New support for sharing the timers

acquire_timer / release_timer

Pulled in timer related functions from isa.c
This commit is contained in:
Søren Schmidt 1994-04-21 14:19:16 +00:00
parent b5194b236c
commit 5194771d25
5 changed files with 1040 additions and 115 deletions

View File

@ -34,7 +34,7 @@
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
* $Id: clock.c,v 1.5 1993/12/19 00:50:30 wollman Exp $
* $Id: clock.c,v 1.6 1994/02/06 22:48:13 davidg Exp $
*/
/*
@ -45,6 +45,7 @@
#include "time.h"
#include "kernel.h"
#include "machine/segments.h"
#include "machine/frame.h"
#include "i386/isa/icu.h"
#include "i386/isa/isa.h"
#include "i386/isa/rtc.h"
@ -55,9 +56,193 @@
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
void hardclock();
static void findcpuspeed(void);
static char timer0_in_use = 0, timer2_in_use = 0;
static int timer0_rate = 100; /* XXX should be hz */
static void (*timer_func)() = hardclock;
static unsigned int prescale = 0;
static unsigned int hardclock_prescale;
static int beeping;
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
void
timerintr(struct intrframe frame)
{
timer_func(frame);
if (timer0_in_use)
if (prescale++ >= hardclock_prescale) {
hardclock(frame);
prescale = 0;
}
}
int
acquire_timer0(int rate, void (*function)() )
{
if (timer0_in_use) /* XXX || (rate < 20000 && rate % hz)) */
return -1;
timer0_in_use = 1;
timer0_rate = rate;
prescale = 0;
hardclock_prescale = rate/hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(rate)%256);
outb(TIMER_CNTR0, TIMER_DIV(rate)/256);
if (function)
timer_func = function;
return 0;
}
int
acquire_timer2(int mode)
{
if (timer2_in_use)
return -1;
timer2_in_use = 1;
outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
return 0;
}
int
release_timer0()
{
if (!timer0_in_use)
return -1;
timer0_in_use = 0;
timer0_rate = hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
timer_func = hardclock;
return 0;
}
int
release_timer2()
{
if (!timer2_in_use)
return -1;
timer2_in_use = 0;
outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
return 0;
}
static int
getit()
{
int high, low;
disable_intr();
/* select timer0 and latch counter value */
outb(TIMER_MODE, TIMER_SEL0);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
enable_intr();
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int counter_limit, prev_tick, tick, ticks_left, sec, usec;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit(0, 0);
n -= 20;
/*
* Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
* and without any avoidable overflows.
*/
sec = n / 1000000;
usec = n - sec * 1000000;
ticks_left = sec * TIMER_FREQ
+ usec * (TIMER_FREQ / 1000000)
+ usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
+ usec * (TIMER_FREQ % 1000) / 1000000;
counter_limit = TIMER_FREQ/timer0_rate;
while (ticks_left > 0) {
tick = getit(0, 0);
#ifdef DELAYDEBUG
++getit_calls;
#endif
if (tick > prev_tick)
ticks_left -= prev_tick - (tick - counter_limit);
else
ticks_left -= prev_tick - tick;
prev_tick = tick;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop() /* SOS XXX dummy is not needed */
{
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
return -1;
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
if (!beeping) {
outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
beeping = period;
timeout(sysbeepstop, 0, period);
}
return 0;
}
void
startrtclock()
{
@ -69,8 +254,9 @@ startrtclock()
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
/* Correct rounding will buy us a better precision in timekeeping */
outb (IO_TIMER1, (TIMER_FREQ+hz/2)/hz);
outb (IO_TIMER1, ((TIMER_FREQ+hz/2)/hz)/256);
outb (IO_TIMER1, TIMER_DIV(hz)%256);
outb (IO_TIMER1, TIMER_DIV(hz)/256);
timer0_rate = hz;
/* initialize brain-dead battery powered clock */
outb (IO_RTC, RTC_STATUSA);
@ -83,7 +269,6 @@ startrtclock()
printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
}
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
#define FIRST_GUESS 0x2000
static void
@ -93,7 +278,7 @@ findcpuspeed()
unsigned int remainder;
/* Put counter in count down mode */
outb(IO_TIMER1+3, 0x34);
outb(TIMER_MODE, TIMER_16BIT|TIMER_RATEGEN);
outb(IO_TIMER1, 0xff);
outb(IO_TIMER1, 0xff);
delaycount = FIRST_GUESS;
@ -111,16 +296,15 @@ findcpuspeed()
/* convert 2 digit BCD number */
int
bcd(i)
int i;
bcd(int i)
{
return ((i/16)*10 + (i%16));
}
/* convert years to seconds (from 1970) */
unsigned long
ytos(y)
int y;
ytos(int y)
{
int i;
unsigned long ret;
@ -133,16 +317,16 @@ int y;
return ret;
}
/* convert months to seconds */
unsigned long
mtos(m,leap)
int m,leap;
mtos(int m, int leap)
{
int i;
unsigned long ret;
ret = 0;
for(i=1;i<m;i++) {
for(i=1; i<m; i++) {
switch(i){
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
ret += 31*24*60*60; break;
@ -162,11 +346,10 @@ int m,leap;
* from a filesystem.
*/
void
inittodr(base)
time_t base;
inittodr(time_t base)
{
unsigned long sec;
int leap,day_week,t,yd;
int leap, day_week, t, yd;
int sa,s;
/* do we have a realtime clock present? (otherwise we loop below) */
@ -180,26 +363,25 @@ inittodr(base)
sec = bcd(rtcin(RTC_YEAR)) + 1900;
if (sec < 1970)
sec += 100;
leap = !(sec % 4); sec = ytos(sec); /* year */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec += yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec += t; yd += t; /* date */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t; /* date */
day_week = rtcin(RTC_WDAY); /* day */
sec += bcd(rtcin(RTC_HRS)) * 60*60; /* hour */
sec += bcd(rtcin(RTC_MIN)) * 60; /* minutes */
sec += bcd(rtcin(RTC_SEC)); /* seconds */
sec += tz.tz_minuteswest * 60;
time.tv_sec = sec;
}
#ifdef garbage
/*
* Initialze the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
test_inittodr(base)
time_t base;
test_inittodr(time_t base)
{
outb(IO_RTC,9); /* year */
@ -219,6 +401,7 @@ test_inittodr(base)
}
#endif
/*
* Restart the clock.
*/
@ -227,12 +410,14 @@ resettodr()
{
}
/*
* Wire clock interrupt in.
*/
#define V(s) __CONCAT(V, s)
extern void V(clk)();
void
enablertclock()
{
@ -240,12 +425,12 @@ enablertclock()
INTREN(IRQ0);
}
/*
* Delay for some number of milliseconds.
*/
void
spinwait(millisecs)
int millisecs;
spinwait(int millisecs)
{
DELAY(1000 * millisecs);
}

View File

@ -34,7 +34,7 @@
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
* $Id: clock.c,v 1.5 1993/12/19 00:50:30 wollman Exp $
* $Id: clock.c,v 1.6 1994/02/06 22:48:13 davidg Exp $
*/
/*
@ -45,6 +45,7 @@
#include "time.h"
#include "kernel.h"
#include "machine/segments.h"
#include "machine/frame.h"
#include "i386/isa/icu.h"
#include "i386/isa/isa.h"
#include "i386/isa/rtc.h"
@ -55,9 +56,193 @@
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
void hardclock();
static void findcpuspeed(void);
static char timer0_in_use = 0, timer2_in_use = 0;
static int timer0_rate = 100; /* XXX should be hz */
static void (*timer_func)() = hardclock;
static unsigned int prescale = 0;
static unsigned int hardclock_prescale;
static int beeping;
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
void
timerintr(struct intrframe frame)
{
timer_func(frame);
if (timer0_in_use)
if (prescale++ >= hardclock_prescale) {
hardclock(frame);
prescale = 0;
}
}
int
acquire_timer0(int rate, void (*function)() )
{
if (timer0_in_use) /* XXX || (rate < 20000 && rate % hz)) */
return -1;
timer0_in_use = 1;
timer0_rate = rate;
prescale = 0;
hardclock_prescale = rate/hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(rate)%256);
outb(TIMER_CNTR0, TIMER_DIV(rate)/256);
if (function)
timer_func = function;
return 0;
}
int
acquire_timer2(int mode)
{
if (timer2_in_use)
return -1;
timer2_in_use = 1;
outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
return 0;
}
int
release_timer0()
{
if (!timer0_in_use)
return -1;
timer0_in_use = 0;
timer0_rate = hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
timer_func = hardclock;
return 0;
}
int
release_timer2()
{
if (!timer2_in_use)
return -1;
timer2_in_use = 0;
outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
return 0;
}
static int
getit()
{
int high, low;
disable_intr();
/* select timer0 and latch counter value */
outb(TIMER_MODE, TIMER_SEL0);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
enable_intr();
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int counter_limit, prev_tick, tick, ticks_left, sec, usec;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit(0, 0);
n -= 20;
/*
* Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
* and without any avoidable overflows.
*/
sec = n / 1000000;
usec = n - sec * 1000000;
ticks_left = sec * TIMER_FREQ
+ usec * (TIMER_FREQ / 1000000)
+ usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
+ usec * (TIMER_FREQ % 1000) / 1000000;
counter_limit = TIMER_FREQ/timer0_rate;
while (ticks_left > 0) {
tick = getit(0, 0);
#ifdef DELAYDEBUG
++getit_calls;
#endif
if (tick > prev_tick)
ticks_left -= prev_tick - (tick - counter_limit);
else
ticks_left -= prev_tick - tick;
prev_tick = tick;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop() /* SOS XXX dummy is not needed */
{
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
return -1;
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
if (!beeping) {
outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
beeping = period;
timeout(sysbeepstop, 0, period);
}
return 0;
}
void
startrtclock()
{
@ -69,8 +254,9 @@ startrtclock()
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
/* Correct rounding will buy us a better precision in timekeeping */
outb (IO_TIMER1, (TIMER_FREQ+hz/2)/hz);
outb (IO_TIMER1, ((TIMER_FREQ+hz/2)/hz)/256);
outb (IO_TIMER1, TIMER_DIV(hz)%256);
outb (IO_TIMER1, TIMER_DIV(hz)/256);
timer0_rate = hz;
/* initialize brain-dead battery powered clock */
outb (IO_RTC, RTC_STATUSA);
@ -83,7 +269,6 @@ startrtclock()
printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
}
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
#define FIRST_GUESS 0x2000
static void
@ -93,7 +278,7 @@ findcpuspeed()
unsigned int remainder;
/* Put counter in count down mode */
outb(IO_TIMER1+3, 0x34);
outb(TIMER_MODE, TIMER_16BIT|TIMER_RATEGEN);
outb(IO_TIMER1, 0xff);
outb(IO_TIMER1, 0xff);
delaycount = FIRST_GUESS;
@ -111,16 +296,15 @@ findcpuspeed()
/* convert 2 digit BCD number */
int
bcd(i)
int i;
bcd(int i)
{
return ((i/16)*10 + (i%16));
}
/* convert years to seconds (from 1970) */
unsigned long
ytos(y)
int y;
ytos(int y)
{
int i;
unsigned long ret;
@ -133,16 +317,16 @@ int y;
return ret;
}
/* convert months to seconds */
unsigned long
mtos(m,leap)
int m,leap;
mtos(int m, int leap)
{
int i;
unsigned long ret;
ret = 0;
for(i=1;i<m;i++) {
for(i=1; i<m; i++) {
switch(i){
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
ret += 31*24*60*60; break;
@ -162,11 +346,10 @@ int m,leap;
* from a filesystem.
*/
void
inittodr(base)
time_t base;
inittodr(time_t base)
{
unsigned long sec;
int leap,day_week,t,yd;
int leap, day_week, t, yd;
int sa,s;
/* do we have a realtime clock present? (otherwise we loop below) */
@ -180,26 +363,25 @@ inittodr(base)
sec = bcd(rtcin(RTC_YEAR)) + 1900;
if (sec < 1970)
sec += 100;
leap = !(sec % 4); sec = ytos(sec); /* year */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec += yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec += t; yd += t; /* date */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t; /* date */
day_week = rtcin(RTC_WDAY); /* day */
sec += bcd(rtcin(RTC_HRS)) * 60*60; /* hour */
sec += bcd(rtcin(RTC_MIN)) * 60; /* minutes */
sec += bcd(rtcin(RTC_SEC)); /* seconds */
sec += tz.tz_minuteswest * 60;
time.tv_sec = sec;
}
#ifdef garbage
/*
* Initialze the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
test_inittodr(base)
time_t base;
test_inittodr(time_t base)
{
outb(IO_RTC,9); /* year */
@ -219,6 +401,7 @@ test_inittodr(base)
}
#endif
/*
* Restart the clock.
*/
@ -227,12 +410,14 @@ resettodr()
{
}
/*
* Wire clock interrupt in.
*/
#define V(s) __CONCAT(V, s)
extern void V(clk)();
void
enablertclock()
{
@ -240,12 +425,12 @@ enablertclock()
INTREN(IRQ0);
}
/*
* Delay for some number of milliseconds.
*/
void
spinwait(millisecs)
int millisecs;
spinwait(int millisecs)
{
DELAY(1000 * millisecs);
}

View File

@ -34,7 +34,7 @@
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
* $Id: clock.c,v 1.5 1993/12/19 00:50:30 wollman Exp $
* $Id: clock.c,v 1.6 1994/02/06 22:48:13 davidg Exp $
*/
/*
@ -45,6 +45,7 @@
#include "time.h"
#include "kernel.h"
#include "machine/segments.h"
#include "machine/frame.h"
#include "i386/isa/icu.h"
#include "i386/isa/isa.h"
#include "i386/isa/rtc.h"
@ -55,9 +56,193 @@
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
void hardclock();
static void findcpuspeed(void);
static char timer0_in_use = 0, timer2_in_use = 0;
static int timer0_rate = 100; /* XXX should be hz */
static void (*timer_func)() = hardclock;
static unsigned int prescale = 0;
static unsigned int hardclock_prescale;
static int beeping;
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
void
timerintr(struct intrframe frame)
{
timer_func(frame);
if (timer0_in_use)
if (prescale++ >= hardclock_prescale) {
hardclock(frame);
prescale = 0;
}
}
int
acquire_timer0(int rate, void (*function)() )
{
if (timer0_in_use) /* XXX || (rate < 20000 && rate % hz)) */
return -1;
timer0_in_use = 1;
timer0_rate = rate;
prescale = 0;
hardclock_prescale = rate/hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(rate)%256);
outb(TIMER_CNTR0, TIMER_DIV(rate)/256);
if (function)
timer_func = function;
return 0;
}
int
acquire_timer2(int mode)
{
if (timer2_in_use)
return -1;
timer2_in_use = 1;
outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
return 0;
}
int
release_timer0()
{
if (!timer0_in_use)
return -1;
timer0_in_use = 0;
timer0_rate = hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
timer_func = hardclock;
return 0;
}
int
release_timer2()
{
if (!timer2_in_use)
return -1;
timer2_in_use = 0;
outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
return 0;
}
static int
getit()
{
int high, low;
disable_intr();
/* select timer0 and latch counter value */
outb(TIMER_MODE, TIMER_SEL0);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
enable_intr();
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int counter_limit, prev_tick, tick, ticks_left, sec, usec;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit(0, 0);
n -= 20;
/*
* Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
* and without any avoidable overflows.
*/
sec = n / 1000000;
usec = n - sec * 1000000;
ticks_left = sec * TIMER_FREQ
+ usec * (TIMER_FREQ / 1000000)
+ usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
+ usec * (TIMER_FREQ % 1000) / 1000000;
counter_limit = TIMER_FREQ/timer0_rate;
while (ticks_left > 0) {
tick = getit(0, 0);
#ifdef DELAYDEBUG
++getit_calls;
#endif
if (tick > prev_tick)
ticks_left -= prev_tick - (tick - counter_limit);
else
ticks_left -= prev_tick - tick;
prev_tick = tick;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop() /* SOS XXX dummy is not needed */
{
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
return -1;
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
if (!beeping) {
outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
beeping = period;
timeout(sysbeepstop, 0, period);
}
return 0;
}
void
startrtclock()
{
@ -69,8 +254,9 @@ startrtclock()
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
/* Correct rounding will buy us a better precision in timekeeping */
outb (IO_TIMER1, (TIMER_FREQ+hz/2)/hz);
outb (IO_TIMER1, ((TIMER_FREQ+hz/2)/hz)/256);
outb (IO_TIMER1, TIMER_DIV(hz)%256);
outb (IO_TIMER1, TIMER_DIV(hz)/256);
timer0_rate = hz;
/* initialize brain-dead battery powered clock */
outb (IO_RTC, RTC_STATUSA);
@ -83,7 +269,6 @@ startrtclock()
printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
}
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
#define FIRST_GUESS 0x2000
static void
@ -93,7 +278,7 @@ findcpuspeed()
unsigned int remainder;
/* Put counter in count down mode */
outb(IO_TIMER1+3, 0x34);
outb(TIMER_MODE, TIMER_16BIT|TIMER_RATEGEN);
outb(IO_TIMER1, 0xff);
outb(IO_TIMER1, 0xff);
delaycount = FIRST_GUESS;
@ -111,16 +296,15 @@ findcpuspeed()
/* convert 2 digit BCD number */
int
bcd(i)
int i;
bcd(int i)
{
return ((i/16)*10 + (i%16));
}
/* convert years to seconds (from 1970) */
unsigned long
ytos(y)
int y;
ytos(int y)
{
int i;
unsigned long ret;
@ -133,16 +317,16 @@ int y;
return ret;
}
/* convert months to seconds */
unsigned long
mtos(m,leap)
int m,leap;
mtos(int m, int leap)
{
int i;
unsigned long ret;
ret = 0;
for(i=1;i<m;i++) {
for(i=1; i<m; i++) {
switch(i){
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
ret += 31*24*60*60; break;
@ -162,11 +346,10 @@ int m,leap;
* from a filesystem.
*/
void
inittodr(base)
time_t base;
inittodr(time_t base)
{
unsigned long sec;
int leap,day_week,t,yd;
int leap, day_week, t, yd;
int sa,s;
/* do we have a realtime clock present? (otherwise we loop below) */
@ -180,26 +363,25 @@ inittodr(base)
sec = bcd(rtcin(RTC_YEAR)) + 1900;
if (sec < 1970)
sec += 100;
leap = !(sec % 4); sec = ytos(sec); /* year */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec += yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec += t; yd += t; /* date */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t; /* date */
day_week = rtcin(RTC_WDAY); /* day */
sec += bcd(rtcin(RTC_HRS)) * 60*60; /* hour */
sec += bcd(rtcin(RTC_MIN)) * 60; /* minutes */
sec += bcd(rtcin(RTC_SEC)); /* seconds */
sec += tz.tz_minuteswest * 60;
time.tv_sec = sec;
}
#ifdef garbage
/*
* Initialze the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
test_inittodr(base)
time_t base;
test_inittodr(time_t base)
{
outb(IO_RTC,9); /* year */
@ -219,6 +401,7 @@ test_inittodr(base)
}
#endif
/*
* Restart the clock.
*/
@ -227,12 +410,14 @@ resettodr()
{
}
/*
* Wire clock interrupt in.
*/
#define V(s) __CONCAT(V, s)
extern void V(clk)();
void
enablertclock()
{
@ -240,12 +425,12 @@ enablertclock()
INTREN(IRQ0);
}
/*
* Delay for some number of milliseconds.
*/
void
spinwait(millisecs)
int millisecs;
spinwait(int millisecs)
{
DELAY(1000 * millisecs);
}

View File

@ -34,7 +34,7 @@
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
* $Id: clock.c,v 1.5 1993/12/19 00:50:30 wollman Exp $
* $Id: clock.c,v 1.6 1994/02/06 22:48:13 davidg Exp $
*/
/*
@ -45,6 +45,7 @@
#include "time.h"
#include "kernel.h"
#include "machine/segments.h"
#include "machine/frame.h"
#include "i386/isa/icu.h"
#include "i386/isa/isa.h"
#include "i386/isa/rtc.h"
@ -55,9 +56,193 @@
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
void hardclock();
static void findcpuspeed(void);
static char timer0_in_use = 0, timer2_in_use = 0;
static int timer0_rate = 100; /* XXX should be hz */
static void (*timer_func)() = hardclock;
static unsigned int prescale = 0;
static unsigned int hardclock_prescale;
static int beeping;
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
void
timerintr(struct intrframe frame)
{
timer_func(frame);
if (timer0_in_use)
if (prescale++ >= hardclock_prescale) {
hardclock(frame);
prescale = 0;
}
}
int
acquire_timer0(int rate, void (*function)() )
{
if (timer0_in_use) /* XXX || (rate < 20000 && rate % hz)) */
return -1;
timer0_in_use = 1;
timer0_rate = rate;
prescale = 0;
hardclock_prescale = rate/hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(rate)%256);
outb(TIMER_CNTR0, TIMER_DIV(rate)/256);
if (function)
timer_func = function;
return 0;
}
int
acquire_timer2(int mode)
{
if (timer2_in_use)
return -1;
timer2_in_use = 1;
outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
return 0;
}
int
release_timer0()
{
if (!timer0_in_use)
return -1;
timer0_in_use = 0;
timer0_rate = hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
timer_func = hardclock;
return 0;
}
int
release_timer2()
{
if (!timer2_in_use)
return -1;
timer2_in_use = 0;
outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
return 0;
}
static int
getit()
{
int high, low;
disable_intr();
/* select timer0 and latch counter value */
outb(TIMER_MODE, TIMER_SEL0);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
enable_intr();
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int counter_limit, prev_tick, tick, ticks_left, sec, usec;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit(0, 0);
n -= 20;
/*
* Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
* and without any avoidable overflows.
*/
sec = n / 1000000;
usec = n - sec * 1000000;
ticks_left = sec * TIMER_FREQ
+ usec * (TIMER_FREQ / 1000000)
+ usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
+ usec * (TIMER_FREQ % 1000) / 1000000;
counter_limit = TIMER_FREQ/timer0_rate;
while (ticks_left > 0) {
tick = getit(0, 0);
#ifdef DELAYDEBUG
++getit_calls;
#endif
if (tick > prev_tick)
ticks_left -= prev_tick - (tick - counter_limit);
else
ticks_left -= prev_tick - tick;
prev_tick = tick;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop() /* SOS XXX dummy is not needed */
{
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
return -1;
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
if (!beeping) {
outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
beeping = period;
timeout(sysbeepstop, 0, period);
}
return 0;
}
void
startrtclock()
{
@ -69,8 +254,9 @@ startrtclock()
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
/* Correct rounding will buy us a better precision in timekeeping */
outb (IO_TIMER1, (TIMER_FREQ+hz/2)/hz);
outb (IO_TIMER1, ((TIMER_FREQ+hz/2)/hz)/256);
outb (IO_TIMER1, TIMER_DIV(hz)%256);
outb (IO_TIMER1, TIMER_DIV(hz)/256);
timer0_rate = hz;
/* initialize brain-dead battery powered clock */
outb (IO_RTC, RTC_STATUSA);
@ -83,7 +269,6 @@ startrtclock()
printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
}
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
#define FIRST_GUESS 0x2000
static void
@ -93,7 +278,7 @@ findcpuspeed()
unsigned int remainder;
/* Put counter in count down mode */
outb(IO_TIMER1+3, 0x34);
outb(TIMER_MODE, TIMER_16BIT|TIMER_RATEGEN);
outb(IO_TIMER1, 0xff);
outb(IO_TIMER1, 0xff);
delaycount = FIRST_GUESS;
@ -111,16 +296,15 @@ findcpuspeed()
/* convert 2 digit BCD number */
int
bcd(i)
int i;
bcd(int i)
{
return ((i/16)*10 + (i%16));
}
/* convert years to seconds (from 1970) */
unsigned long
ytos(y)
int y;
ytos(int y)
{
int i;
unsigned long ret;
@ -133,16 +317,16 @@ int y;
return ret;
}
/* convert months to seconds */
unsigned long
mtos(m,leap)
int m,leap;
mtos(int m, int leap)
{
int i;
unsigned long ret;
ret = 0;
for(i=1;i<m;i++) {
for(i=1; i<m; i++) {
switch(i){
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
ret += 31*24*60*60; break;
@ -162,11 +346,10 @@ int m,leap;
* from a filesystem.
*/
void
inittodr(base)
time_t base;
inittodr(time_t base)
{
unsigned long sec;
int leap,day_week,t,yd;
int leap, day_week, t, yd;
int sa,s;
/* do we have a realtime clock present? (otherwise we loop below) */
@ -180,26 +363,25 @@ inittodr(base)
sec = bcd(rtcin(RTC_YEAR)) + 1900;
if (sec < 1970)
sec += 100;
leap = !(sec % 4); sec = ytos(sec); /* year */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec += yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec += t; yd += t; /* date */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t; /* date */
day_week = rtcin(RTC_WDAY); /* day */
sec += bcd(rtcin(RTC_HRS)) * 60*60; /* hour */
sec += bcd(rtcin(RTC_MIN)) * 60; /* minutes */
sec += bcd(rtcin(RTC_SEC)); /* seconds */
sec += tz.tz_minuteswest * 60;
time.tv_sec = sec;
}
#ifdef garbage
/*
* Initialze the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
test_inittodr(base)
time_t base;
test_inittodr(time_t base)
{
outb(IO_RTC,9); /* year */
@ -219,6 +401,7 @@ test_inittodr(base)
}
#endif
/*
* Restart the clock.
*/
@ -227,12 +410,14 @@ resettodr()
{
}
/*
* Wire clock interrupt in.
*/
#define V(s) __CONCAT(V, s)
extern void V(clk)();
void
enablertclock()
{
@ -240,12 +425,12 @@ enablertclock()
INTREN(IRQ0);
}
/*
* Delay for some number of milliseconds.
*/
void
spinwait(millisecs)
int millisecs;
spinwait(int millisecs)
{
DELAY(1000 * millisecs);
}

View File

@ -34,7 +34,7 @@
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
* $Id: clock.c,v 1.5 1993/12/19 00:50:30 wollman Exp $
* $Id: clock.c,v 1.6 1994/02/06 22:48:13 davidg Exp $
*/
/*
@ -45,6 +45,7 @@
#include "time.h"
#include "kernel.h"
#include "machine/segments.h"
#include "machine/frame.h"
#include "i386/isa/icu.h"
#include "i386/isa/isa.h"
#include "i386/isa/rtc.h"
@ -55,9 +56,193 @@
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
void hardclock();
static void findcpuspeed(void);
static char timer0_in_use = 0, timer2_in_use = 0;
static int timer0_rate = 100; /* XXX should be hz */
static void (*timer_func)() = hardclock;
static unsigned int prescale = 0;
static unsigned int hardclock_prescale;
static int beeping;
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
void
timerintr(struct intrframe frame)
{
timer_func(frame);
if (timer0_in_use)
if (prescale++ >= hardclock_prescale) {
hardclock(frame);
prescale = 0;
}
}
int
acquire_timer0(int rate, void (*function)() )
{
if (timer0_in_use) /* XXX || (rate < 20000 && rate % hz)) */
return -1;
timer0_in_use = 1;
timer0_rate = rate;
prescale = 0;
hardclock_prescale = rate/hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(rate)%256);
outb(TIMER_CNTR0, TIMER_DIV(rate)/256);
if (function)
timer_func = function;
return 0;
}
int
acquire_timer2(int mode)
{
if (timer2_in_use)
return -1;
timer2_in_use = 1;
outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
return 0;
}
int
release_timer0()
{
if (!timer0_in_use)
return -1;
timer0_in_use = 0;
timer0_rate = hz;
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
timer_func = hardclock;
return 0;
}
int
release_timer2()
{
if (!timer2_in_use)
return -1;
timer2_in_use = 0;
outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
return 0;
}
static int
getit()
{
int high, low;
disable_intr();
/* select timer0 and latch counter value */
outb(TIMER_MODE, TIMER_SEL0);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
enable_intr();
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int counter_limit, prev_tick, tick, ticks_left, sec, usec;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit(0, 0);
n -= 20;
/*
* Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
* and without any avoidable overflows.
*/
sec = n / 1000000;
usec = n - sec * 1000000;
ticks_left = sec * TIMER_FREQ
+ usec * (TIMER_FREQ / 1000000)
+ usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
+ usec * (TIMER_FREQ % 1000) / 1000000;
counter_limit = TIMER_FREQ/timer0_rate;
while (ticks_left > 0) {
tick = getit(0, 0);
#ifdef DELAYDEBUG
++getit_calls;
#endif
if (tick > prev_tick)
ticks_left -= prev_tick - (tick - counter_limit);
else
ticks_left -= prev_tick - tick;
prev_tick = tick;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop() /* SOS XXX dummy is not needed */
{
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
return -1;
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
if (!beeping) {
outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
beeping = period;
timeout(sysbeepstop, 0, period);
}
return 0;
}
void
startrtclock()
{
@ -69,8 +254,9 @@ startrtclock()
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
/* Correct rounding will buy us a better precision in timekeeping */
outb (IO_TIMER1, (TIMER_FREQ+hz/2)/hz);
outb (IO_TIMER1, ((TIMER_FREQ+hz/2)/hz)/256);
outb (IO_TIMER1, TIMER_DIV(hz)%256);
outb (IO_TIMER1, TIMER_DIV(hz)/256);
timer0_rate = hz;
/* initialize brain-dead battery powered clock */
outb (IO_RTC, RTC_STATUSA);
@ -83,7 +269,6 @@ startrtclock()
printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
}
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
#define FIRST_GUESS 0x2000
static void
@ -93,7 +278,7 @@ findcpuspeed()
unsigned int remainder;
/* Put counter in count down mode */
outb(IO_TIMER1+3, 0x34);
outb(TIMER_MODE, TIMER_16BIT|TIMER_RATEGEN);
outb(IO_TIMER1, 0xff);
outb(IO_TIMER1, 0xff);
delaycount = FIRST_GUESS;
@ -111,16 +296,15 @@ findcpuspeed()
/* convert 2 digit BCD number */
int
bcd(i)
int i;
bcd(int i)
{
return ((i/16)*10 + (i%16));
}
/* convert years to seconds (from 1970) */
unsigned long
ytos(y)
int y;
ytos(int y)
{
int i;
unsigned long ret;
@ -133,16 +317,16 @@ int y;
return ret;
}
/* convert months to seconds */
unsigned long
mtos(m,leap)
int m,leap;
mtos(int m, int leap)
{
int i;
unsigned long ret;
ret = 0;
for(i=1;i<m;i++) {
for(i=1; i<m; i++) {
switch(i){
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
ret += 31*24*60*60; break;
@ -162,11 +346,10 @@ int m,leap;
* from a filesystem.
*/
void
inittodr(base)
time_t base;
inittodr(time_t base)
{
unsigned long sec;
int leap,day_week,t,yd;
int leap, day_week, t, yd;
int sa,s;
/* do we have a realtime clock present? (otherwise we loop below) */
@ -180,26 +363,25 @@ inittodr(base)
sec = bcd(rtcin(RTC_YEAR)) + 1900;
if (sec < 1970)
sec += 100;
leap = !(sec % 4); sec = ytos(sec); /* year */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec += yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec += t; yd += t; /* date */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t; /* date */
day_week = rtcin(RTC_WDAY); /* day */
sec += bcd(rtcin(RTC_HRS)) * 60*60; /* hour */
sec += bcd(rtcin(RTC_MIN)) * 60; /* minutes */
sec += bcd(rtcin(RTC_SEC)); /* seconds */
sec += tz.tz_minuteswest * 60;
time.tv_sec = sec;
}
#ifdef garbage
/*
* Initialze the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
test_inittodr(base)
time_t base;
test_inittodr(time_t base)
{
outb(IO_RTC,9); /* year */
@ -219,6 +401,7 @@ test_inittodr(base)
}
#endif
/*
* Restart the clock.
*/
@ -227,12 +410,14 @@ resettodr()
{
}
/*
* Wire clock interrupt in.
*/
#define V(s) __CONCAT(V, s)
extern void V(clk)();
void
enablertclock()
{
@ -240,12 +425,12 @@ enablertclock()
INTREN(IRQ0);
}
/*
* Delay for some number of milliseconds.
*/
void
spinwait(millisecs)
int millisecs;
spinwait(int millisecs)
{
DELAY(1000 * millisecs);
}