These files are for an arch we don't care about.
This commit is contained in:
parent
2111e67c80
commit
3378439583
@ -1,169 +0,0 @@
|
||||
/* Remote debugging interface for ABug Rom monitor for GDB, the GNU debugger.
|
||||
Copyright 1995, 1996, 1998 Free Software Foundation, Inc.
|
||||
|
||||
Written by Rob Savoye of Cygnus Support
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "gdbcore.h"
|
||||
#include "target.h"
|
||||
#include "monitor.h"
|
||||
#include "serial.h"
|
||||
|
||||
/* Prototypes for local functions. */
|
||||
|
||||
static void abug_open PARAMS ((char *args, int from_tty));
|
||||
|
||||
static void
|
||||
abug_supply_register (regname, regnamelen, val, vallen)
|
||||
char *regname;
|
||||
int regnamelen;
|
||||
char *val;
|
||||
int vallen;
|
||||
{
|
||||
int regno;
|
||||
|
||||
if (regnamelen != 2)
|
||||
return;
|
||||
|
||||
switch (regname[0])
|
||||
{
|
||||
case 'S':
|
||||
if (regname[1] != 'R')
|
||||
return;
|
||||
regno = PS_REGNUM;
|
||||
break;
|
||||
case 'P':
|
||||
if (regname[1] != 'C')
|
||||
return;
|
||||
regno = PC_REGNUM;
|
||||
break;
|
||||
case 'D':
|
||||
if (regname[1] < '0' || regname[1] > '7')
|
||||
return;
|
||||
regno = regname[1] - '0' + D0_REGNUM;
|
||||
break;
|
||||
case 'A':
|
||||
if (regname[1] < '0' || regname[1] > '7')
|
||||
return;
|
||||
regno = regname[1] - '0' + A0_REGNUM;
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
monitor_supply_register (regno, val);
|
||||
}
|
||||
|
||||
/*
|
||||
* This array of registers needs to match the indexes used by GDB. The
|
||||
* whole reason this exists is because the various ROM monitors use
|
||||
* different names than GDB does, and don't support all the
|
||||
* registers either. So, typing "info reg sp" becomes an "A7".
|
||||
*/
|
||||
|
||||
static char *abug_regnames[NUM_REGS] =
|
||||
{
|
||||
"D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
|
||||
"A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
|
||||
"PC",
|
||||
};
|
||||
|
||||
/*
|
||||
* Define the monitor command strings. Since these are passed directly
|
||||
* through to a printf style function, we need can include formatting
|
||||
* strings. We also need a CR or LF on the end.
|
||||
*/
|
||||
|
||||
static struct target_ops abug_ops;
|
||||
|
||||
static char *abug_inits[] = {"\r", NULL};
|
||||
|
||||
static struct monitor_ops abug_cmds ;
|
||||
|
||||
static void
|
||||
init_abug_cmds(void)
|
||||
{
|
||||
abug_cmds.flags = MO_CLR_BREAK_USES_ADDR;
|
||||
abug_cmds.init = abug_inits; /* Init strings */
|
||||
abug_cmds.cont = "g\r"; /* continue command */
|
||||
abug_cmds.step = "t\r"; /* single step */
|
||||
abug_cmds.stop = NULL; /* interrupt command */
|
||||
abug_cmds.set_break = "br %x\r"; /* set a breakpoint */
|
||||
abug_cmds.clr_break = "nobr %x\r"; /* clear a breakpoint */
|
||||
abug_cmds.clr_all_break = "nobr\r"; /* clear all breakpoints */
|
||||
abug_cmds.fill = "bf %x:%x %x;b\r"; /* fill (start count val) */
|
||||
abug_cmds.setmem.cmdb = "ms %x %02x\r"; /* setmem.cmdb (addr, value) */
|
||||
abug_cmds.setmem.cmdw = "ms %x %04x\r"; /* setmem.cmdw (addr, value) */
|
||||
abug_cmds.setmem.cmdl = "ms %x %08x\r"; /* setmem.cmdl (addr, value) */
|
||||
abug_cmds.setmem.cmdll = NULL; /* setmem.cmdll (addr, value) */
|
||||
abug_cmds.setmem.resp_delim = NULL; /* setreg.resp_delim */
|
||||
abug_cmds.setmem.term = NULL; /* setreg.term */
|
||||
abug_cmds.setmem.term_cmd = NULL; /* setreg.term_cmd */
|
||||
abug_cmds.getmem.cmdb = "md %x:%x;b\r"; /* getmem.cmdb (addr, len) */
|
||||
abug_cmds.getmem.cmdw = "md %x:%x;b\r"; /* getmem.cmdw (addr, len) */
|
||||
abug_cmds.getmem.cmdl = "md %x:%x;b\r"; /* getmem.cmdl (addr, len) */
|
||||
abug_cmds.getmem.cmdll = NULL; /* getmem.cmdll (addr, len) */
|
||||
abug_cmds.getmem.resp_delim = " "; /* getmem.resp_delim */
|
||||
abug_cmds.getmem.term = NULL; /* getmem.term */
|
||||
abug_cmds.getmem.term_cmd = NULL; /* getmem.term_cmd */
|
||||
abug_cmds.setreg.cmd = "rm %s %x\r"; /* setreg.cmd (name, value) */
|
||||
abug_cmds.setreg.resp_delim = "="; /* setreg.resp_delim */
|
||||
abug_cmds.setreg.term = "? "; /* setreg.term */
|
||||
abug_cmds.setreg.term_cmd = ".\r" ; /* setreg.term_cmd */
|
||||
abug_cmds.getreg.cmd = "rm %s\r"; /* getreg.cmd (name) */
|
||||
abug_cmds.getreg.resp_delim = "="; /* getreg.resp_delim */
|
||||
abug_cmds.getreg.term = "? "; /* getreg.term */
|
||||
abug_cmds.getreg.term_cmd = ".\r" ; /* getreg.term_cmd */
|
||||
abug_cmds.dump_registers = "rd\r"; /* dump_registers */
|
||||
abug_cmds.register_pattern = "\\(\\w+\\) +=\\([0-9a-fA-F]+\\b\\)"; /* register_pattern */
|
||||
abug_cmds.supply_register = abug_supply_register; /* supply_register */
|
||||
abug_cmds.load_routine = NULL; /* load_routine (defaults to SRECs) */
|
||||
abug_cmds.load = "lo 0\r"; /* download command */
|
||||
abug_cmds.loadresp = "\n"; /* load response */
|
||||
abug_cmds.prompt = "135Bug>"; /* monitor command prompt */
|
||||
abug_cmds.line_term = "\r"; /* end-of-line terminator */
|
||||
abug_cmds.cmd_end = NULL; /* optional command terminator */
|
||||
abug_cmds.target = &abug_ops; /* target operations */
|
||||
abug_cmds.stopbits = SERIAL_1_STOPBITS; /* number of stop bits */
|
||||
abug_cmds.regnames = abug_regnames; /* registers names */
|
||||
abug_cmds.magic = MONITOR_OPS_MAGIC ; /* magic */
|
||||
};
|
||||
|
||||
static void
|
||||
abug_open(args, from_tty)
|
||||
char *args;
|
||||
int from_tty;
|
||||
{
|
||||
monitor_open (args, &abug_cmds, from_tty);
|
||||
}
|
||||
|
||||
void
|
||||
_initialize_abug_rom ()
|
||||
{
|
||||
init_abug_cmds() ;
|
||||
init_monitor_ops (&abug_ops);
|
||||
|
||||
abug_ops.to_shortname = "abug";
|
||||
abug_ops.to_longname = "ABug monitor";
|
||||
abug_ops.to_doc = "Debug via the ABug monitor.\n\
|
||||
Specify the serial device it is connected to (e.g. /dev/ttya).";
|
||||
abug_ops.to_open = abug_open;
|
||||
|
||||
add_target (&abug_ops);
|
||||
}
|
@ -1,552 +0,0 @@
|
||||
/* Target-dependent code for the Fujitsu FR30.
|
||||
Copyright 1999, Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "frame.h"
|
||||
#include "inferior.h"
|
||||
#include "obstack.h"
|
||||
#include "target.h"
|
||||
#include "value.h"
|
||||
#include "bfd.h"
|
||||
#include "gdb_string.h"
|
||||
#include "gdbcore.h"
|
||||
#include "symfile.h"
|
||||
|
||||
/* Function: pop_frame
|
||||
This routine gets called when either the user uses the `return'
|
||||
command, or the call dummy breakpoint gets hit. */
|
||||
|
||||
void
|
||||
fr30_pop_frame ()
|
||||
{
|
||||
struct frame_info *frame = get_current_frame();
|
||||
int regnum;
|
||||
CORE_ADDR sp = read_register(SP_REGNUM);
|
||||
|
||||
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
|
||||
generic_pop_dummy_frame ();
|
||||
else
|
||||
{
|
||||
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
||||
|
||||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||||
if (frame->fsr.regs[regnum] != 0) {
|
||||
write_register (regnum,
|
||||
read_memory_unsigned_integer (frame->fsr.regs[regnum],
|
||||
REGISTER_RAW_SIZE(regnum)));
|
||||
}
|
||||
write_register (SP_REGNUM, sp + frame->framesize);
|
||||
}
|
||||
flush_cached_frames ();
|
||||
}
|
||||
|
||||
/* Function: skip_prologue
|
||||
Return the address of the first code past the prologue of the function. */
|
||||
|
||||
CORE_ADDR
|
||||
fr30_skip_prologue(CORE_ADDR pc)
|
||||
{
|
||||
CORE_ADDR func_addr, func_end;
|
||||
|
||||
/* See what the symbol table says */
|
||||
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
|
||||
sal = find_pc_line (func_addr, 0);
|
||||
|
||||
if (sal.line != 0 && sal.end < func_end) {
|
||||
return sal.end;
|
||||
}
|
||||
}
|
||||
|
||||
/* Either we didn't find the start of this function (nothing we can do),
|
||||
or there's no line info, or the line after the prologue is after
|
||||
the end of the function (there probably isn't a prologue). */
|
||||
|
||||
return pc;
|
||||
}
|
||||
|
||||
|
||||
/* Function: push_arguments
|
||||
Setup arguments and RP for a call to the target. First four args
|
||||
go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack...
|
||||
Structs are passed by reference. XXX not right now Z.R.
|
||||
64 bit quantities (doubles and long longs) may be split between
|
||||
the regs and the stack.
|
||||
When calling a function that returns a struct, a pointer to the struct
|
||||
is passed in as a secret first argument (always in FIRST_ARGREG).
|
||||
|
||||
Stack space for the args has NOT been allocated: that job is up to us.
|
||||
*/
|
||||
|
||||
CORE_ADDR
|
||||
fr30_push_arguments(nargs, args, sp, struct_return, struct_addr)
|
||||
int nargs;
|
||||
value_ptr * args;
|
||||
CORE_ADDR sp;
|
||||
int struct_return;
|
||||
CORE_ADDR struct_addr;
|
||||
{
|
||||
int argreg;
|
||||
int argnum;
|
||||
int stack_offset;
|
||||
struct stack_arg {
|
||||
char *val;
|
||||
int len;
|
||||
int offset;
|
||||
};
|
||||
struct stack_arg *stack_args =
|
||||
(struct stack_arg*)alloca (nargs * sizeof (struct stack_arg));
|
||||
int nstack_args = 0;
|
||||
|
||||
argreg = FIRST_ARGREG;
|
||||
|
||||
/* the struct_return pointer occupies the first parameter-passing reg */
|
||||
if (struct_return)
|
||||
write_register (argreg++, struct_addr);
|
||||
|
||||
stack_offset = 0;
|
||||
|
||||
/* Process args from left to right. Store as many as allowed in
|
||||
registers, save the rest to be pushed on the stack */
|
||||
for(argnum = 0; argnum < nargs; argnum++)
|
||||
{
|
||||
char * val;
|
||||
value_ptr arg = args[argnum];
|
||||
struct type * arg_type = check_typedef (VALUE_TYPE (arg));
|
||||
struct type * target_type = TYPE_TARGET_TYPE (arg_type);
|
||||
int len = TYPE_LENGTH (arg_type);
|
||||
enum type_code typecode = TYPE_CODE (arg_type);
|
||||
CORE_ADDR regval;
|
||||
int newarg;
|
||||
|
||||
val = (char *) VALUE_CONTENTS (arg);
|
||||
|
||||
{
|
||||
/* Copy the argument to general registers or the stack in
|
||||
register-sized pieces. Large arguments are split between
|
||||
registers and stack. */
|
||||
while (len > 0)
|
||||
{
|
||||
if (argreg <= LAST_ARGREG)
|
||||
{
|
||||
int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
|
||||
regval = extract_address (val, partial_len);
|
||||
|
||||
/* It's a simple argument being passed in a general
|
||||
register. */
|
||||
write_register (argreg, regval);
|
||||
argreg++;
|
||||
len -= partial_len;
|
||||
val += partial_len;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* keep for later pushing */
|
||||
stack_args[nstack_args].val = val;
|
||||
stack_args[nstack_args++].len = len;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* now do the real stack pushing, process args right to left */
|
||||
while(nstack_args--)
|
||||
{
|
||||
sp -= stack_args[nstack_args].len;
|
||||
write_memory(sp, stack_args[nstack_args].val,
|
||||
stack_args[nstack_args].len);
|
||||
}
|
||||
|
||||
/* Return adjusted stack pointer. */
|
||||
return sp;
|
||||
}
|
||||
|
||||
_initialize_fr30_tdep()
|
||||
{
|
||||
extern int print_insn_fr30(bfd_vma, disassemble_info *);
|
||||
|
||||
tm_print_insn = print_insn_fr30;
|
||||
}
|
||||
|
||||
/* Function: check_prologue_cache
|
||||
Check if prologue for this frame's PC has already been scanned.
|
||||
If it has, copy the relevant information about that prologue and
|
||||
return non-zero. Otherwise do not copy anything and return zero.
|
||||
|
||||
The information saved in the cache includes:
|
||||
* the frame register number;
|
||||
* the size of the stack frame;
|
||||
* the offsets of saved regs (relative to the old SP); and
|
||||
* the offset from the stack pointer to the frame pointer
|
||||
|
||||
The cache contains only one entry, since this is adequate
|
||||
for the typical sequence of prologue scan requests we get.
|
||||
When performing a backtrace, GDB will usually ask to scan
|
||||
the same function twice in a row (once to get the frame chain,
|
||||
and once to fill in the extra frame information).
|
||||
*/
|
||||
|
||||
static struct frame_info prologue_cache;
|
||||
|
||||
static int
|
||||
check_prologue_cache (fi)
|
||||
struct frame_info * fi;
|
||||
{
|
||||
int i;
|
||||
|
||||
if (fi->pc == prologue_cache.pc)
|
||||
{
|
||||
fi->framereg = prologue_cache.framereg;
|
||||
fi->framesize = prologue_cache.framesize;
|
||||
fi->frameoffset = prologue_cache.frameoffset;
|
||||
for (i = 0; i <= NUM_REGS; i++)
|
||||
fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Function: save_prologue_cache
|
||||
Copy the prologue information from fi to the prologue cache.
|
||||
*/
|
||||
|
||||
static void
|
||||
save_prologue_cache (fi)
|
||||
struct frame_info * fi;
|
||||
{
|
||||
int i;
|
||||
|
||||
prologue_cache.pc = fi->pc;
|
||||
prologue_cache.framereg = fi->framereg;
|
||||
prologue_cache.framesize = fi->framesize;
|
||||
prologue_cache.frameoffset = fi->frameoffset;
|
||||
|
||||
for (i = 0; i <= NUM_REGS; i++) {
|
||||
prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Function: scan_prologue
|
||||
Scan the prologue of the function that contains PC, and record what
|
||||
we find in PI. PI->fsr must be zeroed by the called. Returns the
|
||||
pc after the prologue. Note that the addresses saved in pi->fsr
|
||||
are actually just frame relative (negative offsets from the frame
|
||||
pointer). This is because we don't know the actual value of the
|
||||
frame pointer yet. In some circumstances, the frame pointer can't
|
||||
be determined till after we have scanned the prologue. */
|
||||
|
||||
static void
|
||||
fr30_scan_prologue (fi)
|
||||
struct frame_info * fi;
|
||||
{
|
||||
int sp_offset, fp_offset;
|
||||
CORE_ADDR prologue_start, prologue_end, current_pc;
|
||||
|
||||
/* Check if this function is already in the cache of frame information. */
|
||||
if (check_prologue_cache (fi))
|
||||
return;
|
||||
|
||||
/* Assume there is no frame until proven otherwise. */
|
||||
fi->framereg = SP_REGNUM;
|
||||
fi->framesize = 0;
|
||||
fi->frameoffset = 0;
|
||||
|
||||
/* Find the function prologue. If we can't find the function in
|
||||
the symbol table, peek in the stack frame to find the PC. */
|
||||
if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
|
||||
{
|
||||
/* Assume the prologue is everything between the first instruction
|
||||
in the function and the first source line. */
|
||||
struct symtab_and_line sal = find_pc_line (prologue_start, 0);
|
||||
|
||||
if (sal.line == 0) /* no line info, use current PC */
|
||||
prologue_end = fi->pc;
|
||||
else if (sal.end < prologue_end) /* next line begins after fn end */
|
||||
prologue_end = sal.end; /* (probably means no prologue) */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* XXX Z.R. What now??? The following is entirely bogus */
|
||||
prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
|
||||
prologue_end = prologue_start + 40;
|
||||
}
|
||||
|
||||
/* Now search the prologue looking for instructions that set up the
|
||||
frame pointer, adjust the stack pointer, and save registers. */
|
||||
|
||||
sp_offset = fp_offset = 0;
|
||||
for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
|
||||
{
|
||||
unsigned int insn;
|
||||
|
||||
insn = read_memory_unsigned_integer (current_pc, 2);
|
||||
|
||||
if ((insn & 0xfe00) == 0x8e00) /* stm0 or stm1 */
|
||||
{
|
||||
int reg, mask = insn & 0xff;
|
||||
|
||||
/* scan in one sweep - create virtual 16-bit mask from either insn's mask */
|
||||
if((insn & 0x0100) == 0)
|
||||
{
|
||||
mask <<= 8; /* stm0 - move to upper byte in virtual mask */
|
||||
}
|
||||
|
||||
/* Calculate offsets of saved registers (to be turned later into addresses). */
|
||||
for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++)
|
||||
if (mask & (1 << (15 - reg)))
|
||||
{
|
||||
sp_offset -= 4;
|
||||
fi->fsr.regs[reg] = sp_offset;
|
||||
}
|
||||
}
|
||||
else if((insn & 0xfff0) == 0x1700) /* st rx,@-r15 */
|
||||
{
|
||||
int reg = insn & 0xf;
|
||||
|
||||
sp_offset -= 4;
|
||||
fi->fsr.regs[reg] = sp_offset;
|
||||
}
|
||||
else if((insn & 0xff00) == 0x0f00) /* enter */
|
||||
{
|
||||
fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4;
|
||||
sp_offset -= 4 * (insn & 0xff);
|
||||
fi->framereg = FP_REGNUM;
|
||||
}
|
||||
else if(insn == 0x1781) /* st rp,@-sp */
|
||||
{
|
||||
sp_offset -= 4;
|
||||
fi->fsr.regs[RP_REGNUM] = sp_offset;
|
||||
}
|
||||
else if(insn == 0x170e) /* st fp,@-sp */
|
||||
{
|
||||
sp_offset -= 4;
|
||||
fi->fsr.regs[FP_REGNUM] = sp_offset;
|
||||
}
|
||||
else if(insn == 0x8bfe) /* mov sp,fp */
|
||||
{
|
||||
fi->framereg = FP_REGNUM;
|
||||
}
|
||||
else if((insn & 0xff00) == 0xa300) /* addsp xx */
|
||||
{
|
||||
sp_offset += 4 * (signed char)(insn & 0xff);
|
||||
}
|
||||
else if((insn & 0xff0f) == 0x9b00 && /* ldi:20 xx,r0 */
|
||||
read_memory_unsigned_integer(current_pc+4, 2)
|
||||
== 0xac0f) /* sub r0,sp */
|
||||
{
|
||||
/* large stack adjustment */
|
||||
sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer(current_pc+2, 2));
|
||||
current_pc += 4;
|
||||
}
|
||||
else if(insn == 0x9f80 && /* ldi:32 xx,r0 */
|
||||
read_memory_unsigned_integer(current_pc+6, 2)
|
||||
== 0xac0f) /* sub r0,sp */
|
||||
{
|
||||
/* large stack adjustment */
|
||||
sp_offset -=
|
||||
(read_memory_unsigned_integer(current_pc+2, 2) << 16 |
|
||||
read_memory_unsigned_integer(current_pc+4, 2));
|
||||
current_pc += 6;
|
||||
}
|
||||
}
|
||||
|
||||
/* The frame size is just the negative of the offset (from the original SP)
|
||||
of the last thing thing we pushed on the stack. The frame offset is
|
||||
[new FP] - [new SP]. */
|
||||
fi->framesize = -sp_offset;
|
||||
fi->frameoffset = fp_offset - sp_offset;
|
||||
|
||||
save_prologue_cache (fi);
|
||||
}
|
||||
|
||||
/* Function: init_extra_frame_info
|
||||
Setup the frame's frame pointer, pc, and frame addresses for saved
|
||||
registers. Most of the work is done in scan_prologue().
|
||||
|
||||
Note that when we are called for the last frame (currently active frame),
|
||||
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
||||
be valid only if this routine uses FP. For previous frames, fi-frame will
|
||||
always be correct (since that is derived from fr30_frame_chain ()).
|
||||
|
||||
We can be called with the PC in the call dummy under two circumstances.
|
||||
First, during normal backtracing, second, while figuring out the frame
|
||||
pointer just prior to calling the target function (see run_stack_dummy). */
|
||||
|
||||
void
|
||||
fr30_init_extra_frame_info (fi)
|
||||
struct frame_info * fi;
|
||||
{
|
||||
int reg;
|
||||
|
||||
if (fi->next)
|
||||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||||
|
||||
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
||||
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||||
{
|
||||
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
||||
by assuming it's always FP. */
|
||||
fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
|
||||
fi->framesize = 0;
|
||||
fi->frameoffset = 0;
|
||||
return;
|
||||
}
|
||||
fr30_scan_prologue (fi);
|
||||
|
||||
if (!fi->next) /* this is the innermost frame? */
|
||||
fi->frame = read_register (fi->framereg);
|
||||
else /* not the innermost frame */
|
||||
/* If we have an FP, the callee saved it. */
|
||||
if (fi->framereg == FP_REGNUM)
|
||||
if (fi->next->fsr.regs[fi->framereg] != 0)
|
||||
fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg],
|
||||
4);
|
||||
/* Calculate actual addresses of saved registers using offsets determined
|
||||
by fr30_scan_prologue. */
|
||||
for (reg = 0; reg < NUM_REGS; reg++)
|
||||
if (fi->fsr.regs[reg] != 0) {
|
||||
fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
|
||||
}
|
||||
}
|
||||
|
||||
/* Function: find_callers_reg
|
||||
Find REGNUM on the stack. Otherwise, it's in an active register.
|
||||
One thing we might want to do here is to check REGNUM against the
|
||||
clobber mask, and somehow flag it as invalid if it isn't saved on
|
||||
the stack somewhere. This would provide a graceful failure mode
|
||||
when trying to get the value of caller-saves registers for an inner
|
||||
frame. */
|
||||
|
||||
CORE_ADDR
|
||||
fr30_find_callers_reg (fi, regnum)
|
||||
struct frame_info *fi;
|
||||
int regnum;
|
||||
{
|
||||
for (; fi; fi = fi->next)
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||||
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
||||
else if (fi->fsr.regs[regnum] != 0)
|
||||
return read_memory_unsigned_integer (fi->fsr.regs[regnum],
|
||||
REGISTER_RAW_SIZE(regnum));
|
||||
|
||||
return read_register (regnum);
|
||||
}
|
||||
|
||||
|
||||
/* Function: frame_chain
|
||||
Figure out the frame prior to FI. Unfortunately, this involves
|
||||
scanning the prologue of the caller, which will also be done
|
||||
shortly by fr30_init_extra_frame_info. For the dummy frame, we
|
||||
just return the stack pointer that was in use at the time the
|
||||
function call was made. */
|
||||
|
||||
|
||||
CORE_ADDR
|
||||
fr30_frame_chain (fi)
|
||||
struct frame_info * fi;
|
||||
{
|
||||
CORE_ADDR fn_start, callers_pc, fp;
|
||||
struct frame_info caller_fi;
|
||||
int framereg;
|
||||
|
||||
/* is this a dummy frame? */
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||||
return fi->frame; /* dummy frame same as caller's frame */
|
||||
|
||||
/* is caller-of-this a dummy frame? */
|
||||
callers_pc = FRAME_SAVED_PC(fi); /* find out who called us: */
|
||||
fp = fr30_find_callers_reg (fi, FP_REGNUM);
|
||||
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
|
||||
return fp; /* dummy frame's frame may bear no relation to ours */
|
||||
|
||||
if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
|
||||
if (fn_start == entry_point_address ())
|
||||
return 0; /* in _start fn, don't chain further */
|
||||
|
||||
framereg = fi->framereg;
|
||||
|
||||
/* If the caller is the startup code, we're at the end of the chain. */
|
||||
if (find_pc_partial_function (callers_pc, 0, &fn_start, 0))
|
||||
if (fn_start == entry_point_address ())
|
||||
return 0;
|
||||
|
||||
memset (& caller_fi, 0, sizeof (caller_fi));
|
||||
caller_fi.pc = callers_pc;
|
||||
fr30_scan_prologue (& caller_fi);
|
||||
framereg = caller_fi.framereg;
|
||||
|
||||
/* If the caller used a frame register, return its value.
|
||||
Otherwise, return the caller's stack pointer. */
|
||||
if (framereg == FP_REGNUM)
|
||||
return fr30_find_callers_reg (fi, framereg);
|
||||
else
|
||||
return fi->frame + fi->framesize;
|
||||
}
|
||||
|
||||
/* Function: frame_saved_pc
|
||||
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
||||
is saved in the stack anywhere, otherwise we get it from the
|
||||
registers. If the inner frame is a dummy frame, return its PC
|
||||
instead of RP, because that's where "caller" of the dummy-frame
|
||||
will be found. */
|
||||
|
||||
CORE_ADDR
|
||||
fr30_frame_saved_pc (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
|
||||
return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
|
||||
else
|
||||
return fr30_find_callers_reg (fi, RP_REGNUM);
|
||||
}
|
||||
|
||||
/* Function: fix_call_dummy
|
||||
Pokes the callee function's address into the CALL_DUMMY assembly stub.
|
||||
Assumes that the CALL_DUMMY looks like this:
|
||||
jarl <offset24>, r31
|
||||
trap
|
||||
*/
|
||||
|
||||
int
|
||||
fr30_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p)
|
||||
char *dummy;
|
||||
CORE_ADDR sp;
|
||||
CORE_ADDR fun;
|
||||
int nargs;
|
||||
value_ptr *args;
|
||||
struct type *type;
|
||||
int gcc_p;
|
||||
{
|
||||
long offset24;
|
||||
|
||||
offset24 = (long) fun - (long) entry_point_address ();
|
||||
offset24 &= 0x3fffff;
|
||||
offset24 |= 0xff800000; /* jarl <offset24>, r31 */
|
||||
|
||||
store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff);
|
||||
store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16);
|
||||
return 0;
|
||||
}
|
@ -1,155 +0,0 @@
|
||||
/* Motorola m68k native support for Linux
|
||||
Copyright (C) 1996,1998 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "frame.h"
|
||||
#include "inferior.h"
|
||||
#include "language.h"
|
||||
#include "gdbcore.h"
|
||||
|
||||
#ifdef USG
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#include <sys/param.h>
|
||||
#include <sys/dir.h>
|
||||
#include <signal.h>
|
||||
#include <sys/user.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <fcntl.h>
|
||||
#include <sys/procfs.h>
|
||||
|
||||
#include <sys/file.h>
|
||||
#include "gdb_stat.h"
|
||||
|
||||
#include "floatformat.h"
|
||||
|
||||
#include "target.h"
|
||||
|
||||
|
||||
/* This table must line up with REGISTER_NAMES in tm-m68k.h */
|
||||
static const int regmap[] =
|
||||
{
|
||||
PT_D0, PT_D1, PT_D2, PT_D3, PT_D4, PT_D5, PT_D6, PT_D7,
|
||||
PT_A0, PT_A1, PT_A2, PT_A3, PT_A4, PT_A5, PT_A6, PT_USP,
|
||||
PT_SR, PT_PC,
|
||||
/* PT_FP0, ..., PT_FP7 */
|
||||
21, 24, 27, 30, 33, 36, 39, 42,
|
||||
/* PT_FPCR, PT_FPSR, PT_FPIAR */
|
||||
45, 46, 47
|
||||
};
|
||||
|
||||
/* BLOCKEND is the value of u.u_ar0, and points to the place where GS
|
||||
is stored. */
|
||||
|
||||
int
|
||||
m68k_linux_register_u_addr (blockend, regnum)
|
||||
int blockend;
|
||||
int regnum;
|
||||
{
|
||||
return (blockend + 4 * regmap[regnum]);
|
||||
}
|
||||
|
||||
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
||||
unpack the register contents and supply them as gdb's idea of the current
|
||||
register values. */
|
||||
|
||||
|
||||
/* Note both m68k-tdep.c and m68klinux-nat.c contain definitions
|
||||
for supply_gregset and supply_fpregset. The definitions
|
||||
in m68k-tdep.c are valid if USE_PROC_FS is defined. Otherwise,
|
||||
the definitions in m68klinux-nat.c will be used. This is a
|
||||
bit of a hack. The supply_* routines do not belong in
|
||||
*_tdep.c files. But, there are several lynx ports that currently
|
||||
depend on these definitions. */
|
||||
|
||||
#ifndef USE_PROC_FS
|
||||
|
||||
void
|
||||
supply_gregset (gregsetp)
|
||||
gregset_t *gregsetp;
|
||||
{
|
||||
int regi;
|
||||
|
||||
for (regi = D0_REGNUM ; regi <= SP_REGNUM ; regi++)
|
||||
supply_register (regi, (char *) (*gregsetp + regmap[regi]));
|
||||
supply_register (PS_REGNUM, (char *) (*gregsetp + PT_SR));
|
||||
supply_register (PC_REGNUM, (char *) (*gregsetp + PT_PC));
|
||||
}
|
||||
|
||||
/* Given a pointer to a floating point register set in /proc format
|
||||
(fpregset_t *), unpack the register contents and supply them as gdb's
|
||||
idea of the current floating point register values. */
|
||||
|
||||
void
|
||||
supply_fpregset (fpregsetp)
|
||||
fpregset_t *fpregsetp;
|
||||
{
|
||||
int regi;
|
||||
|
||||
for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++)
|
||||
supply_register (regi, (char *) &fpregsetp->fpregs[(regi - FP0_REGNUM) * 3]);
|
||||
supply_register (FPC_REGNUM, (char *) &fpregsetp->fpcntl[0]);
|
||||
supply_register (FPS_REGNUM, (char *) &fpregsetp->fpcntl[1]);
|
||||
supply_register (FPI_REGNUM, (char *) &fpregsetp->fpcntl[2]);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
int
|
||||
kernel_u_size ()
|
||||
{
|
||||
return (sizeof (struct user));
|
||||
}
|
||||
|
||||
/* Return non-zero if PC points into the signal trampoline. */
|
||||
|
||||
int
|
||||
in_sigtramp (pc)
|
||||
CORE_ADDR pc;
|
||||
{
|
||||
CORE_ADDR sp;
|
||||
char buf[TARGET_SHORT_BIT / TARGET_CHAR_BIT];
|
||||
int insn;
|
||||
|
||||
sp = read_register (SP_REGNUM);
|
||||
if (pc - 2 < sp)
|
||||
return 0;
|
||||
|
||||
if (read_memory_nobpt (pc, buf, sizeof (buf)))
|
||||
return 0;
|
||||
insn = extract_unsigned_integer (buf, sizeof (buf));
|
||||
if (insn == 0xdefc /* addaw #,sp */
|
||||
|| insn == 0x7077 /* moveq #119,d0 */
|
||||
|| insn == 0x4e40 /* trap #0 */
|
||||
|| insn == 0x203c /* movel #,d0 */)
|
||||
return 1;
|
||||
|
||||
if (read_memory_nobpt (pc - 2, buf, sizeof (buf)))
|
||||
return 0;
|
||||
insn = extract_unsigned_integer (buf, sizeof (buf));
|
||||
if (insn == 0xdefc /* addaw #,sp */
|
||||
|| insn == 0x7077 /* moveq #119,d0 */
|
||||
|| insn == 0x4e40 /* trap #0 */
|
||||
|| insn == 0x203c /* movel #,d0 */)
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,353 +0,0 @@
|
||||
/* Functions specific to running gdb native on an ns32k running NetBSD
|
||||
Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <sys/ptrace.h>
|
||||
#include <machine/reg.h>
|
||||
#include <machine/frame.h>
|
||||
#include <machine/pcb.h>
|
||||
|
||||
#include "defs.h"
|
||||
#include "inferior.h"
|
||||
#include "target.h"
|
||||
#include "gdbcore.h"
|
||||
|
||||
#define RF(dst, src) \
|
||||
memcpy(®isters[REGISTER_BYTE(dst)], &src, sizeof(src))
|
||||
|
||||
#define RS(src, dst) \
|
||||
memcpy(&dst, ®isters[REGISTER_BYTE(src)], sizeof(dst))
|
||||
|
||||
void
|
||||
fetch_inferior_registers (regno)
|
||||
int regno;
|
||||
{
|
||||
struct reg inferior_registers;
|
||||
struct fpreg inferior_fpregisters;
|
||||
|
||||
ptrace (PT_GETREGS, inferior_pid,
|
||||
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
|
||||
ptrace (PT_GETFPREGS, inferior_pid,
|
||||
(PTRACE_ARG3_TYPE) &inferior_fpregisters, 0);
|
||||
|
||||
RF(R0_REGNUM + 0, inferior_registers.r_r0);
|
||||
RF(R0_REGNUM + 1, inferior_registers.r_r1);
|
||||
RF(R0_REGNUM + 2, inferior_registers.r_r2);
|
||||
RF(R0_REGNUM + 3, inferior_registers.r_r3);
|
||||
RF(R0_REGNUM + 4, inferior_registers.r_r4);
|
||||
RF(R0_REGNUM + 5, inferior_registers.r_r5);
|
||||
RF(R0_REGNUM + 6, inferior_registers.r_r6);
|
||||
RF(R0_REGNUM + 7, inferior_registers.r_r7);
|
||||
|
||||
RF(SP_REGNUM , inferior_registers.r_sp);
|
||||
RF(FP_REGNUM , inferior_registers.r_fp);
|
||||
RF(PC_REGNUM , inferior_registers.r_pc);
|
||||
RF(PS_REGNUM , inferior_registers.r_psr);
|
||||
|
||||
RF(FPS_REGNUM , inferior_fpregisters.r_fsr);
|
||||
RF(FP0_REGNUM +0, inferior_fpregisters.r_freg[0]);
|
||||
RF(FP0_REGNUM +2, inferior_fpregisters.r_freg[2]);
|
||||
RF(FP0_REGNUM +4, inferior_fpregisters.r_freg[4]);
|
||||
RF(FP0_REGNUM +6, inferior_fpregisters.r_freg[6]);
|
||||
RF(LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
|
||||
RF(LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
|
||||
RF(LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
|
||||
RF(LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
|
||||
registers_fetched ();
|
||||
}
|
||||
|
||||
void
|
||||
store_inferior_registers (regno)
|
||||
int regno;
|
||||
{
|
||||
struct reg inferior_registers;
|
||||
struct fpreg inferior_fpregisters;
|
||||
|
||||
RS(R0_REGNUM + 0, inferior_registers.r_r0);
|
||||
RS(R0_REGNUM + 1, inferior_registers.r_r1);
|
||||
RS(R0_REGNUM + 2, inferior_registers.r_r2);
|
||||
RS(R0_REGNUM + 3, inferior_registers.r_r3);
|
||||
RS(R0_REGNUM + 4, inferior_registers.r_r4);
|
||||
RS(R0_REGNUM + 5, inferior_registers.r_r5);
|
||||
RS(R0_REGNUM + 6, inferior_registers.r_r6);
|
||||
RS(R0_REGNUM + 7, inferior_registers.r_r7);
|
||||
|
||||
RS(SP_REGNUM , inferior_registers.r_sp);
|
||||
RS(FP_REGNUM , inferior_registers.r_fp);
|
||||
RS(PC_REGNUM , inferior_registers.r_pc);
|
||||
RS(PS_REGNUM , inferior_registers.r_psr);
|
||||
|
||||
RS(FPS_REGNUM , inferior_fpregisters.r_fsr);
|
||||
RS(FP0_REGNUM +0, inferior_fpregisters.r_freg[0]);
|
||||
RS(FP0_REGNUM +2, inferior_fpregisters.r_freg[2]);
|
||||
RS(FP0_REGNUM +4, inferior_fpregisters.r_freg[4]);
|
||||
RS(FP0_REGNUM +6, inferior_fpregisters.r_freg[6]);
|
||||
RS(LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
|
||||
RS(LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
|
||||
RS(LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
|
||||
RS(LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
|
||||
|
||||
ptrace (PT_SETREGS, inferior_pid,
|
||||
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
|
||||
ptrace (PT_SETFPREGS, inferior_pid,
|
||||
(PTRACE_ARG3_TYPE) &inferior_fpregisters, 0);
|
||||
}
|
||||
|
||||
|
||||
/* XXX - Add this to machine/regs.h instead? */
|
||||
struct coreregs {
|
||||
struct reg intreg;
|
||||
struct fpreg freg;
|
||||
};
|
||||
|
||||
/* Get registers from a core file. */
|
||||
static void
|
||||
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
|
||||
char *core_reg_sect;
|
||||
unsigned core_reg_size;
|
||||
int which;
|
||||
unsigned int reg_addr; /* Unused in this version */
|
||||
{
|
||||
struct coreregs *core_reg;
|
||||
|
||||
core_reg = (struct coreregs *)core_reg_sect;
|
||||
|
||||
/*
|
||||
* We have *all* registers
|
||||
* in the first core section.
|
||||
* Ignore which.
|
||||
*/
|
||||
|
||||
if (core_reg_size < sizeof(*core_reg)) {
|
||||
fprintf_unfiltered (gdb_stderr, "Couldn't read regs from core file\n");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Integer registers */
|
||||
RF(R0_REGNUM + 0, core_reg->intreg.r_r0);
|
||||
RF(R0_REGNUM + 1, core_reg->intreg.r_r1);
|
||||
RF(R0_REGNUM + 2, core_reg->intreg.r_r2);
|
||||
RF(R0_REGNUM + 3, core_reg->intreg.r_r3);
|
||||
RF(R0_REGNUM + 4, core_reg->intreg.r_r4);
|
||||
RF(R0_REGNUM + 5, core_reg->intreg.r_r5);
|
||||
RF(R0_REGNUM + 6, core_reg->intreg.r_r6);
|
||||
RF(R0_REGNUM + 7, core_reg->intreg.r_r7);
|
||||
|
||||
RF(SP_REGNUM , core_reg->intreg.r_sp);
|
||||
RF(FP_REGNUM , core_reg->intreg.r_fp);
|
||||
RF(PC_REGNUM , core_reg->intreg.r_pc);
|
||||
RF(PS_REGNUM , core_reg->intreg.r_psr);
|
||||
|
||||
/* Floating point registers */
|
||||
RF(FPS_REGNUM , core_reg->freg.r_fsr);
|
||||
RF(FP0_REGNUM +0, core_reg->freg.r_freg[0]);
|
||||
RF(FP0_REGNUM +2, core_reg->freg.r_freg[2]);
|
||||
RF(FP0_REGNUM +4, core_reg->freg.r_freg[4]);
|
||||
RF(FP0_REGNUM +6, core_reg->freg.r_freg[6]);
|
||||
RF(LP0_REGNUM + 1, core_reg->freg.r_freg[1]);
|
||||
RF(LP0_REGNUM + 3, core_reg->freg.r_freg[3]);
|
||||
RF(LP0_REGNUM + 5, core_reg->freg.r_freg[5]);
|
||||
RF(LP0_REGNUM + 7, core_reg->freg.r_freg[7]);
|
||||
registers_fetched ();
|
||||
}
|
||||
|
||||
/* Register that we are able to handle ns32knbsd core file formats.
|
||||
FIXME: is this really bfd_target_unknown_flavour? */
|
||||
|
||||
static struct core_fns nat_core_fns =
|
||||
{
|
||||
bfd_target_unknown_flavour,
|
||||
fetch_core_registers,
|
||||
NULL
|
||||
};
|
||||
|
||||
void
|
||||
_initialize_ns32knbsd_nat ()
|
||||
{
|
||||
add_core_fns (&nat_core_fns);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* kernel_u_size() is not helpful on NetBSD because
|
||||
* the "u" struct is NOT in the core dump file.
|
||||
*/
|
||||
|
||||
#ifdef FETCH_KCORE_REGISTERS
|
||||
/*
|
||||
* Get registers from a kernel crash dump or live kernel.
|
||||
* Called by kcore-nbsd.c:get_kcore_registers().
|
||||
*/
|
||||
void
|
||||
fetch_kcore_registers (pcb)
|
||||
struct pcb *pcb;
|
||||
{
|
||||
struct switchframe sf;
|
||||
struct reg intreg;
|
||||
int dummy;
|
||||
|
||||
/* Integer registers */
|
||||
if (target_read_memory((CORE_ADDR)pcb->pcb_ksp, (char *)&sf, sizeof sf))
|
||||
error("Cannot read integer registers.");
|
||||
|
||||
/* We use the psr at kernel entry */
|
||||
if (target_read_memory((CORE_ADDR)pcb->pcb_onstack, (char *)&intreg, sizeof intreg))
|
||||
error("Cannot read processor status register.");
|
||||
|
||||
dummy = 0;
|
||||
RF(R0_REGNUM + 0, dummy);
|
||||
RF(R0_REGNUM + 1, dummy);
|
||||
RF(R0_REGNUM + 2, dummy);
|
||||
RF(R0_REGNUM + 3, sf.sf_r3);
|
||||
RF(R0_REGNUM + 4, sf.sf_r4);
|
||||
RF(R0_REGNUM + 5, sf.sf_r5);
|
||||
RF(R0_REGNUM + 6, sf.sf_r6);
|
||||
RF(R0_REGNUM + 7, sf.sf_r7);
|
||||
|
||||
dummy = pcb->pcb_kfp + 8;
|
||||
RF(SP_REGNUM , dummy);
|
||||
RF(FP_REGNUM , sf.sf_fp);
|
||||
RF(PC_REGNUM , sf.sf_pc);
|
||||
RF(PS_REGNUM , intreg.r_psr);
|
||||
|
||||
/* Floating point registers */
|
||||
RF(FPS_REGNUM , pcb->pcb_fsr);
|
||||
RF(FP0_REGNUM +0, pcb->pcb_freg[0]);
|
||||
RF(FP0_REGNUM +2, pcb->pcb_freg[2]);
|
||||
RF(FP0_REGNUM +4, pcb->pcb_freg[4]);
|
||||
RF(FP0_REGNUM +6, pcb->pcb_freg[6]);
|
||||
RF(LP0_REGNUM + 1, pcb->pcb_freg[1]);
|
||||
RF(LP0_REGNUM + 3, pcb->pcb_freg[3]);
|
||||
RF(LP0_REGNUM + 5, pcb->pcb_freg[5]);
|
||||
RF(LP0_REGNUM + 7, pcb->pcb_freg[7]);
|
||||
registers_fetched ();
|
||||
}
|
||||
#endif /* FETCH_KCORE_REGISTERS */
|
||||
|
||||
void
|
||||
clear_regs()
|
||||
{
|
||||
double zero = 0.0;
|
||||
int null = 0;
|
||||
|
||||
/* Integer registers */
|
||||
RF(R0_REGNUM + 0, null);
|
||||
RF(R0_REGNUM + 1, null);
|
||||
RF(R0_REGNUM + 2, null);
|
||||
RF(R0_REGNUM + 3, null);
|
||||
RF(R0_REGNUM + 4, null);
|
||||
RF(R0_REGNUM + 5, null);
|
||||
RF(R0_REGNUM + 6, null);
|
||||
RF(R0_REGNUM + 7, null);
|
||||
|
||||
RF(SP_REGNUM , null);
|
||||
RF(FP_REGNUM , null);
|
||||
RF(PC_REGNUM , null);
|
||||
RF(PS_REGNUM , null);
|
||||
|
||||
/* Floating point registers */
|
||||
RF(FPS_REGNUM , zero);
|
||||
RF(FP0_REGNUM +0, zero);
|
||||
RF(FP0_REGNUM +2, zero);
|
||||
RF(FP0_REGNUM +4, zero);
|
||||
RF(FP0_REGNUM +6, zero);
|
||||
RF(LP0_REGNUM + 0, zero);
|
||||
RF(LP0_REGNUM + 1, zero);
|
||||
RF(LP0_REGNUM + 2, zero);
|
||||
RF(LP0_REGNUM + 3, zero);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Return number of args passed to a frame.
|
||||
Can return -1, meaning no way to tell. */
|
||||
|
||||
int
|
||||
frame_num_args(fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
CORE_ADDR enter_addr;
|
||||
CORE_ADDR argp;
|
||||
int inst;
|
||||
int args;
|
||||
int i;
|
||||
|
||||
if (read_memory_integer (fi->frame, 4) == 0 && fi->pc < 0x10000) {
|
||||
/* main is always called with three args */
|
||||
return(3);
|
||||
}
|
||||
enter_addr = ns32k_get_enter_addr(fi->pc);
|
||||
if (enter_addr = 0)
|
||||
return(-1);
|
||||
argp = enter_addr == 1 ? SAVED_PC_AFTER_CALL(fi) : FRAME_SAVED_PC(fi);
|
||||
for (i = 0; i < 16; i++) {
|
||||
/*
|
||||
* After a bsr gcc may emit the following instructions
|
||||
* to remove the arguments from the stack:
|
||||
* cmpqd 0,tos - to remove 4 bytes from the stack
|
||||
* cmpd tos,tos - to remove 8 bytes from the stack
|
||||
* adjsp[bwd] -n - to remove n bytes from the stack
|
||||
* Gcc sometimes delays emitting these instructions and
|
||||
* may even throw a branch between our feet.
|
||||
*/
|
||||
inst = read_memory_integer(argp , 4);
|
||||
args = read_memory_integer(argp + 2, 4);
|
||||
if ((inst & 0xff) == 0xea) { /* br */
|
||||
args = ((inst >> 8) & 0xffffff) | (args << 24);
|
||||
if (args & 0x80) {
|
||||
if (args & 0x40) {
|
||||
args = ntohl(args);
|
||||
} else {
|
||||
args = ntohs(args & 0xffff);
|
||||
if (args & 0x2000)
|
||||
args |= 0xc000;
|
||||
}
|
||||
} else {
|
||||
args = args & 0xff;
|
||||
if (args & 0x40)
|
||||
args |= 0x80;
|
||||
}
|
||||
argp += args;
|
||||
continue;
|
||||
}
|
||||
if ((inst & 0xffff) == 0xb81f) /* cmpqd 0,tos */
|
||||
return(1);
|
||||
else if ((inst & 0xffff) == 0xbdc7) /* cmpd tos,tos */
|
||||
return(2);
|
||||
else if ((inst & 0xfffc) == 0xa57c) { /* adjsp[bwd] */
|
||||
switch (inst & 3) {
|
||||
case 0:
|
||||
args = ((args & 0xff) + 0x80);
|
||||
break;
|
||||
case 1:
|
||||
args = ((ntohs(args) & 0xffff) + 0x8000);
|
||||
break;
|
||||
case 3:
|
||||
args = -ntohl(args);
|
||||
break;
|
||||
default:
|
||||
return(-1);
|
||||
}
|
||||
if (args / 4 > 10 || (args & 3) != 0)
|
||||
continue;
|
||||
return(args / 4);
|
||||
}
|
||||
argp += 1;
|
||||
}
|
||||
return(-1);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,228 +0,0 @@
|
||||
/* Remote target communications for d10v connected via a serial line.
|
||||
Copyright 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997 Free
|
||||
Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "gdb_string.h"
|
||||
#include <fcntl.h>
|
||||
#include "frame.h"
|
||||
#include "inferior.h"
|
||||
#include "bfd.h"
|
||||
#include "symfile.h"
|
||||
#include "target.h"
|
||||
#include "wait.h"
|
||||
/*#include "terminal.h"*/
|
||||
#include "gdbcmd.h"
|
||||
#include "objfiles.h"
|
||||
#include "gdb-stabs.h"
|
||||
#include "gdbthread.h"
|
||||
|
||||
#include "dcache.h"
|
||||
|
||||
#ifdef USG
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#include <signal.h>
|
||||
#include "serial.h"
|
||||
|
||||
/* Prototypes for local functions */
|
||||
|
||||
static void remote_d10v_open PARAMS ((char *name, int from_tty));
|
||||
|
||||
/* Define the target subroutine names */
|
||||
static struct target_ops remote_d10v_ops;
|
||||
|
||||
/* Open a connection to a remote debugger.
|
||||
NAME is the filename used for communication. */
|
||||
|
||||
static void
|
||||
remote_d10v_open (name, from_tty)
|
||||
char *name;
|
||||
int from_tty;
|
||||
{
|
||||
pop_target ();
|
||||
push_remote_target (name, from_tty);
|
||||
}
|
||||
|
||||
|
||||
/* Translate a GDB virtual ADDR/LEN into a format the remote target
|
||||
understands. Returns number of bytes that can be transfered
|
||||
starting at taddr, ZERO if no bytes can be transfered. */
|
||||
int
|
||||
remote_d10v_translate_xfer_address (memaddr, nr_bytes, taddr)
|
||||
CORE_ADDR memaddr;
|
||||
int nr_bytes;
|
||||
CORE_ADDR *taddr;
|
||||
{
|
||||
CORE_ADDR phys;
|
||||
CORE_ADDR seg;
|
||||
CORE_ADDR off;
|
||||
char *from = "unknown";
|
||||
char *to = "unknown";
|
||||
unsigned short imap0 = read_register (IMAP0_REGNUM);
|
||||
unsigned short imap1 = read_register (IMAP1_REGNUM);
|
||||
unsigned short dmap = read_register (DMAP_REGNUM);
|
||||
|
||||
/* GDB interprets addresses as:
|
||||
|
||||
0x00xxxxxx: Logical data address segment (DMAP translated memory)
|
||||
0x01xxxxxx: Logical instruction address segment (IMAP translated memory)
|
||||
0x10xxxxxx: Physical data memory segment (On-chip data memory)
|
||||
0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)
|
||||
0x12xxxxxx: Phisical unified memory segment (Unified memory)
|
||||
|
||||
The remote d10v board interprets addresses as:
|
||||
|
||||
0x00xxxxxx: Phisical unified memory segment (Unified memory)
|
||||
0x01xxxxxx: Physical instruction memory segment (On-chip insn memory)
|
||||
0x02xxxxxx: Physical data memory segment (On-chip data memory)
|
||||
|
||||
Translate according to current IMAP/dmap registers */
|
||||
|
||||
enum {
|
||||
targ_unified = 0x00000000,
|
||||
targ_insn = 0x01000000,
|
||||
targ_data = 0x02000000,
|
||||
};
|
||||
|
||||
seg = (memaddr >> 24);
|
||||
off = (memaddr & 0xffffffL);
|
||||
|
||||
switch (seg)
|
||||
{
|
||||
case 0x00: /* in logical data address segment */
|
||||
{
|
||||
from = "logical-data";
|
||||
if (off <= 0x7fffL)
|
||||
{
|
||||
/* On chip data */
|
||||
phys = targ_data + off;
|
||||
if (off + nr_bytes > 0x7fffL)
|
||||
/* don't cross VM boundary */
|
||||
nr_bytes = 0x7fffL - off + 1;
|
||||
to = "chip-data";
|
||||
}
|
||||
else if (off <= 0xbfffL)
|
||||
{
|
||||
short map = dmap;
|
||||
if (map & 0x1000)
|
||||
{
|
||||
/* Instruction memory */
|
||||
phys = targ_insn | ((map & 0xf) << 14) | (off & 0x3fff);
|
||||
to = "chip-insn";
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Unified memory */
|
||||
phys = targ_unified | ((map & 0x3ff) << 14) | (off & 0x3fff);
|
||||
to = "unified";
|
||||
}
|
||||
if (off + nr_bytes > 0xbfffL)
|
||||
/* don't cross VM boundary */
|
||||
nr_bytes = (0xbfffL - off + 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Logical address out side of data segments, not supported */
|
||||
return (0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case 0x01: /* in logical instruction address segment */
|
||||
{
|
||||
short map;
|
||||
from = "logical-insn";
|
||||
if (off <= 0x1ffffL)
|
||||
{
|
||||
map = imap0;
|
||||
}
|
||||
else if (off <= 0x3ffffL)
|
||||
{
|
||||
map = imap1;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Logical address outside of IMAP[01] segment, not
|
||||
supported */
|
||||
return (0);
|
||||
}
|
||||
if ((off & 0x1ffff) + nr_bytes > 0x1ffffL)
|
||||
{
|
||||
/* don't cross VM boundary */
|
||||
nr_bytes = 0x1ffffL - (off & 0x1ffffL) + 1;
|
||||
}
|
||||
if (map & 0x1000)
|
||||
/* Instruction memory */
|
||||
{
|
||||
phys = targ_insn | off;
|
||||
to = "chip-insn";
|
||||
}
|
||||
else
|
||||
{
|
||||
phys = ((map & 0x7fL) << 17) + (off & 0x1ffffL);
|
||||
if (phys > 0xffffffL)
|
||||
/* Address outside of unified address segment */
|
||||
return (0);
|
||||
phys |= targ_unified;
|
||||
to = "unified";
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case 0x10: /* Physical data memory segment */
|
||||
from = "phys-data";
|
||||
phys = targ_data | off;
|
||||
to = "chip-data";
|
||||
break;
|
||||
|
||||
case 0x11: /* Physical instruction memory */
|
||||
from = "phys-insn";
|
||||
phys = targ_insn | off;
|
||||
to = "chip-insn";
|
||||
break;
|
||||
|
||||
case 0x12: /* Physical unified memory */
|
||||
from = "phys-unified";
|
||||
phys = targ_unified | off;
|
||||
to = "unified";
|
||||
break;
|
||||
|
||||
default:
|
||||
return (0);
|
||||
}
|
||||
|
||||
|
||||
*taddr = phys;
|
||||
return nr_bytes;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
_initialize_remote_d10v ()
|
||||
{
|
||||
remote_d10v_ops.to_shortname = "d10v";
|
||||
remote_d10v_ops.to_longname = "Remote d10v serial target in gdb-specific protocol";
|
||||
remote_d10v_ops.to_doc = "Use a remote d10v via a serial line, using a gdb-specific protocol.\n\
|
||||
Specify the serial device it is connected to (e.g. /dev/ttya).";
|
||||
remote_d10v_ops.to_open = remote_d10v_open;
|
||||
|
||||
add_target (&remote_d10v_ops);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,884 +0,0 @@
|
||||
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
|
||||
Copyright 1996, Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "frame.h"
|
||||
#include "inferior.h"
|
||||
#include "obstack.h"
|
||||
#include "target.h"
|
||||
#include "value.h"
|
||||
#include "bfd.h"
|
||||
#include "gdb_string.h"
|
||||
#include "gdbcore.h"
|
||||
#include "symfile.h"
|
||||
|
||||
|
||||
static char *v850_generic_reg_names[] = REGISTER_NAMES;
|
||||
|
||||
static char *v850e_reg_names[] =
|
||||
{
|
||||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
||||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
||||
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
|
||||
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
|
||||
"ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
|
||||
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
|
||||
"pc", "fp"
|
||||
};
|
||||
|
||||
char **v850_register_names = v850_generic_reg_names;
|
||||
|
||||
struct
|
||||
{
|
||||
char **regnames;
|
||||
int mach;
|
||||
} v850_processor_type_table[] =
|
||||
{
|
||||
{ v850_generic_reg_names, bfd_mach_v850 },
|
||||
{ v850e_reg_names, bfd_mach_v850e },
|
||||
{ v850e_reg_names, bfd_mach_v850ea },
|
||||
{ NULL, 0 }
|
||||
};
|
||||
|
||||
/* Info gleaned from scanning a function's prologue. */
|
||||
|
||||
struct pifsr /* Info about one saved reg */
|
||||
{
|
||||
int framereg; /* Frame reg (SP or FP) */
|
||||
int offset; /* Offset from framereg */
|
||||
int cur_frameoffset; /* Current frameoffset */
|
||||
int reg; /* Saved register number */
|
||||
};
|
||||
|
||||
struct prologue_info
|
||||
{
|
||||
int framereg;
|
||||
int frameoffset;
|
||||
int start_function;
|
||||
struct pifsr *pifsrs;
|
||||
};
|
||||
|
||||
static CORE_ADDR v850_scan_prologue PARAMS ((CORE_ADDR pc,
|
||||
struct prologue_info *fs));
|
||||
|
||||
|
||||
/* Should call_function allocate stack space for a struct return? */
|
||||
int
|
||||
v850_use_struct_convention (gcc_p, type)
|
||||
int gcc_p;
|
||||
struct type *type;
|
||||
{
|
||||
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 4);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Structure for mapping bits in register lists to register numbers. */
|
||||
struct reg_list
|
||||
{
|
||||
long mask;
|
||||
int regno;
|
||||
};
|
||||
|
||||
/* Helper function for v850_scan_prologue to handle prepare instruction. */
|
||||
|
||||
static void
|
||||
handle_prepare (int insn, int insn2, CORE_ADDR *current_pc_ptr,
|
||||
struct prologue_info *pi, struct pifsr **pifsr_ptr)
|
||||
|
||||
{
|
||||
CORE_ADDR current_pc = *current_pc_ptr;
|
||||
struct pifsr *pifsr = *pifsr_ptr;
|
||||
long next = insn2 & 0xffff;
|
||||
long list12 = ((insn & 1) << 16) + (next & 0xffe0);
|
||||
long offset = (insn & 0x3e) << 1;
|
||||
static struct reg_list reg_table [] =
|
||||
{
|
||||
{ 0x00800, 20 }, /* r20 */
|
||||
{ 0x00400, 21 }, /* r21 */
|
||||
{ 0x00200, 22 }, /* r22 */
|
||||
{ 0x00100, 23 }, /* r23 */
|
||||
{ 0x08000, 24 }, /* r24 */
|
||||
{ 0x04000, 25 }, /* r25 */
|
||||
{ 0x02000, 26 }, /* r26 */
|
||||
{ 0x01000, 27 }, /* r27 */
|
||||
{ 0x00080, 28 }, /* r28 */
|
||||
{ 0x00040, 29 }, /* r29 */
|
||||
{ 0x10000, 30 }, /* ep */
|
||||
{ 0x00020, 31 }, /* lp */
|
||||
{ 0, 0 } /* end of table */
|
||||
};
|
||||
int i;
|
||||
|
||||
if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
|
||||
current_pc += 2;
|
||||
else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
|
||||
current_pc += 2;
|
||||
else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
|
||||
current_pc += 4;
|
||||
|
||||
/* Calculate the total size of the saved registers, and add it
|
||||
it to the immediate value used to adjust SP. */
|
||||
for (i = 0; reg_table[i].mask != 0; i++)
|
||||
if (list12 & reg_table[i].mask)
|
||||
offset += REGISTER_RAW_SIZE (regtable[i].regno);
|
||||
pi->frameoffset -= offset;
|
||||
|
||||
/* Calculate the offsets of the registers relative to the value
|
||||
the SP will have after the registers have been pushed and the
|
||||
imm5 value has been subtracted from it. */
|
||||
if (pifsr)
|
||||
{
|
||||
for (i = 0; reg_table[i].mask != 0; i++)
|
||||
{
|
||||
if (list12 & reg_table[i].mask)
|
||||
{
|
||||
int reg = reg_table[i].regno;
|
||||
offset -= REGISTER_RAW_SIZE (reg);
|
||||
pifsr->reg = reg;
|
||||
pifsr->offset = offset;
|
||||
pifsr->cur_frameoffset = pi->frameoffset;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||||
#endif
|
||||
pifsr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound ctret after regsave func");
|
||||
#endif
|
||||
|
||||
/* Set result parameters. */
|
||||
*current_pc_ptr = current_pc;
|
||||
*pifsr_ptr = pifsr;
|
||||
}
|
||||
|
||||
|
||||
/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
|
||||
FIXME: the SR bit of the register list is not supported; must check
|
||||
that the compiler does not ever generate this bit. */
|
||||
|
||||
static void
|
||||
handle_pushm (int insn, int insn2, struct prologue_info *pi,
|
||||
struct pifsr **pifsr_ptr)
|
||||
|
||||
{
|
||||
struct pifsr *pifsr = *pifsr_ptr;
|
||||
long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
|
||||
long offset = 0;
|
||||
static struct reg_list pushml_reg_table [] =
|
||||
{
|
||||
{ 0x80000, PS_REGNUM }, /* PSW */
|
||||
{ 0x40000, 1 }, /* r1 */
|
||||
{ 0x20000, 2 }, /* r2 */
|
||||
{ 0x10000, 3 }, /* r3 */
|
||||
{ 0x00800, 4 }, /* r4 */
|
||||
{ 0x00400, 5 }, /* r5 */
|
||||
{ 0x00200, 6 }, /* r6 */
|
||||
{ 0x00100, 7 }, /* r7 */
|
||||
{ 0x08000, 8 }, /* r8 */
|
||||
{ 0x04000, 9 }, /* r9 */
|
||||
{ 0x02000, 10 }, /* r10 */
|
||||
{ 0x01000, 11 }, /* r11 */
|
||||
{ 0x00080, 12 }, /* r12 */
|
||||
{ 0x00040, 13 }, /* r13 */
|
||||
{ 0x00020, 14 }, /* r14 */
|
||||
{ 0x00010, 15 }, /* r15 */
|
||||
{ 0, 0 } /* end of table */
|
||||
};
|
||||
static struct reg_list pushmh_reg_table [] =
|
||||
{
|
||||
{ 0x80000, 16 }, /* r16 */
|
||||
{ 0x40000, 17 }, /* r17 */
|
||||
{ 0x20000, 18 }, /* r18 */
|
||||
{ 0x10000, 19 }, /* r19 */
|
||||
{ 0x00800, 20 }, /* r20 */
|
||||
{ 0x00400, 21 }, /* r21 */
|
||||
{ 0x00200, 22 }, /* r22 */
|
||||
{ 0x00100, 23 }, /* r23 */
|
||||
{ 0x08000, 24 }, /* r24 */
|
||||
{ 0x04000, 25 }, /* r25 */
|
||||
{ 0x02000, 26 }, /* r26 */
|
||||
{ 0x01000, 27 }, /* r27 */
|
||||
{ 0x00080, 28 }, /* r28 */
|
||||
{ 0x00040, 29 }, /* r29 */
|
||||
{ 0x00010, 30 }, /* r30 */
|
||||
{ 0x00020, 31 }, /* r31 */
|
||||
{ 0, 0 } /* end of table */
|
||||
};
|
||||
struct reg_list *reg_table;
|
||||
int i;
|
||||
|
||||
/* Is this a pushml or a pushmh? */
|
||||
if ((insn2 & 7) == 1)
|
||||
reg_table = pushml_reg_table;
|
||||
else
|
||||
reg_table = pushmh_reg_table;
|
||||
|
||||
/* Calculate the total size of the saved registers, and add it
|
||||
it to the immediate value used to adjust SP. */
|
||||
for (i = 0; reg_table[i].mask != 0; i++)
|
||||
if (list12 & reg_table[i].mask)
|
||||
offset += REGISTER_RAW_SIZE (regtable[i].regno);
|
||||
pi->frameoffset -= offset;
|
||||
|
||||
/* Calculate the offsets of the registers relative to the value
|
||||
the SP will have after the registers have been pushed and the
|
||||
imm5 value is subtracted from it. */
|
||||
if (pifsr)
|
||||
{
|
||||
for (i = 0; reg_table[i].mask != 0; i++)
|
||||
{
|
||||
if (list12 & reg_table[i].mask)
|
||||
{
|
||||
int reg = reg_table[i].regno;
|
||||
offset -= REGISTER_RAW_SIZE (reg);
|
||||
pifsr->reg = reg;
|
||||
pifsr->offset = offset;
|
||||
pifsr->cur_frameoffset = pi->frameoffset;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||||
#endif
|
||||
pifsr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound ctret after regsave func");
|
||||
#endif
|
||||
|
||||
/* Set result parameters. */
|
||||
*pifsr_ptr = pifsr;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/* Function: scan_prologue
|
||||
Scan the prologue of the function that contains PC, and record what
|
||||
we find in PI. PI->fsr must be zeroed by the called. Returns the
|
||||
pc after the prologue. Note that the addresses saved in pi->fsr
|
||||
are actually just frame relative (negative offsets from the frame
|
||||
pointer). This is because we don't know the actual value of the
|
||||
frame pointer yet. In some circumstances, the frame pointer can't
|
||||
be determined till after we have scanned the prologue. */
|
||||
|
||||
static CORE_ADDR
|
||||
v850_scan_prologue (pc, pi)
|
||||
CORE_ADDR pc;
|
||||
struct prologue_info *pi;
|
||||
{
|
||||
CORE_ADDR func_addr, prologue_end, current_pc;
|
||||
struct pifsr *pifsr, *pifsr_tmp;
|
||||
int fp_used;
|
||||
int ep_used;
|
||||
int reg;
|
||||
CORE_ADDR save_pc, save_end;
|
||||
int regsave_func_p;
|
||||
int r12_tmp;
|
||||
|
||||
/* First, figure out the bounds of the prologue so that we can limit the
|
||||
search to something reasonable. */
|
||||
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
|
||||
sal = find_pc_line (func_addr, 0);
|
||||
|
||||
if (func_addr == entry_point_address ())
|
||||
pi->start_function = 1;
|
||||
else
|
||||
pi->start_function = 0;
|
||||
|
||||
#if 0
|
||||
if (sal.line == 0)
|
||||
prologue_end = pc;
|
||||
else
|
||||
prologue_end = sal.end;
|
||||
#else
|
||||
prologue_end = pc;
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{ /* We're in the boondocks */
|
||||
func_addr = pc - 100;
|
||||
prologue_end = pc;
|
||||
}
|
||||
|
||||
prologue_end = min (prologue_end, pc);
|
||||
|
||||
/* Now, search the prologue looking for instructions that setup fp, save
|
||||
rp, adjust sp and such. We also record the frame offset of any saved
|
||||
registers. */
|
||||
|
||||
pi->frameoffset = 0;
|
||||
pi->framereg = SP_REGNUM;
|
||||
fp_used = 0;
|
||||
ep_used = 0;
|
||||
pifsr = pi->pifsrs;
|
||||
regsave_func_p = 0;
|
||||
save_pc = 0;
|
||||
save_end = 0;
|
||||
r12_tmp = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n",
|
||||
(long)func_addr, (long)prologue_end);
|
||||
#endif
|
||||
|
||||
for (current_pc = func_addr; current_pc < prologue_end; )
|
||||
{
|
||||
int insn, insn2;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("0x%.8lx ", (long)current_pc);
|
||||
(*tm_print_insn) (current_pc, &tm_print_insn_info);
|
||||
#endif
|
||||
|
||||
insn = read_memory_unsigned_integer (current_pc, 2);
|
||||
current_pc += 2;
|
||||
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
|
||||
{
|
||||
insn2 = read_memory_unsigned_integer (current_pc, 2);
|
||||
current_pc += 2;
|
||||
}
|
||||
|
||||
if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
|
||||
{ /* jarl <func>,10 */
|
||||
long low_disp = insn2 & ~ (long) 1;
|
||||
long disp = (((((insn & 0x3f) << 16) + low_disp)
|
||||
& ~ (long) 1) ^ 0x00200000) - 0x00200000;
|
||||
|
||||
save_pc = current_pc;
|
||||
save_end = prologue_end;
|
||||
regsave_func_p = 1;
|
||||
current_pc += disp - 4;
|
||||
prologue_end = (current_pc
|
||||
+ (2 * 3) /* moves to/from ep */
|
||||
+ 4 /* addi <const>,sp,sp */
|
||||
+ 2 /* jmp [r10] */
|
||||
+ (2 * 12) /* sst.w to save r2, r20-r29, r31 */
|
||||
+ 20); /* slop area */
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n",
|
||||
disp, low_disp, (long)current_pc + 2);
|
||||
#endif
|
||||
continue;
|
||||
}
|
||||
else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
|
||||
{ /* callt <imm6> */
|
||||
long ctbp = read_register (CTBP_REGNUM);
|
||||
long adr = ctbp + ((insn & 0x3f) << 1);
|
||||
|
||||
save_pc = current_pc;
|
||||
save_end = prologue_end;
|
||||
regsave_func_p = 1;
|
||||
current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
|
||||
prologue_end = (current_pc
|
||||
+ (2 * 3) /* prepare list2,imm5,sp/imm */
|
||||
+ 4 /* ctret */
|
||||
+ 20); /* slop area */
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound callt, ctbp = 0x%.8lx, adr = %.8lx, new pc = 0x%.8lx\n",
|
||||
ctbp, adr, (long)current_pc);
|
||||
#endif
|
||||
continue;
|
||||
}
|
||||
else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
|
||||
{
|
||||
handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr);
|
||||
continue;
|
||||
}
|
||||
else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
|
||||
{ /* ctret after processing register save function */
|
||||
current_pc = save_pc;
|
||||
prologue_end = save_end;
|
||||
regsave_func_p = 0;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound ctret after regsave func");
|
||||
#endif
|
||||
continue;
|
||||
}
|
||||
else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
|
||||
{ /* pushml, pushmh */
|
||||
handle_pushm (insn, insn2, pi, &pifsr);
|
||||
continue;
|
||||
}
|
||||
else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
|
||||
{ /* jmp after processing register save function */
|
||||
current_pc = save_pc;
|
||||
prologue_end = save_end;
|
||||
regsave_func_p = 0;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound jmp after regsave func");
|
||||
#endif
|
||||
continue;
|
||||
}
|
||||
else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
|
||||
|| (insn & 0xffe0) == 0x0060 /* jmp */
|
||||
|| (insn & 0x0780) == 0x0580) /* branch */
|
||||
{
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\n");
|
||||
#endif
|
||||
break; /* Ran into end of prologue */
|
||||
}
|
||||
|
||||
else if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
|
||||
pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
|
||||
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
|
||||
pi->frameoffset += insn2;
|
||||
else if (insn == ((FP_RAW_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,fp */
|
||||
{
|
||||
fp_used = 1;
|
||||
pi->framereg = FP_RAW_REGNUM;
|
||||
}
|
||||
|
||||
else if (insn == ((R12_REGNUM << 11) | 0x0640 | R0_REGNUM)) /* movhi hi(const),r0,r12 */
|
||||
r12_tmp = insn2 << 16;
|
||||
else if (insn == ((R12_REGNUM << 11) | 0x0620 | R12_REGNUM)) /* movea lo(const),r12,r12 */
|
||||
r12_tmp += insn2;
|
||||
else if (insn == ((SP_REGNUM << 11) | 0x01c0 | R12_REGNUM) && r12_tmp) /* add r12,sp */
|
||||
pi->frameoffset = r12_tmp;
|
||||
else if (insn == ((EP_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,ep */
|
||||
ep_used = 1;
|
||||
else if (insn == ((EP_REGNUM << 11) | 0x0000 | R1_REGNUM)) /* mov r1,ep */
|
||||
ep_used = 0;
|
||||
else if (((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|
||||
|| (fp_used
|
||||
&& (insn & 0x07ff) == (0x0760 | FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */
|
||||
&& pifsr
|
||||
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
|
||||
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
|
||||
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
|
||||
{
|
||||
pifsr->reg = reg;
|
||||
pifsr->offset = insn2 & ~1;
|
||||
pifsr->cur_frameoffset = pi->frameoffset;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||||
#endif
|
||||
pifsr++;
|
||||
}
|
||||
|
||||
else if (ep_used /* sst.w <reg>,<offset>[ep] */
|
||||
&& ((insn & 0x0781) == 0x0501)
|
||||
&& pifsr
|
||||
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
|
||||
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
|
||||
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
|
||||
{
|
||||
pifsr->reg = reg;
|
||||
pifsr->offset = (insn & 0x007e) << 1;
|
||||
pifsr->cur_frameoffset = pi->frameoffset;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||||
#endif
|
||||
pifsr++;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
if (pifsr)
|
||||
pifsr->framereg = 0; /* Tie off last entry */
|
||||
|
||||
/* Fix up any offsets to the final offset. If a frame pointer was created, use it
|
||||
instead of the stack pointer. */
|
||||
for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++)
|
||||
{
|
||||
pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset;
|
||||
pifsr_tmp->framereg = pi->framereg;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n",
|
||||
pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset);
|
||||
#endif
|
||||
|
||||
return current_pc;
|
||||
}
|
||||
|
||||
/* Function: init_extra_frame_info
|
||||
Setup the frame's frame pointer, pc, and frame addresses for saved
|
||||
registers. Most of the work is done in scan_prologue().
|
||||
|
||||
Note that when we are called for the last frame (currently active frame),
|
||||
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
||||
be valid only if this routine uses FP. For previous frames, fi-frame will
|
||||
always be correct (since that is derived from v850_frame_chain ()).
|
||||
|
||||
We can be called with the PC in the call dummy under two circumstances.
|
||||
First, during normal backtracing, second, while figuring out the frame
|
||||
pointer just prior to calling the target function (see run_stack_dummy). */
|
||||
|
||||
void
|
||||
v850_init_extra_frame_info (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
struct prologue_info pi;
|
||||
struct pifsr pifsrs[NUM_REGS + 1], *pifsr;
|
||||
|
||||
if (fi->next)
|
||||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||||
|
||||
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
||||
|
||||
/* The call dummy doesn't save any registers on the stack, so we can return
|
||||
now. */
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||||
return;
|
||||
|
||||
pi.pifsrs = pifsrs;
|
||||
|
||||
v850_scan_prologue (fi->pc, &pi);
|
||||
|
||||
if (!fi->next && pi.framereg == SP_REGNUM)
|
||||
fi->frame = read_register (pi.framereg) - pi.frameoffset;
|
||||
|
||||
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
|
||||
{
|
||||
fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame;
|
||||
|
||||
if (pifsr->framereg == SP_REGNUM)
|
||||
fi->fsr.regs[pifsr->reg] += pi.frameoffset;
|
||||
}
|
||||
}
|
||||
|
||||
/* Function: frame_chain
|
||||
Figure out the frame prior to FI. Unfortunately, this involves
|
||||
scanning the prologue of the caller, which will also be done
|
||||
shortly by v850_init_extra_frame_info. For the dummy frame, we
|
||||
just return the stack pointer that was in use at the time the
|
||||
function call was made. */
|
||||
|
||||
CORE_ADDR
|
||||
v850_frame_chain (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
struct prologue_info pi;
|
||||
CORE_ADDR callers_pc, fp;
|
||||
|
||||
/* First, find out who called us */
|
||||
callers_pc = FRAME_SAVED_PC (fi);
|
||||
/* If caller is a call-dummy, then our FP bears no relation to his FP! */
|
||||
fp = v850_find_callers_reg (fi, FP_RAW_REGNUM);
|
||||
if (PC_IN_CALL_DUMMY(callers_pc, fp, fp))
|
||||
return fp; /* caller is call-dummy: return oldest value of FP */
|
||||
|
||||
/* Caller is NOT a call-dummy, so everything else should just work.
|
||||
Even if THIS frame is a call-dummy! */
|
||||
pi.pifsrs = NULL;
|
||||
|
||||
v850_scan_prologue (callers_pc, &pi);
|
||||
|
||||
if (pi.start_function)
|
||||
return 0; /* Don't chain beyond the start function */
|
||||
|
||||
if (pi.framereg == FP_RAW_REGNUM)
|
||||
return v850_find_callers_reg (fi, pi.framereg);
|
||||
|
||||
return fi->frame - pi.frameoffset;
|
||||
}
|
||||
|
||||
/* Function: find_callers_reg
|
||||
Find REGNUM on the stack. Otherwise, it's in an active register.
|
||||
One thing we might want to do here is to check REGNUM against the
|
||||
clobber mask, and somehow flag it as invalid if it isn't saved on
|
||||
the stack somewhere. This would provide a graceful failure mode
|
||||
when trying to get the value of caller-saves registers for an inner
|
||||
frame. */
|
||||
|
||||
CORE_ADDR
|
||||
v850_find_callers_reg (fi, regnum)
|
||||
struct frame_info *fi;
|
||||
int regnum;
|
||||
{
|
||||
for (; fi; fi = fi->next)
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||||
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
||||
else if (fi->fsr.regs[regnum] != 0)
|
||||
return read_memory_unsigned_integer (fi->fsr.regs[regnum],
|
||||
REGISTER_RAW_SIZE(regnum));
|
||||
|
||||
return read_register (regnum);
|
||||
}
|
||||
|
||||
/* Function: skip_prologue
|
||||
Return the address of the first code past the prologue of the function. */
|
||||
|
||||
CORE_ADDR
|
||||
v850_skip_prologue (pc)
|
||||
CORE_ADDR pc;
|
||||
{
|
||||
CORE_ADDR func_addr, func_end;
|
||||
|
||||
/* See what the symbol table says */
|
||||
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
|
||||
sal = find_pc_line (func_addr, 0);
|
||||
|
||||
if (sal.line != 0 && sal.end < func_end)
|
||||
return sal.end;
|
||||
else
|
||||
/* Either there's no line info, or the line after the prologue is after
|
||||
the end of the function. In this case, there probably isn't a
|
||||
prologue. */
|
||||
return pc;
|
||||
}
|
||||
|
||||
/* We can't find the start of this function, so there's nothing we can do. */
|
||||
return pc;
|
||||
}
|
||||
|
||||
/* Function: pop_frame
|
||||
This routine gets called when either the user uses the `return'
|
||||
command, or the call dummy breakpoint gets hit. */
|
||||
|
||||
void
|
||||
v850_pop_frame (frame)
|
||||
struct frame_info *frame;
|
||||
{
|
||||
int regnum;
|
||||
|
||||
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
|
||||
generic_pop_dummy_frame ();
|
||||
else
|
||||
{
|
||||
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
||||
|
||||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||||
if (frame->fsr.regs[regnum] != 0)
|
||||
write_register (regnum,
|
||||
read_memory_unsigned_integer (frame->fsr.regs[regnum],
|
||||
REGISTER_RAW_SIZE(regnum)));
|
||||
|
||||
write_register (SP_REGNUM, FRAME_FP (frame));
|
||||
}
|
||||
|
||||
flush_cached_frames ();
|
||||
}
|
||||
|
||||
/* Function: push_arguments
|
||||
Setup arguments and RP for a call to the target. First four args
|
||||
go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
|
||||
are passed by reference. 64 bit quantities (doubles and long
|
||||
longs) may be split between the regs and the stack. When calling a
|
||||
function that returns a struct, a pointer to the struct is passed
|
||||
in as a secret first argument (always in R6).
|
||||
|
||||
Stack space for the args has NOT been allocated: that job is up to us.
|
||||
*/
|
||||
|
||||
CORE_ADDR
|
||||
v850_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
||||
int nargs;
|
||||
value_ptr *args;
|
||||
CORE_ADDR sp;
|
||||
unsigned char struct_return;
|
||||
CORE_ADDR struct_addr;
|
||||
{
|
||||
int argreg;
|
||||
int argnum;
|
||||
int len = 0;
|
||||
int stack_offset;
|
||||
|
||||
/* First, just for safety, make sure stack is aligned */
|
||||
sp &= ~3;
|
||||
|
||||
/* Now make space on the stack for the args. */
|
||||
for (argnum = 0; argnum < nargs; argnum++)
|
||||
len += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3);
|
||||
sp -= len; /* possibly over-allocating, but it works... */
|
||||
/* (you might think we could allocate 16 bytes */
|
||||
/* less, but the ABI seems to use it all! ) */
|
||||
argreg = ARG0_REGNUM;
|
||||
|
||||
/* the struct_return pointer occupies the first parameter-passing reg */
|
||||
if (struct_return)
|
||||
write_register (argreg++, struct_addr);
|
||||
|
||||
stack_offset = 16;
|
||||
/* The offset onto the stack at which we will start copying parameters
|
||||
(after the registers are used up) begins at 16 rather than at zero.
|
||||
I don't really know why, that's just the way it seems to work. */
|
||||
|
||||
/* Now load as many as possible of the first arguments into
|
||||
registers, and push the rest onto the stack. There are 16 bytes
|
||||
in four registers available. Loop thru args from first to last. */
|
||||
for (argnum = 0; argnum < nargs; argnum++)
|
||||
{
|
||||
int len;
|
||||
char *val;
|
||||
char valbuf[REGISTER_RAW_SIZE(ARG0_REGNUM)];
|
||||
|
||||
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
||||
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
||||
{
|
||||
store_address (valbuf, 4, VALUE_ADDRESS (*args));
|
||||
len = 4;
|
||||
val = valbuf;
|
||||
}
|
||||
else
|
||||
{
|
||||
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
||||
val = (char *)VALUE_CONTENTS (*args);
|
||||
}
|
||||
|
||||
while (len > 0)
|
||||
if (argreg <= ARGLAST_REGNUM)
|
||||
{
|
||||
CORE_ADDR regval;
|
||||
|
||||
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
||||
write_register (argreg, regval);
|
||||
|
||||
len -= REGISTER_RAW_SIZE (argreg);
|
||||
val += REGISTER_RAW_SIZE (argreg);
|
||||
argreg++;
|
||||
}
|
||||
else
|
||||
{
|
||||
write_memory (sp + stack_offset, val, 4);
|
||||
|
||||
len -= 4;
|
||||
val += 4;
|
||||
stack_offset += 4;
|
||||
}
|
||||
args++;
|
||||
}
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* Function: push_return_address (pc)
|
||||
Set up the return address for the inferior function call.
|
||||
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
||||
|
||||
CORE_ADDR
|
||||
v850_push_return_address (pc, sp)
|
||||
CORE_ADDR pc;
|
||||
CORE_ADDR sp;
|
||||
{
|
||||
write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* Function: frame_saved_pc
|
||||
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
||||
is saved in the stack anywhere, otherwise we get it from the
|
||||
registers. If the inner frame is a dummy frame, return its PC
|
||||
instead of RP, because that's where "caller" of the dummy-frame
|
||||
will be found. */
|
||||
|
||||
CORE_ADDR
|
||||
v850_frame_saved_pc (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
|
||||
return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
|
||||
else
|
||||
return v850_find_callers_reg (fi, RP_REGNUM);
|
||||
}
|
||||
|
||||
void
|
||||
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||||
char *raw_buffer;
|
||||
int *optimized;
|
||||
CORE_ADDR *addrp;
|
||||
struct frame_info *frame;
|
||||
int regnum;
|
||||
enum lval_type *lval;
|
||||
{
|
||||
generic_get_saved_register (raw_buffer, optimized, addrp,
|
||||
frame, regnum, lval);
|
||||
}
|
||||
|
||||
|
||||
/* Function: fix_call_dummy
|
||||
Pokes the callee function's address into the CALL_DUMMY assembly stub.
|
||||
Assumes that the CALL_DUMMY looks like this:
|
||||
jarl <offset24>, r31
|
||||
trap
|
||||
*/
|
||||
|
||||
int
|
||||
v850_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p)
|
||||
char *dummy;
|
||||
CORE_ADDR sp;
|
||||
CORE_ADDR fun;
|
||||
int nargs;
|
||||
value_ptr *args;
|
||||
struct type *type;
|
||||
int gcc_p;
|
||||
{
|
||||
long offset24;
|
||||
|
||||
offset24 = (long) fun - (long) entry_point_address ();
|
||||
offset24 &= 0x3fffff;
|
||||
offset24 |= 0xff800000; /* jarl <offset24>, r31 */
|
||||
|
||||
store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff);
|
||||
store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Change the register names based on the current machine type. */
|
||||
|
||||
static int
|
||||
v850_target_architecture_hook (ap)
|
||||
const bfd_arch_info_type *ap;
|
||||
{
|
||||
int i, j;
|
||||
|
||||
if (ap->arch != bfd_arch_v850)
|
||||
return 0;
|
||||
|
||||
for (i = 0; v850_processor_type_table[i].regnames != NULL; i++)
|
||||
{
|
||||
if (v850_processor_type_table[i].mach == ap->mach)
|
||||
{
|
||||
v850_register_names = v850_processor_type_table[i].regnames;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
fatal ("Architecture `%s' unreconized", ap->printable_name);
|
||||
}
|
||||
|
||||
void
|
||||
_initialize_v850_tdep ()
|
||||
{
|
||||
tm_print_insn = print_insn_v850;
|
||||
target_architecture_hook = v850_target_architecture_hook;
|
||||
}
|
Loading…
Reference in New Issue
Block a user