Atheros EEPROM version 4K. This version is mostly based on version 1.4.

This is needed by the upcoming AR9285 support.
Information on the layout gathered from Linux ath9k.

Not yet connected to the build.

Tested by:	Eugeny Dzhurinsky
This commit is contained in:
Rui Paulo 2009-10-10 22:29:34 +00:00
parent 70d4ef1ea1
commit 4eaee90e39
2 changed files with 561 additions and 0 deletions

View File

@ -0,0 +1,404 @@
/*
* Copyright (c) 2009 Rui Paulo <rpaulo@FreeBSD.org>
* Copyright (c) 2008 Sam Leffler, Errno Consulting
* Copyright (c) 2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v14.h"
#include "ah_eeprom_v4k.h"
static HAL_STATUS
v4kEepromGet(struct ath_hal *ah, int param, void *val)
{
#define CHAN_A_IDX 0
#define CHAN_B_IDX 1
#define IS_VERS(op, v) ((pBase->version & AR5416_EEP_VER_MINOR_MASK) op (v))
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
const MODAL_EEP4K_HEADER *pModal = &ee->ee_base.modalHeader;
const BASE_EEP4K_HEADER *pBase = &ee->ee_base.baseEepHeader;
uint32_t sum;
uint8_t *macaddr;
int i;
switch (param) {
case AR_EEP_NFTHRESH_5:
*(int16_t *)val = pModal[0].noiseFloorThreshCh[0];
return HAL_OK;
case AR_EEP_NFTHRESH_2:
*(int16_t *)val = pModal[1].noiseFloorThreshCh[0];
return HAL_OK;
case AR_EEP_MACADDR: /* Get MAC Address */
sum = 0;
macaddr = val;
for (i = 0; i < 6; i++) {
macaddr[i] = pBase->macAddr[i];
sum += pBase->macAddr[i];
}
if (sum == 0 || sum == 0xffff*3) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad mac address %s\n",
__func__, ath_hal_ether_sprintf(macaddr));
return HAL_EEBADMAC;
}
return HAL_OK;
case AR_EEP_REGDMN_0:
return pBase->regDmn[0];
case AR_EEP_REGDMN_1:
return pBase->regDmn[1];
case AR_EEP_OPCAP:
return pBase->deviceCap;
case AR_EEP_OPMODE:
return pBase->opCapFlags;
case AR_EEP_RFSILENT:
return pBase->rfSilent;
case AR_EEP_OB_5:
return pModal[CHAN_A_IDX].ob;
case AR_EEP_DB_5:
return pModal[CHAN_A_IDX].db;
case AR_EEP_OB_2:
return pModal[CHAN_B_IDX].ob;
case AR_EEP_DB_2:
return pModal[CHAN_B_IDX].db;
case AR_EEP_TXMASK:
return pBase->txMask;
case AR_EEP_RXMASK:
return pBase->rxMask;
case AR_EEP_RXGAIN_TYPE:
return AR5416_EEP_RXGAIN_ORIG;
case AR_EEP_TXGAIN_TYPE:
return IS_VERS(>=, AR5416_EEP_MINOR_VER_19) ?
pBase->txGainType : AR5416_EEP_TXGAIN_ORIG;
#if 0
case AR_EEP_OL_PWRCTRL:
HALASSERT(val == AH_NULL);
return pBase->openLoopPwrCntl ? HAL_OK : HAL_EIO;
#endif
case AR_EEP_AMODE:
HALASSERT(val == AH_NULL);
return pBase->opCapFlags & AR5416_OPFLAGS_11A ?
HAL_OK : HAL_EIO;
case AR_EEP_BMODE:
case AR_EEP_GMODE:
HALASSERT(val == AH_NULL);
return pBase->opCapFlags & AR5416_OPFLAGS_11G ?
HAL_OK : HAL_EIO;
case AR_EEP_32KHZCRYSTAL:
case AR_EEP_COMPRESS:
case AR_EEP_FASTFRAME: /* XXX policy decision, h/w can do it */
case AR_EEP_WRITEPROTECT: /* NB: no write protect bit */
HALASSERT(val == AH_NULL);
/* fall thru... */
case AR_EEP_MAXQCU: /* NB: not in opCapFlags */
case AR_EEP_KCENTRIES: /* NB: not in opCapFlags */
return HAL_EIO;
case AR_EEP_AES:
case AR_EEP_BURST:
case AR_EEP_RFKILL:
case AR_EEP_TURBO5DISABLE:
case AR_EEP_TURBO2DISABLE:
HALASSERT(val == AH_NULL);
return HAL_OK;
case AR_EEP_ANTGAINMAX_2:
*(int8_t *) val = ee->ee_antennaGainMax[1];
return HAL_OK;
case AR_EEP_ANTGAINMAX_5:
*(int8_t *) val = ee->ee_antennaGainMax[0];
return HAL_OK;
default:
HALASSERT(0);
return HAL_EINVAL;
}
#undef IS_VERS
#undef CHAN_A_IDX
#undef CHAN_B_IDX
}
static HAL_BOOL
v4kEepromSet(struct ath_hal *ah, int param, int v)
{
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
switch (param) {
case AR_EEP_ANTGAINMAX_2:
ee->ee_antennaGainMax[1] = (int8_t) v;
return HAL_OK;
case AR_EEP_ANTGAINMAX_5:
ee->ee_antennaGainMax[0] = (int8_t) v;
return HAL_OK;
}
return HAL_EINVAL;
}
static HAL_BOOL
v4kEepromDiag(struct ath_hal *ah, int request,
const void *args, uint32_t argsize, void **result, uint32_t *resultsize)
{
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
switch (request) {
case HAL_DIAG_EEPROM:
*result = &ee->ee_base;
*resultsize = sizeof(ee->ee_base);
return AH_TRUE;
}
return AH_FALSE;
}
/* Do structure specific swaps if Eeprom format is non native to host */
static void
eepromSwap(struct ar5416eeprom_4k *ee)
{
uint32_t integer, i;
uint16_t word;
MODAL_EEP4K_HEADER *pModal;
/* convert Base Eep header */
word = __bswap16(ee->baseEepHeader.length);
ee->baseEepHeader.length = word;
word = __bswap16(ee->baseEepHeader.checksum);
ee->baseEepHeader.checksum = word;
word = __bswap16(ee->baseEepHeader.version);
ee->baseEepHeader.version = word;
word = __bswap16(ee->baseEepHeader.regDmn[0]);
ee->baseEepHeader.regDmn[0] = word;
word = __bswap16(ee->baseEepHeader.regDmn[1]);
ee->baseEepHeader.regDmn[1] = word;
word = __bswap16(ee->baseEepHeader.rfSilent);
ee->baseEepHeader.rfSilent = word;
word = __bswap16(ee->baseEepHeader.blueToothOptions);
ee->baseEepHeader.blueToothOptions = word;
word = __bswap16(ee->baseEepHeader.deviceCap);
ee->baseEepHeader.deviceCap = word;
/* convert Modal Eep header */
pModal = &ee->modalHeader;
/* XXX linux/ah_osdep.h only defines __bswap32 for BE */
integer = __bswap32(pModal->antCtrlCommon);
pModal->antCtrlCommon = integer;
for (i = 0; i < AR5416_4K_MAX_CHAINS; i++) {
integer = __bswap32(pModal->antCtrlChain[i]);
pModal->antCtrlChain[i] = integer;
}
for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
word = __bswap16(pModal->spurChans[i].spurChan);
pModal->spurChans[i].spurChan = word;
}
}
static uint16_t
v4kEepromGetSpurChan(struct ath_hal *ah, int ix, HAL_BOOL is2GHz)
{
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
HALASSERT(0 <= ix && ix < AR5416_EEPROM_MODAL_SPURS);
HALASSERT(is2GHz);
return ee->ee_base.modalHeader.spurChans[ix].spurChan;
}
/**************************************************************************
* fbin2freq
*
* Get channel value from binary representation held in eeprom
* RETURNS: the frequency in MHz
*/
static uint16_t
fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
{
/*
* Reserved value 0xFF provides an empty definition both as
* an fbin and as a frequency - do not convert
*/
if (fbin == AR5416_BCHAN_UNUSED)
return fbin;
return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
/*
* Copy EEPROM Conformance Testing Limits contents
* into the allocated space
*/
/* USE CTLS from chain zero */
#define CTL_CHAIN 0
static void
v4kEepromReadCTLInfo(struct ath_hal *ah, HAL_EEPROM_v4k *ee)
{
RD_EDGES_POWER *rep = ee->ee_rdEdgesPower;
int i, j;
HALASSERT(AR5416_NUM_CTLS <= sizeof(ee->ee_rdEdgesPower)/NUM_EDGES);
for (i = 0; ee->ee_base.ctlIndex[i] != 0 && i < AR5416_4K_NUM_CTLS; i++) {
for (j = 0; j < NUM_EDGES; j ++) {
/* XXX Confirm this is the right thing to do when an invalid channel is stored */
if (ee->ee_base.ctlData[i].ctlEdges[CTL_CHAIN][j].bChannel == AR5416_BCHAN_UNUSED) {
rep[j].rdEdge = 0;
rep[j].twice_rdEdgePower = 0;
rep[j].flag = 0;
} else {
rep[j].rdEdge = fbin2freq(
ee->ee_base.ctlData[i].ctlEdges[CTL_CHAIN][j].bChannel,
(ee->ee_base.ctlIndex[i] & CTL_MODE_M) != CTL_11A);
rep[j].twice_rdEdgePower = MS(ee->ee_base.ctlData[i].ctlEdges[CTL_CHAIN][j].tPowerFlag, CAL_CTL_EDGES_POWER);
rep[j].flag = MS(ee->ee_base.ctlData[i].ctlEdges[CTL_CHAIN][j].tPowerFlag, CAL_CTL_EDGES_FLAG) != 0;
}
}
rep += NUM_EDGES;
}
ee->ee_numCtls = i;
HALDEBUG(ah, HAL_DEBUG_ATTACH | HAL_DEBUG_EEPROM,
"%s Numctls = %u\n",__func__,i);
}
/*
* Reclaim any EEPROM-related storage.
*/
static void
v4kEepromDetach(struct ath_hal *ah)
{
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
ath_hal_free(ee);
AH_PRIVATE(ah)->ah_eeprom = AH_NULL;
}
#define owl_get_eep_ver(_ee) \
(((_ee)->ee_base.baseEepHeader.version >> 12) & 0xF)
#define owl_get_eep_rev(_ee) \
(((_ee)->ee_base.baseEepHeader.version) & 0xFFF)
HAL_STATUS
ath_hal_v4kEepromAttach(struct ath_hal *ah)
{
#define NW(a) (sizeof(a) / sizeof(uint16_t))
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
uint16_t *eep_data, magic;
HAL_BOOL need_swap;
u_int w, off, len;
uint32_t sum;
HALASSERT(ee == AH_NULL);
if (!ath_hal_eepromRead(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s Error reading Eeprom MAGIC\n", __func__);
return HAL_EEREAD;
}
HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s Eeprom Magic = 0x%x\n",
__func__, magic);
if (magic != AR5416_EEPROM_MAGIC) {
HALDEBUG(ah, HAL_DEBUG_ANY, "Bad magic number\n");
return HAL_EEMAGIC;
}
ee = ath_hal_malloc(sizeof(HAL_EEPROM_v4k));
if (ee == AH_NULL) {
/* XXX message */
return HAL_ENOMEM;
}
eep_data = (uint16_t *)&ee->ee_base;
for (w = 0; w < NW(struct ar5416eeprom_4k); w++) {
off = owl_eep_start_loc + w; /* NB: AP71 starts at 0 */
if (!ath_hal_eepromRead(ah, off, &eep_data[w])) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s eeprom read error at offset 0x%x\n",
__func__, off);
return HAL_EEREAD;
}
}
/* Convert to eeprom native eeprom endian format */
if (isBigEndian()) {
for (w = 0; w < NW(struct ar5416eeprom_4k); w++)
eep_data[w] = __bswap16(eep_data[w]);
}
/*
* At this point, we're in the native eeprom endian format
* Now, determine the eeprom endian by looking at byte 26??
*/
need_swap = ((ee->ee_base.baseEepHeader.eepMisc & AR5416_EEPMISC_BIG_ENDIAN) != 0) ^ isBigEndian();
if (need_swap) {
HALDEBUG(ah, HAL_DEBUG_ATTACH | HAL_DEBUG_EEPROM,
"Byte swap EEPROM contents.\n");
len = __bswap16(ee->ee_base.baseEepHeader.length);
} else {
len = ee->ee_base.baseEepHeader.length;
}
len = AH_MIN(len, sizeof(struct ar5416eeprom_4k)) / sizeof(uint16_t);
/* Apply the checksum, done in native eeprom format */
/* XXX - Need to check to make sure checksum calculation is done
* in the correct endian format. Right now, it seems it would
* cast the raw data to host format and do the calculation, which may
* not be correct as the calculation may need to be done in the native
* eeprom format
*/
sum = 0;
for (w = 0; w < len; w++) {
sum ^= eep_data[w];
}
/* Check CRC - Attach should fail on a bad checksum */
if (sum != 0xffff) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"Bad EEPROM checksum 0x%x (Len=%u)\n", sum, len);
return HAL_EEBADSUM;
}
if (need_swap)
eepromSwap(&ee->ee_base); /* byte swap multi-byte data */
/* swap words 0+2 so version is at the front */
magic = eep_data[0];
eep_data[0] = eep_data[2];
eep_data[2] = magic;
HALDEBUG(ah, HAL_DEBUG_ATTACH | HAL_DEBUG_EEPROM,
"%s Eeprom Version %u.%u\n", __func__,
owl_get_eep_ver(ee), owl_get_eep_rev(ee));
/* NB: must be after all byte swapping */
if (owl_get_eep_ver(ee) != AR5416_EEP_VER) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"Bad EEPROM version 0x%x\n", owl_get_eep_ver(ee));
return HAL_EEBADSUM;
}
v4kEepromReadCTLInfo(ah, ee); /* Get CTLs */
AH_PRIVATE(ah)->ah_eeprom = ee;
AH_PRIVATE(ah)->ah_eeversion = ee->ee_base.baseEepHeader.version;
AH_PRIVATE(ah)->ah_eepromDetach = v4kEepromDetach;
AH_PRIVATE(ah)->ah_eepromGet = v4kEepromGet;
AH_PRIVATE(ah)->ah_eepromSet = v4kEepromSet;
AH_PRIVATE(ah)->ah_getSpurChan = v4kEepromGetSpurChan;
AH_PRIVATE(ah)->ah_eepromDiag = v4kEepromDiag;
return HAL_OK;
#undef NW
}

View File

@ -0,0 +1,157 @@
/*
* Copyright (c) 2009 Rui Paulo <rpaulo@FreeBSD.org>
* Copyright (c) 2008 Sam Leffler, Errno Consulting
* Copyright (c) 2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#ifndef _AH_EEPROM_V4K_H_
#define _AH_EEPROM_V4K_H_
#include "ah_eeprom.h"
#include "ah_eeprom_v14.h"
#undef owl_eep_start_loc
#ifdef __LINUX_ARM_ARCH__ /* AP71 */
#define owl_eep_start_loc 0
#else
#define owl_eep_start_loc 64
#endif
// 16-bit offset location start of calibration struct
#define AR5416_4K_EEP_START_LOC 64
#define AR5416_4K_NUM_2G_CAL_PIERS 3
#define AR5416_4K_NUM_2G_CCK_TARGET_POWERS 3
#define AR5416_4K_NUM_2G_20_TARGET_POWERS 3
#define AR5416_4K_NUM_2G_40_TARGET_POWERS 3
#define AR5416_4K_NUM_CTLS 12
#define AR5416_4K_NUM_BAND_EDGES 4
#define AR5416_4K_NUM_PD_GAINS 2
#define AR5416_4K_PD_GAINS_IN_MASK 4
#define AR5416_4K_PD_GAIN_ICEPTS 5
#define AR5416_4K_MAX_CHAINS 1
/*
* NB: The format in EEPROM has words 0 and 2 swapped (i.e. version
* and length are swapped). We reverse their position after reading
* the data into host memory so the version field is at the same
* offset as in previous EEPROM layouts. This makes utilities that
* inspect the EEPROM contents work without looking at the PCI device
* id which may or may not be reliable.
*/
typedef struct BaseEepHeader4k {
uint16_t version; /* NB: length in EEPROM */
uint16_t checksum;
uint16_t length; /* NB: version in EEPROM */
uint8_t opCapFlags;
uint8_t eepMisc;
uint16_t regDmn[2];
uint8_t macAddr[6];
uint8_t rxMask;
uint8_t txMask;
uint16_t rfSilent;
uint16_t blueToothOptions;
uint16_t deviceCap;
uint32_t binBuildNumber;
uint8_t deviceType;
uint8_t txGainType; /* high power tx gain table support */
} __packed BASE_EEP4K_HEADER; // 32 B
typedef struct ModalEepHeader4k {
uint32_t antCtrlChain[AR5416_4K_MAX_CHAINS]; // 12
uint32_t antCtrlCommon; // 4
int8_t antennaGainCh[AR5416_4K_MAX_CHAINS]; // 1
uint8_t switchSettling; // 1
uint8_t txRxAttenCh[AR5416_4K_MAX_CHAINS]; // 1
uint8_t rxTxMarginCh[AR5416_4K_MAX_CHAINS]; // 1
uint8_t adcDesiredSize; // 1
int8_t pgaDesiredSize; // 1
uint8_t xlnaGainCh[AR5416_4K_MAX_CHAINS]; // 1
uint8_t txEndToXpaOff; // 1
uint8_t txEndToRxOn; // 1
uint8_t txFrameToXpaOn; // 1
uint8_t thresh62; // 1
uint8_t noiseFloorThreshCh[AR5416_4K_MAX_CHAINS]; // 1
uint8_t xpdGain; // 1
uint8_t xpd; // 1
int8_t iqCalICh[AR5416_4K_MAX_CHAINS]; // 1
int8_t iqCalQCh[AR5416_4K_MAX_CHAINS]; // 1
uint8_t pdGainOverlap; // 1
uint8_t ob; // 1
uint8_t db; // 1
uint8_t xpaBiasLvl; // 1
#if 0
uint8_t pwrDecreaseFor2Chain; // 1
uint8_t pwrDecreaseFor3Chain; // 1 -> 48 B
#endif
uint8_t txFrameToDataStart; // 1
uint8_t txFrameToPaOn; // 1
uint8_t ht40PowerIncForPdadc; // 1
uint8_t bswAtten[AR5416_4K_MAX_CHAINS]; // 1
uint8_t bswMargin[AR5416_4K_MAX_CHAINS]; // 1
uint8_t swSettleHt40; // 1
uint8_t xatten2Db[AR5416_4K_MAX_CHAINS]; // 1
uint8_t xatten2Margin[AR5416_4K_MAX_CHAINS]; // 1
uint8_t ob_ch1; // 1 -> ob and db become chain specific from AR9280
uint8_t db_ch1; // 1
uint8_t flagBits; // 1
#define AR5416_EEP_FLAG_USEANT1 0x01 /* +1 configured antenna */
#define AR5416_EEP_FLAG_FORCEXPAON 0x02 /* force XPA bit for 5G */
#define AR5416_EEP_FLAG_LOCALBIAS 0x04 /* enable local bias */
#define AR5416_EEP_FLAG_FEMBANDSELECT 0x08 /* FEM band select used */
#define AR5416_EEP_FLAG_XLNABUFIN 0x10
#define AR5416_EEP_FLAG_XLNAISEL 0x60
#define AR5416_EEP_FLAG_XLNAISEL_S 5
#define AR5416_EEP_FLAG_XLNABUFMODE 0x80
uint8_t miscBits; // [0..1]: bb_tx_dac_scale_cck
uint16_t xpaBiasLvlFreq[3]; // 6
uint8_t futureModal[2]; // 2
SPUR_CHAN spurChans[AR5416_EEPROM_MODAL_SPURS]; // 20 B
} __packed MODAL_EEP4K_HEADER; // == 68 B
typedef struct CalCtlData4k {
CAL_CTL_EDGES ctlEdges[AR5416_4K_MAX_CHAINS][AR5416_4K_NUM_BAND_EDGES];
} __packed CAL_CTL_DATA_4K;
typedef struct calDataPerFreq4k {
uint8_t pwrPdg[AR5416_4K_NUM_PD_GAINS][AR5416_4K_PD_GAIN_ICEPTS];
uint8_t vpdPdg[AR5416_4K_NUM_PD_GAINS][AR5416_4K_PD_GAIN_ICEPTS];
} __packed CAL_DATA_PER_FREQ_4K;
struct ar5416eeprom_4k {
BASE_EEP4K_HEADER baseEepHeader; // 32 B
uint8_t custData[20]; // 20 B
MODAL_EEP4K_HEADER modalHeader; // 68 B
uint8_t calFreqPier2G[AR5416_4K_NUM_2G_CAL_PIERS];
CAL_DATA_PER_FREQ_4K calPierData2G[AR5416_4K_MAX_CHAINS][AR5416_4K_NUM_2G_CAL_PIERS];
CAL_TARGET_POWER_LEG calTargetPowerCck[AR5416_4K_NUM_2G_CCK_TARGET_POWERS];
CAL_TARGET_POWER_LEG calTargetPower2G[AR5416_4K_NUM_2G_20_TARGET_POWERS];
CAL_TARGET_POWER_HT calTargetPower2GHT20[AR5416_4K_NUM_2G_20_TARGET_POWERS];
CAL_TARGET_POWER_HT calTargetPower2GHT40[AR5416_4K_NUM_2G_40_TARGET_POWERS];
uint8_t ctlIndex[AR5416_4K_NUM_CTLS];
CAL_CTL_DATA_4K ctlData[AR5416_4K_NUM_CTLS];
uint8_t padding;
} __packed;
typedef struct {
struct ar5416eeprom_4k ee_base;
#define NUM_EDGES 8
uint16_t ee_numCtls;
RD_EDGES_POWER ee_rdEdgesPower[NUM_EDGES*AR5416_4K_NUM_CTLS];
/* XXX these are dynamically calculated for use by shared code */
int8_t ee_antennaGainMax[2];
} HAL_EEPROM_v4k;
#endif /* _AH_EEPROM_V4K_H_ */