powerpcspe: Implement SPE exception handling

The Signal Processing Engine (SPE) found in Freescale e500 cores (and
others) offloads IEEE-754 compliance (NaN, Inf handling, overflow,
underflow) to software, most likely as a means of simplifying the APU
silicon.  Some software, like AbiWord, needs full IEEE-754 compliance,
including NaN handling.  Implement the necessary bits to enable it.

Differential Revision: https://reviews.freebsd.org/D17446
This commit is contained in:
Justin Hibbits 2018-10-21 00:43:27 +00:00
parent c7be3f26e8
commit 289041e2cb
7 changed files with 525 additions and 3 deletions

View File

@ -189,6 +189,10 @@ extern void *int_debug;
extern void *int_debug_ed;
extern void *int_vec;
extern void *int_vecast;
#ifdef __SPE__
extern void *int_spe_fpdata;
extern void *int_spe_fpround;
#endif
#ifdef HWPMC_HOOKS
extern void *int_performance_counter;
#endif
@ -258,6 +262,10 @@ ivor_setup(void)
case FSL_E500v1:
case FSL_E500v2:
SET_TRAP(SPR_IVOR32, int_vec);
#ifdef __SPE__
SET_TRAP(SPR_IVOR33, int_spe_fpdata);
SET_TRAP(SPR_IVOR34, int_spe_fpround);
#endif
break;
}

View File

@ -40,9 +40,19 @@ __FBSDID("$FreeBSD$");
#include <sys/limits.h>
#include <machine/altivec.h>
#include <machine/fpu.h>
#include <machine/ieeefp.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <powerpc/fpu/fpu_arith.h>
#include <powerpc/fpu/fpu_emu.h>
#include <powerpc/fpu/fpu_extern.h>
void spe_handle_fpdata(struct trapframe *);
void spe_handle_fpround(struct trapframe *);
static int spe_emu_instr(uint32_t, struct fpemu *, struct fpn **, uint32_t *);
static void
save_vec_int(struct thread *td)
{
@ -75,7 +85,7 @@ save_vec_int(struct thread *td)
__asm ( "evxor 0,0,0\n"
"evaddumiaaw 0,0\n"
"evstdd 0,0(%0)" :: "b"(&pcb->pcb_vec.vr[17][0]));
"evstdd 0,0(%0)" :: "b"(&pcb->pcb_vec.spare[0]));
pcb->pcb_vec.vscr = mfspr(SPR_SPEFSCR);
/*
@ -113,6 +123,7 @@ enable_vec(struct thread *td)
if (!(pcb->pcb_flags & PCB_VEC)) {
memset(&pcb->pcb_vec, 0, sizeof pcb->pcb_vec);
pcb->pcb_flags |= PCB_VEC;
pcb->pcb_vec.vscr = mfspr(SPR_SPEFSCR);
}
/*
@ -121,12 +132,11 @@ enable_vec(struct thread *td)
*/
msr = mfmsr();
mtmsr(msr | PSL_VEC);
isync();
/* Restore SPEFSCR and ACC. Use %r0 as the scratch for ACC. */
mtspr(SPR_SPEFSCR, pcb->pcb_vec.vscr);
__asm __volatile("evldd 0, 0(%0); evmra 0,0\n"
:: "b"(&pcb->pcb_vec.vr[17][0]));
:: "b"(&pcb->pcb_vec.spare[0]));
/*
* The lower half of each register will be restored on trap return. Use
@ -181,3 +191,444 @@ save_vec_nodrop(struct thread *td)
save_vec_int(td);
}
#define SPE_INST_MASK 0x31f
#define EADD 0x200
#define ESUB 0x201
#define EABS 0x204
#define ENABS 0x205
#define ENEG 0x206
#define EMUL 0x208
#define EDIV 0x209
#define ECMPGT 0x20c
#define ECMPLT 0x20d
#define ECMPEQ 0x20e
#define ECFUI 0x210
#define ECFSI 0x211
#define ECTUI 0x214
#define ECTSI 0x215
#define ECTUF 0x216
#define ECTSF 0x217
#define ECTUIZ 0x218
#define ECTSIZ 0x21a
#define SPE 0x4
#define SPFP 0x6
#define DPFP 0x7
#define SPE_OPC 4
#define OPC_SHIFT 26
#define EVFSADD 0x280
#define EVFSSUB 0x281
#define EVFSABS 0x284
#define EVFSNABS 0x285
#define EVFSNEG 0x286
#define EVFSMUL 0x288
#define EVFSDIV 0x289
#define EVFSCMPGT 0x28c
#define EVFSCMPLT 0x28d
#define EVFSCMPEQ 0x28e
#define EVFSCFUI 0x290
#define EVFSCFSI 0x291
#define EVFSCTUI 0x294
#define EVFSCTSI 0x295
#define EVFSCTUF 0x296
#define EVFSCTSF 0x297
#define EVFSCTUIZ 0x298
#define EVFSCTSIZ 0x29a
#define EFSADD 0x2c0
#define EFSSUB 0x2c1
#define EFSABS 0x2c4
#define EFSNABS 0x2c5
#define EFSNEG 0x2c6
#define EFSMUL 0x2c8
#define EFSDIV 0x2c9
#define EFSCMPGT 0x2cc
#define EFSCMPLT 0x2cd
#define EFSCMPEQ 0x2ce
#define EFSCFD 0x2cf
#define EFSCFUI 0x2d0
#define EFSCFSI 0x2d1
#define EFSCTUI 0x2d4
#define EFSCTSI 0x2d5
#define EFSCTUF 0x2d6
#define EFSCTSF 0x2d7
#define EFSCTUIZ 0x2d8
#define EFSCTSIZ 0x2da
#define EFDADD 0x2e0
#define EFDSUB 0x2e1
#define EFDABS 0x2e4
#define EFDNABS 0x2e5
#define EFDNEG 0x2e6
#define EFDMUL 0x2e8
#define EFDDIV 0x2e9
#define EFDCMPGT 0x2ec
#define EFDCMPLT 0x2ed
#define EFDCMPEQ 0x2ee
#define EFDCFS 0x2ef
#define EFDCFUI 0x2f0
#define EFDCFSI 0x2f1
#define EFDCTUI 0x2f4
#define EFDCTSI 0x2f5
#define EFDCTUF 0x2f6
#define EFDCTSF 0x2f7
#define EFDCTUIZ 0x2f8
#define EFDCTSIZ 0x2fa
enum {
NONE,
SINGLE,
DOUBLE,
VECTOR,
};
static uint32_t fpscr_to_spefscr(uint32_t fpscr)
{
uint32_t spefscr;
spefscr = 0;
if (fpscr & FPSCR_VX)
spefscr |= SPEFSCR_FINV;
if (fpscr & FPSCR_OX)
spefscr |= SPEFSCR_FOVF;
if (fpscr & FPSCR_UX)
spefscr |= SPEFSCR_FUNF;
if (fpscr & FPSCR_ZX)
spefscr |= SPEFSCR_FDBZ;
if (fpscr & FPSCR_XX)
spefscr |= SPEFSCR_FX;
return (spefscr);
}
/* Sign is 0 for unsigned, 1 for signed. */
static int
spe_to_int(struct fpemu *fpemu, struct fpn *fpn, uint32_t *val, int sign)
{
uint32_t res[2];
res[0] = fpu_ftox(fpemu, fpn, res);
if (res[0] != UINT_MAX && res[0] != 0)
fpemu->fe_cx |= FPSCR_OX;
else if (sign == 0 && res[0] != 0)
fpemu->fe_cx |= FPSCR_UX;
else
*val = res[1];
return (0);
}
/* Masked instruction */
/*
* For compare instructions, returns 1 if success, 0 if not. For all others,
* returns -1, or -2 if no result needs recorded.
*/
static int
spe_emu_instr(uint32_t instr, struct fpemu *fpemu,
struct fpn **result, uint32_t *iresult)
{
switch (instr & SPE_INST_MASK) {
case EABS:
case ENABS:
case ENEG:
/* Taken care of elsewhere. */
break;
case ECTUIZ:
fpemu->fe_cx &= ~FPSCR_RN;
fpemu->fe_cx |= FP_RZ;
case ECTUI:
spe_to_int(fpemu, &fpemu->fe_f2, iresult, 0);
return (-1);
case ECTSIZ:
fpemu->fe_cx &= ~FPSCR_RN;
fpemu->fe_cx |= FP_RZ;
case ECTSI:
spe_to_int(fpemu, &fpemu->fe_f2, iresult, 1);
return (-1);
case EADD:
*result = fpu_add(fpemu);
break;
case ESUB:
*result = fpu_sub(fpemu);
break;
case EMUL:
*result = fpu_mul(fpemu);
break;
case EDIV:
*result = fpu_div(fpemu);
break;
case ECMPGT:
fpu_compare(fpemu, 0);
if (fpemu->fe_cx & FPSCR_FG)
return (1);
return (0);
case ECMPLT:
fpu_compare(fpemu, 0);
if (fpemu->fe_cx & FPSCR_FL)
return (1);
return (0);
case ECMPEQ:
fpu_compare(fpemu, 0);
if (fpemu->fe_cx & FPSCR_FE)
return (1);
return (0);
default:
printf("Unknown instruction %x\n", instr);
}
return (-1);
}
static int
spe_explode(struct fpemu *fe, struct fpn *fp, uint32_t type,
uint32_t hi, uint32_t lo)
{
uint32_t s;
fp->fp_sign = hi >> 31;
fp->fp_sticky = 0;
switch (type) {
case SINGLE:
s = fpu_stof(fp, hi);
break;
case DOUBLE:
s = fpu_dtof(fp, hi, lo);
break;
}
if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
/*
* Input is a signalling NaN. All operations that return
* an input NaN operand put it through a ``NaN conversion'',
* which basically just means ``turn on the quiet bit''.
* We do this here so that all NaNs internally look quiet
* (we can tell signalling ones by their class).
*/
fp->fp_mant[0] |= FP_QUIETBIT;
fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */
s = FPC_SNAN;
}
fp->fp_class = s;
return (0);
}
void
spe_handle_fpdata(struct trapframe *frame)
{
struct fpemu fpemu;
struct fpn *result;
uint32_t instr, instr_sec_op;
uint32_t cr_shift, ra, rb, rd, src;
uint32_t high, low, res; /* For vector operations. */
uint32_t spefscr = 0;
uint32_t ftod_res[2];
int width; /* Single, Double, Vector, Integer */
int err;
err = fueword32((void *)frame->srr0, &instr);
if (err != 0)
return;
/* Fault. */;
if ((instr >> OPC_SHIFT) != SPE_OPC)
return;
/*
* 'cr' field is the upper 3 bits of rd. Magically, since a) rd is 5
* bits, b) each 'cr' field is 4 bits, and c) Only the 'GT' bit is
* modified for most compare operations, the full value of rd can be
* used as a shift value.
*/
rd = (instr >> 21) & 0x1f;
ra = (instr >> 16) & 0x1f;
rb = (instr >> 11) & 0x1f;
src = (instr >> 5) & 0x7;
cr_shift = 28 - (rd & 0x1f);
instr_sec_op = (instr & 0x7ff);
memset(&fpemu, 0, sizeof(fpemu));
width = NONE;
switch (src) {
case SPE:
save_vec_nodrop(curthread);
switch (instr_sec_op) {
case EVFSABS:
curthread->td_pcb->pcb_vec.vr[rd][0] =
curthread->td_pcb->pcb_vec.vr[ra][0] & ~(1U << 31);
frame->fixreg[rd] = frame->fixreg[ra] & ~(1U << 31);
break;
case EVFSNABS:
curthread->td_pcb->pcb_vec.vr[rd][0] =
curthread->td_pcb->pcb_vec.vr[ra][0] | (1U << 31);
frame->fixreg[rd] = frame->fixreg[ra] | (1U << 31);
break;
case EVFSNEG:
curthread->td_pcb->pcb_vec.vr[rd][0] =
curthread->td_pcb->pcb_vec.vr[ra][0] ^ (1U << 31);
frame->fixreg[rd] = frame->fixreg[ra] ^ (1U << 31);
break;
default:
/* High word */
spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
curthread->td_pcb->pcb_vec.vr[ra][0], 0);
spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
curthread->td_pcb->pcb_vec.vr[rb][0], 0);
high = spe_emu_instr(instr_sec_op, &fpemu, &result,
&curthread->td_pcb->pcb_vec.vr[rd][0]);
spefscr = fpscr_to_spefscr(fpemu.fe_cx) << 16;
/* Clear the fpemu to start over on the lower bits. */
memset(&fpemu, 0, sizeof(fpemu));
/* Now low word */
spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
frame->fixreg[ra], 0);
spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
frame->fixreg[rb], 0);
spefscr |= fpscr_to_spefscr(fpemu.fe_cx);
low = spe_emu_instr(instr_sec_op, &fpemu, &result,
&frame->fixreg[rd]);
if (instr_sec_op == EVFSCMPEQ ||
instr_sec_op == EVFSCMPGT ||
instr_sec_op == EVFSCMPLT) {
res = (high << 3) | (low << 2) |
((high | low) << 1) | (high & low);
width = NONE;
} else
width = VECTOR;
break;
}
enable_vec(curthread);
goto end;
case SPFP:
switch (instr_sec_op) {
case EFSABS:
frame->fixreg[rd] = frame->fixreg[ra] & ~(1U << 31);
break;
case EFSNABS:
frame->fixreg[rd] = frame->fixreg[ra] | (1U << 31);
break;
case EFSNEG:
frame->fixreg[rd] = frame->fixreg[ra] ^ (1U << 31);
break;
case EFSCFD:
spe_explode(&fpemu, &fpemu.fe_f3, DOUBLE,
curthread->td_pcb->pcb_vec.vr[rb][0],
frame->fixreg[rb]);
result = &fpemu.fe_f3;
width = SINGLE;
break;
default:
spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
frame->fixreg[ra], 0);
spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
frame->fixreg[rb], 0);
width = SINGLE;
}
break;
case DPFP:
save_vec_nodrop(curthread);
switch (instr_sec_op) {
case EFDABS:
curthread->td_pcb->pcb_vec.vr[rd][0] =
curthread->td_pcb->pcb_vec.vr[ra][0] & ~(1U << 31);
break;
case EFDNABS:
curthread->td_pcb->pcb_vec.vr[rd][0] =
curthread->td_pcb->pcb_vec.vr[ra][0] | (1U << 31);
break;
case EFDNEG:
curthread->td_pcb->pcb_vec.vr[rd][0] =
curthread->td_pcb->pcb_vec.vr[ra][0] ^ (1U << 31);
break;
case EFDCFS:
spe_explode(&fpemu, &fpemu.fe_f3, SINGLE,
frame->fixreg[rb], 0);
result = &fpemu.fe_f3;
width = DOUBLE;
break;
default:
spe_explode(&fpemu, &fpemu.fe_f1, DOUBLE,
curthread->td_pcb->pcb_vec.vr[ra][0],
frame->fixreg[ra]);
spe_explode(&fpemu, &fpemu.fe_f2, DOUBLE,
curthread->td_pcb->pcb_vec.vr[rb][0],
frame->fixreg[rb]);
width = DOUBLE;
}
break;
}
switch (instr_sec_op) {
case EFDCFS:
case EFSCFD:
/* Already handled. */
break;
default:
res = spe_emu_instr(instr_sec_op, &fpemu, &result,
&frame->fixreg[rd]);
if (res != -1)
res <<= 2;
break;
}
switch (instr_sec_op & SPE_INST_MASK) {
case ECMPEQ:
case ECMPGT:
case ECMPLT:
frame->cr &= ~(0xf << cr_shift);
frame->cr |= (res << cr_shift);
break;
case ECTUI:
case ECTUIZ:
case ECTSI:
case ECTSIZ:
break;
default:
switch (width) {
case NONE:
case VECTOR:
break;
case SINGLE:
frame->fixreg[rd] = fpu_ftos(&fpemu, result);
break;
case DOUBLE:
curthread->td_pcb->pcb_vec.vr[rd][0] =
fpu_ftod(&fpemu, result, ftod_res);
frame->fixreg[rd] = ftod_res[1];
enable_vec(curthread);
break;
default:
panic("Unknown storage width %d", width);
break;
}
}
end:
spefscr |= (mfspr(SPR_SPEFSCR) & ~SPEFSCR_FINVS);
mtspr(SPR_SPEFSCR, spefscr);
frame->srr0 += 4;
return;
}
void
spe_handle_fpround(struct trapframe *frame)
{
/*
* Punt fpround exceptions for now. This leaves the truncated result in
* the register. We'll deal with overflow/underflow later.
*/
return;
}

View File

@ -638,6 +638,28 @@ INTERRUPT(int_vecast)
b trap_common
#ifdef __SPE__
/*****************************************************************************
* Floating point Assist interrupt
****************************************************************************/
INTERRUPT(int_spe_fpdata)
STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1)
FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_SPFPD)
addi %r3, %r1, CALLSIZE
bl spe_handle_fpdata
FRAME_LEAVE(SPR_SRR0, SPR_SRR1)
rfi
INTERRUPT(int_spe_fpround)
STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1)
FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_SPFPR)
addi %r3, %r1, CALLSIZE
bl spe_handle_fpround
FRAME_LEAVE(SPR_SRR0, SPR_SRR1)
rfi
#endif
#ifdef HWPMC_HOOKS
/*****************************************************************************
* PMC Interrupt

View File

@ -245,6 +245,33 @@
#define SPR_PTCR 0x1d0 /* Partition Table Control Register */
#define SPR_SPEFSCR 0x200 /* ..8 Signal Processing Engine FSCR. */
#define SPEFSCR_SOVH 0x80000000
#define SPEFSCR_OVH 0x40000000
#define SPEFSCR_FGH 0x20000000
#define SPEFSCR_FXH 0x10000000
#define SPEFSCR_FINVH 0x08000000
#define SPEFSCR_FDBZH 0x04000000
#define SPEFSCR_FUNFH 0x02000000
#define SPEFSCR_FOVFH 0x01000000
#define SPEFSCR_FINXS 0x00200000
#define SPEFSCR_FINVS 0x00100000
#define SPEFSCR_FDBZS 0x00080000
#define SPEFSCR_FUNFS 0x00040000
#define SPEFSCR_FOVFS 0x00020000
#define SPEFSCR_SOV 0x00008000
#define SPEFSCR_OV 0x00004000
#define SPEFSCR_FG 0x00002000
#define SPEFSCR_FX 0x00001000
#define SPEFSCR_FINV 0x00000800
#define SPEFSCR_FDBZ 0x00000400
#define SPEFSCR_FUNF 0x00000200
#define SPEFSCR_FOVF 0x00000100
#define SPEFSCR_FINXE 0x00000040
#define SPEFSCR_FINVE 0x00000020
#define SPEFSCR_FDBZE 0x00000010
#define SPEFSCR_FUNFE 0x00000008
#define SPEFSCR_FOVFE 0x00000004
#define SPEFSCR_FRMC_M 0x00000003
#define SPR_IBAT0U 0x210 /* .6. Instruction BAT Reg 0 Upper */
#define SPR_IBAT0L 0x211 /* .6. Instruction BAT Reg 0 Lower */
#define SPR_IBAT1U 0x212 /* .6. Instruction BAT Reg 1 Upper */

View File

@ -100,6 +100,8 @@
#define EXC_APU 0x1300 /* Auxiliary Processing Unit */
#define EXC_DEBUG 0x2f10 /* Debug trap */
#define EXC_VECAST_E 0x2f20 /* Altivec Assist (Book-E) */
#define EXC_SPFPD 0x2f30 /* SPE Floating-point Data */
#define EXC_SPFPR 0x2f40 /* SPE Floating-point Round */
#define EXC_LAST 0x2f00 /* Last possible exception vector */

View File

@ -971,6 +971,10 @@ cpu_copy_thread(struct thread *td, struct thread *td0)
pcb2->pcb_context[0] = pcb2->pcb_lr;
#endif
pcb2->pcb_cpu.aim.usr_vsid = 0;
#ifdef __SPE__
pcb2->pcb_vec.vscr = SPEFSCR_FINVE | SPEFSCR_FDBZE |
SPEFSCR_FUNFE | SPEFSCR_FOVFE;
#endif
/* Setup to release spin count in fork_exit(). */
td->td_md.md_spinlock_count = 1;
@ -1016,6 +1020,10 @@ cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
}
td->td_pcb->pcb_flags = 0;
#ifdef __SPE__
td->td_pcb->pcb_vec.vscr = SPEFSCR_FINVE | SPEFSCR_FDBZE |
SPEFSCR_FUNFE | SPEFSCR_FOVFE;
#endif
td->td_retval[0] = (register_t)entry;
td->td_retval[1] = 0;

View File

@ -212,4 +212,8 @@ ENTRY(fork_trampoline)
trapframe to simulate FRAME_SETUP
does when allocating space for
a frame pointer/saved LR */
#ifdef __SPE__
li %r3,SPEFSCR_FINVE|SPEFSCR_FDBZE|SPEFSCR_FUNFE|SPEFSCR_FOVFE
mtspr SPR_SPEFSCR, %r3
#endif
b trapexit