Upgrade to dc version 1.0 which comes bundled with

bc version 1.03.
This commit is contained in:
Steve Price 1996-11-04 04:24:33 +00:00
parent defb499d08
commit 485f6985a7
19 changed files with 2642 additions and 2682 deletions

View File

@ -1,77 +0,0 @@
Fri May 21 15:02:52 1993 Noah Friedman (friedman@nutrimat.gnu.ai.mit.edu)
* Version 0.2 released.
Fri May 21 11:48:11 1993 Richard Stallman (rms@mole.gnu.ai.mit.edu)
* decimal.c (decimal_rem): Update to match fixes in decimal_div.
Thu May 20 03:12:41 1993 Noah Friedman (friedman@nutrimat.gnu.ai.mit.edu)
* Makefile.in (realclean): Delete dc.info* and configure.
(DISTFILES): Add `texinfo.tex' and `NEWS'.
texinfo.tex: New file (symlink to canonical source).
NEWS: New file.
Wed May 19 11:30:09 1993 Richard Stallman (rms@mole.gnu.ai.mit.edu)
* dc.c (dec_read): Accept only A through F.
Tue May 18 12:35:54 1993 Richard Stallman (rms@mole.gnu.ai.mit.edu)
* dc.c (read_string): New arg STARTC to handle nested brackets.
(execute): Change calls to read_string.
(condop): Don't assume result of decimal_compare has abs value <= 1.
(popmacro): If no macro in progress, exit.
Sun May 2 00:42:47 1993 Richard Stallman (rms@mole.gnu.ai.mit.edu)
* decimal.c (decimal_div): Include in trial_dividend the digit
at length2 + i - 2, if there is one.
Sat May 1 09:54:35 1993 Richard Stallman (rms@mole.gnu.ai.mit.edu)
* decimal.c (decimal_parse): Don't use digits without recalculation
if some digit exceeds the radix.
* dc.c (execute): Treat A...F as digits.
(dec_read): Treat A...F as digits.
Thu Apr 29 14:17:30 1993 Richard Stallman (rms@mole.gnu.ai.mit.edu)
* decimal.h (bcopy): Use memcpy, not memmove.
* decimal.c (flush_trailing_digits): Use explicit loop, not bcopy.
Tue Apr 20 17:21:27 1993 Noah Friedman (friedman@nutrimat.gnu.ai.mit.edu)
* dc.c (pushsqrt): `precision' is an argument to `decimal_sqrt', not
`push'.
Sat Apr 17 15:47:55 1993 Noah Friedman (friedman@nutrimat.gnu.ai.mit.edu)
* All files: Updated GPL version number.
* decimal.c: Include decimal.h and delete duplicate declarations.
* decimal.h [!HAVE_BCOPY]: #define bcopy.
[!HAVE_BZERO]: #define bzero.
Sun Feb 10 22:06:15 1991 Richard Stallman (rms at mole.ai.mit.edu)
* dc.c (execute): Insert break; in \n case.
Sun Jul 29 17:50:14 1990 Richard Stallman (rms at sugar-bombs.ai.mit.edu)
* decimal.c (decimal_neg): New function.
Fri Jul 27 04:11:34 1990 David J. MacKenzie (djm at albert.ai.mit.edu)
* bceval.c, bclex.c, bcprint.c, bcsym.c: Declare some functions
static.
Mon Dec 25 03:01:49 1989 David J. MacKenzie (djm at hobbes.ai.mit.edu)
* Makefile: add some missing rules.
* decimal.c: change a 'max' to 'MAX'.

View File

@ -1,8 +1,10 @@
PROG= dc
SRCS= dc.c decimal.c
CFLAGS+=-I${.CURDIR} -DHAVE_BCOPY=1 -DHAVE_BZERO=1
SRCS= dc-array.c dc-eval.c dc-misc.c dc-number.c dc-stack.c dc-string.c number.c
CFLAGS+=-I${.CURDIR} -I${.CURDIR}/../bc -D_POSIX_SOURCE
DPADD= ${LIBM}
LDADD= -lm
SUBDIR+= doc
.PATH: ${.CURDIR}/../bc
.include <bsd.prog.mk>

View File

@ -1,7 +0,0 @@
Changes between version 0.2 and 0.1:
* You can now have nested square bracket pairs within a string.
* The letters A-F can now be part of a number when the input radix is
large enough to make them meaningful.

View File

@ -1,13 +0,0 @@
This is a preliminary release of GNU `dc', since people asked for it. GNU
`bc' (which doesn't rely on a separate `dc') has been available separately
for a couple of years. Eventually this version of `dc' will be merged with
the bc package.
See comments in the file decimal.c for some limitations in the arbitrary
precision library. It's questionable whether it's worth fixing these
problems since the merged dc will probably use bc's math library instead.
However, you might want to be aware of known problems.
See the file `INSTALL' for instructions on building and installing dc.
Please report bugs to bug-gnu-utils@prep.ai.mit.edu.

105
gnu/usr.bin/dc/dc-array.c Normal file
View File

@ -0,0 +1,105 @@
/*
* implement arrays for dc
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* This module is the only one that knows what arrays look like. */
#include "config.h"
#include <stdio.h> /* "dc-proto.h" wants this */
#include <stdlib.h>
#include "dc.h"
#include "dc-proto.h"
#include "dc-regdef.h"
/* what's most useful: quick access or sparse arrays? */
/* I'll go with sparse arrays for now */
struct dc_array {
int Index;
dc_data value;
struct dc_array *next;
};
typedef struct dc_array dc_array;
/* I can find no reason not to place arrays in their own namespace... */
static dc_array *dc_array_register[DC_REGCOUNT];
/* initialize the arrays to their initial values */
void
dc_array_init DC_DECLVOID()
{
int i;
for (i=0; i<DC_REGCOUNT; ++i)
dc_array_register[i] = NULL;
}
/* store value into array_id[Index] */
void
dc_array_set DC_DECLARG((array_id, Index, value))
int array_id DC_DECLSEP
int Index DC_DECLSEP
dc_data value DC_DECLEND
{
dc_array *cur;
dc_array *prev=NULL;
dc_array *newentry;
array_id = regmap(array_id);
cur = dc_array_register[array_id];
while (cur && cur->Index < Index){
prev = cur;
cur = cur->next;
}
if (cur && cur->Index == Index){
if (cur->value.dc_type == DC_NUMBER)
dc_free_num(&cur->value.v.number);
else if (cur->value.dc_type == DC_STRING)
dc_free_str(&cur->value.v.string);
else
dc_garbage(" in array", array_id);
cur->value = value;
}else{
newentry = dc_malloc(sizeof *newentry);
newentry->Index = Index;
newentry->value = value;
newentry->next = cur;
if (prev)
prev->next = newentry;
else
dc_array_register[array_id] = newentry;
}
}
/* retrieve a dup of a value from array_id[Index] */
/* A zero value is returned if the specified value is unintialized. */
dc_data
dc_array_get DC_DECLARG((array_id, Index))
int array_id DC_DECLSEP
int Index DC_DECLEND
{
dc_array *cur;
for (cur=dc_array_register[regmap(array_id)]; cur; cur=cur->next)
if (cur->Index == Index)
return dc_dup(cur->value);
return dc_int2data(0);
}

569
gnu/usr.bin/dc/dc-eval.c Normal file
View File

@ -0,0 +1,569 @@
/*
* evaluate the dc language, from a FILE* or a string
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* This is the only module which knows about the dc input language */
#include "config.h"
#include <stdio.h>
#include <string.h>
#include "dc.h"
#include "dc-proto.h"
typedef enum {
DC_OKAY, /* no further intervention needed for this command */
DC_EATONE, /* caller needs to eat the lookahead char */
DC_QUIT, /* quit out of unwind_depth levels of evaluation */
/* with the following return values, the caller does not have to
* fret about rescan_stdin's value
*/
DC_INT, /* caller needs to parse a dc_num from input stream */
DC_STR, /* caller needs to parse a dc_str from input stream */
DC_SYSTEM, /* caller needs to run a system() on next input line */
DC_COMMENT, /* caller needs to skip to the next input line */
DC_EOF_ERROR /* unexpected end of input; abort current eval */
} dc_status;
static int dc_ibase=10; /* input base, 2 <= dc_ibase <= DC_IBASE_MAX */
static int dc_obase=10; /* output base, 2 <= dc_obase */
static int dc_scale=0; /* scale (see user documentaton) */
/* forward reference */
static dc_status dc_evalstr DC_PROTO((dc_data));
/* for Quitting evaluations */
static int unwind_depth=0;
/* if true, active Quit will not exit program */
static dc_boolean unwind_noexit=DC_FALSE;
/* if true, stdin has been mucked with, dc_evalfile() needs to resyncronize */
static dc_boolean rescan_stdin=DC_FALSE;
/* input_fil and input_str are passed as arguments to dc_getnum */
/* used by the input_* functions: */
static FILE *input_fil_fp;
static const char *input_str_string;
/* Since we have a need for two characters of pushback, and
* ungetc() only guarantees one, we place the second pushback here
*/
static int input_pushback;
/* passed as an argument to dc_getnum */
static int
input_fil DC_DECLVOID()
{
if (input_pushback != EOF){
int c = input_pushback;
input_pushback = EOF;
return c;
}
return getc(input_fil_fp);
}
/* passed as an argument to dc_getnum */
static int
input_str DC_DECLVOID()
{
if (!*input_str_string)
return EOF;
return *input_str_string++;
}
/* takes a string and evals it; frees the string when done */
/* Wrapper around dc_evalstr to avoid duplicating the free call
* at all possible return points.
*/
static dc_status
dc_eval_and_free_str DC_DECLARG((string))
dc_data string DC_DECLEND
{
dc_status status;
status = dc_evalstr(string);
if (string.dc_type == DC_STRING)
dc_free_str(&string.v.string);
return status;
}
/* dc_func does the grunt work of figuring out what each input
* character means; used by both dc_evalstr and dc_evalfile
*
* c -> the "current" input character under consideration
* peekc -> the lookahead input character
*/
static dc_status
dc_func DC_DECLARG((c, peekc))
int c DC_DECLSEP
int peekc DC_DECLEND
{
/* we occasionally need these for temporary data */
/* Despite the GNU coding standards, it is much easier
* to have these decared once here, since this function
* is just one big switch statement.
*/
dc_data datum;
int tmpint;
switch (c){
case '_': case '.':
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9': case 'A': case 'B':
case 'C': case 'D': case 'E': case 'F':
return DC_INT;
case ' ':
case '\t':
case '\n':
/* standard command separators */
break;
case '+': /* add top two stack elements */
dc_binop(dc_add, dc_scale);
break;
case '-': /* subtract top two stack elements */
dc_binop(dc_sub, dc_scale);
break;
case '*': /* multiply top two stack elements */
dc_binop(dc_mul, dc_scale);
break;
case '/': /* divide top two stack elements */
dc_binop(dc_div, dc_scale);
break;
case '%':
/* take the remainder from division of the top two stack elements */
dc_binop(dc_rem, dc_scale);
break;
case '^': /* exponientiation of the top two stack elements */
dc_binop(dc_exp, dc_scale);
break;
case '<':
/* eval register named by peekc if
* less-than holds for top two stack elements
*/
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_cmpop() < 0)
if (dc_register_get(peekc, &datum) == DC_SUCCESS)
if (dc_eval_and_free_str(datum) == DC_QUIT)
return DC_QUIT;
return DC_EATONE;
case '=':
/* eval register named by peekc if
* equal-to holds for top two stack elements
*/
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_cmpop() == 0)
if (dc_register_get(peekc, &datum) == DC_SUCCESS)
if (dc_eval_and_free_str(datum) == DC_QUIT)
return DC_QUIT;
return DC_EATONE;
case '>':
/* eval register named by peekc if
* greater-than holds for top two stack elements
*/
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_cmpop() > 0)
if (dc_register_get(peekc, &datum) == DC_SUCCESS)
if (dc_eval_and_free_str(datum) == DC_QUIT)
return DC_QUIT;
return DC_EATONE;
case '?': /* read a lnie from standard-input and eval it */
for (c=peekc; c=='\n'; c=getc(stdin))
;
ungetc(c, stdin);
if (dc_eval_and_free_str(dc_readstring(stdin, '\n', '\n')) == DC_QUIT)
return DC_QUIT;
rescan_stdin = DC_TRUE;
return DC_OKAY;
case '[': /* read to balancing ']' into a dc_str */
return DC_STR;
case '!': /* read to newline and call system() on resulting string */
return DC_SYSTEM;
case '#': /* comment; skip remainder of current line */
return DC_COMMENT;
case 'c': /* clear whole stack */
dc_clear_stack();
break;
case 'd': /* duplicate the datum on the top of stack */
if (dc_top_of_stack(&datum) == DC_SUCCESS)
dc_push(dc_dup(datum));
break;
case 'f': /* print list of all stack items */
dc_printall(dc_obase);
break;
case 'i': /* set input base to value on top of stack */
if (dc_pop(&datum) == DC_SUCCESS){
tmpint = 0;
if (datum.dc_type == DC_NUMBER)
tmpint = dc_num2int(datum.v.number, DC_TRUE);
if ( ! (2 <= tmpint && tmpint <= DC_IBASE_MAX) )
fprintf(stderr,
"%s: input base must be a number \
between 2 and %d (inclusive)\n",
progname, DC_IBASE_MAX);
else
dc_ibase = tmpint;
}
break;
case 'k': /* set scale to value on top of stack */
if (dc_pop(&datum) == DC_SUCCESS){
tmpint = -1;
if (datum.dc_type == DC_NUMBER)
tmpint = dc_num2int(datum.v.number, DC_TRUE);
if ( ! (tmpint >= 0) )
fprintf(stderr,
"%s: scale must be a nonnegative number\n",
progname);
else
dc_scale = tmpint;
}
break;
case 'l': /* "load" -- push value on top of register stack named
* by peekc onto top of evaluation stack; does not
* modify the register stack
*/
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_register_get(peekc, &datum) == DC_SUCCESS)
dc_push(datum);
return DC_EATONE;
case 'o': /* set output base to value on top of stack */
if (dc_pop(&datum) == DC_SUCCESS){
tmpint = 0;
if (datum.dc_type == DC_NUMBER)
tmpint = dc_num2int(datum.v.number, DC_TRUE);
if ( ! (tmpint > 1) )
fprintf(stderr,
"%s: output base must be a number greater than 1\n",
progname);
else
dc_obase = tmpint;
}
break;
case 'p': /* print the datum on the top of stack */
if (dc_top_of_stack(&datum) == DC_SUCCESS)
dc_print(datum, dc_obase);
break;
case 'q': /* quit two levels of evaluation, posibly exiting program */
unwind_depth = 2;
unwind_noexit = DC_FALSE;
return DC_QUIT;
case 's': /* "store" -- replace top of register stack named
* by peekc with the value popped from the top
* of the evaluation stack
*/
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_pop(&datum) == DC_SUCCESS)
dc_register_set(peekc, datum);
return DC_EATONE;
case 'v': /* replace top of stack with its square root */
if (dc_pop(&datum) == DC_SUCCESS){
dc_num tmpnum;
if (datum.dc_type != DC_NUMBER){
fprintf(stderr,
"%s: square root of nonnumeric attempted\n",
progname);
}else if (dc_sqrt(datum.v.number, dc_scale, &tmpnum) == DC_SUCCESS){
dc_free_num(&datum.v.number);
datum.v.number = tmpnum;
dc_push(datum);
}
}
break;
case 'x': /* eval the datum popped from top of stack */
if (dc_pop(&datum) == DC_SUCCESS){
if (datum.dc_type == DC_STRING){
if (dc_eval_and_free_str(datum) == DC_QUIT)
return DC_QUIT;
}else if (datum.dc_type == DC_NUMBER){
dc_push(datum);
}else{
dc_garbage("at top of stack", -1);
}
}
break;
case 'z': /* push the current stack depth onto the top of stack */
dc_push(dc_int2data(dc_tell_stackdepth()));
break;
case 'I': /* push the current input base onto the stack */
dc_push(dc_int2data(dc_ibase));
break;
case 'K': /* push the current scale onto the stack */
dc_push(dc_int2data(dc_scale));
break;
case 'L': /* pop a value off of register stack named by peekc
* and push it onto the evaluation stack
*/
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_register_pop(peekc, &datum) == DC_SUCCESS)
dc_push(datum);
return DC_EATONE;
case 'O': /* push the current output base onto the stack */
dc_push(dc_int2data(dc_obase));
break;
case 'P': /* print the value popped off of top-of-stack;
* do not add a trailing newline
*/
if (dc_pop(&datum) == DC_SUCCESS){
if (datum.dc_type == DC_STRING)
dc_out_str(datum.v.string, DC_FALSE, DC_TRUE);
else if (datum.dc_type == DC_NUMBER)
dc_out_num(datum.v.number, dc_obase, DC_FALSE, DC_TRUE);
else
dc_garbage("at top of stack", -1);
}
break;
case 'Q': /* quit out of top-of-stack nested evals;
* pops value from stack;
* does not exit program (stops short if necessary)
*/
if (dc_pop(&datum) == DC_SUCCESS){
unwind_depth = 0;
unwind_noexit = DC_TRUE;
if (datum.dc_type == DC_NUMBER)
unwind_depth = dc_num2int(datum.v.number, DC_TRUE);
if (unwind_depth > 0)
return DC_QUIT;
fprintf(stderr,
"%s: Q command requires a positive number\n",
progname);
}
break;
case 'S': /* pop a value off of the evaluation stack
* and push it onto the register stack named by peekc
*/
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_pop(&datum) == DC_SUCCESS)
dc_register_push(peekc, datum);
return DC_EATONE;
case 'X': /* replace the number on top-of-stack with its scale factor */
if (dc_pop(&datum) == DC_SUCCESS){
tmpint = 0;
if (datum.dc_type == DC_NUMBER)
tmpint = dc_tell_scale(datum.v.number, DC_TRUE);
dc_push(dc_int2data(tmpint));
}
break;
case 'Z': /* replace the datum on the top-of-stack with its length */
if (dc_pop(&datum) == DC_SUCCESS)
dc_push(dc_int2data(dc_tell_length(datum, DC_TRUE)));
break;
case ':': /* store into array */
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_pop(&datum) == DC_SUCCESS){
tmpint = -1;
if (datum.dc_type == DC_NUMBER)
tmpint = dc_num2int(datum.v.number, DC_TRUE);
if (dc_pop(&datum) == DC_SUCCESS){
if (tmpint < 0)
fprintf(stderr,
"%s: array index must be a nonnegative integer\n",
progname);
else
dc_array_set(peekc, tmpint, datum);
}
}
return DC_EATONE;
case ';': /* retreive from array */
if (peekc == EOF)
return DC_EOF_ERROR;
if (dc_pop(&datum) == DC_SUCCESS){
tmpint = -1;
if (datum.dc_type == DC_NUMBER)
tmpint = dc_num2int(datum.v.number, DC_TRUE);
if (tmpint < 0)
fprintf(stderr,
"%s: array index must be a nonnegative integer\n",
progname);
else
dc_push(dc_array_get(peekc, tmpint));
}
return DC_EATONE;
default: /* What did that user mean? */
fprintf(stderr, "%s: ", progname);
dc_show_id(stdout, c, " unimplemented\n");
break;
}
return DC_OKAY;
}
/* takes a string and evals it */
static dc_status
dc_evalstr DC_DECLARG((string))
dc_data string DC_DECLEND
{
const char *s;
const char *end;
const char *p;
size_t len;
int c;
int peekc;
int count;
if (string.dc_type != DC_STRING){
fprintf(stderr,
"%s: eval called with non-string argument\n",
progname);
return DC_OKAY;
}
s = dc_str2charp(string.v.string);
end = s + dc_strlen(string.v.string);
while (s < end){
c = *(const unsigned char *)s++;
peekc = EOF;
if (s < end)
peekc = *(const unsigned char *)s;
switch (dc_func(c, peekc)){
case DC_OKAY:
break;
case DC_EATONE:
if (peekc != EOF)
++s;
break;
case DC_QUIT:
if (unwind_depth > 0){
--unwind_depth;
return DC_QUIT;
}
return DC_OKAY;
case DC_INT:
input_str_string = s - 1;
dc_push(dc_getnum(input_str, dc_ibase, &peekc));
s = input_str_string;
if (peekc != EOF)
--s;
break;
case DC_STR:
count = 1;
for (p=s; p<end && count>0; ++p)
if (*p == ']')
--count;
else if (*p == '[')
++count;
len = p - s;
dc_push(dc_makestring(s, len-1));
s = p;
break;
case DC_SYSTEM:
s = dc_system(s);
case DC_COMMENT:
s = memchr(s, '\n', (size_t)(end-s));
if (!s)
s = end;
++s;
break;
case DC_EOF_ERROR:
fprintf(stderr, "%s: unexpected EOS\n", progname);
return DC_OKAY;
}
}
return DC_OKAY;
}
/* This is the main function of the whole DC program.
* Reads the file described by fp, calls dc_func to do
* the dirty work, and takes care of dc_func's shortcomings.
*/
int
dc_evalfile DC_DECLARG((fp))
FILE *fp DC_DECLEND
{
int c;
int peekc;
dc_data datum;
for (c=getc(fp); c!=EOF; c=peekc){
peekc = getc(fp);
rescan_stdin = DC_FALSE;
switch (dc_func(c, peekc)){
case DC_OKAY:
if (rescan_stdin == DC_TRUE && fp == stdin)
peekc = getc(fp);
break;
case DC_EATONE:
peekc = getc(fp);
break;
case DC_QUIT:
if (unwind_noexit != DC_TRUE)
return DC_SUCCESS;
fprintf(stderr,
"%s: Q command argument exceeded string execution depth\n",
progname);
if (rescan_stdin == DC_TRUE && fp == stdin)
peekc = getc(fp);
break;
case DC_INT:
input_fil_fp = fp;
input_pushback = c;
ungetc(peekc, fp);
dc_push(dc_getnum(input_fil, dc_ibase, &peekc));
break;
case DC_STR:
ungetc(peekc, fp);
datum = dc_readstring(fp, '[', ']');
dc_push(datum);
peekc = getc(fp);
break;
case DC_SYSTEM:
ungetc(peekc, fp);
datum = dc_readstring(stdin, '\n', '\n');
(void)dc_system(dc_str2charp(datum.v.string));
dc_free_str(&datum.v.string);
peekc = getc(fp);
break;
case DC_COMMENT:
while (peekc!=EOF && peekc!='\n')
peekc = getc(fp);
if (peekc != EOF)
peekc = getc(fp);
break;
case DC_EOF_ERROR:
fprintf(stderr, "%s: unexpected EOF\n", progname);
return DC_FAIL;
}
}
return DC_SUCCESS;
}

224
gnu/usr.bin/dc/dc-misc.c Normal file
View File

@ -0,0 +1,224 @@
/*
* implement the "dc" Desk Calculator language.
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* Written with strong hiding of implementation details
* in their own specialized modules.
*/
/* This module contains miscelaneous functions that have no
* special knowledge of any private data structures.
* They could all be moved to their own separate modules, but
* are agglomerated here for convenience.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "dc.h"
#include "dc-proto.h"
#include "dc-version.h"
#ifndef EXIT_SUCCESS /* C89 <stdlib.h> */
# define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE /* C89 <stdlib.h> */
# define EXIT_FAILURE 1
#endif
const char *progname; /* basename of program invocation */
/* your generic usage function */
static void
usage DC_DECLARG((f))
FILE *f DC_DECLEND
{
fprintf(f, "Usage: %s [OPTION]\n", progname);
fprintf(f, " --help display this help and exit\n");
fprintf(f, " --version output version information and exit\n");
}
/* returns a pointer to one past the last occurance of c in s,
* or s if c does not occur in s.
*/
static char *
r1bindex DC_DECLARG((s, c))
char *s DC_DECLSEP
int c DC_DECLEND
{
char *p = strrchr(s, c);
if (!p)
return s;
return p + 1;
}
int
main DC_DECLARG((argc, argv))
int argc DC_DECLSEP
char **argv DC_DECLEND
{
progname = r1bindex(*argv, '/');
if (argc>1 && strcmp(argv[1], "--version")==0){
printf("%s\n", Version);
return EXIT_SUCCESS;
}else if (argc>1 && strcmp(argv[1], "--help")==0){
usage(stdout);
return EXIT_SUCCESS;
}else if (argc==2 && strcmp(argv[1], "--")==0){
/*just ignore it*/
}else if (argc != 1){
usage(stderr);
return EXIT_FAILURE;
}
dc_math_init();
dc_string_init();
dc_register_init();
dc_array_init();
dc_evalfile(stdin);
return EXIT_SUCCESS;
}
/* print an "out of memory" diagnostic and exit program */
void
dc_memfail DC_DECLVOID()
{
fprintf(stderr, "%s: out of memory\n", progname);
exit(EXIT_FAILURE);
}
/* malloc or die */
void *
dc_malloc DC_DECLARG((len))
size_t len DC_DECLEND
{
void *result = malloc(len);
if (!result)
dc_memfail();
return result;
}
/* print the id in a human-understandable form
* fp is the output stream to place the output on
* id is the name of the register (or command) to be printed
* suffix is a modifier (such as "stack") to be printed
*/
void
dc_show_id DC_DECLARG((fp, id, suffix))
FILE *fp DC_DECLSEP
int id DC_DECLSEP
const char *suffix DC_DECLEND
{
if (isgraph(id))
fprintf(fp, "'%c' (%#o)%s", id, id, suffix);
else
fprintf(fp, "%#o%s", id, suffix);
}
/* report that corrupt data has been detected;
* use the msg and regid (if nonnegative) to give information
* about where the garbage was found,
*
* will abort() so that a debugger might be used to help find
* the bug
*/
/* If this routine is called, then there is a bug in the code;
* i.e. it is _not_ a data or user error
*/
void
dc_garbage DC_DECLARG((msg, regid))
const char *msg DC_DECLSEP
int regid DC_DECLEND
{
if (regid < 0){
fprintf(stderr, "%s: garbage %s\n", progname, msg);
}else{
fprintf(stderr, "%s:%s register ", progname, msg);
dc_show_id(stderr, regid, " is garbage\n");
}
abort();
}
/* call system() with the passed string;
* if the string contains a newline, terminate the string
* there before calling system.
* Return a pointer to the first unused character in the string
* (i.e. past the '\n' if there was one, to the '\0' otherwise).
*/
const char *
dc_system DC_DECLARG((s))
const char *s DC_DECLEND
{
const char *p;
char *tmpstr;
size_t len;
p = strchr(s, '\n');
if (p){
len = p - s;
tmpstr = dc_malloc(len + 1);
strncpy(tmpstr, s, len);
tmpstr[len] = '\0';
system(tmpstr);
free(tmpstr);
return p + 1;
}
system(s);
return s + strlen(s);
}
/* print out the indicated value */
void
dc_print DC_DECLARG((value, obase))
dc_data value DC_DECLSEP
int obase DC_DECLEND
{
if (value.dc_type == DC_NUMBER){
dc_out_num(value.v.number, obase, DC_TRUE, DC_FALSE);
}else if (value.dc_type == DC_STRING){
dc_out_str(value.v.string, DC_TRUE, DC_FALSE);
}else{
dc_garbage("in data being printed", -1);
}
}
/* return a duplicate of the passed value, regardless of type */
dc_data
dc_dup DC_DECLARG((value))
dc_data value DC_DECLEND
{
if (value.dc_type!=DC_NUMBER && value.dc_type!=DC_STRING)
dc_garbage("in value being duplicated", -1);
if (value.dc_type == DC_NUMBER)
return dc_dup_num(value.v.number);
/*else*/
return dc_dup_str(value.v.string);
}

478
gnu/usr.bin/dc/dc-number.c Normal file
View File

@ -0,0 +1,478 @@
/*
* interface dc to the bc numeric routines
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* This should be the only module that knows the internals of type dc_num */
#include "config.h"
#include <stdio.h>
#include <ctype.h>
#include "bcdefs.h"
#include "proto.h"
#include "global.h"
#include "dc.h"
#include "dc-proto.h"
/* convert an opaque dc_num into a real bc_num */
#define CastNum(x) ((bc_num)(x))
/* add two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_add DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_add(CastNum(a), CastNum(b), (bc_num *)result);
return DC_SUCCESS;
}
/* subtract two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_sub DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_sub(CastNum(a), CastNum(b), (bc_num *)result);
return DC_SUCCESS;
}
/* multiply two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_mul DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_multiply(CastNum(a), CastNum(b), (bc_num *)result, kscale);
return DC_SUCCESS;
}
/* divide two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_div DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
if (bc_divide(CastNum(a), CastNum(b), (bc_num *)result, kscale)){
fprintf(stderr, "%s: divide by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* place the reminder of dividing a by b into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_rem DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
if (bc_modulo(CastNum(a), CastNum(b), (bc_num *)result, kscale)){
fprintf(stderr, "%s: remainder by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* place the result of exponentiationg a by b into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_exp DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_raise(CastNum(a), CastNum(b), (bc_num *)result, kscale);
return DC_SUCCESS;
}
/* take the square root of the value, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_sqrt DC_DECLARG((value, kscale, result))
dc_num value DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_num tmp;
tmp = copy_num(CastNum(value));
if (!bc_sqrt(&tmp, kscale)){
fprintf(stderr, "%s: square root of negative number\n", progname);
free_num(&tmp);
return DC_DOMAIN_ERROR;
}
*((bc_num *)result) = tmp;
return DC_SUCCESS;
}
/* compare dc_nums a and b;
* return a negative value if a < b;
* return a positive value if a > b;
* return zero value if a == b
*/
int
dc_compare DC_DECLARG((a, b))
dc_num a DC_DECLSEP
dc_num b DC_DECLEND
{
return bc_compare(CastNum(a), CastNum(b));
}
/* attempt to convert a dc_num to its corresponding int value
* If discard_flag is true then deallocate the value after use.
*/
int
dc_num2int DC_DECLARG((value, discard_flag))
dc_num value DC_DECLSEP
dc_boolean discard_flag DC_DECLEND
{
long result;
result = num2long(CastNum(value));
if (discard_flag)
dc_free_num(&value);
return (int)result;
}
/* convert a C integer value into a dc_num */
/* For convenience of the caller, package the dc_num
* into a dc_data result.
*/
dc_data
dc_int2data DC_DECLARG((value))
int value DC_DECLEND
{
dc_data result;
init_num((bc_num *)&result.v.number);
int2num((bc_num *)&result.v.number, value);
result.dc_type = DC_NUMBER;
return result;
}
/* get a dc_num from some input stream;
* input is a function which knows how to read the desired input stream
* ibase is the input base (2<=ibase<=DC_IBASE_MAX)
* *readahead will be set to the readahead character consumed while
* looking for the end-of-number
*/
/* For convenience of the caller, package the dc_num
* into a dc_data result.
*/
dc_data
dc_getnum DC_DECLARG((input, ibase, readahead))
int (*input) DC_PROTO((void)) DC_DECLSEP
int ibase DC_DECLSEP
int *readahead DC_DECLEND
{
bc_num base;
bc_num result;
bc_num build;
bc_num tmp;
bc_num divisor;
dc_data full_result;
int negative = 0;
int digit;
int decimal;
int c;
init_num(&tmp);
init_num(&build);
init_num(&base);
result = copy_num(_zero_);
int2num(&base, ibase);
c = (*input)();
while (isspace(c))
c = (*input)();
if (c == '_' || c == '-'){
negative = c;
c = (*input)();
}else if (c == '+'){
c = (*input)();
}
while (isspace(c))
c = (*input)();
for (;;){
if (isdigit(c))
digit = c - '0';
else if ('A' <= c && c <= 'F')
digit = 10 + c - 'A';
else
break;
c = (*input)();
int2num(&tmp, digit);
bc_multiply(result, base, &result, 0);
bc_add(result, tmp, &result);
}
if (c == '.'){
free_num(&build);
free_num(&tmp);
divisor = copy_num(_one_);
build = copy_num(_zero_);
decimal = 0;
for (;;){
c = (*input)();
if (isdigit(c))
digit = c - '0';
else if ('A' <= c && c <= 'F')
digit = 10 + c - 'A';
else
break;
int2num(&tmp, digit);
bc_multiply(build, base, &build, 0);
bc_add(build, tmp, &build);
bc_multiply(divisor, base, &divisor, 0);
++decimal;
}
bc_divide(build, divisor, &build, decimal);
bc_add(result, build, &result);
}
/* Final work. */
if (negative)
bc_sub(_zero_, result, &result);
free_num(&tmp);
free_num(&build);
free_num(&base);
if (readahead)
*readahead = c;
full_result.v.number = (dc_num)result;
full_result.dc_type = DC_NUMBER;
return full_result;
}
/* return the "length" of the number */
int
dc_numlen DC_DECLARG((value))
dc_num value DC_DECLEND
{
bc_num num = CastNum(value);
/* is this right??? */
return num->n_len + num->n_scale;
}
/* return the scale factor of the passed dc_num
* If discard_flag is true then deallocate the value after use.
*/
int
dc_tell_scale DC_DECLARG((value, discard_flag))
dc_num value DC_DECLSEP
dc_boolean discard_flag DC_DECLEND
{
int kscale;
kscale = CastNum(value)->n_scale;
if (discard_flag)
dc_free_num(&value);
return kscale;
}
/* initialize the math subsystem */
void
dc_math_init DC_DECLVOID()
{
init_numbers();
}
/* print out a dc_num in output base obase to stdout;
* if newline is true, terminate output with a '\n';
* if discard_flag is true then deallocate the value after use
*/
void
dc_out_num DC_DECLARG((value, obase, newline, discard_flag))
dc_num value DC_DECLSEP
int obase DC_DECLSEP
dc_boolean newline DC_DECLSEP
dc_boolean discard_flag DC_DECLEND
{
out_num(CastNum(value), obase, out_char);
if (newline)
out_char('\n');
if (discard_flag)
dc_free_num(&value);
}
/* deallocate an instance of a dc_num */
void
dc_free_num DC_DECLARG((value))
dc_num *value DC_DECLEND
{
free_num((bc_num *)value);
}
/* return a duplicate of the number in the passed value */
/* The mismatched data types forces the caller to deal with
* bad dc_type'd dc_data values, and makes it more convenient
* for the caller to not have to do the grunge work of setting
* up a dc_type result.
*/
dc_data
dc_dup_num DC_DECLARG((value))
dc_num value DC_DECLEND
{
dc_data result;
++CastNum(value)->n_refs;
result.v.number = value;
result.dc_type = DC_NUMBER;
return result;
}
/*---------------------------------------------------------------------------\
| The rest of this file consists of stubs for bc routines called by number.c |
| so as to minimize the amount of bc code needed to build dc. |
| The bulk of the code was just lifted straight out of the bc source. |
\---------------------------------------------------------------------------*/
#include <stdlib.h>
#if __STDC__
# include <stdarg.h>
#else
# include <varargs.h>
#endif
int out_col = 0;
/* Output routines: Write a character CH to the standard output.
It keeps track of the number of characters output and may
break the output with a "\<cr>". */
void
out_char (ch)
char ch;
{
if (ch == '\n')
{
out_col = 0;
putchar ('\n');
}
else
{
out_col++;
if (out_col == 70)
{
putchar ('\\');
putchar ('\n');
out_col = 1;
}
putchar (ch);
}
}
/* Malloc could not get enought memory. */
void
out_of_memory()
{
dc_memfail();
}
/* Runtime error will print a message and stop the machine. */
#if __STDC__
void
rt_error (char *mesg, ...)
#else
void
rt_error (mesg, va_alist)
char *mesg;
va_dcl
#endif
{
va_list args;
char error_mesg [255];
#if __STDC__
va_start (args, mesg);
#else
va_start (args);
#endif
vsprintf (error_mesg, mesg, args);
va_end (args);
fprintf (stderr, "Runtime error: %s\n", error_mesg);
}
/* A runtime warning tells of some action taken by the processor that
may change the program execution but was not enough of a problem
to stop the execution. */
#if __STDC__
void
rt_warn (char *mesg, ...)
#else
void
rt_warn (mesg, va_alist)
char *mesg;
va_dcl
#endif
{
va_list args;
char error_mesg [255];
#if __STDC__
va_start (args, mesg);
#else
va_start (args);
#endif
vsprintf (error_mesg, mesg, args);
va_end (args);
fprintf (stderr, "Runtime warning: %s\n", error_mesg);
}

76
gnu/usr.bin/dc/dc-proto.h Normal file
View File

@ -0,0 +1,76 @@
/*
* prototypes of all externally visible dc functions
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
extern const char *dc_str2charp DC_PROTO((dc_str));
extern const char *dc_system DC_PROTO((const char *));
extern void *dc_malloc DC_PROTO((size_t));
extern void dc_array_set DC_PROTO((int, int, dc_data));
extern void dc_array_init DC_PROTO((void));
extern void dc_binop DC_PROTO((int (*)(dc_num, dc_num, int, dc_num *), int));
extern void dc_clear_stack DC_PROTO((void));
extern void dc_free_num DC_PROTO((dc_num *));
extern void dc_free_str DC_PROTO((dc_str *));
extern void dc_garbage DC_PROTO((const char *, int));
extern void dc_math_init DC_PROTO((void));
extern void dc_memfail DC_PROTO((void));
extern void dc_out_num DC_PROTO((dc_num, int, dc_boolean, dc_boolean));
extern void dc_out_str DC_PROTO((dc_str, dc_boolean, dc_boolean));
extern void dc_print DC_PROTO((dc_data, int));
extern void dc_printall DC_PROTO((int));
extern void dc_push DC_PROTO((dc_data));
extern void dc_register_init DC_PROTO((void));
extern void dc_register_push DC_PROTO((int, dc_data));
extern void dc_register_set DC_PROTO((int, dc_data));
extern void dc_show_id DC_PROTO((FILE *, int, const char *));
extern void dc_string_init DC_PROTO((void));
extern int dc_cmpop DC_PROTO((void));
extern int dc_compare DC_PROTO((dc_num, dc_num));
extern int dc_evalfile DC_PROTO((FILE *));
extern int dc_num2int DC_PROTO((dc_num, dc_boolean));
extern int dc_numlen DC_PROTO((dc_num));
extern int dc_pop DC_PROTO((dc_data *));
extern int dc_register_get DC_PROTO((int, dc_data *));
extern int dc_register_pop DC_PROTO((int, dc_data *));
extern int dc_tell_length DC_PROTO((dc_data, dc_boolean));
extern int dc_tell_scale DC_PROTO((dc_num, dc_boolean));
extern int dc_tell_stackdepth DC_PROTO((void));
extern int dc_top_of_stack DC_PROTO((dc_data *));
extern size_t dc_strlen DC_PROTO((dc_str));
extern dc_data dc_array_get DC_PROTO((int, int));
extern dc_data dc_dup DC_PROTO((dc_data));
extern dc_data dc_dup_num DC_PROTO((dc_num));
extern dc_data dc_dup_str DC_PROTO((dc_str));
extern dc_data dc_getnum DC_PROTO((int (*)(void), int, int *));
extern dc_data dc_int2data DC_PROTO((int));
extern dc_data dc_makestring DC_PROTO((const char *, size_t));
extern dc_data dc_readstring DC_PROTO((FILE *, int , int));
extern int dc_add DC_PROTO((dc_num, dc_num, int, dc_num *));
extern int dc_div DC_PROTO((dc_num, dc_num, int, dc_num *));
extern int dc_exp DC_PROTO((dc_num, dc_num, int, dc_num *));
extern int dc_mul DC_PROTO((dc_num, dc_num, int, dc_num *));
extern int dc_rem DC_PROTO((dc_num, dc_num, int, dc_num *));
extern int dc_sub DC_PROTO((dc_num, dc_num, int, dc_num *));
extern int dc_sqrt DC_PROTO((dc_num, int, dc_num *));

View File

@ -0,0 +1,38 @@
/*
* definitions for dc's "register" declarations
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
#include <limits.h>
/* determine how many register stacks there are */
#ifndef DC_REGCOUNT
# ifndef UCHAR_MAX
# define DC_REGCOUNT 256
# else
# define DC_REGCOUNT (UCHAR_MAX+1)
# endif
#endif /* not DC_REGCOUNT */
/* efficiency hack for masking arbritrary integers to 0..(DC_REGCOUNT-1) */
#if (DC_REGCOUNT & (DC_REGCOUNT-1)) == 0 /* DC_REGCOUNT is power of 2 */
# define regmap(r) ((r) & (DC_REGCOUNT-1))
#else
# define regmap(r) ((r) % DC_REGCOUNT)
#endif

367
gnu/usr.bin/dc/dc-stack.c Normal file
View File

@ -0,0 +1,367 @@
/*
* implement stack functions for dc
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* This module is the only one that knows what stacks (both the
* regular evaluation stack and the named register stacks)
* look like.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include "dc.h"
#include "dc-proto.h"
#include "dc-regdef.h"
/* an oft-used error message: */
#define Empty_Stack fprintf(stderr, "%s: stack empty\n", progname)
/* simple linked-list implementaion suffices: */
struct dc_list {
dc_data value;
struct dc_list *link;
};
typedef struct dc_list dc_list;
/* the anonymous evaluation stack */
static dc_list *dc_stack=NULL;
/* the named register stacks */
static dc_list *dc_register[DC_REGCOUNT];
/* allocate a new dc_list item */
static dc_list *
dc_alloc DC_DECLVOID()
{
dc_list *result;
result = dc_malloc(sizeof *result);
result->value.dc_type = DC_UNINITIALIZED;
result->link = NULL;
return result;
}
/* check that there are two numbers on top of the stack,
* then call op with the popped numbers. Construct a dc_data
* value from the dc_num returned by op and push it
* on the stack.
* If the op call doesn't return DC_SUCCESS, then leave the stack
* unmodified.
*/
void
dc_binop DC_DECLARG((op, kscale))
int (*op)DC_PROTO((dc_num, dc_num, int, dc_num *)) DC_DECLSEP
int kscale DC_DECLEND
{
dc_data a;
dc_data b;
dc_data r;
if (!dc_stack || !dc_stack->link){
Empty_Stack;
return;
}
if (dc_stack->value.dc_type!=DC_NUMBER
|| dc_stack->link->value.dc_type!=DC_NUMBER){
fprintf(stderr, "%s: non-numeric value\n", progname);
return;
}
(void)dc_pop(&b);
(void)dc_pop(&a);
if ((*op)(a.v.number, b.v.number, kscale, &r.v.number) == DC_SUCCESS){
r.dc_type = DC_NUMBER;
dc_push(r);
dc_free_num(&a.v.number);
dc_free_num(&b.v.number);
}else{
/* op failed; restore the stack */
dc_push(a);
dc_push(b);
}
}
/* check that there are two numbers on top of the stack,
* then call dc_compare with the popped numbers.
* Return negative, zero, or positive based on the ordering
* of the two numbers.
*/
int
dc_cmpop DC_DECLVOID()
{
int result;
dc_data a;
dc_data b;
if (!dc_stack || !dc_stack->link){
Empty_Stack;
return 0;
}
if (dc_stack->value.dc_type!=DC_NUMBER
|| dc_stack->link->value.dc_type!=DC_NUMBER){
fprintf(stderr, "%s: non-numeric value\n", progname);
return 0;
}
(void)dc_pop(&b);
(void)dc_pop(&a);
result = dc_compare(b.v.number, a.v.number);
dc_free_num(&a.v.number);
dc_free_num(&b.v.number);
return result;
}
/* initialize the register stacks to their initial values */
void
dc_register_init DC_DECLVOID()
{
int i;
for (i=0; i<DC_REGCOUNT; ++i)
dc_register[i] = NULL;
}
/* clear the evaluation stack */
void
dc_clear_stack DC_DECLVOID()
{
dc_list *n;
dc_list *t;
for (n=dc_stack; n; n=t){
t = n->link;
if (n->value.dc_type == DC_NUMBER)
dc_free_num(&n->value.v.number);
else if (n->value.dc_type == DC_STRING)
dc_free_str(&n->value.v.string);
else
dc_garbage("in stack", -1);
free(n);
}
dc_stack = NULL;
}
/* push a value onto the evaluation stack */
void
dc_push DC_DECLARG((value))
dc_data value DC_DECLEND
{
dc_list *n = dc_alloc();
if (value.dc_type!=DC_NUMBER && value.dc_type!=DC_STRING)
dc_garbage("in data being pushed", -1);
n->value = value;
n->link = dc_stack;
dc_stack = n;
}
/* push a value onto the named register stack */
void
dc_register_push DC_DECLARG((stackid, value))
int stackid DC_DECLSEP
dc_data value DC_DECLEND
{
dc_list *n = dc_alloc();
stackid = regmap(stackid);
n->value = value;
n->link = dc_register[stackid];
dc_register[stackid] = n;
}
/* set *result to the value on the top of the evaluation stack */
/* The caller is responsible for duplicating the value if it
* is to be maintained as anything more than a transient identity.
*
* DC_FAIL is returned if the stack is empty (and *result unchanged),
* DC_SUCCESS is returned otherwise
*/
int
dc_top_of_stack DC_DECLARG((result))
dc_data *result DC_DECLEND
{
if (!dc_stack){
Empty_Stack;
return DC_FAIL;
}
if (dc_stack->value.dc_type!=DC_NUMBER
&& dc_stack->value.dc_type!=DC_STRING)
dc_garbage("at top of stack", -1);
*result = dc_stack->value;
return DC_SUCCESS;
}
/* set *result to a dup of the value on the top of the named register stack */
/*
* DC_FAIL is returned if the named stack is empty (and *result unchanged),
* DC_SUCCESS is returned otherwise
*/
int
dc_register_get DC_DECLARG((regid, result))
int regid DC_DECLSEP
dc_data *result DC_DECLEND
{
dc_list *r;
regid = regmap(regid);
r = dc_register[regid];
if ( ! r ){
fprintf(stderr, "%s: register ", progname);
dc_show_id(stderr, regid, " is empty\n");
return DC_FAIL;
}
*result = dc_dup(r->value);
return DC_SUCCESS;
}
/* set the top of the named register stack to the indicated value */
/* If the named stack is empty, craft a stack entry to enter the
* value into.
*/
void
dc_register_set DC_DECLARG((regid, value))
int regid DC_DECLSEP
dc_data value DC_DECLEND
{
dc_list *r;
regid = regmap(regid);
r = dc_register[regid];
if ( ! r )
dc_register[regid] = dc_alloc();
else if (r->value.dc_type == DC_NUMBER)
dc_free_num(&r->value.v.number);
else if (r->value.dc_type == DC_STRING)
dc_free_str(&r->value.v.string);
else
dc_garbage("", regid);
dc_register[regid]->value = value;
}
/* pop from the evaluation stack
*
* DC_FAIL is returned if the stack is empty (and *result unchanged),
* DC_SUCCESS is returned otherwise
*/
int
dc_pop DC_DECLARG((result))
dc_data *result DC_DECLEND
{
dc_list *r;
r = dc_stack;
if (!r){
Empty_Stack;
return DC_FAIL;
}
if (r->value.dc_type!=DC_NUMBER && r->value.dc_type!=DC_STRING)
dc_garbage("at top of stack", -1);
*result = r->value;
dc_stack = r->link;
free(r);
return DC_SUCCESS;
}
/* pop from the named register stack
*
* DC_FAIL is returned if the named stack is empty (and *result unchanged),
* DC_SUCCESS is returned otherwise
*/
int
dc_register_pop DC_DECLARG((stackid, result))
int stackid DC_DECLSEP
dc_data *result DC_DECLEND
{
dc_list *r;
stackid = regmap(stackid);
r = dc_register[stackid];
if (!r){
fprintf(stderr, "%s: stack register ", progname);
dc_show_id(stderr, stackid, " is empty\n");
return DC_FAIL;
}
if (r->value.dc_type!=DC_NUMBER && r->value.dc_type!=DC_STRING)
dc_garbage(" stack", stackid);
*result = r->value;
dc_register[stackid] = r->link;
free(r);
return DC_SUCCESS;
}
/* tell how many entries are currently on the evaluation stack */
int
dc_tell_stackdepth DC_DECLVOID()
{
dc_list *n;
int depth=0;
for (n=dc_stack; n; n=n->link)
++depth;
return depth;
}
/* return the length of the indicated data value;
* if discard_flag is true, the deallocate the value when done
*
* The definition of a datum's length is deligated to the
* appropriate module.
*/
int
dc_tell_length DC_DECLARG((value, discard_flag))
dc_data value DC_DECLSEP
dc_boolean discard_flag DC_DECLEND
{
int length;
if (value.dc_type == DC_NUMBER){
length = dc_numlen(value.v.number);
if (discard_flag == DC_TRUE)
dc_free_num(&value.v.number);
} else if (value.dc_type == DC_STRING) {
length = dc_strlen(value.v.string);
if (discard_flag == DC_TRUE)
dc_free_str(&value.v.string);
} else {
dc_garbage("in tell_length", -1);
/*NOTREACHED*/
length = 0; /*just to suppress spurious compiler warnings*/
}
return length;
}
/* print out all of the values on the evaluation stack */
void
dc_printall DC_DECLARG((obase))
int obase DC_DECLEND
{
dc_list *n;
for (n=dc_stack; n; n=n->link)
dc_print(n->value, obase);
}

193
gnu/usr.bin/dc/dc-string.c Normal file
View File

@ -0,0 +1,193 @@
/*
* implement string functions for dc
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* This should be the only module that knows the internals of type dc_string */
#include "config.h"
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "dc.h"
#include "dc-proto.h"
struct dc_string {
char *s_ptr; /* pointer to base of string */
size_t s_len; /* length of counted string */
int s_refs; /* reference count to cut down on memory use by duplicates */
};
/* return a duplicate of the string in the passed value */
/* The mismatched data types forces the caller to deal with
* bad dc_type'd dc_data values, and makes it more convenient
* for the caller to not have to do the grunge work of setting
* up a dc_type result.
*/
dc_data
dc_dup_str DC_DECLARG((value))
dc_str value DC_DECLEND
{
dc_data result;
++((struct dc_string *)value)->s_refs;
result.v.string = value;
result.dc_type = DC_STRING;
return result;
}
/* free an instance of a dc_str value */
void
dc_free_str DC_DECLARG((value))
dc_str *value DC_DECLEND
{
struct dc_string *string = *value;
if (--string->s_refs < 1){
free(string->s_ptr);
free(string);
}
}
/* Output a dc_str value.
* Add a trailing newline if "newline" is set.
* Free the value after use if discard_flag is set.
*/
void
dc_out_str DC_DECLARG((value, newline, discard_flag))
dc_str value DC_DECLSEP
dc_boolean newline DC_DECLSEP
dc_boolean discard_flag DC_DECLEND
{
struct dc_string *string = value;
printf("%s", string->s_ptr);
if (newline == DC_TRUE)
printf("\n");
if (discard_flag == DC_TRUE)
dc_free_str(&value);
}
/* make a copy of a string (base s, length len)
* into a dc_str value; return a dc_data result
* with this value
*/
dc_data
dc_makestring DC_DECLARG((s, len))
const char *s DC_DECLSEP
size_t len DC_DECLEND
{
dc_data result;
struct dc_string *string;
string = dc_malloc(sizeof *string);
string->s_ptr = dc_malloc(len+1);
memcpy(string->s_ptr, s, len);
string->s_ptr[len] = '\0'; /* nul terminated for those who need it */
string->s_len = len;
string->s_refs = 1;
result.v.string = string;
result.dc_type = DC_STRING;
return result;
}
/* read a dc_str value from FILE *fp;
* if ldelim == rdelim, then read until a ldelim char or EOF is reached;
* if ldelim != rdelim, then read until a matching rdelim for the
* (already eaten) first ldelim is read.
* Return a dc_data result with the dc_str value as its contents.
*/
dc_data
dc_readstring DC_DECLARG((fp, ldelim, rdelim))
FILE *fp DC_DECLSEP
int ldelim DC_DECLSEP
int rdelim DC_DECLEND
{
static char *line_buf = NULL; /* a buffer to build the string in */
static size_t buflen = 0; /* the current size of line_buf */
int depth=1;
int c;
char *p;
const char *end;
if (!line_buf){
/* initial buflen should be large enough to handle most cases */
buflen = 2016;
line_buf = dc_malloc(buflen);
}
p = line_buf;
end = line_buf + buflen;
for (;;){
c = getc(fp);
if (c == EOF)
break;
else if (c == rdelim && --depth < 1)
break;
else if (c == ldelim)
++depth;
if (p >= end){
ptrdiff_t offset = p - line_buf;
/* buflen increment should be big enough
* to avoid execessive reallocs:
*/
buflen += 2048;
line_buf = realloc(line_buf, buflen);
if (!line_buf)
dc_memfail();
p = line_buf + offset;
end = line_buf + buflen;
}
*p++ = c;
}
return dc_makestring(line_buf, (size_t)(p-line_buf));
}
/* return the base pointer of the dc_str value;
* This function is needed because no one else knows what dc_str
* looks like.
*/
const char *
dc_str2charp DC_DECLARG((value))
dc_str value DC_DECLEND
{
return ((struct dc_string *)value)->s_ptr;
}
/* return the length of the dc_str value;
* This function is needed because no one else knows what dc_str
* looks like, and strlen(dc_str2charp(value)) won't work
* if there's an embedded '\0'.
*/
size_t
dc_strlen DC_DECLARG((value))
dc_str value DC_DECLEND
{
return ((struct dc_string *)value)->s_len;
}
/* initialize the strings subsystem */
void
dc_string_init DC_DECLVOID()
{
/* nothing to do for this implementation */
}

View File

@ -0,0 +1,22 @@
/*
* dc version number
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
#define Version "dc 1.0"

View File

@ -1,278 +1,389 @@
.\" $Id$
.TH DC 1 "03 Aug 1993" "GNU Project"
.SH NAME
dc, An Arbitrary Precision Calculator
.SH SYNOPSIS
.B dc
.SH DESCRIPTION
.TH DC 1 "07 Apr 1994" "GNU Project"
.ds dc \fIdc\fP
.ds Dc \fIDc\fP
.SH
NAME
dc \- an arbitrary precision calculator
.SH
SYNOPSIS
dc
.SH
DESCRIPTION
.PP
DC is a reverse-polish desk calculator which supports unlimited
precision arithmetic. It also allows you to define and call macros.
Normally DC reads from the standard input; if any command arguments
are given to it, they are filenames, and DC reads and executes the
contents of the files before reading from standard input. All output
is to standard output.
A reverse-polish calculator stores numbers on a stack. Entering a
number pushes it on the stack. Arithmetic operations pop arguments off
the stack and push the results.
To enter a number in DC, type the digits, with an optional decimal
point. Exponential notation is not supported. To enter a negative
number, begin the number with `_'. `-' cannot be used for this, as it
is a binary operator for subtraction instead. To enter two numbers in
succession, separate them with spaces or newlines. These have no
meaning as commands.
\*(Dc is a reverse-polish desk calculator which supports
unlimited precision arithmetic.
It also allows you to define and call macros.
Normally \*(dc reads from the standard input;
if any command arguments are given to it, they are filenames,
and \*(dc reads and executes the contents of the files before reading
from standard input.
All normal output is to standard output;
all error output is to standard error.
.PP
A reverse-polish calculator stores numbers on a stack.
Entering a number pushes it on the stack.
Arithmetic operations pop arguments off the stack and push the results.
.PP
To enter a number in
.IR dc ,
type the digits with an optional decimal point.
Exponential notation is not supported.
To enter a negative number,
begin the number with ``_''.
``-'' cannot be used for this,
as it is a binary operator for subtraction instead.
To enter two numbers in succession,
separate them with spaces or newlines.
These have no meaning as commands.
.PD
.SH "Printing Commands"
.PP
.SH
Printing Commands
.TP
.B p
Prints the value on the top of the stack,
without altering the stack. A newline is printed
after the value.
.PP
without altering the stack.
A newline is printed after the value.
.TP
.B P
Prints the value on the top of the stack,
popping it off, and does not print a newline after.
.PP
Prints the value on the top of the stack, popping it off,
and does not print a newline after.
.TP
.B f
Prints the entire contents of the stack
.ig
and the contents of all of the registers,
without altering anything. This is a good command
to use if you are lost or want to figure out
what the effect of some command has been.
..
without altering anything.
This is a good command to use if you are lost or want
to figure out what the effect of some command has been.
.PD
.SH "Arithmetic"
.PP
.SH
Arithmetic
.TP
.B +
Pops two values off the stack, adds them,
and pushes the result. The precision of the result
is determined only by the values of the arguments,
and pushes the result.
The precision of the result is determined only
by the values of the arguments,
and is enough to be exact.
.PP
.TP
.B -
Pops two values, subtracts the first one popped
from the second one popped, and pushes the result.
.PP
Pops two values,
subtracts the first one popped from the second one popped,
and pushes the result.
.TP
.B *
Pops two values, multiplies them, and pushes the result.
The number of fraction digits in the result is controlled
by the current precision flag (see below) and does not
by the current precision value (see below) and does not
depend on the values being multiplied.
.PP
.TP
.B /
Pops two values, divides the second one popped from
the first one popped, and pushes the result.
The number of fraction digits is specified by the precision flag.
.PP
Pops two values,
divides the second one popped from the first one popped,
and pushes the result.
The number of fraction digits is specified by the precision value.
.TP
.B %
Pops two values, computes the remainder of the division
that the \fB/\fR command would do, and pushes that.
Pops two values,
computes the remainder of the division that the
.B /
command would do,
and pushes that.
The division is done with as many fraction digits
as the precision flag specifies, and the remainder
is also computed with that many fraction digits.
.PP
as the precision value specifies,
and the remainder is also computed with that many fraction digits.
.TP
.B ^
Pops two values and exponentiates, using the first
value popped as the exponent and the second popped as the base.
Pops two values and exponentiates,
using the first value popped as the exponent
and the second popped as the base.
The fraction part of the exponent is ignored.
The precision flag specifies the number of fraction
The precision value specifies the number of fraction
digits in the result.
.PP
.TP
.B v
Pops one value, computes its square root, and pushes that.
The precision flag specifies the number of fraction digits
in the result.
Pops one value,
computes its square root,
and pushes that.
The precision value specifies the number of fraction digits in the result.
.PP
Most arithmetic operations are affected by the "precision flag",
Most arithmetic operations are affected by the ``precision value'',
which you can set with the
.BR k
command. The default precision
value is zero, which means that all arithmetic except for
.B k
command.
The default precision value is zero,
which means that all arithmetic except for
addition and subtraction produces integer results.
.PP
The remainder operation
.BR %
requires some explanation: applied to
arguments `a' and `b' it produces `a - (b * (a / b))',
where `a / b' is computed in the current precision.
.PP
.SH "Stack Control"
.PP
.B %
requires some explanation:
applied to arguments ``a'' and ``b'' it produces ``a - (b * (a / b))'',
where ``a / b'' is computed in the current precision.
.SH
Stack Control
.TP
.B c
Clears the stack, rendering it empty.
.PP
.TP
.B d
Duplicates the value on the top of the stack,
pushing another copy of it. Thus,
`4d*p' computes 4 squared and prints it.
.SH "Registers"
pushing another copy of it.
Thus, ``4d*p'' computes 4 squared and prints it.
.SH
Registers
.PP
DC provides 128 memory registers, each named by a single
ASCII character. You can store a number in a register
and retrieve it later.
.PP
.B s\fIr\fR
\*(Dc provides 256 memory registers,
each named by a single character.
You can store a number or a string in a register and retrieve it later.
.TP
.BI s r
Pop the value off the top of the stack and store
it into register \fIr\fR.
it into register
.IR r .
.TP
.BI l r
Copy the value in register
.I r
and push it onto the stack.
This does not alter the contents of
.IR r .
.PP
.B l\fIr\fR
Copy the value in register \fIr\fR and push it onto the stack. This
does not alter the contents of \fIr\fR.
.PP
Each register also contains its own stack. The current
register value is the top of the register's stack.
.PP
.B S\fIr\fR
Each register also contains its own stack.
The current register value is the top of the register's stack.
.TP
.BI S r
Pop the value off the top of the (main) stack and
push it onto the stack of register \fIr\fR.
push it onto the stack of register
.IR r .
The previous value of the register becomes inaccessible.
.PP
.B L\fIr\fR
Pop the value off the top of register \fIr\fR's stack
and push it onto the main stack. The previous value
in register \fIr\fR's stack, if any, is now accessible
via the
.BR Ir
.TP
.BI L r
Pop the value off the top of register
.IR r 's
stack and push it onto the main stack.
The previous value
in register
.IR r 's
stack, if any,
is now accessible via the
.BI l r
command.
.ig
.PP
The
.BR f
command prints a list of all registers that have contents
stored in them, together with their contents. Only the
current contents of each register (the top of its stack)
.B f
command prints a list of all registers that have contents stored in them,
together with their contents.
Only the current contents of each register
(the top of its stack)
is printed.
..
.SH
Parameters
.PP
.SH "Parameters"
.PP
DC has three parameters that control its operation: the precision, the
input radix, and the output radix. The precision specifies the number
\*(Dc has three parameters that control its operation:
the precision, the input radix, and the output radix.
The precision specifies the number
of fraction digits to keep in the result of most arithmetic operations.
The input radix controls the interpretation of numbers typed in;
allnumbers typed in use this radix. The output radix is used
for printing numbers.
.PP
The input and output radices are separate parameters; you can make them
unequal, which can be useful or confusing. Each radix must be between 2
and 36 inclusive. The precision must be zero or greater. The precision
is always measured in decimal digits, regardless of the current input or
output radix.
all numbers typed in use this radix.
The output radix is used for printing numbers.
.PP
The input and output radices are separate parameters;
you can make them unequal,
which can be useful or confusing.
The input radix must be between 2 and 36 inclusive.
The output radix must be at least 2.
The precision must be zero or greater.
The precision is always measured in decimal digits,
regardless of the current input or output radix.
.TP
.B i
Pops the value off the top of the stack
and uses it to set the input radix.
.PP
.TP
.B o
.PP
Pops the value off the top of the stack
and uses it to set the output radix.
.TP
.B k
Similarly set the output radix and the precision.
.PP
Pops the value off the top of the stack
and uses it to set the precision.
.TP
.B I
Pushes the current input radix on the stack.
.PP
.TP
.B O
.PP
Pushes the current output radix on the stack.
.TP
.B K
Similarly push the current output radix and the current precision.
Pushes the current precision on the stack.
.SH
Strings
.PP
.SH "Strings"
.PP
DC can operate on strings as well as on numbers. The only things you
can do with strings are print them and execute them as macros (which
means that the contents of the string are processed as DC commands).
Both registers and the stack can hold strings, and DC always knows
whether any given object is a string or a number. Some commands such as
arithmetic operations demand numbers as arguments and print errors if
given strings. Other commands can accept either a number or a string;
\*(Dc can operate on strings as well as on numbers.
The only things you can do with strings are
print them and execute them as macros
(which means that the contents of the string are processed as
\*(dc commands).
All registers and the stack can hold strings,
and \*(dc always knows whether any given object is a string or a number.
Some commands such as arithmetic operations demand numbers
as arguments and print errors if given strings.
Other commands can accept either a number or a string;
for example, the
.BR p
.B p
command can accept either and prints the object
according to its type.
.PP
.B [characters]
.TP
.BI [ characters ]
Makes a string containing
.BR characters
and pushes it
on the stack. For example,
.BR [foo]p
prints the
characters \fBfoo\fR (with no newline).
.PP
.I characters
(contained between balanced
.B [
and
.B ]
characters),
and pushes it on the stack.
For example,
.B [foo]P
prints the characters
.B foo
(with no newline).
.TP
.B x
Pops a value off the stack and executes it as a macro.
Normally it should be a string; if it is a number,
Normally it should be a string;
if it is a number,
it is simply pushed back onto the stack.
For example,
.BR [1p]x
.B [1p]x
executes the macro
.BR 1p
which pushes \fB1\fR on the stack and prints \fB1\fR
.B 1p
which pushes
.B 1
on the stack and prints
.B 1
on a separate line.
.PP
Macros are most often stored in registers;
\fB[1p]sa\fR stores a macro to print \fB1\fR into register \fBa\fR,
and \fBlax\fR invokes the macro.
.PP
.B >\fIr\fR
.B [1p]sa
stores a macro to print
.B 1
into register
.BR a ,
and
.B lax
invokes this macro.
.TP
.BI > r
Pops two values off the stack and compares them
assuming they are numbers, executing the contents
of register \fIr\fR as a macro if the original top-of-stack
is greater. Thus, \fB1 2>a\fR will invoke register \fBa\fR's contents
and \fB2 1>a\fR will not.
.PP
.B <\fIr\fB
Similar but invokes the macro if the original top-of-stack
is less.
.PP
.B =\fIr\fR
Similar but invokes the macro if the two numbers popped
are equal. This can also be validly used to compare two
strings for equality.
.PP
assuming they are numbers,
executing the contents of register
.I r
as a macro if the original top-of-stack
is greater.
Thus,
.B 1 2>a
will invoke register
.BR a 's
contents and
.B 2 1>a
will not.
.TP
.BI < r
Similar but invokes the macro if the original top-of-stack is less.
.TP
.BI = r
Similar but invokes the macro if the two numbers popped are equal.
.ig
This can also be validly used to compare two strings for equality.
..
.TP
.B ?
Reads a line from the terminal and executes it.
This command allows a macro to request input from the user.
.PP
.TP
.B q
During the execution of a macro, this comand
does not exit DC. Instead, it exits from that
macro and also from the macro which invoked it (if any).
.PP
exits from a macro and also from the macro which invoked it.
If called from the top level,
or from a macro which was called directly from the top level,
the
.B q
command will cause \*(dc to exit.
.TP
.B Q
Pops a value off the stack and uses it as a count
of levels of macro execution to be exited. Thus,
\fB3Q\fR exits three levels.
.SH "Status Inquiry"
.PP
of levels of macro execution to be exited.
Thus,
.B 3Q
exits three levels.
The
.B Q
command will never cause \*(dc to exit.
.SH
Status Inquiry
.TP
.B Z
Pops a value off the stack, calculates the number of
digits it has (or number of characters, if it is a string)
Pops a value off the stack,
calculates the number of digits it has
(or number of characters, if it is a string)
and pushes that number.
.PP
.TP
.B X
Pops a value off the stack, calculates the number of
fraction digits it has, and pushes that number.
For a string, the value pushed is -1.
.PP
Pops a value off the stack,
calculates the number of fraction digits it has,
and pushes that number.
For a string,
the value pushed is
.\" -1.
0.
.TP
.B z
Pushes the current stack depth; the number of
objects on the stack before the execution of the \fBz\fR command.
Pushes the current stack depth;
the number of objects on the stack before the execution of the
.B z
command.
.SH
Miscellaneous
.TP
.B !
Will run the rest of the line as a system command.
.TP
.B #
Will interpret the rest of the line as a comment.
.TP
.BI : r
Will pop the top two values off of the stack.
The old second-to-top value will be stored in the array
.IR r ,
indexed by the old top-of-stack value.
.TP
.BI ; r
Pops the top-of-stack and uses it as an index into
the array
.IR r .
The selected value is then pushed onto the stack.
.SH
NOTES
.PP
.B I
Pushes the current value of the input radix.
.PP
.B O
Pushes the current value of the output radix.
.PP
.B K
Pushes the current value of the precision.
.SH "Notes"
.PP
The \fB:\fR and \fB;\fR commands of the Unix DC program are
not supported, as the documentation does not say what they do.
The \fB!\fR command is not supported, but will be supported
as soon as a library for executing a line as a command exists.
.SH BUGS
The array operations
.B :
and
.B ;
are usually only used by traditional implementations of
.IR bc .
(The GNU
.I bc
is self contained and does not need \*(dc to run.)
The comment operator
.B #
is a new command not found in traditional implementations of
.IR dc .
.SH
BUGS
.PP
Email bug reports to
.BR bug-gnu-utils@prep.ai.mit.edu .

View File

@ -1,925 +0,0 @@
/*
* `dc' desk calculator utility.
*
* Copyright (C) 1984, 1993 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include "decimal.h" /* definitions for our decimal arithmetic package */
FILE *open_file; /* input file now open */
int file_count; /* Number of input files not yet opened */
char **next_file; /* Pointer to vector of names of input files left */
struct regstack
{
decimal value; /* Saved value of register */
struct regstack *rest; /* Tail of list */
};
typedef struct regstack *regstack;
regstack freeregstacks; /* Chain of free regstack structures for fast realloc */
#define DC_MAX_REG 127
decimal regs[DC_MAX_REG + 1]; /* "registers", with single-character names */
regstack regstacks[DC_MAX_REG + 1]; /* For each register, a stack of previous values */
int stacktop; /* index of last used element in stack */
int stacksize; /* Current allocates size of stack */
decimal *stack; /* Pointer to computation stack */
/* A decimal number can be regarded as a string by
treating its contents as characters and ignoring the
position of its decimal point.
Decimal numbers are marked as strings by having an `after' field of -1
One use of strings is to execute them as macros.
*/
#define STRING -1
int macrolevel; /* Current macro nesting; 0 if taking keyboard input */
int macrostacksize; /* Current allocated size of macrostack and macroindex */
decimal *macrostack; /* Pointer to macro stack array */
int *macroindex; /* Pointer to index-within-macro stack array */
/* Note that an empty macro is popped from the stack
only when an trying to read a character from it
or trying to push another macro. */
int ibase; /* Radix for numeric input. */
int obase; /* Radix for numeric output. */
int precision; /* Number of digits to keep in multiply and divide. */
char *buffer; /* Address of buffer used for reading numbers */
int bufsize; /* Current size of buffer (made bigger when nec) */
decimal dec_read ();
regstack get_regstack ();
int fetch ();
int fgetchar ();
char *concat ();
void pushsqrt ();
void condop ();
void setibase ();
void setobase ();
void setprecision ();
void pushmacro ();
decimal read_string ();
void pushlength ();
void pushscale ();
void unfetch ();
void popmacros ();
void popmacro ();
void popstack ();
void print_obj ();
void print_string ();
void free_regstack ();
void pushreg ();
void execute ();
void fputchar ();
void push ();
void incref ();
void decref ();
void binop ();
main (argc, argv, env)
int argc;
char **argv, **env;
{
ibase = 10;
obase = 10;
precision = 0;
freeregstacks = 0;
bzero (regs, sizeof regs);
bzero (regstacks, sizeof regstacks);
bufsize = 40;
buffer = (char *) xmalloc (40);
stacksize = 40;
stack = (decimal *) xmalloc (stacksize * sizeof (decimal));
stacktop = -1;
macrostacksize = 40;
macrostack = (decimal *) xmalloc (macrostacksize * sizeof (decimal));
macroindex = (int *) xmalloc (macrostacksize * sizeof (int));
macrolevel = 0;
/* Initialize for reading input files if any */
open_file = 0;
file_count = argc - 1;
next_file = argv + 1;
while (1)
{
execute ();
}
}
/* Read and execute one command from the current source of input */
void
execute ()
{
int c = fetch ();
if (c < 0) exit (0);
{
switch (c)
{
case '+': /* Arithmetic operators... */
binop (decimal_add);
break;
case '-':
binop (decimal_sub);
break;
case '*':
binop (decimal_mul_dc); /* Like decimal_mul but hairy
way of deciding precision to keep */
break;
case '/':
binop (decimal_div);
break;
case '%':
binop (decimal_rem);
break;
case '^':
binop (decimal_expt);
break;
case '_': /* Begin a negative decimal constant */
{
decimal tem = dec_read (stdin);
tem->sign = !tem->sign;
push (tem);
}
break;
case '.':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': /* All these begin decimal constants */
unfetch (c);
push (dec_read (stdin));
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
unfetch (c);
push (dec_read (stdin));
break;
case 'c': /* Clear the stack */
while (stacktop >= 0)
decref (stack[stacktop--]);
break;
case 'd': /* Duplicate top of stack */
if (stacktop < 0)
error ("stack empty", 0);
else push (stack[stacktop]);
break;
case 'f': /* Describe all registers and stack contents */
{
int regno;
int somereg = 0; /* set to 1 if we print any registers */
for (regno = 0; regno <= DC_MAX_REG; regno++)
{
if (regs[regno])
{
printf ("register %c: ", regno);
print_obj (regs[regno]);
somereg = 1;
printf ("\n");
}
}
if (somereg)
printf ("\n");
if (stacktop < 0)
printf ("stack empty\n");
else
{
int i;
printf ("stack:\n");
for (i = 0; i <= stacktop; i++)
{
print_obj (stack[stacktop - i]);
printf ("\n");
}
}
}
break;
case 'i': /* ibase <- top of stack */
popstack (setibase);
break;
case 'I': /* Push current ibase */
push (decimal_from_int (ibase));
break;
case 'k': /* like i, I but for precision instead of ibase */
popstack (setprecision);
break;
case 'K':
push (decimal_from_int (precision));
break;
case 'l': /* l<x> load register <x> onto stack */
{
int c1 = fetch ();
if (c1 < 0) exit (0);
if (c1 > DC_MAX_REG)
error ("invalid register %c", c1);
else if (!regs[c1])
error ("register %c empty", c1);
else
push (regs[c1]);
}
break;
case 'L': /* L<x> load register <x> to stack, pop <x>'s own stack */
{
int c1 = fetch ();
if (c1 < 0) exit (0);
if (c1 > DC_MAX_REG)
error ("invalid register %c", c1);
else if (!regstacks[c1])
error ("nothing pushed on register %c", c1);
else
{
regstack r = regstacks[c1];
if (!regs[c1])
error ("register %c empty after pop", c1);
else
push (regs[c1]);
regs[c1] = r->value;
regstacks[c1] = r->rest;
free_regstack (r);
}
}
break;
case 'o': /* o, O like i, I but for obase instead of ibase */
popstack (setobase);
break;
case 'O':
push (decimal_from_int (obase));
break;
case 'p': /* Print tos, don't pop, do print newline afterward */
if (stacktop < 0)
error ("stack empty", 0);
else
{
print_obj (stack[stacktop]);
printf ("\n");
}
break;
case 'P': /* Print tos, do pop, no newline afterward */
popstack (print_obj);
break;
case 'q': /* Exit */
if (macrolevel)
{ popmacro (); popmacro (); } /* decrease recursion level by 2 */
else
exit (0); /* If not in a macro, exit the program. */
break;
case 'Q': /* Tos says how many levels to exit */
popstack (popmacros);
break;
case 's': /* s<x> -- Pop stack and set register <x> */
if (stacktop < 0)
empty ();
else
{
int c1 = fetch ();
if (c1 < 0) exit (0);
if (c1 > DC_MAX_REG)
error("invalid register %c", c1);
else
{
if (regs[c1]) decref (regs[c1]);
regs[c1] = stack[stacktop--];
}
}
break;
case 'S': /* S<x> -- pop stack and push as new value of register <x> */
if (stacktop < 0)
empty ();
else
{
int c1 = fetch ();
if (c1 < 0) exit (0);
if (c1 > DC_MAX_REG)
error("invalid register %c", c1);
else
{
pushreg (c1);
regs[c1] = stack[stacktop--];
}
}
break;
case 'v': /* tos gets square root of tos */
popstack (pushsqrt);
break;
case 'x': /* pop stack , call as macro */
popstack (pushmacro);
break;
case 'X': /* Pop stack, get # fraction digits, push that */
popstack (pushscale);
break;
case 'z': /* Compute depth of stack, push that */
push (decimal_from_int (stacktop + 1));
break;
case 'Z': /* Pop stack, get # digits, push that */
popstack (pushlength);
break;
case '<': /* Conditional: pop two numbers, compare, maybe execute register */
/* Note: for no obvious reason, the standard Unix `dc'
considers < to be true if the top of stack is less
than the next-to-top of stack,
and vice versa for >.
This seems backwards to me, but I am preserving compatibility. */
condop (1);
break;
case '>':
condop (-1);
break;
case '=':
condop (0);
break;
case '?': /* Read expression from terminal and execute it */
/* First ignore any leading newlines */
{
int c1;
while ((c1 = getchar ()) == '\n');
ungetc (c1, stdin);
}
/* Read a line from the terminal and execute it. */
pushmacro (read_string ('\n', fgetchar, 0));
break;
case '[': /* Begin string constant */
push (read_string (']', fetch, '['));
break;
case ' ':
case '\n':
break;
default:
error ("undefined command %c", c);
}
}
}
/* Functionals for performing arithmetic, etc */
/* Call the function `op', with the top of stack value as argument,
and then pop the stack.
If the stack is empty, print a message and do not call `op'. */
void
popstack (op)
void (*op) ();
{
if (stacktop < 0)
empty ();
else
{
decimal value = stack[stacktop--];
op (value);
decref (value);
}
}
/* Call the function `op' with two arguments taken from the stack top,
then pop those arguments and push the value returned by `op'.
`op' is assumed to return a decimal number.
If there are not two values on the stack, print a message
and do not call `op'. */
void
binop (op)
decimal (*op) ();
{
if (stacktop < 1)
error ("stack empty", 0);
else if (stack[stacktop]->after == STRING || stack[stacktop - 1]->after == STRING)
error ("operands not both numeric");
else
{
decimal arg2 = stack [stacktop--];
decimal arg1 = stack [stacktop--];
push (op (arg1, arg2, precision));
decref (arg1);
decref (arg2);
}
}
void
condop (cond)
int cond;
{
int regno = fetch ();
if (regno > DC_MAX_REG)
error ("invalid register %c", regno);
else if (!regs[regno])
error ("register %c is empty", regno);
else if (stacktop < 1)
empty ();
else
{
decimal arg2 = stack[stacktop--];
decimal arg1 = stack[stacktop--];
int relation = decimal_compare (arg1, arg2);
decref (arg1);
decref (arg2);
if (cond == relation
|| (cond < 0 && relation < 0)
|| (cond > 0 && relation > 0))
pushmacro (regs[regno]);
}
}
/* Handle the command input source */
/* Fetch the next command character from a macro or from the terminal */
int
fetch()
{
int c = -1;
while (macrolevel &&
LENGTH (macrostack[macrolevel-1]) == macroindex[macrolevel-1])
popmacro();
if (macrolevel)
return macrostack[macrolevel - 1]->contents[macroindex[macrolevel-1]++];
while (1)
{
if (open_file)
{
c = getc (open_file);
if (c >= 0) break;
fclose (open_file);
open_file = 0;
}
else if (file_count)
{
open_file = fopen (*next_file++, "r");
file_count--;
if (!open_file)
perror_with_name (*(next_file - 1));
}
else break;
}
if (c >= 0) return c;
return getc (stdin);
}
/* Unread character c on command input stream, whatever it is */
void
unfetch (c)
char c;
{
if (macrolevel)
macroindex[macrolevel-1]--;
else if (open_file)
ungetc (c, open_file);
else
ungetc (c, stdin);
}
/* Begin execution of macro m. */
void
pushmacro (m)
decimal m;
{
while (macrolevel &&
LENGTH (macrostack[macrolevel-1]) == macroindex[macrolevel-1])
popmacro();
if (m->after == STRING)
{
if (macrolevel == macrostacksize)
{
macrostacksize *= 2;
macrostack = (decimal *) xrealloc (macrostack, macrostacksize * sizeof (decimal));
macroindex = (int *) xrealloc (macroindex, macrostacksize * sizeof (int));
}
macroindex[macrolevel] = 0;
macrostack[macrolevel++] = m;
incref (m);
}
else
{ /* Number supplied as a macro! */
push (m); /* Its effect wouyld be to push the number. */
}
}
/* Pop a specified number of levels of macro execution.
The number of levels is specified by a decimal number d. */
void
popmacros (d)
decimal d;
{
int num_pops = decimal_to_int (d);
int i;
for (i = 0; i < num_pops; i++)
popmacro ();
}
/* Exit one level of macro execution. */
void
popmacro ()
{
if (!macrolevel)
exit (0);
else
{
decref (macrostack[--macrolevel]);
}
}
void
push (d)
decimal d;
{
if (stacktop == stacksize - 1)
stack = (decimal *) xrealloc (stack, (stacksize *= 2) * sizeof (decimal));
incref (d);
stack[++stacktop] = d;
}
/* Reference counting and storage freeing */
void
decref (d)
decimal d;
{
if (!--d->refcnt)
free (d);
}
void
incref (d)
decimal d;
{
d->refcnt++;
}
empty ()
{
error ("stack empty", 0);
}
regstack
get_regstack ()
{
if (freeregstacks)
{
regstack r = freeregstacks;
freeregstacks = r ->rest;
return r;
}
else
return (regstack) xmalloc (sizeof (struct regstack));
}
void
free_regstack (r)
regstack r;
{
r->rest = freeregstacks;
freeregstacks = r;
}
void
pushreg (c)
char c;
{
regstack r = get_regstack ();
r->rest = regstacks[c];
r->value = regs[c];
regstacks[c] = r;
regs[c] = 0;
}
/* Input of numbers and strings */
/* Return a character read from the terminal. */
fgetchar ()
{
return getchar ();
}
void
fputchar (c)
char (c);
{
putchar (c);
}
/* Read text from command input source up to a close-bracket,
make a string out of it, and return it.
If STARTC is nonzero, then it and STOPC must balance when nested. */
decimal
read_string (stopc, inputfn, startc)
char stopc;
int (*inputfn) ();
int startc;
{
int c;
decimal result;
int i = 0;
int count = 0;
while (1)
{
c = inputfn ();
if (c < 0 || (c == stopc && count == 0))
{
if (count != 0)
error ("Unmatched `%c'", startc);
break;
}
if (c == stopc)
count--;
if (c == startc)
count++;
if (i + 1 >= bufsize)
buffer = (char *) xrealloc (buffer, bufsize *= 2);
buffer[i++] = c;
}
result = make_decimal (i, 0);
result->after = -1; /* Mark it as a string */
result->before++; /* but keep the length unchanged */
bcopy (buffer, result->contents, i);
return result;
}
/* Read a number from the current input source */
decimal
dec_read ()
{
int c;
int i = 0;
while (1)
{
c = fetch ();
if (! ((c >= '0' && c <= '9')
|| (c >= 'A' && c <= 'F')
|| c == '.'))
break;
if (i + 1 >= bufsize)
buffer = (char *) xrealloc (buffer, bufsize *= 2);
buffer[i++] = c;
}
buffer[i++] = 0;
unfetch (c);
return decimal_parse (buffer, ibase);
}
/* Output of numbers and strings */
/* Print the contents of obj, either numerically or as a string,
according to what obj says it is. */
void
print_obj (obj)
decimal obj;
{
if (obj->after == STRING)
print_string (obj);
else
decimal_print (obj, fputchar, obase);
}
/* Print the contents of the decimal number `string', treated as a string. */
void
print_string (string)
decimal string;
{
char *p = string->contents;
int len = LENGTH (string);
int i;
for (i = 0; i < len; i++)
{
putchar (*p++);
}
}
/* Set the input radix from the value of the decimal number d, if valid. */
void
setibase (d)
decimal d;
{
int value = decimal_to_int (d);
if (value < 2 || value > 36)
error ("input radix must be from 2 to 36", 0);
else
ibase = value;
}
/* Set the output radix from the value of the decimal number d, if valid. */
void
setobase (d)
decimal d;
{
int value = decimal_to_int (d);
if (value < 2 || value > 36)
error ("output radix must be from 2 to 36", 0);
else
obase = value;
}
/* Set the precision for mul and div from the value of the decimal number d, if valid. */
void
setprecision (d)
decimal d;
{
int value = decimal_to_int (d);
if (value < 0 || value > 30000)
error ("precision must be nonnegative and < 30000", 0);
else
precision = value;
}
/* Push the number of digits in decimal number d, as a decimal number. */
void
pushlength (d)
decimal d;
{
push (decimal_from_int (LENGTH (d)));
}
/* Push the number of fraction digits in d. */
void
pushscale (d)
decimal d;
{
push (decimal_from_int (d->after));
}
/* Push the square root of decimal number d. */
void
pushsqrt (d)
decimal d;
{
push (decimal_sqrt (d, precision));
}
/* Print error message and exit. */
fatal (s1, s2)
char *s1, *s2;
{
error (s1, s2);
exit (1);
}
/* Print error message. `s1' is printf control string, `s2' is arg for it. */
error (s1, s2)
char *s1, *s2;
{
printf ("dc: ");
printf (s1, s2);
printf ("\n");
}
decimal_error (s1, s2)
char *s1, *s2;
{
error (s1, s2);
}
perror_with_name (name)
char *name;
{
extern int errno, sys_nerr;
char *s;
if (errno < sys_nerr)
s = concat ("", sys_errlist[errno], " for %s");
else
s = "cannot open %s";
error (s, name);
}
/* Return a newly-allocated string whose contents concatenate those of s1, s2, s3. */
char *
concat (s1, s2, s3)
char *s1, *s2, *s3;
{
int len1 = strlen (s1), len2 = strlen (s2), len3 = strlen (s3);
char *result = (char *) xmalloc (len1 + len2 + len3 + 1);
strcpy (result, s1);
strcpy (result + len1, s2);
strcpy (result + len1 + len2, s3);
*(result + len1 + len2 + len3) = 0;
return result;
}
/* Like malloc but get fatal error if memory is exhausted. */
int
xmalloc (size)
int size;
{
int result = malloc (size);
if (!result)
fatal ("virtual memory exhausted", 0);
return result;
}
int
xrealloc (ptr, size)
char *ptr;
int size;
{
int result = realloc (ptr, size);
if (!result)
fatal ("virtual memory exhausted");
return result;
}

81
gnu/usr.bin/dc/dc.h Normal file
View File

@ -0,0 +1,81 @@
/*
* Header file for dc routines
*
* Copyright (C) 1994 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
#ifndef DC_DEFS_H
#define DC_DEFS_H
/* 'I' is a command, and bases 17 and 18 are quite
* unusual, so we limit ourselves to bases 2 to 16
*/
#define DC_IBASE_MAX 16
#define DC_SUCCESS 0
#define DC_DOMAIN_ERROR 1
#define DC_FAIL 2 /* generic failure */
#ifndef __STDC__
# define DC_PROTO(x) ()
# define DC_DECLVOID() ()
# define DC_DECLARG(arglist) arglist
# define DC_DECLSEP ;
# define DC_DECLEND ;
#else /* __STDC__ */
# define DC_PROTO(x) x
# define DC_DECLVOID() (void)
# define DC_DECLARG(arglist) (
# define DC_DECLSEP ,
# define DC_DECLEND )
#endif /* __STDC__ */
typedef enum {DC_FALSE, DC_TRUE} dc_boolean;
/* type discriminant for dc_data */
typedef enum {DC_UNINITIALIZED, DC_NUMBER, DC_STRING} dc_value_type;
/* generic pointer for information hiding */
typedef void *Opaque;
/* only dc-math.c knows what dc_num's *really* look like */
typedef Opaque dc_num;
/* only dc-string.c knows what dc_str's *really* look like */
typedef Opaque dc_str;
/* except for the two implementation-specific modules, all
* dc functions only know of this one generic type of object
*/
typedef struct {
dc_value_type dc_type; /* discriminant for union */
union {
dc_num number;
dc_str string;
} v;
} dc_data;
/* This is dc's only global variable: */
extern const char *progname; /* basename of program invocation */
#endif /* not DC_DEFS_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,93 +0,0 @@
/*
* Header file for decimal.c (arbitrary precision decimal arithmetic)
*
* Copyright (C) 1984 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* Autoconf stuff */
#ifndef HAVE_BCOPY
#undef bcopy
#define bcopy(s2, s1, n) memcpy (s1, s2, n)
#endif
#ifndef HAVE_BZERO
#undef bzero
#define bzero(b, l) memset (b, 0, l)
#endif
/* Define the radix to use by default, and for representing the
numbers internally. This does not need to be decimal; that is just
the default for it. */
/* Currently, this is required to be even for this program to work. */
#ifndef RADIX
#define RADIX 10
#endif
/* The user must define the external function `decimal_error'
which is called with two arguments to report errors in this package.
The two arguments may be passed to `printf' to print a message. */
/* Structure that represents a decimal number */
struct decimal
{
unsigned int sign: 1; /* One for negative number */
/* The sign should always be zero for the number 0 */
int after: 15; /* number of fraction digits */
unsigned short before; /* number of non-fraction digits */
unsigned short refcnt; /* number of pointers to this number */
/* (used by calling program) */
char contents[1]; /* the digits themselves, least significant first. */
/* digits are just numbers 0 .. RADIX-1 */
};
/* There may never be leading nonfraction zeros or trailing fraction
zeros in a number. They must be removed by all the arithmetic
functions. Therefore, the number zero always has no digits stored. */
typedef struct decimal *decimal;
/* Decimal numbers are always passed around as pointers.
All the external entries in this file allocate new numbers
using `malloc' to store values in.
They never modify their arguments or any existing numbers. */
/* Return the total number of digits stored in the number `b' */
#define LENGTH(b) ((b)->before + (b)->after)
/* Some constant decimal numbers */
#define DECIMAL_ZERO &decimal_zero
#define DECIMAL_ONE &decimal_one
#define DECIMAL_HALF &decimal_half
decimal decimal_add (), decimal_sub (), decimal_mul (), decimal_div ();
decimal decimal_mul_dc (), decimal_mul_rounded (), decimal_rem ();
decimal decimal_round_digits (), decimal_trunc_digits ();
decimal make_decimal (), decimal_copy (), decimal_parse ();
decimal decimal_sqrt (), decimal_expt ();
void decimal_print ();
/* End of decimal.h */

View File

@ -1,7 +1,7 @@
\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename dc.info
@settitle DC, An Arbitrary Precision Calculator
@settitle dc, an arbitrary precision calculator
@c %**end of header
@c This file has the new style title page commands.
@ -21,7 +21,7 @@
@syncodeindex tp fn
@ifinfo
This file documents DC, an arbitrary precision calculator.
This file documents @sc{dc}, an arbitrary precision calculator.
Published by the Free Software Foundation,
675 Massachusetts Avenue,
@ -51,15 +51,16 @@ except that this permission notice may be stated in a translation approved
by the Foundation.
@end ifinfo
@setchapternewpage odd
@setchapternewpage off
@titlepage
@title DC, An Arbitrary Precision Calculator
@title dc, an arbitrary precision calculator
@author by Richard Stallman
@author by Ken Pizzini
@author manual by Richard Stallman
@page
@vskip 0pt plus 1filll
Copyright @copyright{} 1984 Free Software Foundation, Inc.
Copyright @copyright{} 1994 Free Software Foundation, Inc.
@sp 2
Published by the Free Software Foundation, @*
@ -94,6 +95,7 @@ by the Foundation.
* Parameters:: Parameters
* Strings:: Strings
* Status Inquiry:: Status Inquiry
* Miscellaneous:: Other commands
* Notes:: Notes
@end menu
@ -101,27 +103,34 @@ by the Foundation.
@comment node-name, next, previous, up
@chapter Introduction
DC is a reverse-polish desk calculator which supports unlimited
precision arithmetic. It also allows you to define and call macros.
Normally DC reads from the standard input; if any command arguments
are given to it, they are filenames, and DC reads and executes the
contents of the files before reading from standard input. All output
is to standard output.
@sc{dc} is a reverse-polish desk calculator
which supports unlimited precision arithmetic.
It also allows you to define and call macros.
Normally @sc{dc} reads from the standard input;
if any command arguments are given to it, they are filenames,
and @sc{dc} reads and executes the contents of the files
before reading from standard input.
All normal output is to standard output;
all error messages are written to standard error.
To exit, use @samp{q}. @kbd{C-c} does not exit; it is used to abort
macros that are looping, etc. (Currently this is not true; @kbd{C-c}
does exit.)
To exit, use @samp{q}.
@kbd{C-c} does not exit;
it is used to abort macros that are looping, etc.
(Currently this is not true; @kbd{C-c} does exit.)
A reverse-polish calculator stores numbers on a stack. Entering a
number pushes it on the stack. Arithmetic operations pop arguments off
the stack and push the results.
A reverse-polish calculator stores numbers on a stack.
Entering a number pushes it on the stack.
Arithmetic operations pop arguments off the stack and push the results.
To enter a number in DC, type the digits, with an optional decimal
point. Exponential notation is not supported. To enter a negative
number, begin the number with @samp{_}. @samp{-} cannot be used for
this, as it is a binary operator for subtraction instead.
To enter two numbers in succession, separate them with spaces or
newlines. These have no meaning as commands.
To enter a number in @sc{dc}, type the digits,
with an optional decimal point.
Exponential notation is not supported.
To enter a negative number, begin the number with @samp{_}.
@samp{-} cannot be used for this, as it is a binary operator
for subtraction instead.
To enter two numbers in succession,
separate them with spaces or newlines.
These have no meaning as commands.
@node Printing Commands, Arithmetic, Introduction, Top
@chapter Printing Commands
@ -129,19 +138,19 @@ newlines. These have no meaning as commands.
@table @samp
@item p
Prints the value on the top of the stack,
without altering the stack. A newline is printed
after the value.
without altering the stack.
A newline is printed after the value.
@item P
Prints the value on the top of the stack,
popping it off, and does not print a newline after.
Prints the value on the top of the stack, popping it off,
and does not print a newline after.
@item f
Prints the entire contents of the stack
and the contents of all of the registers,
without altering anything. This is a good command
to use if you are lost or want to figure out
what the effect of some command has been.
@c and the contents of all of the registers,
without altering anything.
This is a good command to use if you are lost or want
to figure out what the effect of some command has been.
@end table
@node Arithmetic, Stack Control, Printing Commands, Top
@ -149,10 +158,9 @@ what the effect of some command has been.
@table @samp
@item +
Pops two values off the stack, adds them,
and pushes the result. The precision of the result
is determined only by the values of the arguments,
and is enough to be exact.
Pops two values off the stack, adds them, and pushes the result.
The precision of the result is determined only
by the values of the arguments, and is enough to be exact.
@item -
Pops two values, subtracts the first one popped
@ -161,41 +169,46 @@ from the second one popped, and pushes the result.
@item *
Pops two values, multiplies them, and pushes the result.
The number of fraction digits in the result is controlled
by the current precision flag (see below) and does not
by the current precision value (see below) and does not
depend on the values being multiplied.
@item /
Pops two values, divides the second one popped from
the first one popped, and pushes the result.
The number of fraction digits is specified by the precision flag.
Pops two values, divides the second one popped
from the first one popped, and pushes the result.
The number of fraction digits is specified by the precision value.
@item %
Pops two values, computes the remainder of the division
that the @samp{/} command would do, and pushes that.
Pops two values,
computes the remainder of the division that
the @samp{/} command would do,
and pushes that.
The division is done with as many fraction digits
as the precision flag specifies, and the remainder
is also computed with that many fraction digits.
as the precision value specifies,
and the remainder is also computed with that many fraction digits.
@item ^
Pops two values and exponentiates, using the first
value popped as the exponent and the second popped as the base.
Pops two values and exponentiates,
using the first value popped as the exponent
and the second popped as the base.
The fraction part of the exponent is ignored.
The precision flag specifies the number of fraction
The precision value specifies the number of fraction
digits in the result.
@item v
Pops one value, computes its square root, and pushes that.
The precision flag specifies the number of fraction digits
The precision value specifies the number of fraction digits
in the result.
@end table
Most arithmetic operations are affected by the "precision flag",
which you can set with the @samp{k} command. The default precision
value is zero, which means that all arithmetic except for
Most arithmetic operations are affected by the @emph{precision value},
which you can set with the @samp{k} command.
The default precision value is zero,
which means that all arithmetic except for
addition and subtraction produces integer results.
The remainder operation (@samp{%}) requires some explanation: applied to
arguments @samp{a} and @samp{b} it produces @samp{a - (b * (a / b))},
The remainder operation (@samp{%}) requires some explanation:
applied to arguments @samp{a} and @samp{b}
it produces @samp{a - (b * (a / b))},
where @samp{a / b} is computed in the current precision.
@node Stack Control, Registers, Arithmetic, Top
@ -207,28 +220,28 @@ Clears the stack, rendering it empty.
@item d
Duplicates the value on the top of the stack,
pushing another copy of it. Thus,
`4d*p' computes 4 squared and prints it.
pushing another copy of it.
Thus, @samp{4d*p} computes 4 squared and prints it.
@end table
@node Registers, Parameters, Stack Control, Top
@chapter Registers
DC provides 128 memory registers, each named by a single
ASCII character. You can store a number in a register
and retrieve it later.
@sc{dc} provides 256 memory registers, each named by a single character.
You can store a number in a register and retrieve it later.
@table @samp
@item s@var{r}
Pop the value off the top of the stack and store
it into register @var{r}.
Pop the value off the top of the stack and
store it into register @var{r}.
@item l@var{r}
Copy the value in register @var{r}, and push it onto
the stack. This does not alter the contents of @var{r}.
Copy the value in register @var{r},
and push it onto the stack.
This does not alter the contents of @var{r}.
Each register also contains its own stack. The current
register value is the top of the register's stack.
Each register also contains its own stack.
The current register value is the top of the register's stack.
@item S@var{r}
Pop the value off the top of the (main) stack and
@ -237,31 +250,34 @@ The previous value of the register becomes inaccessible.
@item L@var{r}
Pop the value off the top of register @var{r}'s stack
and push it onto the main stack. The previous value
in register @var{r}'s stack, if any, is now accessible
via the `l@var{r}' command.
and push it onto the main stack.
The previous value in register @var{r}'s stack, if any,
is now accessible via the @samp{l@var{r}} command.
@end table
The @samp{f} command prints a list of all registers that have contents
stored in them, together with their contents. Only the
current contents of each register (the top of its stack)
is printed.
@c
@c The @samp{f} command prints a list of all registers that have contents
@c stored in them, together with their contents.
@c Only the current contents of each register (the top of its stack)
@c is printed.
@node Parameters, Strings, Registers, Top
@chapter Parameters
DC has three parameters that control its operation: the precision, the
input radix, and the output radix. The precision specifies the number
of fraction digits to keep in the result of most arithmetic operations.
@sc{dc} has three parameters that control its operation:
the precision, the input radix, and the output radix.
The precision specifies the number of fraction digits
to keep in the result of most arithmetic operations.
The input radix controls the interpretation of numbers typed in;
@emph{all} numbers typed in use this radix. The output radix is used
for printing numbers.
@emph{all} numbers typed in use this radix.
The output radix is used for printing numbers.
The input and output radices are separate parameters; you can make them
unequal, which can be useful or confusing. Each radix must be between 2
and 36 inclusive. The precision must be zero or greater. The precision
is always measured in decimal digits, regardless of the current input or
output radix.
The input and output radices are separate parameters;
you can make them unequal, which can be useful or confusing.
The input radix must be between 2 and 36 inclusive.
The output radix must be at least 2.
The precision must be zero or greater.
The precision is always measured in decimal digits,
regardless of the current input or output radix.
@table @samp
@item i
@ -269,42 +285,51 @@ Pops the value off the top of the stack
and uses it to set the input radix.
@item o
@itemx k
Similarly set the output radix and the precision.
Pops the value off the top of the stack
and uses it to set the output radix.
@item k
Pops the value off the top of the stack
and uses it to set the precision.
@item I
Pushes the current input radix on the stack.
@item O
@itemx K
Similarly push the current output radix and the current precision.
Pushes the current output radix on the stack.
@item K
Pushes the current precision on the stack.
@end table
@node Strings, Status Inquiry, Parameters, Top
@chapter Strings
DC can operate on strings as well as on numbers. The only things you
can do with strings are print them and execute them as macros (which
means that the contents of the string are processed as DC commands).
Both registers and the stack can hold strings, and DC always knows
whether any given object is a string or a number. Some commands such as
arithmetic operations demand numbers as arguments and print errors if
given strings. Other commands can accept either a number or a string;
@sc{dc} can operate on strings as well as on numbers.
The only things you can do with strings are print them
and execute them as macros
(which means that the contents of the string are processed as @sc{dc} commands).
Both registers and the stack can hold strings,
and @sc{dc} always knows whether any given object is a string or a number.
Some commands such as arithmetic operations demand numbers
as arguments and print errors if given strings.
Other commands can accept either a number or a string;
for example, the @samp{p} command can accept either and prints the object
according to its type.
@table @samp
@item [@var{characters}]
Makes a string containing @var{characters} and pushes it
on the stack. For example, @samp{[foo]P} prints the
characters @samp{foo} (with no newline).
Makes a string containing @var{characters} and pushes it on the stack.
For example, @samp{[foo]P} prints the characters @samp{foo}
(with no newline).
@item x
Pops a value off the stack and executes it as a macro.
Normally it should be a string; if it is a number,
it is simply pushed back onto the stack.
For example, @samp{[1p]x} executes the macro @samp{1p}, which
pushes 1 on the stack and prints @samp{1} on a separate line.
Normally it should be a string;
if it is a number, it is simply pushed back onto the stack.
For example, @samp{[1p]x} executes the macro @samp{1p},
which pushes 1 on the stack and prints @samp{1} on a separate line.
Macros are most often stored in registers;
@samp{[1p]sa} stores a macro to print @samp{1} into register @samp{a},
@ -312,70 +337,89 @@ and @samp{lax} invokes the macro.
@item >@var{r}
Pops two values off the stack and compares them
assuming they are numbers, executing the contents
of register @var{r} as a macro if the original top-of-stack
is greater. Thus, @samp{1 2>a} will invoke register @samp{a}'s contents
assuming they are numbers,
executing the contents of register @var{r} as a macro
if the original top-of-stack is greater.
Thus, @samp{1 2>a} will invoke register @samp{a}'s contents
and @samp{2 1>a} will not.
@item <@var{r}
Similar but invokes the macro if the original top-of-stack
is less.
Similar but invokes the macro if the original top-of-stack is less.
@item =@var{r}
Similar but invokes the macro if the two numbers popped
are equal. This can also be validly used to compare two
strings for equality.
Similar but invokes the macro if the two numbers popped are equal.
@c This can also be validly used to compare two strings for equality.
@item ?
Reads a line from the terminal and executes it.
This command allows a macro to request input from the user.
@item q
During the execution of a macro, this comand
does not exit DC. Instead, it exits from that
macro and also from the macro which invoked it (if any).
During the execution of a macro,
this command exits from the macro and also from the macro which invoked it.
If called from the top level,
or from a macro which was called directly from the top level,
the @samp{q} command will cause @sc{dc} to exit.
@item Q
Pops a value off the stack and uses it as a count
of levels of macro execution to be exited. Thus,
@samp{3Q} exits three levels.
of levels of macro execution to be exited.
Thus, @samp{3Q} exits three levels.
@end table
@node Status Inquiry, Notes, Strings, Top
@node Status Inquiry, Miscellaneous, Strings, Top
@chapter Status Inquiry
@table @samp
@item Z
Pops a value off the stack, calculates the number of
digits it has (or number of characters, if it is a string)
Pops a value off the stack,
calculates the number of digits it has
(or number of characters, if it is a string)
and pushes that number.
@item X
Pops a value off the stack, calculates the number of
fraction digits it has, and pushes that number.
For a string, the value pushed is -1.
Pops a value off the stack,
calculates the number of fraction digits it has,
and pushes that number.
For a string, the value pushed is
@c -1.
0.
@item z
Pushes the current stack depth; the number of
objects on the stack before the execution of the @samp{z} command.
@item I
Pushes the current value of the input radix.
@item O
Pushes the current value of the output radix.
@item K
Pushes the current value of the precision.
Pushes the current stack depth;
the number of objects on the stack
before the execution of the @samp{z} command.
@end table
@node Notes, , Status Inquiry, Top
@node Miscellaneous, Notes, Status Inquiry, Top
@chapter Miscellaneous
@table @samp
@item !
Will run the rest of the line as a system command.
@item #
Will interpret the rest of the line as a comment.
@item :@var{r}
Will pop the top two values off of the stack.
The old second-to-top value will be stored in the array @var{r},
indexed by the old top-of-stack value.
@item ;@var{r}
Pops the top-of-stack and uses it as an index into
the array @var{r}.
The selected value is then pushed onto the stack.
@end table
@node Notes, , Miscellaneous, Top
@chapter Notes
The @samp{:} and @samp{;} commands of the Unix DC program are
not supported, as the documentation does not say what they do.
The @samp{!} command is not supported, but will be supported
as soon as a library for executing a line as a command exists.
The array operations @samp{:} and @samp{;} are usually
only used by traditional implementations of BC.
(The GNU BC is self contained and does not need @sc{dc} to run.)
The comment operator @samp{#} is a new command
not found in traditional implementations of @sc{dc}.
@contents
@bye