[stage: 3.1/9]

malloc()less feeder_volume. Informations can be retrieved dynamically
by doing table lookup on static data. Increase resolution from 6bit
to PCM_FXSHIFT (8bit) for better resolution and finer volume changes.
This commit is contained in:
Ariff Abdullah 2007-03-16 17:14:19 +00:00
parent 4dfcb0573f
commit 3e3981e8a0

View File

@ -31,48 +31,37 @@
SND_DECLARE_FILE("$FreeBSD$");
MALLOC_DEFINE(M_VOLUMEFEEDER, "volumefeed", "pcm volume feeder");
#define FVOL_TRACE(x...) /* device_printf(c->dev, x) */
#define FVOL_TEST(x, y...) /* if (x) FVOL_TRACE(y) */
#define FVOL_RESOLUTION 6 /* 6bit volume resolution */
#define FVOL_CLAMP(val) (((val) << FVOL_RESOLUTION) / 100)
#define FVOL_OSS_SCALE 100
#define FVOL_RESOLUTION PCM_FXSHIFT
#define FVOL_CLAMP(val) (((val) << FVOL_RESOLUTION) / FVOL_OSS_SCALE)
#define FVOL_LEFT(val) FVOL_CLAMP((val) & 0x7f)
#define FVOL_RIGHT(val) FVOL_LEFT((val) >> 8)
#define FVOL_MAX (1 << FVOL_RESOLUTION)
#define FVOL_MAX (1U << FVOL_RESOLUTION)
#define FVOL_CALC(sval, vval) (((sval) * (vval)) >> FVOL_RESOLUTION)
struct feed_volume_info;
typedef uint32_t (*feed_volume_filter)(struct feed_volume_info *,
uint8_t *, int *, uint32_t);
struct feed_volume_info {
uint32_t bps, channels;
feed_volume_filter filter;
};
typedef uint32_t (*feed_volume_filter)(uint8_t *, uint32_t *, uint32_t);
#define FEEDER_VOLUME_FILTER(FMTBIT, VOL_INTCAST, SIGN, SIGNS, ENDIAN, ENDIANS) \
static uint32_t \
feed_volume_filter_##SIGNS##FMTBIT##ENDIANS(struct feed_volume_info *info, \
uint8_t *b, int *vol, uint32_t count) \
feed_volume_filter_##SIGNS##FMTBIT##ENDIANS(uint8_t *b, uint32_t *vol, \
uint32_t count) \
{ \
uint32_t bps; \
int32_t j; \
int i; \
\
bps = info->bps; \
i = count; \
b += i; \
while (i > 0) { \
b -= bps; \
i -= bps; \
\
do { \
b -= PCM_##FMTBIT##_BPS; \
i -= PCM_##FMTBIT##_BPS; \
j = PCM_READ_##SIGN##FMTBIT##_##ENDIAN(b); \
j = FVOL_CALC((VOL_INTCAST)j, vol[(i / bps) & 1]); \
j = FVOL_CALC((VOL_INTCAST)j, \
vol[(i / PCM_##FMTBIT##_BPS) & 1]); \
PCM_WRITE_##SIGN##FMTBIT##_##ENDIAN(b, j); \
} \
return count; \
} while (i != 0); \
\
return (count); \
}
FEEDER_VOLUME_FILTER(8, int32_t, S, s, NE, ne)
@ -82,7 +71,6 @@ FEEDER_VOLUME_FILTER(32, intpcm_t, S, s, LE, le)
FEEDER_VOLUME_FILTER(16, int32_t, S, s, BE, be)
FEEDER_VOLUME_FILTER(24, int32_t, S, s, BE, be)
FEEDER_VOLUME_FILTER(32, intpcm_t, S, s, BE, be)
/* unsigned */
FEEDER_VOLUME_FILTER(8, int32_t, U, u, NE, ne)
FEEDER_VOLUME_FILTER(16, int32_t, U, u, LE, le)
FEEDER_VOLUME_FILTER(24, int32_t, U, u, LE, le)
@ -91,109 +79,84 @@ FEEDER_VOLUME_FILTER(16, int32_t, U, u, BE, be)
FEEDER_VOLUME_FILTER(24, int32_t, U, u, BE, be)
FEEDER_VOLUME_FILTER(32, intpcm_t, U, u, BE, be)
static int
feed_volume_setup(struct pcm_feeder *f)
{
struct feed_volume_info *info = f->data;
static const struct {
uint32_t format; /* pcm / audio format */
uint32_t bps; /* bytes-per-sample, regardless of
total channels */
feed_volume_filter filter;
} voltbl[] = {
{ AFMT_S8, PCM_8_BPS, feed_volume_filter_s8ne },
{ AFMT_S16_LE, PCM_16_BPS, feed_volume_filter_s16le },
{ AFMT_S24_LE, PCM_24_BPS, feed_volume_filter_s24le },
{ AFMT_S32_LE, PCM_32_BPS, feed_volume_filter_s32le },
{ AFMT_S16_BE, PCM_16_BPS, feed_volume_filter_s16be },
{ AFMT_S24_BE, PCM_24_BPS, feed_volume_filter_s24be },
{ AFMT_S32_BE, PCM_32_BPS, feed_volume_filter_s32be },
/* unsigned */
{ AFMT_U8, PCM_8_BPS, feed_volume_filter_u8ne },
{ AFMT_U16_LE, PCM_16_BPS, feed_volume_filter_u16le },
{ AFMT_U24_LE, PCM_24_BPS, feed_volume_filter_u24le },
{ AFMT_U32_LE, PCM_32_BPS, feed_volume_filter_u32le },
{ AFMT_U16_BE, PCM_16_BPS, feed_volume_filter_u16be },
{ AFMT_U24_BE, PCM_24_BPS, feed_volume_filter_u24be },
{ AFMT_U32_BE, PCM_32_BPS, feed_volume_filter_u32be },
{ 0, 0, NULL },
};
uint32_t i;
struct feed_volume_info {
uint32_t format;
int bps;
feed_volume_filter filter;
};
for (i = 0; i < sizeof(voltbl) / sizeof(*voltbl); i++) {
if (voltbl[i].format == 0)
return -1;
if ((f->desc->out & ~AFMT_STEREO) == voltbl[i].format) {
info->bps = voltbl[i].bps;
info->filter = voltbl[i].filter;
break;
}
}
static struct feed_volume_info feed_volume_tbl[] = {
{ AFMT_S8, PCM_8_BPS, feed_volume_filter_s8ne },
{ AFMT_S16_LE, PCM_16_BPS, feed_volume_filter_s16le },
{ AFMT_S24_LE, PCM_24_BPS, feed_volume_filter_s24le },
{ AFMT_S32_LE, PCM_32_BPS, feed_volume_filter_s32le },
{ AFMT_S16_BE, PCM_16_BPS, feed_volume_filter_s16be },
{ AFMT_S24_BE, PCM_24_BPS, feed_volume_filter_s24be },
{ AFMT_S32_BE, PCM_32_BPS, feed_volume_filter_s32be },
{ AFMT_U8, PCM_8_BPS, feed_volume_filter_u8ne },
{ AFMT_U16_LE, PCM_16_BPS, feed_volume_filter_u16le },
{ AFMT_U24_LE, PCM_24_BPS, feed_volume_filter_u24le },
{ AFMT_U32_LE, PCM_32_BPS, feed_volume_filter_u32le },
{ AFMT_U16_BE, PCM_16_BPS, feed_volume_filter_u16be },
{ AFMT_U24_BE, PCM_24_BPS, feed_volume_filter_u24be },
{ AFMT_U32_BE, PCM_32_BPS, feed_volume_filter_u32be },
};
/* For now, this is mandatory! */
info->channels = 2;
return 0;
}
#define FVOL_DATA(i, c) ((intptr_t)((((i) & 0x1f) << 4) | ((c) & 0xf)))
#define FVOL_INFOIDX(m) (((m) >> 4) & 0x1f)
#define FVOL_CHANNELS(m) ((m) & 0xf)
static int
feed_volume_init(struct pcm_feeder *f)
{
struct feed_volume_info *info;
int i, channels;
if (f->desc->in != f->desc->out)
return EINVAL;
return (EINVAL);
/* Mandatory */
/* For now, this is mandatory! */
if (!(f->desc->out & AFMT_STEREO))
return EINVAL;
return (EINVAL);
info = malloc(sizeof(*info), M_VOLUMEFEEDER, M_NOWAIT | M_ZERO);
if (info == NULL)
return ENOMEM;
f->data = info;
return feed_volume_setup(f);
}
channels = 2;
static int
feed_volume_free(struct pcm_feeder *f)
{
struct feed_volume_info *info = f->data;
for (i = 0; i < sizeof(feed_volume_tbl) / sizeof(feed_volume_tbl[0]);
i++) {
if ((f->desc->out & ~AFMT_STEREO) ==
feed_volume_tbl[i].format) {
f->data = (void *)FVOL_DATA(i, channels);
return (0);
}
}
if (info)
free(info, M_VOLUMEFEEDER);
f->data = NULL;
return 0;
return (-1);
}
static int
feed_volume(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
uint32_t count, void *source)
{
struct feed_volume_info *info = f->data;
uint32_t k, smpsz;
int vol[2];
struct feed_volume_info *info;
uint32_t vol[2];
int k, smpsz;
vol[0] = FVOL_LEFT(c->volume);
vol[1] = FVOL_RIGHT(c->volume);
if (vol[0] == FVOL_MAX && vol[1] == FVOL_MAX)
return FEEDER_FEED(f->source, c, b, count, source);
return (FEEDER_FEED(f->source, c, b, count, source));
smpsz = info->bps * info->channels;
info = &feed_volume_tbl[FVOL_INFOIDX((intptr_t)f->data)];
smpsz = info->bps * FVOL_CHANNELS((intptr_t)f->data);
if (count < smpsz)
return 0;
count -= count % smpsz;
k = FEEDER_FEED(f->source, c, b, count, source);
if (k < smpsz) {
FVOL_TRACE("%s: Not enough data (Got: %u bytes)\n",
__func__, k);
return 0;
}
FVOL_TEST(k % smpsz, "%s: Bytes not %dbit (stereo) aligned.\n",
__func__, info->bps << 3);
return (0);
k = FEEDER_FEED(f->source, c, b, count - (count % smpsz), source);
if (k < smpsz)
return (0);
k -= k % smpsz;
return info->filter(info, b, vol, k);
return (info->filter(b, vol, k));
}
static struct pcm_feederdesc feeder_volume_desc[] = {
@ -204,7 +167,6 @@ static struct pcm_feederdesc feeder_volume_desc[] = {
{FEEDER_VOLUME, AFMT_S16_BE | AFMT_STEREO, AFMT_S16_BE | AFMT_STEREO, 0},
{FEEDER_VOLUME, AFMT_S24_BE | AFMT_STEREO, AFMT_S24_BE | AFMT_STEREO, 0},
{FEEDER_VOLUME, AFMT_S32_BE | AFMT_STEREO, AFMT_S32_BE | AFMT_STEREO, 0},
/* unsigned */
{FEEDER_VOLUME, AFMT_U8 | AFMT_STEREO, AFMT_U8 | AFMT_STEREO, 0},
{FEEDER_VOLUME, AFMT_U16_LE | AFMT_STEREO, AFMT_U16_LE | AFMT_STEREO, 0},
{FEEDER_VOLUME, AFMT_U24_LE | AFMT_STEREO, AFMT_U24_LE | AFMT_STEREO, 0},
@ -216,7 +178,6 @@ static struct pcm_feederdesc feeder_volume_desc[] = {
};
static kobj_method_t feeder_volume_methods[] = {
KOBJMETHOD(feeder_init, feed_volume_init),
KOBJMETHOD(feeder_free, feed_volume_free),
KOBJMETHOD(feeder_feed, feed_volume),
{0, 0}
};