Pull in r325446 from upstream clang trunk (by me):
[X86] Add 'sahf' CPU feature to frontend Summary: Make clang accept `-msahf` (and `-mno-sahf`) flags to activate the `+sahf` feature for the backend, for bug 36028 (Incorrect use of pushf/popf enables/disables interrupts on amd64 kernels). This was originally submitted in bug 36037 by Jonathan Looney <jonlooney@gmail.com>. As described there, GCC also uses `-msahf` for this feature, and the backend already recognizes the `+sahf` feature. All that is needed is to teach clang to pass this on to the backend. The mapping of feature support onto CPUs may not be complete; rather, it was chosen to match LLVM's idea of which CPUs support this feature (see lib/Target/X86/X86.td). I also updated the affected test case (CodeGen/attr-target-x86.c) to match the emitted output. Reviewers: craig.topper, coby, efriedma, rsmith Reviewed By: craig.topper Subscribers: emaste, cfe-commits Differential Revision: https://reviews.llvm.org/D43394 Pull in r328944 from upstream llvm trunk (by Chandler Carruth): [x86] Expose more of the condition conversion routines in the public API for X86's instruction information. I've now got a second patch under review that needs these same APIs. This bit is nicely orthogonal and obvious, so landing it. NFC. Pull in r329414 from upstream llvm trunk (by Craig Topper): [X86] Merge itineraries for CLC, CMC, and STC. These are very simple flag setting instructions that appear to only be a single uop. They're unlikely to need this separation. Pull in r329657 from upstream llvm trunk (by Chandler Carruth): [x86] Introduce a pass to begin more systematically fixing PR36028 and similar issues. The key idea is to lower COPY nodes populating EFLAGS by scanning the uses of EFLAGS and introducing dedicated code to preserve the necessary state in a GPR. In the vast majority of cases, these uses are cmovCC and jCC instructions. For such cases, we can very easily save and restore the necessary information by simply inserting a setCC into a GPR where the original flags are live, and then testing that GPR directly to feed the cmov or conditional branch. However, things are a bit more tricky if arithmetic is using the flags. This patch handles the vast majority of cases that seem to come up in practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of partially preserved EFLAGS as LLVM doesn't currently model that at all. There are a large number of operations that techinaclly observe EFLAGS currently but shouldn't in this case -- they typically are using DF. Currently, they will not be handled by this approach. However, I have never seen this issue come up in practice. It is already pretty rare to have these patterns come up in practical code with LLVM. I had to resort to writing MIR tests to cover most of the logic in this pass already. I suspect even with its current amount of coverage of arithmetic users of EFLAGS it will be a significant improvement over the current use of pushf/popf. It will also produce substantially faster code in most of the common patterns. This patch also removes all of the old lowering for EFLAGS copies, and the hack that forced us to use a frame pointer when EFLAGS copies were found anywhere in a function so that the dynamic stack adjustment wasn't a problem. None of this is needed as we now lower all of these copies directly in MI and without require stack adjustments. Lots of thanks to Reid who came up with several aspects of this approach, and Craig who helped me work out a couple of things tripping me up while working on this. Differential Revision: https://reviews.llvm.org/D45146 Pull in r329673 from upstream llvm trunk (by Chandler Carruth): [x86] Model the direction flag (DF) separately from the rest of EFLAGS. This cleans up a number of operations that only claimed te use EFLAGS due to using DF. But no instructions which we think of us setting EFLAGS actually modify DF (other than things like popf) and so this needlessly creates uses of EFLAGS that aren't really there. In fact, DF is so restrictive it is pretty easy to model. Only STD, CLD, and the whole-flags writes (WRFLAGS and POPF) need to model this. I've also somewhat cleaned up some of the flag management instruction definitions to be in the correct .td file. Adding this extra register also uncovered a failure to use the correct datatype to hold X86 registers, and I've corrected that as necessary here. Differential Revision: https://reviews.llvm.org/D45154 Together, these should ensure clang does not use pushf/popf sequences to save and restore flags, avoiding problems with unrelated flags (such as the interrupt flag) being restored unexpectedly. Requested by: jtl PR: 225330 MFC after: 1 week
This commit is contained in:
parent
a3d2e7b1ca
commit
0ae629bdd6
@ -449,6 +449,13 @@ class MachineBasicBlock
|
||||
/// Replace successor OLD with NEW and update probability info.
|
||||
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
|
||||
|
||||
/// Copy a successor (and any probability info) from original block to this
|
||||
/// block's. Uses an iterator into the original blocks successors.
|
||||
///
|
||||
/// This is useful when doing a partial clone of successors. Afterward, the
|
||||
/// probabilities may need to be normalized.
|
||||
void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
|
||||
|
||||
/// Transfers all the successors from MBB to this machine basic block (i.e.,
|
||||
/// copies all the successors FromMBB and remove all the successors from
|
||||
/// FromMBB).
|
||||
|
@ -646,6 +646,14 @@ void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
|
||||
removeSuccessor(OldI);
|
||||
}
|
||||
|
||||
void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
|
||||
succ_iterator I) {
|
||||
if (Orig->Probs.empty())
|
||||
addSuccessor(*I, Orig->getSuccProbability(I));
|
||||
else
|
||||
addSuccessorWithoutProb(*I);
|
||||
}
|
||||
|
||||
void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
|
||||
Predecessors.push_back(Pred);
|
||||
}
|
||||
|
@ -265,13 +265,10 @@ MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
|
||||
/// @param reg - The Reg to append.
|
||||
static void translateRegister(MCInst &mcInst, Reg reg) {
|
||||
#define ENTRY(x) X86::x,
|
||||
uint8_t llvmRegnums[] = {
|
||||
ALL_REGS
|
||||
0
|
||||
};
|
||||
static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
|
||||
#undef ENTRY
|
||||
|
||||
uint8_t llvmRegnum = llvmRegnums[reg];
|
||||
MCPhysReg llvmRegnum = llvmRegnums[reg];
|
||||
mcInst.addOperand(MCOperand::createReg(llvmRegnum));
|
||||
}
|
||||
|
||||
|
@ -66,6 +66,9 @@ FunctionPass *createX86OptimizeLEAs();
|
||||
/// Return a pass that transforms setcc + movzx pairs into xor + setcc.
|
||||
FunctionPass *createX86FixupSetCC();
|
||||
|
||||
/// Return a pass that lowers EFLAGS copy pseudo instructions.
|
||||
FunctionPass *createX86FlagsCopyLoweringPass();
|
||||
|
||||
/// Return a pass that expands WinAlloca pseudo-instructions.
|
||||
FunctionPass *createX86WinAllocaExpander();
|
||||
|
||||
|
734
contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
Normal file
734
contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
Normal file
@ -0,0 +1,734 @@
|
||||
//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// \file
|
||||
///
|
||||
/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
|
||||
/// flag bits.
|
||||
///
|
||||
/// We have to do this by carefully analyzing and rewriting the usage of the
|
||||
/// copied EFLAGS register because there is no general way to rematerialize the
|
||||
/// entire EFLAGS register safely and efficiently. Using `popf` both forces
|
||||
/// dynamic stack adjustment and can create correctness issues due to IF, TF,
|
||||
/// and other non-status flags being overwritten. Using sequences involving
|
||||
/// SAHF don't work on all x86 processors and are often quite slow compared to
|
||||
/// directly testing a single status preserved in its own GPR.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "X86.h"
|
||||
#include "X86InstrBuilder.h"
|
||||
#include "X86InstrInfo.h"
|
||||
#include "X86Subtarget.h"
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/ADT/ScopeExit.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/SparseBitVector.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||||
#include "llvm/CodeGen/MachineConstantPool.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/MachineModuleInfo.h"
|
||||
#include "llvm/CodeGen/MachineOperand.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/CodeGen/MachineSSAUpdater.h"
|
||||
#include "llvm/CodeGen/TargetInstrInfo.h"
|
||||
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
||||
#include "llvm/CodeGen/TargetSchedule.h"
|
||||
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
||||
#include "llvm/IR/DebugLoc.h"
|
||||
#include "llvm/MC/MCSchedule.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iterator>
|
||||
#include <utility>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define PASS_KEY "x86-flags-copy-lowering"
|
||||
#define DEBUG_TYPE PASS_KEY
|
||||
|
||||
STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
|
||||
STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
|
||||
STATISTIC(NumTestsInserted, "Number of test instructions inserted");
|
||||
STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
|
||||
|
||||
namespace llvm {
|
||||
|
||||
void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
namespace {
|
||||
|
||||
// Convenient array type for storing registers associated with each condition.
|
||||
using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
|
||||
|
||||
class X86FlagsCopyLoweringPass : public MachineFunctionPass {
|
||||
public:
|
||||
X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
|
||||
initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
|
||||
bool runOnMachineFunction(MachineFunction &MF) override;
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||||
|
||||
/// Pass identification, replacement for typeid.
|
||||
static char ID;
|
||||
|
||||
private:
|
||||
MachineRegisterInfo *MRI;
|
||||
const X86InstrInfo *TII;
|
||||
const TargetRegisterInfo *TRI;
|
||||
const TargetRegisterClass *PromoteRC;
|
||||
|
||||
CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
|
||||
MachineInstr &CopyDefI);
|
||||
|
||||
unsigned promoteCondToReg(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator TestPos,
|
||||
DebugLoc TestLoc, X86::CondCode Cond);
|
||||
std::pair<unsigned, bool>
|
||||
getCondOrInverseInReg(MachineBasicBlock &TestMBB,
|
||||
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
||||
X86::CondCode Cond, CondRegArray &CondRegs);
|
||||
void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
|
||||
DebugLoc Loc, unsigned Reg);
|
||||
|
||||
void rewriteArithmetic(MachineBasicBlock &TestMBB,
|
||||
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
||||
MachineInstr &MI, MachineOperand &FlagUse,
|
||||
CondRegArray &CondRegs);
|
||||
void rewriteCMov(MachineBasicBlock &TestMBB,
|
||||
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
||||
MachineInstr &CMovI, MachineOperand &FlagUse,
|
||||
CondRegArray &CondRegs);
|
||||
void rewriteCondJmp(MachineBasicBlock &TestMBB,
|
||||
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
||||
MachineInstr &JmpI, CondRegArray &CondRegs);
|
||||
void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
|
||||
MachineInstr &CopyDefI);
|
||||
void rewriteSetCC(MachineBasicBlock &TestMBB,
|
||||
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
||||
MachineInstr &SetCCI, MachineOperand &FlagUse,
|
||||
CondRegArray &CondRegs);
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
|
||||
"X86 EFLAGS copy lowering", false, false)
|
||||
INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
|
||||
"X86 EFLAGS copy lowering", false, false)
|
||||
|
||||
FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
|
||||
return new X86FlagsCopyLoweringPass();
|
||||
}
|
||||
|
||||
char X86FlagsCopyLoweringPass::ID = 0;
|
||||
|
||||
void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
MachineFunctionPass::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
namespace {
|
||||
/// An enumeration of the arithmetic instruction mnemonics which have
|
||||
/// interesting flag semantics.
|
||||
///
|
||||
/// We can map instruction opcodes into these mnemonics to make it easy to
|
||||
/// dispatch with specific functionality.
|
||||
enum class FlagArithMnemonic {
|
||||
ADC,
|
||||
ADCX,
|
||||
ADOX,
|
||||
RCL,
|
||||
RCR,
|
||||
SBB,
|
||||
};
|
||||
} // namespace
|
||||
|
||||
static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
|
||||
switch (Opcode) {
|
||||
default:
|
||||
report_fatal_error("No support for lowering a copy into EFLAGS when used "
|
||||
"by this instruction!");
|
||||
|
||||
#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
|
||||
case X86::MNEMONIC##8##SUFFIX: \
|
||||
case X86::MNEMONIC##16##SUFFIX: \
|
||||
case X86::MNEMONIC##32##SUFFIX: \
|
||||
case X86::MNEMONIC##64##SUFFIX:
|
||||
|
||||
#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
|
||||
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
|
||||
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
|
||||
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
|
||||
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
|
||||
case X86::MNEMONIC##8ri: \
|
||||
case X86::MNEMONIC##16ri8: \
|
||||
case X86::MNEMONIC##32ri8: \
|
||||
case X86::MNEMONIC##64ri8: \
|
||||
case X86::MNEMONIC##16ri: \
|
||||
case X86::MNEMONIC##32ri: \
|
||||
case X86::MNEMONIC##64ri32: \
|
||||
case X86::MNEMONIC##8mi: \
|
||||
case X86::MNEMONIC##16mi8: \
|
||||
case X86::MNEMONIC##32mi8: \
|
||||
case X86::MNEMONIC##64mi8: \
|
||||
case X86::MNEMONIC##16mi: \
|
||||
case X86::MNEMONIC##32mi: \
|
||||
case X86::MNEMONIC##64mi32: \
|
||||
case X86::MNEMONIC##8i8: \
|
||||
case X86::MNEMONIC##16i16: \
|
||||
case X86::MNEMONIC##32i32: \
|
||||
case X86::MNEMONIC##64i32:
|
||||
|
||||
LLVM_EXPAND_ADC_SBB_INSTR(ADC)
|
||||
return FlagArithMnemonic::ADC;
|
||||
|
||||
LLVM_EXPAND_ADC_SBB_INSTR(SBB)
|
||||
return FlagArithMnemonic::SBB;
|
||||
|
||||
#undef LLVM_EXPAND_ADC_SBB_INSTR
|
||||
|
||||
LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
|
||||
LLVM_EXPAND_INSTR_SIZES(RCL, r1)
|
||||
LLVM_EXPAND_INSTR_SIZES(RCL, ri)
|
||||
return FlagArithMnemonic::RCL;
|
||||
|
||||
LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
|
||||
LLVM_EXPAND_INSTR_SIZES(RCR, r1)
|
||||
LLVM_EXPAND_INSTR_SIZES(RCR, ri)
|
||||
return FlagArithMnemonic::RCR;
|
||||
|
||||
#undef LLVM_EXPAND_INSTR_SIZES
|
||||
|
||||
case X86::ADCX32rr:
|
||||
case X86::ADCX64rr:
|
||||
case X86::ADCX32rm:
|
||||
case X86::ADCX64rm:
|
||||
return FlagArithMnemonic::ADCX;
|
||||
|
||||
case X86::ADOX32rr:
|
||||
case X86::ADOX64rr:
|
||||
case X86::ADOX32rm:
|
||||
case X86::ADOX64rm:
|
||||
return FlagArithMnemonic::ADOX;
|
||||
}
|
||||
}
|
||||
|
||||
static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
|
||||
MachineInstr &SplitI,
|
||||
const X86InstrInfo &TII) {
|
||||
MachineFunction &MF = *MBB.getParent();
|
||||
|
||||
assert(SplitI.getParent() == &MBB &&
|
||||
"Split instruction must be in the split block!");
|
||||
assert(SplitI.isBranch() &&
|
||||
"Only designed to split a tail of branch instructions!");
|
||||
assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
|
||||
"Must split on an actual jCC instruction!");
|
||||
|
||||
// Dig out the previous instruction to the split point.
|
||||
MachineInstr &PrevI = *std::prev(SplitI.getIterator());
|
||||
assert(PrevI.isBranch() && "Must split after a branch!");
|
||||
assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
|
||||
"Must split after an actual jCC instruction!");
|
||||
assert(!std::prev(PrevI.getIterator())->isTerminator() &&
|
||||
"Must only have this one terminator prior to the split!");
|
||||
|
||||
// Grab the one successor edge that will stay in `MBB`.
|
||||
MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
|
||||
|
||||
// Analyze the original block to see if we are actually splitting an edge
|
||||
// into two edges. This can happen when we have multiple conditional jumps to
|
||||
// the same successor.
|
||||
bool IsEdgeSplit =
|
||||
std::any_of(SplitI.getIterator(), MBB.instr_end(),
|
||||
[&](MachineInstr &MI) {
|
||||
assert(MI.isTerminator() &&
|
||||
"Should only have spliced terminators!");
|
||||
return llvm::any_of(
|
||||
MI.operands(), [&](MachineOperand &MOp) {
|
||||
return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
|
||||
});
|
||||
}) ||
|
||||
MBB.getFallThrough() == &UnsplitSucc;
|
||||
|
||||
MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
|
||||
|
||||
// Insert the new block immediately after the current one. Any existing
|
||||
// fallthrough will be sunk into this new block anyways.
|
||||
MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
|
||||
|
||||
// Splice the tail of instructions into the new block.
|
||||
NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
|
||||
|
||||
// Copy the necessary succesors (and their probability info) into the new
|
||||
// block.
|
||||
for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
|
||||
if (IsEdgeSplit || *SI != &UnsplitSucc)
|
||||
NewMBB.copySuccessor(&MBB, SI);
|
||||
// Normalize the probabilities if we didn't end up splitting the edge.
|
||||
if (!IsEdgeSplit)
|
||||
NewMBB.normalizeSuccProbs();
|
||||
|
||||
// Now replace all of the moved successors in the original block with the new
|
||||
// block. This will merge their probabilities.
|
||||
for (MachineBasicBlock *Succ : NewMBB.successors())
|
||||
if (Succ != &UnsplitSucc)
|
||||
MBB.replaceSuccessor(Succ, &NewMBB);
|
||||
|
||||
// We should always end up replacing at least one successor.
|
||||
assert(MBB.isSuccessor(&NewMBB) &&
|
||||
"Failed to make the new block a successor!");
|
||||
|
||||
// Now update all the PHIs.
|
||||
for (MachineBasicBlock *Succ : NewMBB.successors()) {
|
||||
for (MachineInstr &MI : *Succ) {
|
||||
if (!MI.isPHI())
|
||||
break;
|
||||
|
||||
for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
|
||||
OpIdx += 2) {
|
||||
MachineOperand &OpV = MI.getOperand(OpIdx);
|
||||
MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
|
||||
assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
|
||||
if (OpMBB.getMBB() != &MBB)
|
||||
continue;
|
||||
|
||||
// Replace the operand for unsplit successors
|
||||
if (!IsEdgeSplit || Succ != &UnsplitSucc) {
|
||||
OpMBB.setMBB(&NewMBB);
|
||||
|
||||
// We have to continue scanning as there may be multiple entries in
|
||||
// the PHI.
|
||||
continue;
|
||||
}
|
||||
|
||||
// When we have split the edge append a new successor.
|
||||
MI.addOperand(MF, OpV);
|
||||
MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return NewMBB;
|
||||
}
|
||||
|
||||
bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
|
||||
DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
|
||||
<< " **********\n");
|
||||
|
||||
auto &Subtarget = MF.getSubtarget<X86Subtarget>();
|
||||
MRI = &MF.getRegInfo();
|
||||
TII = Subtarget.getInstrInfo();
|
||||
TRI = Subtarget.getRegisterInfo();
|
||||
PromoteRC = &X86::GR8RegClass;
|
||||
|
||||
if (MF.begin() == MF.end())
|
||||
// Nothing to do for a degenerate empty function...
|
||||
return false;
|
||||
|
||||
SmallVector<MachineInstr *, 4> Copies;
|
||||
for (MachineBasicBlock &MBB : MF)
|
||||
for (MachineInstr &MI : MBB)
|
||||
if (MI.getOpcode() == TargetOpcode::COPY &&
|
||||
MI.getOperand(0).getReg() == X86::EFLAGS)
|
||||
Copies.push_back(&MI);
|
||||
|
||||
for (MachineInstr *CopyI : Copies) {
|
||||
MachineBasicBlock &MBB = *CopyI->getParent();
|
||||
|
||||
MachineOperand &VOp = CopyI->getOperand(1);
|
||||
assert(VOp.isReg() &&
|
||||
"The input to the copy for EFLAGS should always be a register!");
|
||||
MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
|
||||
if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
|
||||
// FIXME: The big likely candidate here are PHI nodes. We could in theory
|
||||
// handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
|
||||
// enough that it is probably better to change every other part of LLVM
|
||||
// to avoid creating them. The issue is that once we have PHIs we won't
|
||||
// know which original EFLAGS value we need to capture with our setCCs
|
||||
// below. The end result will be computing a complete set of setCCs that
|
||||
// we *might* want, computing them in every place where we copy *out* of
|
||||
// EFLAGS and then doing SSA formation on all of them to insert necessary
|
||||
// PHI nodes and consume those here. Then hoping that somehow we DCE the
|
||||
// unnecessary ones. This DCE seems very unlikely to be successful and so
|
||||
// we will almost certainly end up with a glut of dead setCC
|
||||
// instructions. Until we have a motivating test case and fail to avoid
|
||||
// it by changing other parts of LLVM's lowering, we refuse to handle
|
||||
// this complex case here.
|
||||
DEBUG(dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
|
||||
CopyDefI.dump());
|
||||
report_fatal_error(
|
||||
"Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
|
||||
}
|
||||
|
||||
auto Cleanup = make_scope_exit([&] {
|
||||
// All uses of the EFLAGS copy are now rewritten, kill the copy into
|
||||
// eflags and if dead the copy from.
|
||||
CopyI->eraseFromParent();
|
||||
if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
|
||||
CopyDefI.eraseFromParent();
|
||||
++NumCopiesEliminated;
|
||||
});
|
||||
|
||||
MachineOperand &DOp = CopyI->getOperand(0);
|
||||
assert(DOp.isDef() && "Expected register def!");
|
||||
assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
|
||||
if (DOp.isDead())
|
||||
continue;
|
||||
|
||||
MachineBasicBlock &TestMBB = *CopyDefI.getParent();
|
||||
auto TestPos = CopyDefI.getIterator();
|
||||
DebugLoc TestLoc = CopyDefI.getDebugLoc();
|
||||
|
||||
DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
|
||||
|
||||
// Scan for usage of newly set EFLAGS so we can rewrite them. We just buffer
|
||||
// jumps because their usage is very constrained.
|
||||
bool FlagsKilled = false;
|
||||
SmallVector<MachineInstr *, 4> JmpIs;
|
||||
|
||||
// Gather the condition flags that have already been preserved in
|
||||
// registers. We do this from scratch each time as we expect there to be
|
||||
// very few of them and we expect to not revisit the same copy definition
|
||||
// many times. If either of those change sufficiently we could build a map
|
||||
// of these up front instead.
|
||||
CondRegArray CondRegs = collectCondsInRegs(TestMBB, CopyDefI);
|
||||
|
||||
for (auto MII = std::next(CopyI->getIterator()), MIE = MBB.instr_end();
|
||||
MII != MIE;) {
|
||||
MachineInstr &MI = *MII++;
|
||||
MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
|
||||
if (!FlagUse) {
|
||||
if (MI.findRegisterDefOperand(X86::EFLAGS)) {
|
||||
// If EFLAGS are defined, it's as-if they were killed. We can stop
|
||||
// scanning here.
|
||||
//
|
||||
// NB!!! Many instructions only modify some flags. LLVM currently
|
||||
// models this as clobbering all flags, but if that ever changes this
|
||||
// will need to be carefully updated to handle that more complex
|
||||
// logic.
|
||||
FlagsKilled = true;
|
||||
break;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << " Rewriting use: "; MI.dump());
|
||||
|
||||
// Check the kill flag before we rewrite as that may change it.
|
||||
if (FlagUse->isKill())
|
||||
FlagsKilled = true;
|
||||
|
||||
// Once we encounter a branch, the rest of the instructions must also be
|
||||
// branches. We can't rewrite in place here, so we handle them below.
|
||||
//
|
||||
// Note that we don't have to handle tail calls here, even conditional
|
||||
// tail calls, as those are not introduced into the X86 MI until post-RA
|
||||
// branch folding or black placement. As a consequence, we get to deal
|
||||
// with the simpler formulation of conditional branches followed by tail
|
||||
// calls.
|
||||
if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
|
||||
auto JmpIt = MI.getIterator();
|
||||
do {
|
||||
JmpIs.push_back(&*JmpIt);
|
||||
++JmpIt;
|
||||
} while (JmpIt != MBB.instr_end() &&
|
||||
X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
|
||||
X86::COND_INVALID);
|
||||
break;
|
||||
}
|
||||
|
||||
// Otherwise we can just rewrite in-place.
|
||||
if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
|
||||
rewriteCMov(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
|
||||
} else if (X86::getCondFromSETOpc(MI.getOpcode()) != X86::COND_INVALID) {
|
||||
rewriteSetCC(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
|
||||
} else if (MI.getOpcode() == TargetOpcode::COPY) {
|
||||
rewriteCopy(MI, *FlagUse, CopyDefI);
|
||||
} else {
|
||||
// We assume that arithmetic instructions that use flags also def them.
|
||||
assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
|
||||
"Expected a def of EFLAGS for this instruction!");
|
||||
|
||||
// NB!!! Several arithmetic instructions only *partially* update
|
||||
// flags. Theoretically, we could generate MI code sequences that
|
||||
// would rely on this fact and observe different flags independently.
|
||||
// But currently LLVM models all of these instructions as clobbering
|
||||
// all the flags in an undef way. We rely on that to simplify the
|
||||
// logic.
|
||||
FlagsKilled = true;
|
||||
|
||||
rewriteArithmetic(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
|
||||
break;
|
||||
}
|
||||
|
||||
// If this was the last use of the flags, we're done.
|
||||
if (FlagsKilled)
|
||||
break;
|
||||
}
|
||||
|
||||
// If we didn't find a kill (or equivalent) check that the flags don't
|
||||
// live-out of the basic block. Currently we don't support lowering copies
|
||||
// of flags that live out in this fashion.
|
||||
if (!FlagsKilled &&
|
||||
llvm::any_of(MBB.successors(), [](MachineBasicBlock *SuccMBB) {
|
||||
return SuccMBB->isLiveIn(X86::EFLAGS);
|
||||
})) {
|
||||
DEBUG({
|
||||
dbgs() << "ERROR: Found a copied EFLAGS live-out from basic block:\n"
|
||||
<< "----\n";
|
||||
MBB.dump();
|
||||
dbgs() << "----\n"
|
||||
<< "ERROR: Cannot lower this EFLAGS copy!\n";
|
||||
});
|
||||
report_fatal_error(
|
||||
"Cannot lower EFLAGS copy that lives out of a basic block!");
|
||||
}
|
||||
|
||||
// Now rewrite the jumps that use the flags. These we handle specially
|
||||
// because if there are multiple jumps we'll have to do surgery on the CFG.
|
||||
for (MachineInstr *JmpI : JmpIs) {
|
||||
// Past the first jump we need to split the blocks apart.
|
||||
if (JmpI != JmpIs.front())
|
||||
splitBlock(*JmpI->getParent(), *JmpI, *TII);
|
||||
|
||||
rewriteCondJmp(TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
|
||||
}
|
||||
|
||||
// FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
|
||||
// the copy's def operand is itself a kill.
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (MachineBasicBlock &MBB : MF)
|
||||
for (MachineInstr &MI : MBB)
|
||||
if (MI.getOpcode() == TargetOpcode::COPY &&
|
||||
(MI.getOperand(0).getReg() == X86::EFLAGS ||
|
||||
MI.getOperand(1).getReg() == X86::EFLAGS)) {
|
||||
DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: "; MI.dump());
|
||||
llvm_unreachable("Unlowered EFLAGS copy!");
|
||||
}
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Collect any conditions that have already been set in registers so that we
|
||||
/// can re-use them rather than adding duplicates.
|
||||
CondRegArray
|
||||
X86FlagsCopyLoweringPass::collectCondsInRegs(MachineBasicBlock &MBB,
|
||||
MachineInstr &CopyDefI) {
|
||||
CondRegArray CondRegs = {};
|
||||
|
||||
// Scan backwards across the range of instructions with live EFLAGS.
|
||||
for (MachineInstr &MI : llvm::reverse(
|
||||
llvm::make_range(MBB.instr_begin(), CopyDefI.getIterator()))) {
|
||||
X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
|
||||
if (Cond != X86::COND_INVALID && MI.getOperand(0).isReg() &&
|
||||
TRI->isVirtualRegister(MI.getOperand(0).getReg()))
|
||||
CondRegs[Cond] = MI.getOperand(0).getReg();
|
||||
|
||||
// Stop scanning when we see the first definition of the EFLAGS as prior to
|
||||
// this we would potentially capture the wrong flag state.
|
||||
if (MI.findRegisterDefOperand(X86::EFLAGS))
|
||||
break;
|
||||
}
|
||||
return CondRegs;
|
||||
}
|
||||
|
||||
unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
|
||||
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
||||
DebugLoc TestLoc, X86::CondCode Cond) {
|
||||
unsigned Reg = MRI->createVirtualRegister(PromoteRC);
|
||||
auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
|
||||
TII->get(X86::getSETFromCond(Cond)), Reg);
|
||||
(void)SetI;
|
||||
DEBUG(dbgs() << " save cond: "; SetI->dump());
|
||||
++NumSetCCsInserted;
|
||||
return Reg;
|
||||
}
|
||||
|
||||
std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
|
||||
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
||||
DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
|
||||
unsigned &CondReg = CondRegs[Cond];
|
||||
unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
|
||||
if (!CondReg && !InvCondReg)
|
||||
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
|
||||
|
||||
if (CondReg)
|
||||
return {CondReg, false};
|
||||
else
|
||||
return {InvCondReg, true};
|
||||
}
|
||||
|
||||
void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator Pos,
|
||||
DebugLoc Loc, unsigned Reg) {
|
||||
// We emit test instructions as register/immediate test against -1. This
|
||||
// allows register allocation to fold a memory operand if needed (that will
|
||||
// happen often due to the places this code is emitted). But hopefully will
|
||||
// also allow us to select a shorter encoding of `testb %reg, %reg` when that
|
||||
// would be equivalent.
|
||||
auto TestI =
|
||||
BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8ri)).addReg(Reg).addImm(-1);
|
||||
(void)TestI;
|
||||
DEBUG(dbgs() << " test cond: "; TestI->dump());
|
||||
++NumTestsInserted;
|
||||
}
|
||||
|
||||
void X86FlagsCopyLoweringPass::rewriteArithmetic(
|
||||
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
||||
DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
|
||||
CondRegArray &CondRegs) {
|
||||
// Arithmetic is either reading CF or OF. Figure out which condition we need
|
||||
// to preserve in a register.
|
||||
X86::CondCode Cond;
|
||||
|
||||
// The addend to use to reset CF or OF when added to the flag value.
|
||||
int Addend;
|
||||
|
||||
switch (getMnemonicFromOpcode(MI.getOpcode())) {
|
||||
case FlagArithMnemonic::ADC:
|
||||
case FlagArithMnemonic::ADCX:
|
||||
case FlagArithMnemonic::RCL:
|
||||
case FlagArithMnemonic::RCR:
|
||||
case FlagArithMnemonic::SBB:
|
||||
Cond = X86::COND_B; // CF == 1
|
||||
// Set up an addend that when one is added will need a carry due to not
|
||||
// having a higher bit available.
|
||||
Addend = 255;
|
||||
break;
|
||||
|
||||
case FlagArithMnemonic::ADOX:
|
||||
Cond = X86::COND_O; // OF == 1
|
||||
// Set up an addend that when one is added will turn from positive to
|
||||
// negative and thus overflow in the signed domain.
|
||||
Addend = 127;
|
||||
break;
|
||||
}
|
||||
|
||||
// Now get a register that contains the value of the flag input to the
|
||||
// arithmetic. We require exactly this flag to simplify the arithmetic
|
||||
// required to materialize it back into the flag.
|
||||
unsigned &CondReg = CondRegs[Cond];
|
||||
if (!CondReg)
|
||||
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
|
||||
|
||||
MachineBasicBlock &MBB = *MI.getParent();
|
||||
|
||||
// Insert an instruction that will set the flag back to the desired value.
|
||||
unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
|
||||
auto AddI =
|
||||
BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
|
||||
.addDef(TmpReg, RegState::Dead)
|
||||
.addReg(CondReg)
|
||||
.addImm(Addend);
|
||||
(void)AddI;
|
||||
DEBUG(dbgs() << " add cond: "; AddI->dump());
|
||||
++NumAddsInserted;
|
||||
FlagUse.setIsKill(true);
|
||||
}
|
||||
|
||||
void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
|
||||
MachineBasicBlock::iterator TestPos,
|
||||
DebugLoc TestLoc,
|
||||
MachineInstr &CMovI,
|
||||
MachineOperand &FlagUse,
|
||||
CondRegArray &CondRegs) {
|
||||
// First get the register containing this specific condition.
|
||||
X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
|
||||
unsigned CondReg;
|
||||
bool Inverted;
|
||||
std::tie(CondReg, Inverted) =
|
||||
getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
|
||||
|
||||
MachineBasicBlock &MBB = *CMovI.getParent();
|
||||
|
||||
// Insert a direct test of the saved register.
|
||||
insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
|
||||
|
||||
// Rewrite the CMov to use the !ZF flag from the test (but match register
|
||||
// size and memory operand), and then kill its use of the flags afterward.
|
||||
auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
|
||||
CMovI.setDesc(TII->get(X86::getCMovFromCond(
|
||||
Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
|
||||
!CMovI.memoperands_empty())));
|
||||
FlagUse.setIsKill(true);
|
||||
DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
|
||||
}
|
||||
|
||||
void X86FlagsCopyLoweringPass::rewriteCondJmp(
|
||||
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
||||
DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
|
||||
// First get the register containing this specific condition.
|
||||
X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
|
||||
unsigned CondReg;
|
||||
bool Inverted;
|
||||
std::tie(CondReg, Inverted) =
|
||||
getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
|
||||
|
||||
MachineBasicBlock &JmpMBB = *JmpI.getParent();
|
||||
|
||||
// Insert a direct test of the saved register.
|
||||
insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
|
||||
|
||||
// Rewrite the jump to use the !ZF flag from the test, and kill its use of
|
||||
// flags afterward.
|
||||
JmpI.setDesc(TII->get(
|
||||
X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
|
||||
const int ImplicitEFLAGSOpIdx = 1;
|
||||
JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
|
||||
DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
|
||||
}
|
||||
|
||||
void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
|
||||
MachineOperand &FlagUse,
|
||||
MachineInstr &CopyDefI) {
|
||||
// Just replace this copy with the the original copy def.
|
||||
MRI->replaceRegWith(MI.getOperand(0).getReg(),
|
||||
CopyDefI.getOperand(0).getReg());
|
||||
MI.eraseFromParent();
|
||||
}
|
||||
|
||||
void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
|
||||
MachineBasicBlock::iterator TestPos,
|
||||
DebugLoc TestLoc,
|
||||
MachineInstr &SetCCI,
|
||||
MachineOperand &FlagUse,
|
||||
CondRegArray &CondRegs) {
|
||||
X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
|
||||
// Note that we can't usefully rewrite this to the inverse without complex
|
||||
// analysis of the users of the setCC. Largely we rely on duplicates which
|
||||
// could have been avoided already being avoided here.
|
||||
unsigned &CondReg = CondRegs[Cond];
|
||||
if (!CondReg)
|
||||
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
|
||||
|
||||
// Rewriting this is trivial: we just replace the register and remove the
|
||||
// setcc.
|
||||
MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
|
||||
SetCCI.eraseFromParent();
|
||||
}
|
@ -27781,11 +27781,16 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
||||
MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
|
||||
unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
|
||||
MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
|
||||
// Permit reads of the FLAGS register without it being defined.
|
||||
// Permit reads of the EFLAGS and DF registers without them being defined.
|
||||
// This intrinsic exists to read external processor state in flags, such as
|
||||
// the trap flag, interrupt flag, and direction flag, none of which are
|
||||
// modeled by the backend.
|
||||
assert(Push->getOperand(2).getReg() == X86::EFLAGS &&
|
||||
"Unexpected register in operand!");
|
||||
Push->getOperand(2).setIsUndef();
|
||||
assert(Push->getOperand(3).getReg() == X86::DF &&
|
||||
"Unexpected register in operand!");
|
||||
Push->getOperand(3).setIsUndef();
|
||||
BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg());
|
||||
|
||||
MI.eraseFromParent(); // The pseudo is gone now.
|
||||
@ -37829,25 +37834,6 @@ bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
|
||||
}
|
||||
}
|
||||
|
||||
/// This function checks if any of the users of EFLAGS copies the EFLAGS. We
|
||||
/// know that the code that lowers COPY of EFLAGS has to use the stack, and if
|
||||
/// we don't adjust the stack we clobber the first frame index.
|
||||
/// See X86InstrInfo::copyPhysReg.
|
||||
static bool hasCopyImplyingStackAdjustment(const MachineFunction &MF) {
|
||||
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
||||
return any_of(MRI.reg_instructions(X86::EFLAGS),
|
||||
[](const MachineInstr &RI) { return RI.isCopy(); });
|
||||
}
|
||||
|
||||
void X86TargetLowering::finalizeLowering(MachineFunction &MF) const {
|
||||
if (hasCopyImplyingStackAdjustment(MF)) {
|
||||
MachineFrameInfo &MFI = MF.getFrameInfo();
|
||||
MFI.setHasCopyImplyingStackAdjustment(true);
|
||||
}
|
||||
|
||||
TargetLoweringBase::finalizeLowering(MF);
|
||||
}
|
||||
|
||||
/// This method query the target whether it is beneficial for dag combiner to
|
||||
/// promote the specified node. If true, it should return the desired promotion
|
||||
/// type by reference.
|
||||
|
@ -1100,8 +1100,6 @@ namespace llvm {
|
||||
unsigned Factor) const override;
|
||||
|
||||
|
||||
void finalizeLowering(MachineFunction &MF) const override;
|
||||
|
||||
protected:
|
||||
std::pair<const TargetRegisterClass *, uint8_t>
|
||||
findRepresentativeClass(const TargetRegisterInfo *TRI,
|
||||
|
@ -473,7 +473,7 @@ let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
|
||||
ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
|
||||
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
|
||||
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
|
||||
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
|
||||
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
|
||||
usesCustomInserter = 1, Uses = [ESP, SSP] in {
|
||||
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
|
||||
"# TLS_addr32",
|
||||
@ -493,7 +493,7 @@ let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
|
||||
ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
|
||||
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
|
||||
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
|
||||
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
|
||||
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
|
||||
usesCustomInserter = 1, Uses = [RSP, SSP] in {
|
||||
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
|
||||
"# TLS_addr64",
|
||||
@ -509,7 +509,7 @@ def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
|
||||
// For i386, the address of the thunk is passed on the stack, on return the
|
||||
// address of the variable is in %eax. %ecx is trashed during the function
|
||||
// call. All other registers are preserved.
|
||||
let Defs = [EAX, ECX, EFLAGS],
|
||||
let Defs = [EAX, ECX, EFLAGS, DF],
|
||||
Uses = [ESP, SSP],
|
||||
usesCustomInserter = 1 in
|
||||
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
|
||||
@ -522,7 +522,7 @@ def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
|
||||
// %rdi. The lowering will do the right thing with RDI.
|
||||
// On return the address of the variable is in %rax. All other
|
||||
// registers are preserved.
|
||||
let Defs = [RAX, EFLAGS],
|
||||
let Defs = [RAX, EFLAGS, DF],
|
||||
Uses = [RSP, SSP],
|
||||
usesCustomInserter = 1 in
|
||||
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
|
||||
|
@ -5782,7 +5782,7 @@ bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
|
||||
return false;
|
||||
}
|
||||
|
||||
static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
|
||||
X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) {
|
||||
switch (BrOpc) {
|
||||
default: return X86::COND_INVALID;
|
||||
case X86::JE_1: return X86::COND_E;
|
||||
@ -5805,7 +5805,7 @@ static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
|
||||
}
|
||||
|
||||
/// Return condition code of a SET opcode.
|
||||
static X86::CondCode getCondFromSETOpc(unsigned Opc) {
|
||||
X86::CondCode X86::getCondFromSETOpc(unsigned Opc) {
|
||||
switch (Opc) {
|
||||
default: return X86::COND_INVALID;
|
||||
case X86::SETAr: case X86::SETAm: return X86::COND_A;
|
||||
@ -6130,7 +6130,7 @@ void X86InstrInfo::replaceBranchWithTailCall(
|
||||
if (!I->isBranch())
|
||||
assert(0 && "Can't find the branch to replace!");
|
||||
|
||||
X86::CondCode CC = getCondFromBranchOpc(I->getOpcode());
|
||||
X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode());
|
||||
assert(BranchCond.size() == 1);
|
||||
if (CC != BranchCond[0].getImm())
|
||||
continue;
|
||||
@ -6237,7 +6237,7 @@ bool X86InstrInfo::AnalyzeBranchImpl(
|
||||
}
|
||||
|
||||
// Handle conditional branches.
|
||||
X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
|
||||
X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode());
|
||||
if (BranchCode == X86::COND_INVALID)
|
||||
return true; // Can't handle indirect branch.
|
||||
|
||||
@ -6433,7 +6433,7 @@ unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
|
||||
if (I->isDebugValue())
|
||||
continue;
|
||||
if (I->getOpcode() != X86::JMP_1 &&
|
||||
getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
|
||||
X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
|
||||
break;
|
||||
// Remove the branch.
|
||||
I->eraseFromParent();
|
||||
@ -6710,102 +6710,12 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
||||
return;
|
||||
}
|
||||
|
||||
bool FromEFLAGS = SrcReg == X86::EFLAGS;
|
||||
bool ToEFLAGS = DestReg == X86::EFLAGS;
|
||||
int Reg = FromEFLAGS ? DestReg : SrcReg;
|
||||
bool is32 = X86::GR32RegClass.contains(Reg);
|
||||
bool is64 = X86::GR64RegClass.contains(Reg);
|
||||
|
||||
if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) {
|
||||
int Mov = is64 ? X86::MOV64rr : X86::MOV32rr;
|
||||
int Push = is64 ? X86::PUSH64r : X86::PUSH32r;
|
||||
int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32;
|
||||
int Pop = is64 ? X86::POP64r : X86::POP32r;
|
||||
int PopF = is64 ? X86::POPF64 : X86::POPF32;
|
||||
int AX = is64 ? X86::RAX : X86::EAX;
|
||||
|
||||
if (!Subtarget.hasLAHFSAHF()) {
|
||||
assert(Subtarget.is64Bit() &&
|
||||
"Not having LAHF/SAHF only happens on 64-bit.");
|
||||
// Moving EFLAGS to / from another register requires a push and a pop.
|
||||
// Notice that we have to adjust the stack if we don't want to clobber the
|
||||
// first frame index. See X86FrameLowering.cpp - usesTheStack.
|
||||
if (FromEFLAGS) {
|
||||
BuildMI(MBB, MI, DL, get(PushF));
|
||||
BuildMI(MBB, MI, DL, get(Pop), DestReg);
|
||||
}
|
||||
if (ToEFLAGS) {
|
||||
BuildMI(MBB, MI, DL, get(Push))
|
||||
.addReg(SrcReg, getKillRegState(KillSrc));
|
||||
BuildMI(MBB, MI, DL, get(PopF));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// The flags need to be saved, but saving EFLAGS with PUSHF/POPF is
|
||||
// inefficient. Instead:
|
||||
// - Save the overflow flag OF into AL using SETO, and restore it using a
|
||||
// signed 8-bit addition of AL and INT8_MAX.
|
||||
// - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH
|
||||
// using LAHF/SAHF.
|
||||
// - When RAX/EAX is live and isn't the destination register, make sure it
|
||||
// isn't clobbered by PUSH/POP'ing it before and after saving/restoring
|
||||
// the flags.
|
||||
// This approach is ~2.25x faster than using PUSHF/POPF.
|
||||
//
|
||||
// This is still somewhat inefficient because we don't know which flags are
|
||||
// actually live inside EFLAGS. Were we able to do a single SETcc instead of
|
||||
// SETO+LAHF / ADDB+SAHF the code could be 1.02x faster.
|
||||
//
|
||||
// PUSHF/POPF is also potentially incorrect because it affects other flags
|
||||
// such as TF/IF/DF, which LLVM doesn't model.
|
||||
//
|
||||
// Notice that we have to adjust the stack if we don't want to clobber the
|
||||
// first frame index.
|
||||
// See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment.
|
||||
|
||||
const TargetRegisterInfo &TRI = getRegisterInfo();
|
||||
MachineBasicBlock::LivenessQueryResult LQR =
|
||||
MBB.computeRegisterLiveness(&TRI, AX, MI);
|
||||
// We do not want to save and restore AX if we do not have to.
|
||||
// Moreover, if we do so whereas AX is dead, we would need to set
|
||||
// an undef flag on the use of AX, otherwise the verifier will
|
||||
// complain that we read an undef value.
|
||||
// We do not want to change the behavior of the machine verifier
|
||||
// as this is usually wrong to read an undef value.
|
||||
if (MachineBasicBlock::LQR_Unknown == LQR) {
|
||||
LivePhysRegs LPR(TRI);
|
||||
LPR.addLiveOuts(MBB);
|
||||
MachineBasicBlock::iterator I = MBB.end();
|
||||
while (I != MI) {
|
||||
--I;
|
||||
LPR.stepBackward(*I);
|
||||
}
|
||||
// AX contains the top most register in the aliasing hierarchy.
|
||||
// It may not be live, but one of its aliases may be.
|
||||
for (MCRegAliasIterator AI(AX, &TRI, true);
|
||||
AI.isValid() && LQR != MachineBasicBlock::LQR_Live; ++AI)
|
||||
LQR = LPR.contains(*AI) ? MachineBasicBlock::LQR_Live
|
||||
: MachineBasicBlock::LQR_Dead;
|
||||
}
|
||||
bool AXDead = (Reg == AX) || (MachineBasicBlock::LQR_Dead == LQR);
|
||||
if (!AXDead)
|
||||
BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true));
|
||||
if (FromEFLAGS) {
|
||||
BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL);
|
||||
BuildMI(MBB, MI, DL, get(X86::LAHF));
|
||||
BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX);
|
||||
}
|
||||
if (ToEFLAGS) {
|
||||
BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc));
|
||||
BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL)
|
||||
.addReg(X86::AL)
|
||||
.addImm(INT8_MAX);
|
||||
BuildMI(MBB, MI, DL, get(X86::SAHF));
|
||||
}
|
||||
if (!AXDead)
|
||||
BuildMI(MBB, MI, DL, get(Pop), AX);
|
||||
return;
|
||||
if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
|
||||
// FIXME: We use a fatal error here because historically LLVM has tried
|
||||
// lower some of these physreg copies and we want to ensure we get
|
||||
// reasonable bug reports if someone encounters a case no other testing
|
||||
// found. This path should be removed after the LLVM 7 release.
|
||||
report_fatal_error("Unable to copy EFLAGS physical register!");
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
|
||||
@ -7465,9 +7375,9 @@ bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
|
||||
if (IsCmpZero || IsSwapped) {
|
||||
// We decode the condition code from opcode.
|
||||
if (Instr.isBranch())
|
||||
OldCC = getCondFromBranchOpc(Instr.getOpcode());
|
||||
OldCC = X86::getCondFromBranchOpc(Instr.getOpcode());
|
||||
else {
|
||||
OldCC = getCondFromSETOpc(Instr.getOpcode());
|
||||
OldCC = X86::getCondFromSETOpc(Instr.getOpcode());
|
||||
if (OldCC != X86::COND_INVALID)
|
||||
OpcIsSET = true;
|
||||
else
|
||||
@ -9413,8 +9323,9 @@ bool X86InstrInfo::
|
||||
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
|
||||
// FIXME: Return false for x87 stack register classes for now. We can't
|
||||
// allow any loads of these registers before FpGet_ST0_80.
|
||||
return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
|
||||
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
|
||||
return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
|
||||
RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
|
||||
RC == &X86::RFP80RegClass);
|
||||
}
|
||||
|
||||
/// Return a virtual register initialized with the
|
||||
|
@ -77,6 +77,12 @@ unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
|
||||
unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
|
||||
bool HasMemoryOperand = false);
|
||||
|
||||
// Turn jCC opcode into condition code.
|
||||
CondCode getCondFromBranchOpc(unsigned Opc);
|
||||
|
||||
// Turn setCC opcode into condition code.
|
||||
CondCode getCondFromSETOpc(unsigned Opc);
|
||||
|
||||
// Turn CMov opcode into condition code.
|
||||
CondCode getCondFromCMovOpc(unsigned Opc);
|
||||
|
||||
|
@ -1235,18 +1235,18 @@ let mayLoad = 1, mayStore = 1, usesCustomInserter = 1,
|
||||
|
||||
let mayLoad = 1, mayStore = 1, usesCustomInserter = 1,
|
||||
SchedRW = [WriteRMW] in {
|
||||
let Defs = [ESP, EFLAGS], Uses = [ESP] in
|
||||
let Defs = [ESP, EFLAGS, DF], Uses = [ESP] in
|
||||
def WRFLAGS32 : PseudoI<(outs), (ins GR32:$src),
|
||||
[(int_x86_flags_write_u32 GR32:$src)]>,
|
||||
Requires<[Not64BitMode]>;
|
||||
|
||||
let Defs = [RSP, EFLAGS], Uses = [RSP] in
|
||||
let Defs = [RSP, EFLAGS, DF], Uses = [RSP] in
|
||||
def WRFLAGS64 : PseudoI<(outs), (ins GR64:$src),
|
||||
[(int_x86_flags_write_u64 GR64:$src)]>,
|
||||
Requires<[In64BitMode]>;
|
||||
}
|
||||
|
||||
let Defs = [ESP, EFLAGS], Uses = [ESP], mayLoad = 1, hasSideEffects=0,
|
||||
let Defs = [ESP, EFLAGS, DF], Uses = [ESP], mayLoad = 1, hasSideEffects=0,
|
||||
SchedRW = [WriteLoad] in {
|
||||
def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>,
|
||||
OpSize16;
|
||||
@ -1254,7 +1254,7 @@ def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>,
|
||||
OpSize32, Requires<[Not64BitMode]>;
|
||||
}
|
||||
|
||||
let Defs = [ESP], Uses = [ESP, EFLAGS], mayStore = 1, hasSideEffects=0,
|
||||
let Defs = [ESP], Uses = [ESP, EFLAGS, DF], mayStore = 1, hasSideEffects=0,
|
||||
SchedRW = [WriteStore] in {
|
||||
def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", [], IIC_PUSH_F>,
|
||||
OpSize16;
|
||||
@ -1294,10 +1294,10 @@ def PUSH64i32 : Ii32S<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
|
||||
Requires<[In64BitMode]>;
|
||||
}
|
||||
|
||||
let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, hasSideEffects=0 in
|
||||
let Defs = [RSP, EFLAGS, DF], Uses = [RSP], mayLoad = 1, hasSideEffects=0 in
|
||||
def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", [], IIC_POP_FD>,
|
||||
OpSize32, Requires<[In64BitMode]>, Sched<[WriteLoad]>;
|
||||
let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, hasSideEffects=0 in
|
||||
let Defs = [RSP], Uses = [RSP, EFLAGS, DF], mayStore = 1, hasSideEffects=0 in
|
||||
def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", [], IIC_PUSH_F>,
|
||||
OpSize32, Requires<[In64BitMode]>, Sched<[WriteStore]>;
|
||||
|
||||
@ -1382,8 +1382,7 @@ def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
|
||||
} // Defs = [EFLAGS]
|
||||
|
||||
let SchedRW = [WriteMicrocoded] in {
|
||||
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
|
||||
let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in {
|
||||
let Defs = [EDI,ESI], Uses = [EDI,ESI,DF] in {
|
||||
def MOVSB : I<0xA4, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src),
|
||||
"movsb\t{$src, $dst|$dst, $src}", [], IIC_MOVS>;
|
||||
def MOVSW : I<0xA5, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src),
|
||||
@ -1394,36 +1393,33 @@ def MOVSQ : RI<0xA5, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src),
|
||||
"movsq\t{$src, $dst|$dst, $src}", [], IIC_MOVS>;
|
||||
}
|
||||
|
||||
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
|
||||
let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in
|
||||
let Defs = [EDI], Uses = [AL,EDI,DF] in
|
||||
def STOSB : I<0xAA, RawFrmDst, (outs), (ins dstidx8:$dst),
|
||||
"stosb\t{%al, $dst|$dst, al}", [], IIC_STOS>;
|
||||
let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in
|
||||
let Defs = [EDI], Uses = [AX,EDI,DF] in
|
||||
def STOSW : I<0xAB, RawFrmDst, (outs), (ins dstidx16:$dst),
|
||||
"stosw\t{%ax, $dst|$dst, ax}", [], IIC_STOS>, OpSize16;
|
||||
let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in
|
||||
let Defs = [EDI], Uses = [EAX,EDI,DF] in
|
||||
def STOSL : I<0xAB, RawFrmDst, (outs), (ins dstidx32:$dst),
|
||||
"stos{l|d}\t{%eax, $dst|$dst, eax}", [], IIC_STOS>, OpSize32;
|
||||
let Defs = [RDI], Uses = [RAX,RDI,EFLAGS] in
|
||||
let Defs = [RDI], Uses = [RAX,RDI,DF] in
|
||||
def STOSQ : RI<0xAB, RawFrmDst, (outs), (ins dstidx64:$dst),
|
||||
"stosq\t{%rax, $dst|$dst, rax}", [], IIC_STOS>;
|
||||
|
||||
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
|
||||
let Defs = [EDI,EFLAGS], Uses = [AL,EDI,EFLAGS] in
|
||||
let Defs = [EDI,EFLAGS], Uses = [AL,EDI,DF] in
|
||||
def SCASB : I<0xAE, RawFrmDst, (outs), (ins dstidx8:$dst),
|
||||
"scasb\t{$dst, %al|al, $dst}", [], IIC_SCAS>;
|
||||
let Defs = [EDI,EFLAGS], Uses = [AX,EDI,EFLAGS] in
|
||||
let Defs = [EDI,EFLAGS], Uses = [AX,EDI,DF] in
|
||||
def SCASW : I<0xAF, RawFrmDst, (outs), (ins dstidx16:$dst),
|
||||
"scasw\t{$dst, %ax|ax, $dst}", [], IIC_SCAS>, OpSize16;
|
||||
let Defs = [EDI,EFLAGS], Uses = [EAX,EDI,EFLAGS] in
|
||||
let Defs = [EDI,EFLAGS], Uses = [EAX,EDI,DF] in
|
||||
def SCASL : I<0xAF, RawFrmDst, (outs), (ins dstidx32:$dst),
|
||||
"scas{l|d}\t{$dst, %eax|eax, $dst}", [], IIC_SCAS>, OpSize32;
|
||||
let Defs = [EDI,EFLAGS], Uses = [RAX,EDI,EFLAGS] in
|
||||
let Defs = [EDI,EFLAGS], Uses = [RAX,EDI,DF] in
|
||||
def SCASQ : RI<0xAF, RawFrmDst, (outs), (ins dstidx64:$dst),
|
||||
"scasq\t{$dst, %rax|rax, $dst}", [], IIC_SCAS>;
|
||||
|
||||
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
|
||||
let Defs = [EDI,ESI,EFLAGS], Uses = [EDI,ESI,EFLAGS] in {
|
||||
let Defs = [EDI,ESI,EFLAGS], Uses = [EDI,ESI,DF] in {
|
||||
def CMPSB : I<0xA6, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src),
|
||||
"cmpsb\t{$dst, $src|$src, $dst}", [], IIC_CMPS>;
|
||||
def CMPSW : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src),
|
||||
@ -2070,8 +2066,7 @@ def DATA32_PREFIX : I<0x66, RawFrm, (outs), (ins), "data32", [], IIC_NOP>,
|
||||
} // SchedRW
|
||||
|
||||
// Repeat string operation instruction prefixes
|
||||
// These use the DF flag in the EFLAGS register to inc or dec ECX
|
||||
let Defs = [ECX], Uses = [ECX,EFLAGS], SchedRW = [WriteMicrocoded] in {
|
||||
let Defs = [ECX], Uses = [ECX,DF], SchedRW = [WriteMicrocoded] in {
|
||||
// Repeat (used with INS, OUTS, MOVS, LODS and STOS)
|
||||
def REP_PREFIX : I<0xF3, RawFrm, (outs), (ins), "rep", []>;
|
||||
// Repeat while not equal (used with CMPS and SCAS)
|
||||
@ -2080,24 +2075,22 @@ def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>;
|
||||
|
||||
// String manipulation instructions
|
||||
let SchedRW = [WriteMicrocoded] in {
|
||||
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
|
||||
let Defs = [AL,ESI], Uses = [ESI,EFLAGS] in
|
||||
let Defs = [AL,ESI], Uses = [ESI,DF] in
|
||||
def LODSB : I<0xAC, RawFrmSrc, (outs), (ins srcidx8:$src),
|
||||
"lodsb\t{$src, %al|al, $src}", [], IIC_LODS>;
|
||||
let Defs = [AX,ESI], Uses = [ESI,EFLAGS] in
|
||||
let Defs = [AX,ESI], Uses = [ESI,DF] in
|
||||
def LODSW : I<0xAD, RawFrmSrc, (outs), (ins srcidx16:$src),
|
||||
"lodsw\t{$src, %ax|ax, $src}", [], IIC_LODS>, OpSize16;
|
||||
let Defs = [EAX,ESI], Uses = [ESI,EFLAGS] in
|
||||
let Defs = [EAX,ESI], Uses = [ESI,DF] in
|
||||
def LODSL : I<0xAD, RawFrmSrc, (outs), (ins srcidx32:$src),
|
||||
"lods{l|d}\t{$src, %eax|eax, $src}", [], IIC_LODS>, OpSize32;
|
||||
let Defs = [RAX,ESI], Uses = [ESI,EFLAGS] in
|
||||
let Defs = [RAX,ESI], Uses = [ESI,DF] in
|
||||
def LODSQ : RI<0xAD, RawFrmSrc, (outs), (ins srcidx64:$src),
|
||||
"lodsq\t{$src, %rax|rax, $src}", [], IIC_LODS>;
|
||||
}
|
||||
|
||||
let SchedRW = [WriteSystem] in {
|
||||
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
|
||||
let Defs = [ESI], Uses = [DX,ESI,EFLAGS] in {
|
||||
let Defs = [ESI], Uses = [DX,ESI,DF] in {
|
||||
def OUTSB : I<0x6E, RawFrmSrc, (outs), (ins srcidx8:$src),
|
||||
"outsb\t{$src, %dx|dx, $src}", [], IIC_OUTS>;
|
||||
def OUTSW : I<0x6F, RawFrmSrc, (outs), (ins srcidx16:$src),
|
||||
@ -2106,8 +2099,7 @@ def OUTSL : I<0x6F, RawFrmSrc, (outs), (ins srcidx32:$src),
|
||||
"outs{l|d}\t{$src, %dx|dx, $src}", [], IIC_OUTS>, OpSize32;
|
||||
}
|
||||
|
||||
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
|
||||
let Defs = [EDI], Uses = [DX,EDI,EFLAGS] in {
|
||||
let Defs = [EDI], Uses = [DX,EDI,DF] in {
|
||||
def INSB : I<0x6C, RawFrmDst, (outs), (ins dstidx8:$dst),
|
||||
"insb\t{%dx, $dst|$dst, dx}", [], IIC_INS>;
|
||||
def INSW : I<0x6D, RawFrmDst, (outs), (ins dstidx16:$dst),
|
||||
@ -2117,19 +2109,22 @@ def INSL : I<0x6D, RawFrmDst, (outs), (ins dstidx32:$dst),
|
||||
}
|
||||
}
|
||||
|
||||
// Flag instructions
|
||||
let SchedRW = [WriteALU] in {
|
||||
def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC>;
|
||||
def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_STC>;
|
||||
def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>;
|
||||
def STI : I<0xFB, RawFrm, (outs), (ins), "sti", [], IIC_STI>;
|
||||
// EFLAGS management instructions.
|
||||
let SchedRW = [WriteALU], Defs = [EFLAGS], Uses = [EFLAGS] in {
|
||||
def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC_CMC_STC>;
|
||||
def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_CLC_CMC_STC>;
|
||||
def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CLC_CMC_STC>;
|
||||
}
|
||||
|
||||
// DF management instructions.
|
||||
// FIXME: These are a bit more expensive than CLC and STC. We should consider
|
||||
// adjusting their schedule bucket.
|
||||
let SchedRW = [WriteALU], Defs = [DF] in {
|
||||
def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", [], IIC_CLD>;
|
||||
def STD : I<0xFD, RawFrm, (outs), (ins), "std", [], IIC_STD>;
|
||||
def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CMC>;
|
||||
|
||||
def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB;
|
||||
}
|
||||
|
||||
|
||||
// Table lookup instructions
|
||||
let Uses = [AL,EBX], Defs = [AL], hasSideEffects = 0, mayLoad = 1 in
|
||||
def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", [], IIC_XLAT>,
|
||||
|
@ -692,6 +692,19 @@ let Uses = [RAX, RBX, RCX, RDX], Defs = [RAX, RBX, RCX] in {
|
||||
} // Uses, Defs
|
||||
} // SchedRW
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// TS flag control instruction.
|
||||
let SchedRW = [WriteSystem] in {
|
||||
def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// IF (inside EFLAGS) management instructions.
|
||||
let SchedRW = [WriteSystem], Uses = [EFLAGS], Defs = [EFLAGS] in {
|
||||
def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>;
|
||||
def STI : I<0xFB, RawFrm, (outs), (ins), "sti", [], IIC_STI>;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// RDPID Instruction
|
||||
let SchedRW = [WriteSystem] in {
|
||||
|
@ -251,9 +251,19 @@ def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
|
||||
// Floating-point status word
|
||||
def FPSW : X86Reg<"fpsw", 0>;
|
||||
|
||||
// Status flags register
|
||||
// Status flags register.
|
||||
//
|
||||
// Note that some flags that are commonly thought of as part of the status
|
||||
// flags register are modeled separately. Typically this is due to instructions
|
||||
// reading and updating those flags independently of all the others. We don't
|
||||
// want to create false dependencies between these instructions and so we use
|
||||
// a separate register to model them.
|
||||
def EFLAGS : X86Reg<"flags", 0>;
|
||||
|
||||
// The direction flag.
|
||||
def DF : X86Reg<"DF", 0>;
|
||||
|
||||
|
||||
// Segment registers
|
||||
def CS : X86Reg<"cs", 1>;
|
||||
def DS : X86Reg<"ds", 3>;
|
||||
@ -497,6 +507,10 @@ def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
|
||||
let CopyCost = -1; // Don't allow copying of status registers.
|
||||
let isAllocatable = 0;
|
||||
}
|
||||
def DFCCR : RegisterClass<"X86", [i32], 32, (add DF)> {
|
||||
let CopyCost = -1; // Don't allow copying of status registers.
|
||||
let isAllocatable = 0;
|
||||
}
|
||||
|
||||
// AVX-512 vector/mask registers.
|
||||
def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
|
||||
|
@ -608,12 +608,10 @@ def IIC_CMPXCHG_8B : InstrItinClass;
|
||||
def IIC_CMPXCHG_16B : InstrItinClass;
|
||||
def IIC_LODS : InstrItinClass;
|
||||
def IIC_OUTS : InstrItinClass;
|
||||
def IIC_CLC : InstrItinClass;
|
||||
def IIC_CLC_CMC_STC : InstrItinClass;
|
||||
def IIC_CLD : InstrItinClass;
|
||||
def IIC_CLI : InstrItinClass;
|
||||
def IIC_CMC : InstrItinClass;
|
||||
def IIC_CLTS : InstrItinClass;
|
||||
def IIC_STC : InstrItinClass;
|
||||
def IIC_STI : InstrItinClass;
|
||||
def IIC_STD : InstrItinClass;
|
||||
def IIC_XLAT : InstrItinClass;
|
||||
|
@ -514,12 +514,10 @@ def AtomItineraries : ProcessorItineraries<
|
||||
InstrItinData<IIC_CMPXCHG_16B, [InstrStage<22, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_LODS, [InstrStage<2, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_OUTS, [InstrStage<74, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_CLC, [InstrStage<1, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_CLC_CMC_STC, [InstrStage<1, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_CLD, [InstrStage<3, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_CLI, [InstrStage<14, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_CMC, [InstrStage<1, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_CLTS, [InstrStage<33, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_STC, [InstrStage<1, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_STI, [InstrStage<17, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_STD, [InstrStage<21, [Port0, Port1]>] >,
|
||||
InstrItinData<IIC_XLAT, [InstrStage<6, [Port0, Port1]>] >,
|
||||
|
@ -62,6 +62,7 @@ void initializeX86CallFrameOptimizationPass(PassRegistry &);
|
||||
void initializeX86CmovConverterPassPass(PassRegistry &);
|
||||
void initializeX86ExecutionDepsFixPass(PassRegistry &);
|
||||
void initializeX86DomainReassignmentPass(PassRegistry &);
|
||||
void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
@ -80,6 +81,7 @@ extern "C" void LLVMInitializeX86Target() {
|
||||
initializeX86CmovConverterPassPass(PR);
|
||||
initializeX86ExecutionDepsFixPass(PR);
|
||||
initializeX86DomainReassignmentPass(PR);
|
||||
initializeX86FlagsCopyLoweringPassPass(PR);
|
||||
}
|
||||
|
||||
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
||||
@ -415,6 +417,7 @@ void X86PassConfig::addPreRegAlloc() {
|
||||
addPass(createX86CallFrameOptimization());
|
||||
}
|
||||
|
||||
addPass(createX86FlagsCopyLoweringPass());
|
||||
addPass(createX86WinAllocaExpander());
|
||||
}
|
||||
void X86PassConfig::addMachineSSAOptimization() {
|
||||
|
@ -2559,6 +2559,8 @@ def mrtm : Flag<["-"], "mrtm">, Group<m_x86_Features_Group>;
|
||||
def mno_rtm : Flag<["-"], "mno-rtm">, Group<m_x86_Features_Group>;
|
||||
def mrdseed : Flag<["-"], "mrdseed">, Group<m_x86_Features_Group>;
|
||||
def mno_rdseed : Flag<["-"], "mno-rdseed">, Group<m_x86_Features_Group>;
|
||||
def msahf : Flag<["-"], "msahf">, Group<m_x86_Features_Group>;
|
||||
def mno_sahf : Flag<["-"], "mno-sahf">, Group<m_x86_Features_Group>;
|
||||
def msgx : Flag<["-"], "msgx">, Group<m_x86_Features_Group>;
|
||||
def mno_sgx : Flag<["-"], "mno-sgx">, Group<m_x86_Features_Group>;
|
||||
def msha : Flag<["-"], "msha">, Group<m_x86_Features_Group>;
|
||||
|
@ -198,6 +198,7 @@ bool X86TargetInfo::initFeatureMap(
|
||||
LLVM_FALLTHROUGH;
|
||||
case CK_Core2:
|
||||
setFeatureEnabledImpl(Features, "ssse3", true);
|
||||
setFeatureEnabledImpl(Features, "sahf", true);
|
||||
LLVM_FALLTHROUGH;
|
||||
case CK_Yonah:
|
||||
case CK_Prescott:
|
||||
@ -239,6 +240,7 @@ bool X86TargetInfo::initFeatureMap(
|
||||
setFeatureEnabledImpl(Features, "ssse3", true);
|
||||
setFeatureEnabledImpl(Features, "fxsr", true);
|
||||
setFeatureEnabledImpl(Features, "cx16", true);
|
||||
setFeatureEnabledImpl(Features, "sahf", true);
|
||||
break;
|
||||
|
||||
case CK_KNM:
|
||||
@ -269,6 +271,7 @@ bool X86TargetInfo::initFeatureMap(
|
||||
setFeatureEnabledImpl(Features, "xsaveopt", true);
|
||||
setFeatureEnabledImpl(Features, "xsave", true);
|
||||
setFeatureEnabledImpl(Features, "movbe", true);
|
||||
setFeatureEnabledImpl(Features, "sahf", true);
|
||||
break;
|
||||
|
||||
case CK_K6_2:
|
||||
@ -282,6 +285,7 @@ bool X86TargetInfo::initFeatureMap(
|
||||
setFeatureEnabledImpl(Features, "sse4a", true);
|
||||
setFeatureEnabledImpl(Features, "lzcnt", true);
|
||||
setFeatureEnabledImpl(Features, "popcnt", true);
|
||||
setFeatureEnabledImpl(Features, "sahf", true);
|
||||
LLVM_FALLTHROUGH;
|
||||
case CK_K8SSE3:
|
||||
setFeatureEnabledImpl(Features, "sse3", true);
|
||||
@ -315,6 +319,7 @@ bool X86TargetInfo::initFeatureMap(
|
||||
setFeatureEnabledImpl(Features, "prfchw", true);
|
||||
setFeatureEnabledImpl(Features, "cx16", true);
|
||||
setFeatureEnabledImpl(Features, "fxsr", true);
|
||||
setFeatureEnabledImpl(Features, "sahf", true);
|
||||
break;
|
||||
|
||||
case CK_ZNVER1:
|
||||
@ -338,6 +343,7 @@ bool X86TargetInfo::initFeatureMap(
|
||||
setFeatureEnabledImpl(Features, "prfchw", true);
|
||||
setFeatureEnabledImpl(Features, "rdrnd", true);
|
||||
setFeatureEnabledImpl(Features, "rdseed", true);
|
||||
setFeatureEnabledImpl(Features, "sahf", true);
|
||||
setFeatureEnabledImpl(Features, "sha", true);
|
||||
setFeatureEnabledImpl(Features, "sse4a", true);
|
||||
setFeatureEnabledImpl(Features, "xsave", true);
|
||||
@ -372,6 +378,7 @@ bool X86TargetInfo::initFeatureMap(
|
||||
setFeatureEnabledImpl(Features, "cx16", true);
|
||||
setFeatureEnabledImpl(Features, "fxsr", true);
|
||||
setFeatureEnabledImpl(Features, "xsave", true);
|
||||
setFeatureEnabledImpl(Features, "sahf", true);
|
||||
break;
|
||||
}
|
||||
if (!TargetInfo::initFeatureMap(Features, Diags, CPU, FeaturesVec))
|
||||
@ -768,6 +775,8 @@ bool X86TargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
|
||||
HasRetpoline = true;
|
||||
} else if (Feature == "+retpoline-external-thunk") {
|
||||
HasRetpolineExternalThunk = true;
|
||||
} else if (Feature == "+sahf") {
|
||||
HasLAHFSAHF = true;
|
||||
}
|
||||
|
||||
X86SSEEnum Level = llvm::StringSwitch<X86SSEEnum>(Feature)
|
||||
@ -1240,6 +1249,7 @@ bool X86TargetInfo::isValidFeatureName(StringRef Name) const {
|
||||
.Case("rdrnd", true)
|
||||
.Case("rdseed", true)
|
||||
.Case("rtm", true)
|
||||
.Case("sahf", true)
|
||||
.Case("sgx", true)
|
||||
.Case("sha", true)
|
||||
.Case("shstk", true)
|
||||
@ -1313,6 +1323,7 @@ bool X86TargetInfo::hasFeature(StringRef Feature) const {
|
||||
.Case("retpoline", HasRetpoline)
|
||||
.Case("retpoline-external-thunk", HasRetpolineExternalThunk)
|
||||
.Case("rtm", HasRTM)
|
||||
.Case("sahf", HasLAHFSAHF)
|
||||
.Case("sgx", HasSGX)
|
||||
.Case("sha", HasSHA)
|
||||
.Case("shstk", HasSHSTK)
|
||||
|
@ -98,6 +98,7 @@ class LLVM_LIBRARY_VISIBILITY X86TargetInfo : public TargetInfo {
|
||||
bool HasPREFETCHWT1 = false;
|
||||
bool HasRetpoline = false;
|
||||
bool HasRetpolineExternalThunk = false;
|
||||
bool HasLAHFSAHF = false;
|
||||
|
||||
/// \brief Enumeration of all of the X86 CPUs supported by Clang.
|
||||
///
|
||||
|
@ -1,3 +1,3 @@
|
||||
/* $FreeBSD$ */
|
||||
|
||||
#define FREEBSD_CC_VERSION 1200011
|
||||
#define FREEBSD_CC_VERSION 1200012
|
||||
|
@ -1042,6 +1042,7 @@ SRCS_MIN+= Target/X86/X86FastISel.cpp
|
||||
SRCS_MIN+= Target/X86/X86FixupBWInsts.cpp
|
||||
SRCS_MIN+= Target/X86/X86FixupLEAs.cpp
|
||||
SRCS_MIN+= Target/X86/X86FixupSetCC.cpp
|
||||
SRCS_MIN+= Target/X86/X86FlagsCopyLowering.cpp
|
||||
SRCS_MIN+= Target/X86/X86FloatingPoint.cpp
|
||||
SRCS_MIN+= Target/X86/X86FrameLowering.cpp
|
||||
SRCS_MIN+= Target/X86/X86ISelDAGToDAG.cpp
|
||||
|
Loading…
Reference in New Issue
Block a user