sys/tools: Add a tool for generating arm and arm64 kernel images.

This tool can generate kernel images without changing the offsets in
the final executable. It replaces the ELF header by properly sized zeroed
block then emits a relative jump to _start(for  'v7jump' or 'v8jump' option)
or the booti header (for 'v8booti' option) to the beginning of the converted file.
Submited by:	ian
This commit is contained in:
Michal Meloun 2020-12-29 14:49:41 +01:00 committed by Michal Meloun
parent 4e4e43dc9e
commit 59f46e34cf

View File

@ -0,0 +1,190 @@
#!/usr/bin/awk -f
#-
# SPDX-License-Identifier: BSD-2-Clause-FreeBSD
#
# Copyright 2019 Ian Lepore <ian@freebsd.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $FreeBSD$
BEGIN {
# Init global vars.
gBytesOut = 0; # How many output bytes we've written so far
gKernbase = 0; # Address of first byte of loaded kernel image
gStart = 0; # Address of _start symbol
gStartOff = 0; # Offset of _start symbol from start of image
gEnd = 0; # Address of _end symbol
gEndOff = 0; # Offset of _end symbol from start of image
# The type of header we're writing is set using -v hdrtype= on
# the command line, ensure we got a valid value for it.
if (hdrtype != "v7jump" &&
hdrtype != "v8jump" &&
hdrtype != "v8booti") {
print "arm_kernel_boothdr.awk: " \
"missing or invalid '-v hdrtype=' argument" >"/dev/stderr"
gHdrType = "error_reported"
exit 1
}
gHdrType = hdrtype
}
function addr_to_offset(addr) {
# Turn an address into an offset from the start of the loaded image.
return addr % gKernbase
}
function hexstr_to_num(str) {
# Prepend a 0x onto the string, then coerce it to a number by doing
# arithmetic with it, which makes awk run it through strtod(),
# which handles hex numbers that have a 0x prefix.
return 0 + ("0x" str)
}
function write_le32(num) {
for (i = 0; i < 4; i++) {
printf("%c", num % 256);
num /= 256
}
gBytesOut += 4
}
function write_le64(num) {
for (i = 0; i < 8; i++) {
printf("%c", num % 256);
num /= 256
}
gBytesOut += 8
}
function write_padding() {
# Write enough padding bytes so that the header fills all the
# remaining space before the _start symbol.
while (gBytesOut++ < gStartOff) {
printf("%c", 0);
}
}
function write_v7jump() {
# Write the machine code for "b _start"...
# 0xea is armv7 "branch always" and the low 24 bits is the signed
# offset from the current PC, in words. We know the gStart offset
# is in the first 2mb, so it'll fit in 24 bits.
write_le32(hexstr_to_num("ea000000") + (gStartOff / 4) - 2)
}
function write_v8jump() {
# Write the machine code for "b _start"...
# 0x14 is armv8 "branch always" and the low 26 bits is the signed
# offset from the current PC, in words. We know the gStart offset
# is in the first 2mb, so it'll fit in 26 bits.
write_le32(hexstr_to_num("14000000") + (gStartOff / 4))
}
function write_v8booti() {
# We are writing this struct...
#
# struct Image_header {
# uint32_t code0; /* Executable code */
# uint32_t code1; /* Executable code */
# uint64_t text_offset; /* Image load offset, LE */
# uint64_t image_size; /* Effective Image size, LE */
# uint64_t flags; /* Kernel flags, LE */
# uint64_t res1[3]; /* reserved */
# uint32_t magic; /* Magic number */
# uint32_t res2;
# };
#
# We write 'b _start' into code0. The image size is everything from
# the start of the loaded image to the offset given by the _end symbol.
write_v8jump() # code0
write_le32(0) # code1
write_le64(0) # text_offset
write_le64(gEndOff) # image_size
write_le64(0) # flags
write_le64(0) # res1[0]
write_le64(0) # res1[1]
write_le64(0) # res1[2]
write_le32(hexstr_to_num("644d5241")) # magic (LE "ARMd" (d is 0x64))
write_le32(0) # res2
}
/kernbase/ {
# If the symbol name is exactly "kernbase" save its address.
if ($8 == "kernbase") {
gKernbase = hexstr_to_num($2)
}
}
/_start/ {
# If the symbol name is exactly "_start" save its address.
if ($8 == "_start") {
gStart = hexstr_to_num($2)
}
}
/_end/ {
# If the symbol name is exactly "_end" remember its value.
if ($8 == "_end") {
gEnd = hexstr_to_num($2)
}
}
END {
# Note that this function runs even if BEGIN calls exit(1)!
if (gHdrType == "error_reported") {
exit 1
}
# Make sure we got all three required symbols.
if (gKernbase == 0 || gStart == 0 || gEnd == 0) {
print "arm_kernel_boothdr.awk: " \
"missing kernbase/_start/_end symbol(s)" >"/dev/stderr"
exit 1
}
gStartOff = addr_to_offset(gStart)
gEndOff = addr_to_offset(gEnd)
if (gHdrType == "v7jump") {
write_v7jump()
} else if (gHdrType == "v8jump") {
write_v8jump()
} else if (gHdrType == "v8booti") {
write_v8booti()
}
write_padding()
}