|
|
|
@ -121,20 +121,10 @@ __FBSDID("$FreeBSD$");
|
|
|
|
|
* Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
|
|
|
|
|
* types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
|
|
|
|
|
*/
|
|
|
|
|
#if 0 /*def SHA2_USE_INTTYPES_H*/
|
|
|
|
|
|
|
|
|
|
typedef uint8_t sha2_byte; /* Exactly 1 byte */
|
|
|
|
|
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
|
|
|
|
|
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
|
|
|
|
|
|
|
|
|
|
#else /* SHA2_USE_INTTYPES_H */
|
|
|
|
|
|
|
|
|
|
typedef u_int8_t sha2_byte; /* Exactly 1 byte */
|
|
|
|
|
typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
|
|
|
|
|
typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
|
|
|
|
|
|
|
|
|
|
#endif /* SHA2_USE_INTTYPES_H */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-256/384/512 Various Length Definitions ***********************/
|
|
|
|
|
/* NOTE: Most of these are in sha2.h */
|
|
|
|
@ -183,8 +173,6 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
|
|
|
|
|
*/
|
|
|
|
|
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
|
|
|
|
|
#define R(b,x) ((x) >> (b))
|
|
|
|
|
/* 32-bit Rotate-right (used in SHA-256): */
|
|
|
|
|
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
|
|
|
|
|
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
|
|
|
|
|
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
|
|
|
|
|
|
|
|
|
@ -192,12 +180,6 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
|
|
|
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
|
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
|
|
|
|
|
|
/* Four of six logical functions used in SHA-256: */
|
|
|
|
|
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
|
|
|
|
|
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
|
|
|
|
|
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
|
|
|
|
|
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
|
|
|
|
|
|
|
|
|
|
/* Four of six logical functions used in SHA-384 and SHA-512: */
|
|
|
|
|
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
|
|
|
|
|
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
|
|
|
|
@ -210,43 +192,10 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
|
|
|
|
|
* only.
|
|
|
|
|
*/
|
|
|
|
|
static void SHA512_Last(SHA512_CTX*);
|
|
|
|
|
static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
|
|
|
|
|
static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
|
|
|
|
|
/* Hash constant words K for SHA-256: */
|
|
|
|
|
static const sha2_word32 K256[64] = {
|
|
|
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
|
|
|
|
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
|
|
|
|
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
|
|
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
|
|
|
|
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
|
|
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
|
|
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
|
|
|
|
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
|
|
|
|
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
|
|
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
|
|
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
|
|
|
|
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
|
|
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
|
|
|
|
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
|
|
|
|
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
|
|
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Initial hash value H for SHA-256: */
|
|
|
|
|
static const sha2_word32 sha256_initial_hash_value[8] = {
|
|
|
|
|
0x6a09e667UL,
|
|
|
|
|
0xbb67ae85UL,
|
|
|
|
|
0x3c6ef372UL,
|
|
|
|
|
0xa54ff53aUL,
|
|
|
|
|
0x510e527fUL,
|
|
|
|
|
0x9b05688cUL,
|
|
|
|
|
0x1f83d9abUL,
|
|
|
|
|
0x5be0cd19UL
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Hash constant words K for SHA-384 and SHA-512: */
|
|
|
|
|
static const sha2_word64 K512[80] = {
|
|
|
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
|
|
@ -323,301 +272,6 @@ static const char *sha2_hex_digits = "0123456789abcdef";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-256: *********************************************************/
|
|
|
|
|
void SHA256_Init(SHA256_CTX* context) {
|
|
|
|
|
if (context == (SHA256_CTX*)0) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
|
|
|
|
|
bzero(context->buffer, SHA256_BLOCK_LENGTH);
|
|
|
|
|
context->bitcount = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
|
|
|
|
|
|
/* Unrolled SHA-256 round macros: */
|
|
|
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
|
|
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
|
|
|
|
REVERSE32(*data++, W256[j]); \
|
|
|
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
|
|
|
|
K256[j] + W256[j]; \
|
|
|
|
|
(d) += T1; \
|
|
|
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
|
|
|
|
j++
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
|
|
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
|
|
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
|
|
|
|
K256[j] + (W256[j] = *data++); \
|
|
|
|
|
(d) += T1; \
|
|
|
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
|
|
|
|
j++
|
|
|
|
|
|
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
|
|
|
|
|
|
#define ROUND256(a,b,c,d,e,f,g,h) \
|
|
|
|
|
s0 = W256[(j+1)&0x0f]; \
|
|
|
|
|
s0 = sigma0_256(s0); \
|
|
|
|
|
s1 = W256[(j+14)&0x0f]; \
|
|
|
|
|
s1 = sigma1_256(s1); \
|
|
|
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
|
|
|
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
|
|
|
|
|
(d) += T1; \
|
|
|
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
|
|
|
|
j++
|
|
|
|
|
|
|
|
|
|
static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
|
|
|
|
|
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
|
|
|
|
|
sha2_word32 T1, *W256;
|
|
|
|
|
int j;
|
|
|
|
|
|
|
|
|
|
W256 = (sha2_word32*)context->buffer;
|
|
|
|
|
|
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
|
|
|
a = context->state[0];
|
|
|
|
|
b = context->state[1];
|
|
|
|
|
c = context->state[2];
|
|
|
|
|
d = context->state[3];
|
|
|
|
|
e = context->state[4];
|
|
|
|
|
f = context->state[5];
|
|
|
|
|
g = context->state[6];
|
|
|
|
|
h = context->state[7];
|
|
|
|
|
|
|
|
|
|
j = 0;
|
|
|
|
|
do {
|
|
|
|
|
/* Rounds 0 to 15 (unrolled): */
|
|
|
|
|
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
|
|
|
|
|
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
|
|
|
|
|
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
|
|
|
|
|
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
|
|
|
|
|
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
|
|
|
|
|
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
|
|
|
|
|
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
|
|
|
|
|
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
|
|
|
|
|
} while (j < 16);
|
|
|
|
|
|
|
|
|
|
/* Now for the remaining rounds to 64: */
|
|
|
|
|
do {
|
|
|
|
|
ROUND256(a,b,c,d,e,f,g,h);
|
|
|
|
|
ROUND256(h,a,b,c,d,e,f,g);
|
|
|
|
|
ROUND256(g,h,a,b,c,d,e,f);
|
|
|
|
|
ROUND256(f,g,h,a,b,c,d,e);
|
|
|
|
|
ROUND256(e,f,g,h,a,b,c,d);
|
|
|
|
|
ROUND256(d,e,f,g,h,a,b,c);
|
|
|
|
|
ROUND256(c,d,e,f,g,h,a,b);
|
|
|
|
|
ROUND256(b,c,d,e,f,g,h,a);
|
|
|
|
|
} while (j < 64);
|
|
|
|
|
|
|
|
|
|
/* Compute the current intermediate hash value */
|
|
|
|
|
context->state[0] += a;
|
|
|
|
|
context->state[1] += b;
|
|
|
|
|
context->state[2] += c;
|
|
|
|
|
context->state[3] += d;
|
|
|
|
|
context->state[4] += e;
|
|
|
|
|
context->state[5] += f;
|
|
|
|
|
context->state[6] += g;
|
|
|
|
|
context->state[7] += h;
|
|
|
|
|
|
|
|
|
|
/* Clean up */
|
|
|
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
|
|
|
|
|
|
static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
|
|
|
|
|
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
|
|
|
|
|
sha2_word32 T1, T2, *W256;
|
|
|
|
|
int j;
|
|
|
|
|
|
|
|
|
|
W256 = (sha2_word32*)context->buffer;
|
|
|
|
|
|
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
|
|
|
a = context->state[0];
|
|
|
|
|
b = context->state[1];
|
|
|
|
|
c = context->state[2];
|
|
|
|
|
d = context->state[3];
|
|
|
|
|
e = context->state[4];
|
|
|
|
|
f = context->state[5];
|
|
|
|
|
g = context->state[6];
|
|
|
|
|
h = context->state[7];
|
|
|
|
|
|
|
|
|
|
j = 0;
|
|
|
|
|
do {
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
|
/* Copy data while converting to host byte order */
|
|
|
|
|
REVERSE32(*data++,W256[j]);
|
|
|
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
|
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
|
/* Apply the SHA-256 compression function to update a..h with copy */
|
|
|
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
|
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
|
|
|
h = g;
|
|
|
|
|
g = f;
|
|
|
|
|
f = e;
|
|
|
|
|
e = d + T1;
|
|
|
|
|
d = c;
|
|
|
|
|
c = b;
|
|
|
|
|
b = a;
|
|
|
|
|
a = T1 + T2;
|
|
|
|
|
|
|
|
|
|
j++;
|
|
|
|
|
} while (j < 16);
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
/* Part of the message block expansion: */
|
|
|
|
|
s0 = W256[(j+1)&0x0f];
|
|
|
|
|
s0 = sigma0_256(s0);
|
|
|
|
|
s1 = W256[(j+14)&0x0f];
|
|
|
|
|
s1 = sigma1_256(s1);
|
|
|
|
|
|
|
|
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
|
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
|
|
|
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
|
|
|
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
|
|
|
h = g;
|
|
|
|
|
g = f;
|
|
|
|
|
f = e;
|
|
|
|
|
e = d + T1;
|
|
|
|
|
d = c;
|
|
|
|
|
c = b;
|
|
|
|
|
b = a;
|
|
|
|
|
a = T1 + T2;
|
|
|
|
|
|
|
|
|
|
j++;
|
|
|
|
|
} while (j < 64);
|
|
|
|
|
|
|
|
|
|
/* Compute the current intermediate hash value */
|
|
|
|
|
context->state[0] += a;
|
|
|
|
|
context->state[1] += b;
|
|
|
|
|
context->state[2] += c;
|
|
|
|
|
context->state[3] += d;
|
|
|
|
|
context->state[4] += e;
|
|
|
|
|
context->state[5] += f;
|
|
|
|
|
context->state[6] += g;
|
|
|
|
|
context->state[7] += h;
|
|
|
|
|
|
|
|
|
|
/* Clean up */
|
|
|
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
|
|
|
|
|
|
void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
|
|
|
|
|
unsigned int freespace, usedspace;
|
|
|
|
|
|
|
|
|
|
if (len == 0) {
|
|
|
|
|
/* Calling with no data is valid - we do nothing */
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Sanity check: */
|
|
|
|
|
assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
|
|
|
|
|
|
|
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
|
|
|
if (usedspace > 0) {
|
|
|
|
|
/* Calculate how much free space is available in the buffer */
|
|
|
|
|
freespace = SHA256_BLOCK_LENGTH - usedspace;
|
|
|
|
|
|
|
|
|
|
if (len >= freespace) {
|
|
|
|
|
/* Fill the buffer completely and process it */
|
|
|
|
|
bcopy(data, &context->buffer[usedspace], freespace);
|
|
|
|
|
context->bitcount += freespace << 3;
|
|
|
|
|
len -= freespace;
|
|
|
|
|
data += freespace;
|
|
|
|
|
SHA256_Transform(context, (sha2_word32*)context->buffer);
|
|
|
|
|
} else {
|
|
|
|
|
/* The buffer is not yet full */
|
|
|
|
|
bcopy(data, &context->buffer[usedspace], len);
|
|
|
|
|
context->bitcount += len << 3;
|
|
|
|
|
/* Clean up: */
|
|
|
|
|
usedspace = freespace = 0;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
while (len >= SHA256_BLOCK_LENGTH) {
|
|
|
|
|
/* Process as many complete blocks as we can */
|
|
|
|
|
SHA256_Transform(context, (const sha2_word32*)data);
|
|
|
|
|
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
|
|
|
|
len -= SHA256_BLOCK_LENGTH;
|
|
|
|
|
data += SHA256_BLOCK_LENGTH;
|
|
|
|
|
}
|
|
|
|
|
if (len > 0) {
|
|
|
|
|
/* There's left-overs, so save 'em */
|
|
|
|
|
bcopy(data, context->buffer, len);
|
|
|
|
|
context->bitcount += len << 3;
|
|
|
|
|
}
|
|
|
|
|
/* Clean up: */
|
|
|
|
|
usedspace = freespace = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
|
|
|
|
|
sha2_word32 *d = (sha2_word32*)digest;
|
|
|
|
|
unsigned int usedspace;
|
|
|
|
|
|
|
|
|
|
/* Sanity check: */
|
|
|
|
|
assert(context != (SHA256_CTX*)0);
|
|
|
|
|
|
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
|
|
|
if (digest != (sha2_byte*)0) {
|
|
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
|
/* Convert FROM host byte order */
|
|
|
|
|
REVERSE64(context->bitcount,context->bitcount);
|
|
|
|
|
#endif
|
|
|
|
|
if (usedspace > 0) {
|
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
|
|
|
context->buffer[usedspace++] = 0x80;
|
|
|
|
|
|
|
|
|
|
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
|
|
|
|
|
/* Set-up for the last transform: */
|
|
|
|
|
bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
|
|
|
|
|
} else {
|
|
|
|
|
if (usedspace < SHA256_BLOCK_LENGTH) {
|
|
|
|
|
bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
|
|
|
|
|
}
|
|
|
|
|
/* Do second-to-last transform: */
|
|
|
|
|
SHA256_Transform(context, (sha2_word32*)context->buffer);
|
|
|
|
|
|
|
|
|
|
/* And set-up for the last transform: */
|
|
|
|
|
bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
/* Set-up for the last transform: */
|
|
|
|
|
bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
|
|
|
|
|
|
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
|
|
|
*context->buffer = 0x80;
|
|
|
|
|
}
|
|
|
|
|
/* Set the bit count: */
|
|
|
|
|
*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
|
|
|
|
|
|
|
|
|
|
/* Final transform: */
|
|
|
|
|
SHA256_Transform(context, (sha2_word32*)context->buffer);
|
|
|
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
|
{
|
|
|
|
|
/* Convert TO host byte order */
|
|
|
|
|
int j;
|
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
|
|
REVERSE32(context->state[j],context->state[j]);
|
|
|
|
|
*d++ = context->state[j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
bcopy(context->state, d, SHA256_DIGEST_LENGTH);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Clean up state data: */
|
|
|
|
|
bzero(context, sizeof(*context));
|
|
|
|
|
usedspace = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char *SHA256_End(SHA256_CTX* context, char buffer[]) {
|
|
|
|
|
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
|
|
|
|
|
int i;
|
|
|
|
@ -641,7 +295,7 @@ char *SHA256_End(SHA256_CTX* context, char buffer[]) {
|
|
|
|
|
return buffer;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
|
|
|
|
|
char* SHA256_Data(const void *data, unsigned int len, char *digest) {
|
|
|
|
|
SHA256_CTX context;
|
|
|
|
|
|
|
|
|
|
SHA256_Init(&context);
|
|
|
|
|