- Remove unused sparc64-bitops.h file. Our ext2fs code doesn't use

sparc64-specific bitops implemetations and relies on generic ones.
  Furthermore, bitops implementations present in sparc64-bitops.h
  are written in C similarly to generic bitops.
This commit is contained in:
Stanislav Sedov 2009-06-03 17:30:10 +00:00
parent 309a3e4521
commit 097695e97a

View File

@ -1,264 +0,0 @@
/*-
* $Id: bitops.h,v 1.31 2000/09/23 02:09:21 davem Exp $
* bitops.h: Bit string operations on the V9.
*
* Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
/* $FreeBSD$ */
#ifndef _SPARC64_BITOPS_H
#define _SPARC64_BITOPS_H
#include <asm/byteorder.h>
extern long __test_and_set_bit(unsigned long nr, volatile void *addr);
extern long __test_and_clear_bit(unsigned long nr, volatile void *addr);
extern long __test_and_change_bit(unsigned long nr, volatile void *addr);
#define test_and_set_bit(nr,addr) (__test_and_set_bit(nr,addr)!=0)
#define test_and_clear_bit(nr,addr) (__test_and_clear_bit(nr,addr)!=0)
#define test_and_change_bit(nr,addr) (__test_and_change_bit(nr,addr)!=0)
#define set_bit(nr,addr) ((void)__test_and_set_bit(nr,addr))
#define clear_bit(nr,addr) ((void)__test_and_clear_bit(nr,addr))
#define change_bit(nr,addr) ((void)__test_and_change_bit(nr,addr))
#define smp_mb__before_clear_bit() do { } while(0)
#define smp_mb__after_clear_bit() do { } while(0)
extern __inline__ int test_bit(int nr, __const__ void *addr)
{
return (1UL & (((__const__ long *) addr)[nr >> 6] >> (nr & 63))) != 0UL;
}
/* The easy/cheese version for now. */
extern __inline__ unsigned long ffz(unsigned long word)
{
unsigned long result;
#ifdef ULTRA_HAS_POPULATION_COUNT /* Thanks for nothing Sun... */
__asm__ __volatile__("
brz,pn %0, 1f
neg %0, %%g1
xnor %0, %%g1, %%g2
popc %%g2, %0
1: " : "=&r" (result)
: "0" (word)
: "g1", "g2");
#else
#if 1 /* def EASY_CHEESE_VERSION */
result = 0;
while(word & 1) {
result++;
word >>= 1;
}
#else
unsigned long tmp;
result = 0;
tmp = ~word & -~word;
if (!(unsigned)tmp) {
tmp >>= 32;
result = 32;
}
if (!(unsigned short)tmp) {
tmp >>= 16;
result += 16;
}
if (!(unsigned char)tmp) {
tmp >>= 8;
result += 8;
}
if (tmp & 0xf0) result += 4;
if (tmp & 0xcc) result += 2;
if (tmp & 0xaa) result ++;
#endif
#endif
return result;
}
#ifdef __KERNEL__
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
#define ffs(x) generic_ffs(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#ifdef ULTRA_HAS_POPULATION_COUNT
extern __inline__ unsigned int hweight32(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff));
return res;
}
extern __inline__ unsigned int hweight16(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff));
return res;
}
extern __inline__ unsigned int hweight8(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff));
return res;
}
#else
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif
#endif /* __KERNEL__ */
/* find_next_zero_bit() finds the first zero bit in a bit string of length
* 'size' bits, starting the search at bit 'offset'. This is largely based
* on Linus's ALPHA routines, which are pretty portable BTW.
*/
extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
unsigned long result = offset & ~63UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 63UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (64-offset);
if (size < 64)
goto found_first;
if (~tmp)
goto found_middle;
size -= 64;
result += 64;
}
while (size & ~63UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 64;
size -= 64;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + ffz(tmp);
}
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
extern long __test_and_set_le_bit(int nr, volatile void *addr);
extern long __test_and_clear_le_bit(int nr, volatile void *addr);
#define test_and_set_le_bit(nr,addr) (__test_and_set_le_bit(nr,addr)!=0)
#define test_and_clear_le_bit(nr,addr) (__test_and_clear_le_bit(nr,addr)!=0)
#define set_le_bit(nr,addr) ((void)__test_and_set_le_bit(nr,addr))
#define clear_le_bit(nr,addr) ((void)__test_and_clear_le_bit(nr,addr))
extern __inline__ int test_le_bit(int nr, __const__ void * addr)
{
int mask;
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define find_first_zero_le_bit(addr, size) \
find_next_zero_le_bit((addr), (size), 0)
extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
unsigned long result = offset & ~63UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 63UL;
if(offset) {
tmp = __swab64p(p++);
tmp |= (~0UL >> (64-offset));
if(size < 64)
goto found_first;
if(~tmp)
goto found_middle;
size -= 64;
result += 64;
}
while(size & ~63) {
if(~(tmp = __swab64p(p++)))
goto found_middle;
result += 64;
size -= 64;
}
if(!size)
return result;
tmp = __swab64p(p);
found_first:
tmp |= (~0UL << size);
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + ffz(tmp);
}
#ifdef __KERNEL__
#define ext2_set_bit test_and_set_le_bit
#define ext2_clear_bit test_and_clear_le_bit
#define ext2_test_bit test_le_bit
#define ext2_find_first_zero_bit find_first_zero_le_bit
#define ext2_find_next_zero_bit find_next_zero_le_bit
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* defined(_SPARC64_BITOPS_H) */