl_reply
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
start_object(struct vinum_ioctl_msg *data)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
int objindex = data->index; /* data gets overwritten */
|
|
|
|
struct _ioctl_reply *ioctl_reply = (struct _ioctl_reply *) data; /* format for returning replies */
|
1999-01-21 00:40:32 +00:00
|
|
|
enum setstateflags flags;
|
|
|
|
|
|
|
|
if (data->force != 0) /* are we going to use force? */
|
|
|
|
flags = setstate_force; /* yes */
|
|
|
|
else
|
|
|
|
flags = setstate_none; /* no */
|
1998-12-28 04:56:24 +00:00
|
|
|
|
|
|
|
switch (data->type) {
|
|
|
|
case drive_object:
|
1999-01-21 00:40:32 +00:00
|
|
|
status = set_drive_state(objindex, drive_up, flags);
|
|
|
|
if (DRIVE[objindex].state != drive_up) /* set status on whether we really did it */
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
else
|
|
|
|
ioctl_reply->error = 0;
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_object:
|
1999-01-21 00:40:32 +00:00
|
|
|
if (SD[objindex].state == sd_reviving) { /* reviving, */
|
1998-12-28 04:56:24 +00:00
|
|
|
ioctl_reply->error = revive_block(objindex); /* revive another block */
|
|
|
|
ioctl_reply->msg[0] = '\0'; /* no comment */
|
|
|
|
return;
|
|
|
|
}
|
1999-01-21 00:40:32 +00:00
|
|
|
status = set_sd_state(objindex, sd_up, flags); /* set state */
|
|
|
|
if (status == EAGAIN) { /* first revive, */
|
|
|
|
ioctl_reply->error = revive_block(objindex); /* revive the first block */
|
|
|
|
ioctl_reply->error = EAGAIN;
|
|
|
|
} else {
|
|
|
|
if (SD[objindex].state != sd_up) /* set status on whether we really did it */
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
else
|
|
|
|
ioctl_reply->error = 0;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case plex_object:
|
|
|
|
status = set_plex_state(objindex, plex_up, flags);
|
|
|
|
if (PLEX[objindex].state != plex_up) /* set status on whether we really did it */
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
else
|
|
|
|
ioctl_reply->error = 0;
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case volume_object:
|
1999-01-21 00:40:32 +00:00
|
|
|
status = set_volume_state(objindex, volume_up, flags);
|
|
|
|
if (VOL[objindex].state != volume_up) /* set status on whether we really did it */
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
else
|
|
|
|
ioctl_reply->error = 0;
|
1998-12-28 04:56:24 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
strcpy(ioctl_reply->msg, "Invalid object type");
|
|
|
|
return;
|
|
|
|
}
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* There's no point in saying anything here:
|
|
|
|
* the userland program does it better
|
|
|
|
*/
|
1998-12-28 04:56:24 +00:00
|
|
|
ioctl_reply->msg[0] = '\0';
|
|
|
|
}
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* Stop an object, in other words do what we can to get it down
|
1998-12-28 04:56:24 +00:00
|
|
|
* This is called from vinumioctl (VINUMSTOP).
|
|
|
|
* Return error indications via ioctl_reply.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
stop_object(struct vinum_ioctl_msg *data)
|
|
|
|
{
|
|
|
|
int status = 1;
|
|
|
|
int objindex = data->index; /* save the number from change */
|
|
|
|
struct _ioctl_reply *ioctl_reply = (struct _ioctl_reply *) data; /* format for returning replies */
|
|
|
|
|
|
|
|
switch (data->type) {
|
|
|
|
case drive_object:
|
|
|
|
status = set_drive_state(objindex, drive_down, data->force);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case sd_object:
|
|
|
|
status = set_sd_state(objindex, sd_down, data->force);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case plex_object:
|
|
|
|
status = set_plex_state(objindex, plex_down, data->force);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case volume_object:
|
|
|
|
status = set_volume_state(objindex, volume_down, data->force);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
strcpy(ioctl_reply->msg, "Invalid object type");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
ioctl_reply->msg[0] = '\0';
|
|
|
|
if (status == 0) /* couldn't do it */
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
else
|
|
|
|
ioctl_reply->error = 0;
|
|
|
|
}
|
|
|
|
|
1999-01-29 01:17:54 +00:00
|
|
|
/*
|
|
|
|
* VINUM_SETSTATE ioctl: set an object state
|
|
|
|
* msg is the message passed by the user
|
|
|
|
*/
|
1998-12-28 04:56:24 +00:00
|
|
|
void
|
|
|
|
setstate(struct vinum_ioctl_msg *msg)
|
|
|
|
{
|
|
|
|
int sdno;
|
|
|
|
struct sd *sd;
|
|
|
|
struct plex *plex;
|
|
|
|
struct _ioctl_reply *ioctl_reply = (struct _ioctl_reply *) msg; /* format for returning replies */
|
|
|
|
|
|
|
|
switch (msg->state) {
|
|
|
|
case object_down:
|
|
|
|
stop_object(msg);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case object_initializing:
|
|
|
|
switch (msg->type) {
|
|
|
|
case sd_object:
|
|
|
|
sd = &SD[msg->index];
|
|
|
|
if ((msg->index >= vinum_conf.subdisks_used)
|
|
|
|
|| (sd->state == sd_unallocated)) {
|
|
|
|
sprintf(ioctl_reply->msg, "Invalid subdisk %d", msg->index);
|
|
|
|
ioctl_reply->error = EFAULT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
set_sd_state(msg->index, sd_initializing, msg->force);
|
|
|
|
if (sd->state != sd_initializing) {
|
|
|
|
strcpy(ioctl_reply->msg, "Can't set state");
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
} else
|
|
|
|
ioctl_reply->error = 0;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case plex_object:
|
|
|
|
plex = &PLEX[msg->index];
|
|
|
|
if ((msg->index >= vinum_conf.plexes_used)
|
|
|
|
|| (plex->state == plex_unallocated)) {
|
|
|
|
sprintf(ioctl_reply->msg, "Invalid subdisk %d", msg->index);
|
|
|
|
ioctl_reply->error = EFAULT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
set_plex_state(msg->index, plex_initializing, msg->force);
|
|
|
|
if (plex->state != plex_initializing) {
|
|
|
|
strcpy(ioctl_reply->msg, "Can't set state");
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
} else {
|
|
|
|
ioctl_reply->error = 0;
|
|
|
|
for (sdno = 0; sdno < plex->subdisks; sdno++) {
|
|
|
|
sd = &SD[plex->sdnos[sdno]];
|
|
|
|
set_sd_state(plex->sdnos[sdno], sd_initializing, msg->force);
|
|
|
|
if (sd->state != sd_initializing) {
|
|
|
|
strcpy(ioctl_reply->msg, "Can't set state");
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
strcpy(ioctl_reply->msg, "Invalid object");
|
|
|
|
ioctl_reply->error = EINVAL;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case object_up:
|
|
|
|
start_object(msg);
|
|
|
|
}
|
|
|
|
}
|